
Received 2 August 2022, accepted 3 September 2022, date of publication 8 September 2022, date of current version 19 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3204994

Analysis and Mitigation of Patterned Read
Collisions in Flash SSDs
YUHUN JUN 1, JAEHYUNG PARK2, JEONG-UK KANG3, AND EUISEONG SEO 2
1Department of Semiconductor Display, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, South Korea
2Department of Computer Science and Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, South Korea
3Samsung Electronics Co., Ltd., Yongin-si, Gyeonggi-do 17113, South Korea

Corresponding author: Euiseong Seo (euiseong@skku.edu)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant
through the Korean Government, Ministry of Science and ICT (MSIT), Research on Edge-Native Operating Systems for Edge
Micro-Data-Centers, under Grant 2021-0-00773; and in part by the National Research Foundation of Korea (NRF) under Grant
2021R1A2C2004976.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ABSTRACT A modern flash solid-state drive (SSD) achieves superb throughput by accessing its flash
memory dies in parallel. To obtain parallelism in processing writes, the flash translation layer (FTL) of
an SSD is allowed to allocate physical pages from idle dies or dies with low loads. However, since the
die that holds the page to be read is determined in advance, when multiple read requests head for one die,
read collisions occur, and the read operations involved in the collisions must be serialized. These read
collisions lead to a significant prolongation of read latency and, thus the degradation of throughput. As the
density of flash dies increases, more pages are stored on a die, which is expected to result in more frequent
read collisions. Unlike the write collisions that the DRAM buffer can absorb, read collisions directly
affect user-experienced latency. Therefore, the severity of the problem is further increased. In this paper,
we identify the impact of read collisions on performance with real-world traces.We also propose an approach
that distinguishes patterned read collisions from accidental ones and mitigates the performance impact of
patterned read collisions. By replicating frequently occurring pages involved in patterned read collisions, the
proposed approach improves the average and tail read latency of an SSD. The evaluation through simulation
with the 34 MSR Cambridge traces showed that 12 traces out of 34 earned read performance improvement
larger than 10% and up to 37%. In addition, the tail read latency of 15 traces was reduced by at least 20% and
by up to 53%. Only two traces showed negligible degradation in average and tail read latency by around 1%.

17 INDEX TERMS Flash memory, read performance, resource contention, SSDs, tail latency.

I. INTRODUCTION18

A modern flash SSD is equipped with multiple NAND flash19

dies. A die can process a primitive flash memory operation:20

erase, program (write), and read, one at a time. A die is able21

to read or write at a few tens of MB/s, and flash SSDs can22

achieve high performance by operating a significant number23

of dies in parallel. Consequently, maintaining a high degree of24

die-level parallelism is crucial for the performance of modern25

SSDs [1].26

Maintaining high die-level parallelism in write operations27

can be carried out effortlessly using the flash translation layer28

(FTL). The FTL determines a physical page number (PPN)29

The associate editor coordinating the review of this manuscript and

approving it for publication was Artur Antonyan .

to store a logical page number (LPN), which is an address of 30

an externally visible page and manages the mapping between 31

LPNs and PPNs. During write operations, the FTL tries to 32

allocate PPNs, which will accommodate the incoming LPNs, 33

from as many dies as possible to increase the die-level paral- 34

lelism [2], [3]. 35

A sequential read operation that accesses multiple pages 36

written in such a way is naturally spread evenly across mul- 37

tiple dies, resulting in maximum read performance. How- 38

ever, since die’s location on a target physical page during 39

a read operation is predetermined, a series of read opera- 40

tions can be concentrated on some of the dies. If an out- 41

standing request exists in a die, even if other dies are 42

available, the outstanding request will have to wait its 43

turn. 44

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 96997

https://orcid.org/0000-0002-8116-2559
https://orcid.org/0000-0003-2103-8019
https://orcid.org/0000-0002-4192-5291


Y. Jun et al.: Analysis and Mitigation of Patterned Read Collisions in Flash SSDs

Compared to read operations, erase operations or write45

operations have a significantly lower impact on the user-46

perceived performance. Accordingly, to give priority to read47

operations in a die command queue, reordering of commands48

in the command queue [4] and suspending an in-progress49

write or erase operation [5], [6] have been proposed. How-50

ever, if there exists a preceding read operation, the following51

read operation has no choice but to wait until the previous52

one is finished because they are operations of equal priority.53

Therefore, the read operations biased on a small set of dies54

significantly degrade die-level parallelism, and consequently,55

extend read latency and degrade the throughput of the SSD.56

Over the last four generations, the capacity of a flash57

die has increased 8 folds, from 128Gb to 1024Gb [7], [8],58

[9], [10]. This increased capacity of a die enables the use59

of fewer dies to provide the same level of capacity for an60

SSD. Even considering the increasing capacity of an SSD,61

the number of dies equipped in an SSD is less likely to62

increase. Consequently, the degree of line-blocking among63

read operations, which we call read collisions, will remain64

the same or worsen in the near future. Despite the importance65

of read collisions’ impact on read latency and throughput, few66

studies have attempted to characterize ormitigate the negative67

effects of die-level read collisions.68

In this paper, we analyze the occurrence patterns of read69

collisions in various I/O traces and the performance degra-70

dation caused by them. Based on the analysis, we present a71

methodology that separates patterned read collisions, which72

occur due to the LPN-to-PPNmappingsmismatching the host73

I/O patterns, out of accidental ones. Lastly, on top of this,74

we propose a mitigation scheme of patterned read collisions.75

Our approach replicates the pages that are frequently involved76

in patterned read collisions to less congested dies.77

The proposed approach was implemented in MQSim [11],78

a flash SSD simulator reflecting the internal-parallelism of79

the modern SSD architecture. TheMSRCambridge block I/O80

trace set [12], [13] was used for the analysis of read collisions81

and the evaluation of the proposed approach.82

The rest of this paper is organized as follows. Section II83

presents the read collisions observed in various workloads.84

Based on the obtained implications, in Section III, we propose85

a read collisionmitigation scheme, and, evaluate the proposed86

approach in Section IV. After introducing the related work in87

Section V, Section VI concludes the research.88

II. BACKGROUND AND MOTIVATION89

A. INTERNALS OF MODERN FLASH SSDs90

A NAND flash die provides read performance of only a91

few hundred MB/s, which is far below the transfer rate of92

several GB/s provided by the PCIe bus. For example, one93

flash die used by a recent commercial SSD reads 18 KB94

per 45us, resulting in 409 MB/s, but the SSD can provide95

over 7 GB/s of read performance [14]. To provide this96

maximum performance, more than 17 dies in the SSD must97

read simultaneously.98

FIGURE 1. Die-level parallelism in a flash SSD.

TABLE 1. Capacity increment over generations of 3D stacked NAND flash
dies.

Hence, modern flash SSDs are designed to operate mul- 99

tiple dies in parallel, as shown in Fig. 1. A controller has 100

multiple data channels, and each channel connects to multiple 101

dies. As a die does not fully occupy its data channel during 102

operation, the controller can operate other dies on the chan- 103

nel through die-interleaving. Accordingly, in each n channel 104

operating in parallel, m dies can simultaneously operate. 105

To keep the dies in the working state as much as possible, 106

recent SSDs maintain a command queue for each die [4]. 107

Operations are inserted into the queue of the target die and 108

processed one by one. As previously stated, read operations 109

take precedence over erase or write operations. Consequently, 110

the use of per-die command queues enables high die utiliza- 111

tion as well as improved read latency. 112

When sequential read requests are issued by an applica- 113

tion, because the data locations are predetermined, their flash 114

read commands can be queued to a small set of dies, which 115

results in extended read latency and degraded throughput. For 116

example, as shown on the right side of Fig. 1, read collisions 117

occur at die 0 by consecutively inserting read operations to 118

its command queue. 119

The occurrence frequency of read collisions is proportional 120

to the number of read operations and inversely proportional 121

to the number of dies in an SSD. Table 1 shows the charac- 122

teristics of a 3D-stacked NAND flash die across generations. 123

The capacity of a die has increased twice each generation. 124

The SSD manufacturers naturally want to reduce the cost of 125

building an SSD. Therefore, the number of flash dies installed 126

in an SSD of the same capacity tends to decrease [15], [16]. 127

As previously mentioned, read operations directly affect 128

the end-performance of applications because, unlike write 129

operations, buffering of operations is not possible. Therefore, 130

it is expected that the importance of analyzing and mitigating 131

the adverse performance impact of read collisions will keep 132

continuing to grow as the density of flash dies advances. 133

B. CATEGORIZATION OF READ COLLISIONS 134

Although read collisions are adverse to the performance of 135

an SSD, we cannot completely remove all of them. When 136

96998 VOLUME 10, 2022



Y. Jun et al.: Analysis and Mitigation of Patterned Read Collisions in Flash SSDs

FIGURE 2. Categorization of read collisions.

all dies are performing read operations as shown in Fig. 2a,137

an incoming request will yield a read collision regardless of138

which die it will be assigned to. If the requests are evenly139

deployed across all dies, the difference between themaximum140

outstanding command count (OCC) and the minimum OCC141

of the die command queues should be at most one, according142

to the pigeon hole principle [17]. A collision that occurs on143

a die of which OCC is different from the minimum OCC144

of the SSD by one or less is called a balanced collision,145

as shown in Fig.2a. The balanced collisions are inevitable and146

do not degrade throughput, as all dies can keep operating in147

parallel. Naturally, the prolongation of read latency caused by148

the balanced collisions should be acceptable.149

When the OCC of each die may differ by two or more,150

imbalanced collisions may occur. When a collision occurs at151

a die and its OCC differs from the minimum OCC of the SSD152

by two or more, this collision is the result from the biased153

distribution of operations at the die level. As shown in Fig. 2b,154

if the read operation C of die 0 could be performed on die155

2 or die 3, the read latency would have been reduced. Fur-156

thermore, if an imbalanced collision leaves a die idle while157

there are queued operations in other dies, the throughput will158

be degraded as well.159

The read collisions can be categorized into two types160

based on their causes. The first is accidental read collisions,161

in which two or more unrelated read operations are acci-162

dentally dispatched to a single die. The second is patterned163

read collisions that occur when two or more pages, which164

are mostly read together by an application, are unfortunately165

stored in the same die. Although the FTL tries to distribute166

the contiguous logical pages to as many dies as possible at the167

time of writing their data, if a sequence of contiguous logical168

pages are written with a time gap, or the write sequence169

and the data read sequence are different from each other, the170

patterned read collisions may occur.171

Both accidental read collision and patterned read collision172

are frequent. However, accidental read collisions are sup-173

posed to occur equally across all dies. Therefore, it is less174

likely that an accidental read collision results in an imbal-175

anced collision than a patterned read collision. In addition, the176

depth of nested imbalanced collisions occurring at a single die177

from accidental read collisions tends to be shallow. Conse-178

quently, accidental collisions can be considered benign, while179

patterned collisions are malignant. It is because a patterned180

collision can occur frequently depending on the application181

behavior and is likely to end up with an imbalanced col-182

FIGURE 3. Number of read collisions normalized to that of a random read
workload with the same level of OCC.

lision, which significantly degrades both read latency and 183

throughput. 184

C. ANALYSIS OF READ COLLISION OCCURRENCES 185

To analyze the frequency and characteristics of read col- 186

lisions occurring in operations, through simulation with 187

MQSim [11], we observed the internal activities of an SSD 188

while running diverse workloads. Among the 36 MSR Cam- 189

bridge workload traces [13], we analyzed eight workloads of 190

which read proportion is over 90%. 191

For comparison, we also analyzed a synthetic random read 192

workload, which issues 4 KB random reads to keep SSD’s 193

OCC at 8. This is denoted as RR8. 194

A PPN is allocated to an LPN when the LPN is first 195

accessed by a trace. The PPN allocation in our simulation was 196

performed by the CWDP algorithm [18], which determines 197

the channel, way, and die of the PPN based on the remainder 198

of the LPN divided by the number of channels, ways, and 199

dies, respectively. The OCC changes and collision patterns 200

were monitored every 10 µs. Table 2 shows the observed 201

simulation results. 202

To determine whether read collisions caused by a workload 203

are due to coincidence or access patterns, we need a basis 204

to be compared against. For this, we created a hypothetical 205

workload for each MSR workload trace that continuously 206

maintains the same level of OCC as the corresponding work- 207

load but distributes read operations randomly over all dies. 208

The number of read collisions that occurred to the total 209

number of reads when executing this random-read workload 210

is denoted as the expected collision ratio in Table 2, and 211

the actual collision ratio of the workload is presented as the 212

measured collision ratio. The expected collision ratio tells 213

the read collision ratio caused by pure coincidence under the 214

same level of OCC changes. 215

Fig. 3 shows, for each workload, the number of measured 216

read collisions normalized to the number of expected read 217

collisions. Given that RR8 is a purely random read workload, 218

it showed a value of 1.0 with a marginal error range, which 219

shows the validity of the collision patterns of the synthetic 220

random read workload. 221

All seven workloads, except PROJ3, showed fewer colli- 222

sions than their random-read counterparts. Most of their read 223

VOLUME 10, 2022 96999



Y. Jun et al.: Analysis and Mitigation of Patterned Read Collisions in Flash SSDs

TABLE 2. Read collision characteristics observed during the execution of the MSR traces listed in order of read proportion.

requests showed a certain degree of sequentiality, and this224

reduced the occurrences of read collisions. However, despite225

the average OCC of these seven workloads were significantly226

smaller than the number of dies, 48% of read operations on227

average caused collisions. In the cases of HM1 and PROJ4,228

the numbers of collisions are close to their random read coun-229

terparts, respectively. PROJ3 generated even more collisions230

than the random read workload. This shows that when the231

LPN-to-PPN mappings are not favorably set to the applica-232

tion’s request patterns, a large amount of patterned collisions233

may occur.234

Imbalanced to All Collisions on Table 2 shows the pro-235

portion of imbalanced collisions to all read collisions. While236

executing RR8, idle dies must exist because it always main-237

tains eight outstanding requests while there are 16 dies in238

the SSD. Therefore, all collisions produced by RR8 must be239

imbalanced ones. The average OCC of all workloads, except240

PROJ3, was smaller than 16. Consequently, 90% of total241

collisions were identified as imbalanced ones.242

Even with the increased OCC, biased assignments of oper-243

ations to some of the dies were consistently observable. The244

average OCC of PROJ3 was greater than the number of dies.245

However, for the aforementioned reason, one or more dies246

stayed idle at 87% of observation time points, and 100% of247

its collisions were determined as imbalanced ones.248

To analyze the impact of frequent collision patterns on249

overall collision occurrences, we counted the number of250

collision pairs that appeared during the simulation of each251

workload. A collision pair is a pair of two LPNs involved in252

a collision. In Fig. 2b, read operations A and B are already253

queued for die 0. When operation C is queued, it produces an254

imbalanced collision. At that point, we can extract two colli-255

sion pairs, <A,C> and <B,C>, from that collision. Given that256

<A,B> also contributes to the imbalance, <A,B>, is recorded257

together with <A,C> and <B,C>. The Imbalanced Collision258

Pairs in Table 2 shows the number of collision pairs that259

contributed to the imbalanced collisions. We also measured260

the number of occurrences of each collision pair during the261

execution of each workload.262

We measured the number of repetitions of each collision263

pair and the number of requests deployed to each die observed264

during the execution of each workload. Fig. 4 shows the mea-265

sured results. RR8 is not included because every die handles266

the same number of read operations and every collision pair267

appeared only once.268

TABLE 3. Relative standard deviation of the number of read operations
performed on each die during execution of each workload.

The upper row of Fig. 4 shows the workloads with the high 269

mean repetition counts of collision pairs while the lower row 270

presents the ones with low mean repetition counts. For HM1, 271

USR1, and WEB2, only 5% of frequently observed collision 272

pairs account for 80% of all collision occurrences. Especially, 273

some of the pairs happened a few thousand times in these 274

three workloads. In PROJ3, 50,000 pairs out of 170,000 275

accounted for 62% of collisions. 276

The relative standard deviation (RSD) of the number of 277

read operations performed on each die is calculated as the 278

ratio of their standard deviation to the mean number of read 279

operations for a die. Table 3 shows the RSDs of the work- 280

loads presented in Fig. 4, and these numbers represent the 281

degree of bias in the distributions of read operations over 282

the dies. 283

The workloads in the upper row of Fig. 4 are commonly 284

characterized by uneven distributions of read operations over 285

the dies. On the contrary, the workloads placed in the lower 286

row commonly showed relatively uniform distribution of 287

read operations over the dies. However, even in these work- 288

loads, the top few collision pairs showed significantly high 289

repetition counts in comparison to the others. These highly 290

repetitive collision pairs indicate the existence of patterned 291

collisions. 292

The above observations reveal the existence of patterned 293

collisions in the read-dominant workloads. The collision 294

pairs they generated showed an overwhelmingly higher 295

occurrence frequency than the collision pairs generated 296

by accidental collisions. If these few frequent collision 297

pairs are eliminated, the read latency can be significantly 298

improved. 299

97000 VOLUME 10, 2022



Y. Jun et al.: Analysis and Mitigation of Patterned Read Collisions in Flash SSDs

FIGURE 4. Repetition count of each collision pair sorted in descending order, and the distribution of read operations over the 16 dies. The upper row
presents the workloads with high mean repetition counts while the lower row shows the workloads with low mean repetition counts.

III. OUR APPROACH300

In this study, we propose a method to identify repetitive301

imbalanced read collision patterns with a small memory foot-302

print and little computation overhead. We also propose a read303

collision mitigation scheme that can reduce imbalanced read304

collisions by replicating logical pages that are repetitively305

involved in read collisions to properly select dies.306

A. DETECTION OF MALIGNANT COLLISION PAIRS307

When a collision pair repetitively causes imbalanced colli-308

sions, we can get rid of the imbalanced collisions by moving309

one of the pages in the collision pair to other die. This310

approach requires the SSD to identify the frequently recurring311

collision pairs without any hints given from the host. There-312

fore, we propose a cost-benefit analysis model that estimates313

the expected reduction in imbalanced read collisions by mov-314

ing one page of a collision pair to other die. If the expected315

benefit of moving a page of a certain collision pair exceeds316

the cost tomove the page, themitigation schemewill replicate317

one of the two pages in the pair to a die that is least likely to318

cause new collisions by the moved page.319

In the proposed scheme, as shown in Fig. 5, the FTL320

maintains a collision pair list for each die to record the occur-321

rences of patterned collision pairs observed during operation.322

This list records the number of collisions caused by each323

collision pair that occurred at the corresponding die based324

on the categorization criteria explained in Section II-C.When325

issuing a read command to a die, the FTL updates the collision326

pair list of the die with the information about the collision,327

if occurred, generated by the read operation. One collision328

pair occupies one entry in the list, and a new entry is created329

when a collision pair that is not in the list is observed. The330

pages of the collision pairs with high occurrences in this table331

are subject to the aforementioned page replication to other332

die.333

FIGURE 5. Management of per-die collision pair lists.

For page replication, not only the page to be replicated but 334

also the destination die to accommodate the page must be 335

determined. A suitable candidate dies for the page replication 336

is the one with the least amount of outstanding read opera- 337

tions statistically in its queue when the page to be replicated 338

was involved in collisions. Therefore, an entry of a collision 339

pair list records the slack counter for each die. The slack 340

counter of a die is increased by one when the collision pair of 341

the entry generates a collision, and the die’s OCC is smaller 342

by at least two than that of the list owner die. As a result, 343

when replicating a page in a collision pair, the die with the 344

largest slack counter in the collision pair entry signifies the 345

most desirable destination for the page replication. 346

An entry in the collision pair list stores a pair of page 347

addresses, their occurrence counters, and per-die slack coun- 348

ters. The entry is only valid in the die. Therefore, each page 349

address field stores only 26 bits out of a 30 bit PPN address, 350

which is sufficient to address a page in a die. 16 bits are 351

VOLUME 10, 2022 97001



Y. Jun et al.: Analysis and Mitigation of Patterned Read Collisions in Flash SSDs

sufficient for each slack counter based on our experimental352

results because they are periodically reset by the mechanism353

to be described later and the overflow of a counter does354

not cause any critical problem. Therefore, in a 1 TB SSD355

having 16 dies, one entry occupies 38.5 bytes. The number of356

entries in the collision pair lists increases the DRAM usage.357

Therefore, the number of entries of a list must be limited to358

a predefined threshold value, lR. For this, the list is imple-359

mented as a doubly-linked list. When an entry is updated, the360

entry node will be inserted right after the head node of its list.361

Naturally, the tail end of a list will have the least recently used362

entry of the list. If the number of entries in a list exceeds lR,363

the entry at the tail will be removed. To expedite the search364

time of an entry, the FTL looks up the position of an entry365

with a hash table, which uses the combination of the page366

addresses as its hash key.367

If a page in a collision pair that caused 4,000 imbalanced368

collisions for a time interval, which can be observed in369

Fig. 4a, is moved to another die with a significantly lower per-370

die OCC, it is expected that the die will yield approximately371

4,000 fewer imbalanced collisions in the next time interval.372

When a page is moved to another die, we can define the373

probability of collision reduction from this replication, p,374

as (1) where d is the slack count of the destination die, and the375

occurrence count of the target pair is o. The page replication376

will reduce the occurrences of collisions that this page pair is377

involved in by the rate of p.378

p =
d
o

(1)379

For example, page D and page B in die 0 of Fig. 5 were380

involved in 13 imbalanced collisions. The slack count of die 1,381

10 times in total, is the largest among all in the entry. If either382

page D or B was stored in die 1, 10 out of 13 collisions could383

have been avoided. Therefore, when die 1 is chosen as the384

destination of page D or page B, p becomes 0.77.385

Suppose that the number of collisions observed during a386

certain period is repeated in the next period. In this case,387

the gain from a page replication is the number of collisions388

multiplied by p. Therefore, the read latency benefits that389

can be obtained by replicating a page in a collision pair is390

defined by (2) where tREAD is the time required to finish a391

read operation on a die.392

benefit = o× tREAD × p393

= tREAD × d (2)394

We can determine whether it is desirable to replicate a395

page of a collision pair by comparing this predicted gain396

with the cost of the page replication. The destination die397

cannot perform any other read operations while it is copying398

the page to be replicated. If r read operations are issues to399

the destination die every second, we can expect that read400

operations as many as Rconflict defined in (3) are stalled by401

the write operation in the destination die. Given that a read402

operation may arrive at any time during the write operation,403

the sum of read operations’ stall time, which is the cost for 404

the page replication, can be estimated by (4). 405

Rconflict = r × tPROG (3) 406

cost = Rconflict × tPROG × 0.5 (4) 407

The proposed scheme compares the benefit of page repli- 408

cation with its cost by using (2) and (4) when a collision 409

pair entry is updated. If the benefit exceeds the cost, the FTL 410

initiates page replication by selecting the victim page from 411

the pair. Between the two pages in the pair, the page that 412

appears more in the remaining pairs in the collision pair list 413

of the die will be chosen as the victim page. Subsequently, 414

the FTL replicates the victim page to the destination die. 415

After replicating the victim page to the destination die, the 416

victim page will no longer generate collisions in the source 417

die. Therefore, the collision pair list of the source die needs to 418

be updated to reflect this. However, deleting only the collision 419

pair of the victim page from the list does not fully reflect 420

the changes in collision patterns from the replication. For 421

example, in Fig. 5, the E and G pair in die 2 would not have 422

been recorded as an imbalanced collision pair if F did not 423

cause a collision. Hence, if F has been selected as the victim 424

page and replicated, the E and G pair must be removed from 425

the list as well. Since detecting and removing such derived 426

pairs are technically challenging, we clear all collision pair 427

entries of the source die when a page replication occurs in a 428

die. 429

B. REPLICATION AND COLLISION AVOIDANCE 430

To perform a page replication, it is necessary to read the data 431

of the victim page. Given that the decision to replicate is made 432

when the victim page’s read operation is in the command 433

queue, the victim page will eventually be read from the flash 434

memory. Therefore, the FTL waits for the read operation in 435

the queue to finish and starts the replication process. By doing 436

so, the FTL reuse the page contents stored in the buffer, and 437

the proposed scheme does not incur additional read overhead 438

for the replication. 439

Subsequently, the write operation to the destination die is 440

performed with a lower priority than host-issued operations. 441

That is, if host-issued writes or reads exist in die’s command 442

queue, a replication write will be placed after the host-issued 443

operations through command queue reordering [11]. 444

After replication, two PPNs will exist that are mapped 445

to the replication target LPN. Therefore, it is necessary to 446

change the FTL structure so that the LPN can point to both 447

PPNs. For this, the proposed scheme builds a replication map, 448

which is an indirect mapping data structure, for a replicated 449

page as illustrated in Fig. 6. A replicationmap stores the LPN, 450

the original PPN, and the replication PPN. 451

Each entry of FTL’s L2P table has an additional flag that 452

denotes whether the LPN of the entry has the replicated page. 453

When replicating a page, the replication flag of the corre- 454

sponding LPN entry in the L2P table is set. If the replication 455

flag of an L2P entry is set, the PPN address field of the entry 456

97002 VOLUME 10, 2022



Y. Jun et al.: Analysis and Mitigation of Patterned Read Collisions in Flash SSDs

FIGURE 6. Indirect mapping structure of replication map.

is interpreted as the address of the replication map entry, not457

as the PPN address.458

When a request is to read a replicated page, the FTL first459

finds out the die that has the original PPN and the one that has460

the replicated PPN by referring to the replicationmap. In turn,461

the FTL compares theOCCof the die having the original page462

with that of the die having the replicated page. Between the463

two, the FTL accesses the page in the die with the lower OCC.464

At this point, if the replicated page is selected, the replication-465

to-original counter of the replication map is incremented by466

one. Conversely, if the original page is chosen, the counter is467

decremented by one. This counter will be later used to choose468

a page to leave between the original and replicated pages469

when the number of replicated pages in an SSD exceeds a470

predefined threshold.471

As the number of replicated pages increases, the amount of472

additional flash memory for storing them expands. In addi-473

tion, the size of the replication maps stored in DRAM also474

grows. Therefore, to limit the DRAM and flash memory475

space consumption, the proposed scheme defines the maxi-476

mum allowable number of replicated pages, lM , and deletes477

replicated pages from the least recently used ones when the478

number of replicated pages exceeds lM . Because the flash479

space used for storing the replicated pages is provisioned480

in the over-provisioning (OP) area of an SSD, lM should481

be determined so that the replicated pages can fit in the482

OP space. As the number of replicated pages increases, the483

effective OP space decreases. It is known that reducing OP484

space ends up with the escalated write-amplification fac-485

tor, performance degradation, and shortened life span of an486

SSD [19], [20]. Consequently, the proper value of lM should487

be selected to minimize the adverse effects from the pro-488

posed read collision mitigation scheme while maximizing its489

benefit. The impact of the two parameters of the proposed490

scheme, lR and lM , on the performance gain is analyzed in491

Section IV.492

Replication maps are stored in a doubly-linked list. When493

a read occurs on a replication map entry, the entry is inserted494

next to the head node of the list. Consequently, an entry495

that has not been accessed for the longest time is located496

at the tail of the list. As stated, a replication map entry is497

deleted along with its replicated or original physical page498

when the number of replicated pages exceeds lM . Before499

deletion, as previously stated, the FTL decides the page to500

be left between the original and the replicated ones based on501

the replication-to-original counter value. If the value of the 502

counter is zero or positive, the FTL will keep the replicated 503

page and invalidate the original one. In the opposite case, the 504

FTL will invalidate the replicated one and keep using the 505

original one. The LPN field of the victim replication map 506

entry is used to accordingly update victim’s L2P mapping 507

entry. Finally, the FTL removes the victim replication map 508

from the memory. 509

A replication map consists of one LPN and two PPN 510

fields, which take 30 bits each, one 32-bit counter, two 32-bit 511

pointers for managing the replication map linked list, and 512

six padding bits for 32-bit alignment of the replication map 513

data structure. To summarize, a replication map entry takes 514

24 bytes of the DRAM space. 515

Like the L2P mapping table, the replication maps must be 516

persistent. Therefore, it must be stored in the flash memory 517

when the power is off. In an 1 TB SSD, the replication maps 518

take only up to 32 MB even when lM is set to 2% of the 519

total capacity. In comparison to the L2Pmapping table, which 520

occupies 1 GB in 1 TB SSD, the space usage of the replication 521

maps is negligible. Consequently, syncing the replication 522

maps to the flash memory can be carried out together with 523

the L2P table sync. 524

Given that the replication map data structure is 4-byte 525

aligned, only 30 bits are required to store the address of 526

a replication map. Therefore, the current PPN field of the 527

L2P table can be used without any modifications to store the 528

address of the replication map instead of the PPN. The only 529

modification to the conventional L2P table is the addition of 530

the replication flag of which size is just 1 bit. To summarize, 531

the space overhead of the metadata management for the pro- 532

posed mitigation scheme is negligible. 533

IV. EVALUATION 534

The proposed scheme was implemented in MQSim, which is 535

able to simulate per-die operation handling, for evaluation. 536

The parameters used in the simulation are introduced in 537

Table 4. The evaluation was conducted with 34 traces out 538

of 36 MSR workload traces set [12], [13], excluding two 539

write-only workloads. 540

541

A. PARAMETER SELECTION 542

As explained in Section III, the proposed approach has two 543

configurable parameters: lR and lM . lR is the maximum num- 544

ber of tracked collision pairs per die, and lM is the maximum 545

number of replicated pages that can exist in an SSD. This 546

section analyzes the impact of these parameters on the effec- 547

tiveness of the proposed approach. 548

To analyze the effects of lR, we evaluated our approach 549

with varying lR. For this analysis, we assumed that lM is indef- 550

initely large. Fig. 7 shows the average read latency and the 551

numbers of replications observed for the top four workloads 552

with the largest mean repetition counts, which were identified 553

in Section II-C, respectively. 554

VOLUME 10, 2022 97003



Y. Jun et al.: Analysis and Mitigation of Patterned Read Collisions in Flash SSDs

TABLE 4. Parameters of the simulated SSD.

FIGURE 7. Read latency improvement and number of replications
performed depending on varying lR when lM is set to be infinitely large.

When lR is 0, the proposed method does nothing because555

no collision pairs are kept track of. As lR increases, more556

collision pairs are monitored as the candidates of replica-557

tion. Fig. 7a shows the degree of read latency improvement558

depending on the varying value of lR. The read latency was559

improved by up to 14.6%, which was observed from HM1,560

as lR increased. However, the degree of performance improve-561

ment saturated in all four workloads after lR exceeded five.562

Although PROJ3 showed the larger mean repetition count of563

collision pairs than USR1 and WEB2, the performance gain564

for PROJ3 was smaller than theirs. This is because, of USR1565

FIGURE 8. Read latency improvement and number of replications
performed depending on varying lM when lR is set to five. lM is denoted
as the percentage to the total SSD capacity.

and WEB2, a small numbers of collision pairs are extremely 566

popular in comparison to the others, whereas the repetition 567

count distribution over the collision pairs of PROJ3 shows a 568

gentle curve as previously illustrated in Fig. 4. 569

The amount of read latency improvement was trivial when 570

lR increased from 5 to 100. Rather, as lR increased, the number 571

of replicated writes increased, as shown in Fig. 7b. This is 572

because, as the number of observed collision pairs increased, 573

collision pairs not having high collision rates were more 574

likely to be selected for the replication. 575

These results tell that a large performance gain can be 576

obtained by removing only a small number of frequently 577

appearing collision pairs. 578

Fig. 8 shows the average read latency and number of page 579

replication writes under the proposed approach with varying 580

lM . In this analysis, based on previous observations, lR was 581

set to 5. As shown in Fig. 8a, the degree of performance 582

gain rapidly grew as lM increased until it reached 0.05%, and 583

diminished after that. However, as shown in Fig. 8b, when 584

lM is smaller than 0.05%, the replicated pages are frequently 585

replaced with each other especially for PROJ3 and USR1, 586

and this results in the increased number of replications. lM 587

larger than 0.2% of the total capacity did not significantly 588

reduce the number of replication operations nor increase the 589

performance gain. 590

97004 VOLUME 10, 2022



Y. Jun et al.: Analysis and Mitigation of Patterned Read Collisions in Flash SSDs

FIGURE 9. Normalized read latency of USR1 while varying both lR and lM .

Fig. 9 shows the average read latency and replication591

counts of USR1, which showed the large number of replica-592

tions, but this time, we varied lM as well as lR. When lM was593

set to be 0.2% of the total capacity or larger, the performance594

gain saturated in the region where lR is greater than five. This595

assures that only a few collision pairs largely contribute to the596

total number of read collisions.597

We performed the same experiment shown in Fig. 9 to the598

other MSR traces. Using the unlimited amount of space for599

the page replication through setting lR and lM to∞ improved600

1% or smaller additional performance gain in comparison to601

the case with lR = 5 and lM = 0.2% of the total capacity in602

15 out of the 34 traces. Rather, 17 traces showed similar or603

better read latency under the lR = 5 and lM = 0.2% setting604

by selectively replicating highly influential pages.605

Fig. 10 shows the average read latency under both settings,606

respectively, of the top 8 workloads having the largest perfor-607

mance gap between the two settings. The average read latency608

under the proposed scheme was normalized to its original609

value. Only PROJ4 and PRN1 showed 2.62 percent points and610

1.46 percent points performance degradation, respectively,611

by limiting lR and lM . This is because, in these workloads,612

a relatively large fraction of collision pairs yield large colli-613

sion counts and lM is not sufficiently large to accommodate614

them, resulting in frequent and unnecessary replacement of615

replicated pages. Limiting the resource usage for the page616

replication, on the contrary, improved the read latency further617

FIGURE 10. Normalized average read latency under two different
parameter settings of the top 8 workloads having the largest performance
gap between the two settings.

by 1.69 percent points from the unlimited resource usage 618

configuration for USR0. 619

From these results, we can conclude that the impact of 620

these two parameters on the effectiveness of the proposed 621

scheme is inconsiderable as long as they are not extremely 622

small. We set lR to 5 and lM to 0.2% of the total capacity for 623

the following experiments. With these settings, the collision 624

pair lists occupy 5Kbytes in DRAM, and the replicationmaps 625

take 3.23 Mbytes in DRAM. 626

B. EFFECTIVENESS ANALYSIS 627

The user-experiencing response time of a service is deter- 628

mined by the slowest component of the service architec- 629

ture [24], and a storage device is one of the primitive com- 630

ponents. Consequently, the tail latency of an SSD critically 631

determines the overall service response time while the aver- 632

age latency leads to the throughput of the service. 633

We measured both average and 99th-percentile read 634

latency of theMSRworkload traces. Fig. 11 shows the results 635

normalized to that of the original FTL. The workloads are 636

listed in the descending order of average latency improve- 637

ment. Our approach reduced the average latency for PRXY0 638

by 37%, and 12 out of the 34 workloads earned more than 639

10% of read latency improvement. The improvement of the 640

tail latency was greater than that of the average latency. 641

By removing a large portion of the read collisions, the pro- 642

posed approach could reduce the 99th-percentile read latency 643

by up to 53%, and 15 workloads earned 20% or larger tail 644

latency improvement. 645

Table 5 shows the changes in the number of imbalanced 646

collisions and the number of replications performed by the 647

proposed scheme. The workloads are listed in the descending 648

order of the collisions reduction ratio ratio on the table. The 649

top 16 workloads in Fig. 11a matches with the top 16 work- 650

loads of the table. These workloads share the common prop- 651

erty that a small number of collision pairs largely contribute 652

to their total collision counts, and thus a large portion of 653

their collisions, ranging from 10 to 45%, was removed by the 654

proposed approach. 655

The imbalanced collisions of PRXY0 and SRC2-0, which 656

showed significant performance improvement, were reduced 657

VOLUME 10, 2022 97005



Y. Jun et al.: Analysis and Mitigation of Patterned Read Collisions in Flash SSDs

FIGURE 11. Average and 99th-Percentile read latency normalized to the original FTL.

by approximately 40%. Notice that the number of reduced658

collisions per replication indicates the degree of the read659

latency improvement earned from the proposed approach. For660

example, a replication during WEB2 and PRXY0 removed661

87 and 29 collisions, respectively, on average. The average662

reduction of imbalanced collisions per replication for the663

workloads in Fig. 11a was 15.34.664

Workloads with relatively few or mostly accidental colli-665

sions will not benefit from the proposed approach. Because666

of this, the proposed approach did not show any significant667

changes in both average and tail latency for the bottom668

17 workloads in Fig. 11b.669

Table 5 confirms why the bottom 17 workloads had little670

performance gain from the proposed approach. Contrary to671

the intent, the proposed approach increased the number of672

read collisions of STG1, MDS1, SRC1-0 and USR0. This673

tells that the replicated pages produced the same or larger674

number of collisions in the destination dies. However, the675

performance of STG1 and MDS1 were barely changed. The676

average read latency of SRC1-0 was prolonged by 0.5% and677

the tail latency was worsen by 1.7%. Despite the increase in678

read collisions, the average read latency of USR0 improved679

because the collisions were spread across all dies, reducing680

the wait latency on each die.681

As previously stated, for some workloads, our approach682

could not meaningfully reduce the number of collisions.683

However, because the proposed approach selectively per-684

forms replications based on the cost-benefit comparison685

model, it did not noticeably degrade the read performance 686

even for the workloads with unfavorable characteristics. The 687

only two workloads that the proposed approach worsened 688

the performance were SRC1-0, of which the performance 689

loss was explained previously, and WEB3. WEB3’s average 690

read latency was prolonged by 0.7% while its tail latency 691

remained the same. This is because WEB3 is a workload 692

with a small number of read requests, around 10000 or so, 693

and it is difficult to distinguish between pattern collisions and 694

accidental collisions in these small read requests. 695

The larger the mean repetition is shown in Fig. 4, the 696

greater the number of reduced collisions per replication. 697

As a result, the proposed scheme showed a considerable 698

performance improvement for those workloads. In the case 699

of USR1, a significantly higher performance improvement 700

was obtained compared to its mean repetition of collision 701

pairs because only 1.8% of its collision pairs accounted for 702

50% of its collision occurrences. Naturally, the proposed 703

scheme could not reduce significant imbalanced collisions for 704

the workloads that obtained little performance improvement. 705

On the contrary, the number of imbalanced collisions was 706

even increased by applying the mitigation scheme. This is 707

because the cause of imbalanced collisions for these work- 708

loads was more accidental collisions than repeated host I/O 709

patterns. 710

The proposed scheme incurs additional writes during page 711

replication. These writes may interfere with the host-issued 712

write operations and degrade the write performance. We 713

97006 VOLUME 10, 2022



Y. Jun et al.: Analysis and Mitigation of Patterned Read Collisions in Flash SSDs

TABLE 5. Change in the number of imbalanced collisions, and the
number of replications of each workload caused by the proposed scheme.

measured the average latency of host write requests for the714

34 traces and found out that the averagewrite latencywas pro-715

longed by less than 0.01% in all workloads. This extremely716

lowwrite overhead was due to the reduction of read collisions717

along with preferential scheduling of host writes.718

V. RELATED WORK719

In Flash SSDs, write and erase operations are 60 times and720

100 times slower than read operations, respectively. Thus,721

die-level collisions with write and erase operations critically722

increase the latency of read operations. Several studies have723

been conducted to resolve this issue.724

Jung et al. [4] proposed physically addressed queuing725

(PAQ), a request scheduler that avoids resource contention726

resulting from shared SSD resources. It places a com-727

mand queue for each die and allows reordering operations728

in the queue to fully utilize multiplane mode operations.729

Gao et al. [25] also proposed parallel issue queuing (PIQ),730

a host-side I/O scheduler, to minimize flash die operation 731

collisions. The PIQ schedules I/O requests without collisions 732

within the same batch and I/O requests with collisions into 733

different batches. Hence, multiple I/O requests in one batch 734

can be fulfilled simultaneously. Given that PIQ is imple- 735

mented on the host side, it can utilize the rich resources of 736

the host system. 737

Significant read latency delays for host-issued read oper- 738

ations can occur intermittently, as garbage collection incurs 739

many write and die collisions. To prevent this problem, Jung 740

et al. [26] proposed an I/O scheduler that predicts the GC 741

operation of the FTL in the host interface layer inside the 742

device. The proposed I/O scheduler can avoid the collisions 743

between writes for garbage collection and host-issued read 744

operations. Also, Shahidi et al. [27] proposed a technique 745

for proactively performing GC on a plane in an idle state by 746

utilizing plane-level parallelism. 747

Studies have been conducted to reduce the performance 748

loss ascribed to read collisions by exploiting additional space. 749

Flash on Rails [28] operates an SSD group that only per- 750

forms read in an array of SSDs, which redundantly stores 751

data in an RAID-like manner to ensure latency of write and 752

mixed read. The set of SSDs in charge of read operations 753

is changed over time and selected by a sliding window. Hot 754

Data Replication (HotR) [29] outsources popular read data to 755

a surrogate space, such as a dedicated spare flash chip or an 756

OP area. If available, conflicting read requests are served by 757

the surrogate flash space. The concept of page replication to 758

avoid collisions is similar to our approach. However, HotR 759

immediately replicates the page when the read operation to 760

it collides with a write request, whereas our study selects 761

the victim pages based on collision statistics. This incurs 762

excessive amount of additional write operations and space 763

overhead. In addition, our approach not only replicates but 764

also permanently migrates a page to another die if beneficial. 765

He et al. [30] also proposed a page replication scheme that 766

counts the number of blocking operations per page and repli- 767

cates a page to other die when the blocking probability of the 768

operations to the page reaches a certain threshold. Although 769

their rationale behind the approach is similar to ours, keeping 770

tack of the per-page blocking probability imposes a large 771

amount of additional data structures to the per-page meta- 772

data. In addition, they did not consider the expected collision 773

probability when choosing the target die for a page replica- 774

tion. Through the carefully designed metadata structures, our 775

approach can choose the page and the destination die for a 776

replication to maximize the benefit with negligible overhead. 777

Li et al. [31] performed fast write with a high error rate to 778

reduce waits caused by collision. The page where a collision 779

occurs for subsequent read operations is reprogrammed at an 780

idle state. Reprogramming the page lowers the error rate and 781

reduces ECC processing time, and, as a result, reduces the 782

waiting time due to collisions. 783

Lie et al. [15] proposed a novel single-operation- 784

multiple-location (SOML) read operation that performs sev- 785

eral small intra-chip read operations to different locations 786

VOLUME 10, 2022 97007



Y. Jun et al.: Analysis and Mitigation of Patterned Read Collisions in Flash SSDs

simultaneously, so that multiple requests can be serviced787

in parallel, thereby mitigating the performance degradation788

from read collisions. Although this can radically reduce the789

number of read collisions, it imposes a significant level of790

complexity on the architecture of flash memory chips and791

SSD controllers.792

VI. CONCLUSION793

The ever increasing density of flash memory shrinks the794

number of flash dies equipped in an SSD with the same795

capacity. The reduced number of flash dies increases die-level796

read collisions.797

This paper categorizes die-level read collisions into two:798

benign balanced collisions and malignant imbalanced col-799

lisions. Most of imbalanced collisions are induced by the800

repetitive host I/O patterns, and adversely affect the read801

latency and throughput of a SSD. This paper analyzed the802

patterns of read collisions observed in various workloads and803

their impact to the performance.804

Based on the analysis, this paper proposed a read colli-805

sion mitigation scheme that replicates the pages frequently806

involved in frequently recurring imbalanced read collisions807

to appropriate dies. Our evaluation showed that the proposed808

scheme improved the average read latency by 10% or more809

for 12 out of the 34 MSR Cambridge traces, and the tail read810

latency by at least 20% for 15 of them when using only 0.2%811

of the total storage capacity for the replicated pages. Only two812

workloads were adversely affected by the proposed approach,813

however, their performance degradation was negligible.814

REFERENCES815

[1] F. Chen, B. Hou, and R. Lee, ‘‘Internal parallelism of flash memory-based816

solid-state drives,’’ ACM Trans. Storage, vol. 12, no. 3, pp. 1–39, 2016.817

[2] J.-U. Kang, J.-S. Kim, C. Park, H. Park, and J. Lee, ‘‘A multi-channel818

architecture for high-performance NAND flash-based storage system,’’819

J. Syst. Archit., vol. 53, no. 9, pp. 644–658, Sep. 2007.820

[3] S.-Y. Park, E. Seo, J.-Y. Shin, S. Maeng, and J. Lee, ‘‘Exploiting internal821

parallelism of flash-based SSDs,’’ IEEE Comput. Archit. Lett., vol. 9, no. 1,822

pp. 9–12, Jan. 2010.823

[4] M. Jung, E. H. Wilson, and M. Kandemir, ‘‘Physically addressed queueing824

(PAQ): Improving parallelism in solid state disks,’’ in Proc. Annu. Int.825

Symp. Comput. Archit. (ISCA), 2012, pp. 404–415.826

[5] S. Kim, J. Bae, H. Jang, W. Jin, J. Gong, S. Lee, T. J. Ham, and827

J. W. Lee, ‘‘Practical erase suspension for modern low-latency SSDs,’’ in828

Proc. Annu. Tech. Conf. (ATC), 2019, pp. 813–820. [Online]. Available:829

https://www.usenix.org/conference/atc19/presentation/kim-shine830

[6] G. Wu and X. He, ‘‘Reducing SSD read latency via NAND831

flash program and erase suspension,’’ in Proc. Conf. File832

Storage Technol. (FAST), 2012, p. 10. [Online]. Available:833

https://www.usenix.org/conference/fast12/reducing-ssd-read-latency-834

nand-flash-program-and-erase-suspension835

[7] W. P. Jeong et al., ‘‘A 128 Gb 3b/cell V-NAND flash memory with836

1 Gb/s I/O rate,’’ IEEE J. Solid-State Circuits, vol. 51, no. 1, pp. 204–212,837

Jan. 2016.838

[8] D. Kang et al., ‘‘256 Gb 3 b/cell V-NAND flash memory with 48 stacked839

WL layers,’’ IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 210–217,840

Jan. 2017.841

[9] C. Kim et al., ‘‘A 512-GB 3-b/cell 64-stacked WL 3-D-NAND flash mem-842

ory,’’ IEEE J. Solid-State Circuits, vol. 53, no. 1, pp. 124–133, Jan. 2018.843

[10] H. Huh et al., ‘‘13.2 A 1Tb 4b/cell 96-stacked-WL 3D NAND flash844

memory with 30MB/s program throughput using peripheral circuit under845

memory cell array technique,’’ inProc. IEEE Int. Solid-State Circuits Conf.846

(ISSCC), Feb. 2020, pp. 220–221.847

[11] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, and 848

O. Mutlu, ‘‘MQSim: A framework for enabling realistic studies 849

of modern multi-queue SSD devices,’’ in Proc. Conf. File 850

Storage Technol. (FAST), 2018, pp. 49–65. [Online]. Available: 851

https://www.usenix.org/conference/fast18/presentation/tavakkol 852

[12] D. Narayanan, A. Donnelly, and A. Rowstron, ‘‘Write off-loading: Practi- 853

cal powermanagement for enterprise storage,’’ACMTrans. Storage, vol. 4, 854

no. 3, pp. 1–23, 2008, doi: 10.1145/1416944.1416949. 855

[13] D. Narayanan, A. Donnelly, and A. Rowstron, ‘‘MSR Cambridge traces 856

(SNIA IOTTA trace set 388),’’ in SNIA IOTTA Trace Repository, G. Kuen- 857

ning, Ed. Colorado Springs, CO, USA: Storage Networking Industry Asso- 858

ciation, Mar. 2007. [Online]. Available: http://iotta.snia.org/traces/block- 859

io?only=388 860

[14] Samsung Semiconductor. Samsung SSD 980 PRO. [Online]. Available: 861

https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ 862

980pro/ 863

[15] C.-Y. Liu, J. B. Kotra, M. Jung, M. T. Kandemir, and C. R. Das, ‘‘SOML 864

read: Rethinking the read operation granularity of 3D NAND SSDs,’’ in 865

Proc. 24th Int. Conf. Architectural Support Program. Lang. Operating 866

Syst., Apr. 2019, pp. 955–969, doi: 10.1145/3297858.3304035. 867

[16] D. Hong, M. Kim, G. Cho, D. Lee, and J. Kim, ‘‘GuardedErase: 868

Extending SSD lifetimes by protecting weak wordlines,’’ in Proc. Conf. 869

File Storage Technol. (FAST), 2022, pp. 133–146. [Online]. Available: 870

https://www.usenix.org/conference/fast22/presentation/hong 871

[17] W. A. Trybulec, ‘‘Pigeon hole principle,’’ J. Formalized Math., vol. 2, 872

no. 199, pp. 1–5, 1990. 873

[18] A. Tavakkol, P. Mehrvarzy, M. Arjomand, and H. Sarbazi-Azad, ‘‘Per- 874

formance evaluation of dynamic page allocation strategies in SSDs,’’ 875

ACM Trans. Model. Perform. Eval. Comput. Syst., vol. 1, no. 2, pp. 1–33, 876

Jun. 2016. 877

[19] P. Desnoyers, ‘‘Analytic modeling of SSD write performance,’’ in Proc. 878

5th Annu. Int. Syst. Storage Conf. (SYSTOR), 2012, pp. 1–10, doi: 879

10.1145/2367589.2367603. 880

[20] B. Van Houdt, ‘‘A mean field model for a class of garbage collection 881

algorithms in flash-based solid state drives,’’ ACM SIGMETRICS Perform. 882

Eval. Rev., vol. 41, no. 1, pp. 191–202, Jun. 2013. 883

[21] A. Ban, ‘‘Flash file system,’’ U.S. Patent 5 404 485, Apr. 4, 1995. 884

[22] C. Intel, ‘‘Understanding the flash translation layer (FTL) specification,’’ 885

Intel Corp., Santa Clara, CA, USA, Appl. Note AP-684, 1998. 886

[23] K. Smith. (2012). Understanding SSD Over-Provisioning. Flash Mamory 887

Summit. [Online]. Available: https://www.flashmemorysummit.com/ 888

English/Collaterals/Proceedings/2012/20120822_TE21_Smith.pdf 889

[24] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble, ‘‘Tales of the tail: 890

Hardware, OS, and application-level sources of tail latency,’’ in Proc. ACM 891

Symp. Cloud Comput., Nov. 2014, pp. 1–14. 892

[25] C. Gao, L. Shi, M. Zhao, C. Jason Xue, K. Wu, and E. H.-M. Sha, 893

‘‘Exploiting parallelism in I/O scheduling for access conflict minimization 894

in flash-based solid state drives,’’ in Proc. 30th Symp. Mass Storage Syst. 895

Technol. (MSST), Jun. 2014, pp. 1–11. 896

[26] M. Jung, W. Choi, S. Srikantaiah, J. Yoo, and M. T. Kandemir, ‘‘HIOS: 897

A host interface I/O scheduler for solid state disks,’’ ACM SIGARCH 898

Comput. Archit. News, vol. 42, no. 3, pp. 289–300, 2014. 899

[27] N. Shahidi, M. T. Kandemir, M. Arjomand, C. R. Das, M. Jung, 900

and A. Sivasubramaniam, ‘‘Exploring the potentials of parallel garbage 901

collection in SSDs for enterprise storage systems,’’ in Proc. Int. 902

Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2016, 903

pp. 561–572. 904

[28] D. Skourtis, D. Achlioptas, N. Watkins, C. Maltzahn, and S. Brandt, 905

‘‘Flash on rails: Consistent flash performance through redundancy,’’ 906

in Proc. Annu. Tech. Conf. (ATC), 2014, pp. 463–474. [Online]. 907

Available: https://www.usenix.org/conference/atc14/technical-sessions/ 908

presentation/skourtis 909

[29] S. Wu, W. Zhang, B. Mao, and H. Jiang, ‘‘HotR: Alleviating read/write 910

interference with hot read data replication for flash storage,’’ in 911

Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2019, 912

pp. 1367–1372. 913

[30] B. He, J. X. Yu, and A. C. Zhou, ‘‘Improving update-intensive 914

workloads on flash disks through exploiting multi-chip parallelism,’’ 915

IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 1, pp. 152–162, 916

Jan. 2015. 917

[31] Q. Li, L. Shi, C. Gao, K. Wu, C. J. Xue, Q. Zhuge, and E. H.-M. Sha, 918

‘‘Maximizing IO performance via conflict reduction for flash memory 919

storage systems,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 920

2015, pp. 904–907. 921

97008 VOLUME 10, 2022

http://dx.doi.org/10.1145/1416944.1416949
http://dx.doi.org/10.1145/3297858.3304035
http://dx.doi.org/10.1145/2367589.2367603


Y. Jun et al.: Analysis and Mitigation of Patterned Read Collisions in Flash SSDs

YUHUN JUN received the B.Eng. degree in922

electrical electronic computer engineering from923

Dankook University, South Korea, in 2009, and924

the M.S. degree in computer science and engineer-925

ing from Sungkyunkwan University, South Korea,926

in 2016, where he is currently pursuing the Ph.D.927

degree. He is currently a Senior Engineer with the928

Flash Solution Development Team,Memory Busi-929

ness Unit, Samsung Electronics Company Ltd.930

His research interests include operating systems,931

embedded systems, and flash-based storage systems.932

JAEHYUNG PARK received the B.S. degree in933

computer science and engineering and architec-934

ture engineering from Sungkyunkwan University,935

South Korea, in 2022, where he is currently936

pursuing the M.S. degree with the Depart-937

ment of Computer Science and Engineering. His938

research interests include embedded systems and939

flash-based storage systems.940

JEONG-UK KANG received the B.S., M.S., and 941

Ph.D. degrees in computer science from the Korea 942

Advanced Institute of Science and Technology 943

(KAIST), in 1998, 2000, and 2007, respectively. 944

He is currently a Master with the Memory Busi- 945

ness Unit, Samsung Electronics Company Ltd. 946

His research interest includes flash-based storage 947

systems. 948

EUISEONG SEO received the B.S., M.S., and 949

Ph.D. degrees in computer science from the Korea 950

Advanced Institute of Science and Technology 951

(KAIST), in 2000, 2002, and 2007, respectively. 952

He was an Assistant Professor at the Ulsan 953

National Institute of Science and Technology 954

(UNIST), South Korea, from 2009 to 2012, and a 955

Research Associate at Pennsylvania State Univer- 956

sity, from 2007 to 2009. He is currently a Professor 957

with the Department of Computer Science and 958

Engineering, Sungkyunkwan University, South Korea. His research interests 959

include system software, embedded systems, and cloud computing. 960

961

VOLUME 10, 2022 97009


