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ABSTRACT A modern flash solid-state drive (SSD) achieves superb throughput by accessing its flash
memory dies in parallel. To obtain parallelism in processing writes, the flash translation layer (FTL) of
an SSD is allowed to allocate physical pages from idle dies or dies with low loads. However, since the
die that holds the page to be read is determined in advance, when multiple read requests head for one die,
read collisions occur, and the read operations involved in the collisions must be serialized. These read
collisions lead to a significant prolongation of read latency and, thus the degradation of throughput. As the
density of flash dies increases, more pages are stored on a die, which is expected to result in more frequent
read collisions. Unlike the write collisions that the DRAM buffer can absorb, read collisions directly
affect user-experienced latency. Therefore, the severity of the problem is further increased. In this paper,
we identify the impact of read collisions on performance with real-world traces. We also propose an approach
that distinguishes patterned read collisions from accidental ones and mitigates the performance impact of
patterned read collisions. By replicating frequently occurring pages involved in patterned read collisions, the
proposed approach improves the average and tail read latency of an SSD. The evaluation through simulation
with the 34 MSR Cambridge traces showed that 12 traces out of 34 earned read performance improvement
larger than 10% and up to 37%. In addition, the tail read latency of 15 traces was reduced by at least 20% and
by up to 53%. Only two traces showed negligible degradation in average and tail read latency by around 1%.

INDEX TERMS Flash memory, read performance, resource contention, SSDs, tail latency.

I. INTRODUCTION
A modern flash SSD is equipped with multiple NAND flash
dies. A die can process a primitive flash memory operation:
erase, program (write), and read, one at a time. A die is able
to read or write at a few tens of MB/s, and flash SSDs can
achieve high performance by operating a significant number
of dies in parallel. Consequently, maintaining a high degree of
die-level parallelism is crucial for the performance of modern
SSDs [1].

Maintaining high die-level parallelism in write operations
can be carried out effortlessly using the flash translation layer
(FTL). The FTL determines a physical page number (PPN)
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to store a logical page number (LPN), which is an address of
an externally visible page and manages the mapping between
LPNs and PPNs. During write operations, the FTL tries to
allocate PPNs, which will accommodate the incoming LPNSs,
from as many dies as possible to increase the die-level paral-
lelism [2], [3].

A sequential read operation that accesses multiple pages
written in such a way is naturally spread evenly across mul-
tiple dies, resulting in maximum read performance. How-
ever, since die’s location on a target physical page during
a read operation is predetermined, a series of read opera-
tions can be concentrated on some of the dies. If an out-
standing request exists in a die, even if other dies are
available, the outstanding request will have to wait its
turn.
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Compared to read operations, erase operations or write
operations have a significantly lower impact on the user-
perceived performance. Accordingly, to give priority to read
operations in a die command queue, reordering of commands
in the command queue [4] and suspending an in-progress
write or erase operation [5], [6] have been proposed. How-
ever, if there exists a preceding read operation, the following
read operation has no choice but to wait until the previous
one is finished because they are operations of equal priority.
Therefore, the read operations biased on a small set of dies
significantly degrade die-level parallelism, and consequently,
extend read latency and degrade the throughput of the SSD.

Over the last four generations, the capacity of a flash
die has increased 8 folds, from 128Gb to 1024Gb [7], [8],
[9], [10]. This increased capacity of a die enables the use
of fewer dies to provide the same level of capacity for an
SSD. Even considering the increasing capacity of an SSD,
the number of dies equipped in an SSD is less likely to
increase. Consequently, the degree of line-blocking among
read operations, which we call read collisions, will remain
the same or worsen in the near future. Despite the importance
of read collisions’ impact on read latency and throughput, few
studies have attempted to characterize or mitigate the negative
effects of die-level read collisions.

In this paper, we analyze the occurrence patterns of read
collisions in various I/O traces and the performance degra-
dation caused by them. Based on the analysis, we present a
methodology that separates patterned read collisions, which
occur due to the LPN-to-PPN mappings mismatching the host
I/O patterns, out of accidental ones. Lastly, on top of this,
we propose a mitigation scheme of patterned read collisions.
Our approach replicates the pages that are frequently involved
in patterned read collisions to less congested dies.

The proposed approach was implemented in MQSim [11],
a flash SSD simulator reflecting the internal-parallelism of
the modern SSD architecture. The MSR Cambridge block I/O
trace set [12], [13] was used for the analysis of read collisions
and the evaluation of the proposed approach.

The rest of this paper is organized as follows. Section II
presents the read collisions observed in various workloads.
Based on the obtained implications, in Section III, we propose
aread collision mitigation scheme, and, evaluate the proposed
approach in Section I'V. After introducing the related work in
Section V, Section VI concludes the research.

Il. BACKGROUND AND MOTIVATION

A. INTERNALS OF MODERN FLASH SSDs

A NAND flash die provides read performance of only a
few hundred MB/s, which is far below the transfer rate of
several GB/s provided by the PCle bus. For example, one
flash die used by a recent commercial SSD reads 18 KB
per 45us, resulting in 409 MB/s, but the SSD can provide
over 7 GB/s of read performance [14]. To provide this
maximum performance, more than 17 dies in the SSD must
read simultaneously.
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FIGURE 1. Die-level parallelism in a flash SSD.

TABLE 1. Capacity increment over generations of 3D stacked NAND flash
dies.

No. of stacked layers | 32[7] | 48[8] | 64[9] | 96[10]

Bits per cell TLC QLC
Capacity (Gb) 128 256 512 1024
Areal density (Gb/mm?) 1.86 2.62 3.98 13.8
Release year 2016 2017 2018 2020

Hence, modern flash SSDs are designed to operate mul-
tiple dies in parallel, as shown in Fig. 1. A controller has
multiple data channels, and each channel connects to multiple
dies. As a die does not fully occupy its data channel during
operation, the controller can operate other dies on the chan-
nel through die-interleaving. Accordingly, in each n channel
operating in parallel, m dies can simultaneously operate.

To keep the dies in the working state as much as possible,
recent SSDs maintain a command queue for each die [4].
Operations are inserted into the queue of the target die and
processed one by one. As previously stated, read operations
take precedence over erase or write operations. Consequently,
the use of per-die command queues enables high die utiliza-
tion as well as improved read latency.

When sequential read requests are issued by an applica-
tion, because the data locations are predetermined, their flash
read commands can be queued to a small set of dies, which
results in extended read latency and degraded throughput. For
example, as shown on the right side of Fig. 1, read collisions
occur at die 0 by consecutively inserting read operations to
its command queue.

The occurrence frequency of read collisions is proportional
to the number of read operations and inversely proportional
to the number of dies in an SSD. Table 1 shows the charac-
teristics of a 3D-stacked NAND flash die across generations.
The capacity of a die has increased twice each generation.
The SSD manufacturers naturally want to reduce the cost of
building an SSD. Therefore, the number of flash dies installed
in an SSD of the same capacity tends to decrease [15], [16].

As previously mentioned, read operations directly affect
the end-performance of applications because, unlike write
operations, buffering of operations is not possible. Therefore,
it is expected that the importance of analyzing and mitigating
the adverse performance impact of read collisions will keep
continuing to grow as the density of flash dies advances.

B. CATEGORIZATION OF READ COLLISIONS
Although read collisions are adverse to the performance of
an SSD, we cannot completely remove all of them. When
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FIGURE 2. Categorization of read collisions.

all dies are performing read operations as shown in Fig. 2a,
an incoming request will yield a read collision regardless of
which die it will be assigned to. If the requests are evenly
deployed across all dies, the difference between the maximum
outstanding command count (OCC) and the minimum OCC
of the die command queues should be at most one, according
to the pigeon hole principle [17]. A collision that occurs on
a die of which OCC is different from the minimum OCC
of the SSD by one or less is called a balanced collision,
as shown in Fig.2a. The balanced collisions are inevitable and
do not degrade throughput, as all dies can keep operating in
parallel. Naturally, the prolongation of read latency caused by
the balanced collisions should be acceptable.

When the OCC of each die may differ by two or more,
imbalanced collisions may occur. When a collision occurs at
adie and its OCC differs from the minimum OCC of the SSD
by two or more, this collision is the result from the biased
distribution of operations at the die level. As shown in Fig. 2b,
if the read operation C of die 0 could be performed on die
2 or die 3, the read latency would have been reduced. Fur-
thermore, if an imbalanced collision leaves a die idle while
there are queued operations in other dies, the throughput will
be degraded as well.

The read collisions can be categorized into two types
based on their causes. The first is accidental read collisions,
in which two or more unrelated read operations are acci-
dentally dispatched to a single die. The second is patterned
read collisions that occur when two or more pages, which
are mostly read together by an application, are unfortunately
stored in the same die. Although the FTL tries to distribute
the contiguous logical pages to as many dies as possible at the
time of writing their data, if a sequence of contiguous logical
pages are written with a time gap, or the write sequence
and the data read sequence are different from each other, the
patterned read collisions may occur.

Both accidental read collision and patterned read collision
are frequent. However, accidental read collisions are sup-
posed to occur equally across all dies. Therefore, it is less
likely that an accidental read collision results in an imbal-
anced collision than a patterned read collision. In addition, the
depth of nested imbalanced collisions occurring at a single die
from accidental read collisions tends to be shallow. Conse-
quently, accidental collisions can be considered benign, while
patterned collisions are malignant. It is because a patterned
collision can occur frequently depending on the application
behavior and is likely to end up with an imbalanced col-
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FIGURE 3. Number of read collisions normalized to that of a random read
workload with the same level of OCC.

lision, which significantly degrades both read latency and
throughput.

C. ANALYSIS OF READ COLLISION OCCURRENCES

To analyze the frequency and characteristics of read col-
lisions occurring in operations, through simulation with
MQSim [11], we observed the internal activities of an SSD
while running diverse workloads. Among the 36 MSR Cam-
bridge workload traces [13], we analyzed eight workloads of
which read proportion is over 90%.

For comparison, we also analyzed a synthetic random read
workload, which issues 4 KB random reads to keep SSD’s
OCC at 8. This is denoted as RR8.

A PPN is allocated to an LPN when the LPN is first
accessed by a trace. The PPN allocation in our simulation was
performed by the CWDP algorithm [18], which determines
the channel, way, and die of the PPN based on the remainder
of the LPN divided by the number of channels, ways, and
dies, respectively. The OCC changes and collision patterns
were monitored every 10 us. Table 2 shows the observed
simulation results.

To determine whether read collisions caused by a workload
are due to coincidence or access patterns, we need a basis
to be compared against. For this, we created a hypothetical
workload for each MSR workload trace that continuously
maintains the same level of OCC as the corresponding work-
load but distributes read operations randomly over all dies.
The number of read collisions that occurred to the total
number of reads when executing this random-read workload
is denoted as the expected collision ratio in Table 2, and
the actual collision ratio of the workload is presented as the
measured collision ratio. The expected collision ratio tells
the read collision ratio caused by pure coincidence under the
same level of OCC changes.

Fig. 3 shows, for each workload, the number of measured
read collisions normalized to the number of expected read
collisions. Given that RR8 is a purely random read workload,
it showed a value of 1.0 with a marginal error range, which
shows the validity of the collision patterns of the synthetic
random read workload.

All seven workloads, except PROJ3, showed fewer colli-
sions than their random-read counterparts. Most of their read
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TABLE 2. Read collision characteristics observed during the execution of the MSR traces listed in order of read proportion.

Workloads RR8 || WEB2 | PROM | SRC2-1 | SRCI-1 | HMI PROJ3 MDS] USRI
Read Proportion 100% 99.25% | 98.52% | 97.86% | 9526% | 9534% | 94.82% | 92.88% | 91.48%
No. of Die Operations 967430 || 22755762 15788014] 2861418 | 129830290 1010317 [ 3010108 | 7232363 | 177531189
Average OCC 7.8 3.7 12.5 438 2.4 14.2 19.8 4.0 5.1
Expected Collision Ratio 83.7% 65.6% 69.5% 67.7% 42.5% 66.2% 55.1% 79.5% 69.3%
Measured Collision Ratio 86.0% 32.0% 62.2% 42.5% 22.8% 61.3% 60.6% 61.0% 53.5%
Imbalanced to All Collisions | 100.0% 99.9% 98.8% 91.1% 99.3% 99.9% 100.0% 99.2% 97.1%
Imbalanced Collision pairs | 2382491 540624 | 2288090 | 1268814 [ 12516416 | 26823 170431 | 3376854 | 12678038
Mean Repetition of Pairs 1.00 9.20 456 1.73 151 37.89 24.69 1.54 12.47

requests showed a certain degree of sequentiality, and this
reduced the occurrences of read collisions. However, despite
the average OCC of these seven workloads were significantly
smaller than the number of dies, 48% of read operations on
average caused collisions. In the cases of HM1 and PROJ4,
the numbers of collisions are close to their random read coun-
terparts, respectively. PROJ3 generated even more collisions
than the random read workload. This shows that when the
LPN-to-PPN mappings are not favorably set to the applica-
tion’s request patterns, a large amount of patterned collisions
may occur.

Imbalanced to All Collisions on Table 2 shows the pro-
portion of imbalanced collisions to all read collisions. While
executing RR8, idle dies must exist because it always main-
tains eight outstanding requests while there are 16 dies in
the SSD. Therefore, all collisions produced by RR8 must be
imbalanced ones. The average OCC of all workloads, except
PROIJ3, was smaller than 16. Consequently, 90% of total
collisions were identified as imbalanced ones.

Even with the increased OCC, biased assignments of oper-
ations to some of the dies were consistently observable. The
average OCC of PROJ3 was greater than the number of dies.
However, for the aforementioned reason, one or more dies
stayed idle at 87% of observation time points, and 100% of
its collisions were determined as imbalanced ones.

To analyze the impact of frequent collision patterns on
overall collision occurrences, we counted the number of
collision pairs that appeared during the simulation of each
workload. A collision pair is a pair of two LPNs involved in
a collision. In Fig. 2b, read operations A and B are already
queued for die 0. When operation C is queued, it produces an
imbalanced collision. At that point, we can extract two colli-
sion pairs, <A,C> and <B,C>, from that collision. Given that
<A,B> also contributes to the imbalance, <A,B>, is recorded
together with <A,C> and <B,C>. The Imbalanced Collision
Pairs in Table 2 shows the number of collision pairs that
contributed to the imbalanced collisions. We also measured
the number of occurrences of each collision pair during the
execution of each workload.

We measured the number of repetitions of each collision
pair and the number of requests deployed to each die observed
during the execution of each workload. Fig. 4 shows the mea-
sured results. RR8 is not included because every die handles
the same number of read operations and every collision pair
appeared only once.
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TABLE 3. Relative standard deviation of the number of read operations
performed on each die during execution of each workload.

Workloads Relative Standard Deviation

HM1 0.168

PROJ3 0.121

USRI 0.086

WEB2 0.047
SRCI1-1 0.023

PROJ4 0.021

MDS1 0.018
SRC2-1 0.016

The upper row of Fig. 4 shows the workloads with the high
mean repetition counts of collision pairs while the lower row
presents the ones with low mean repetition counts. For HM1,
USRI, and WEB2, only 5% of frequently observed collision
pairs account for 80% of all collision occurrences. Especially,
some of the pairs happened a few thousand times in these
three workloads. In PROJ3, 50,000 pairs out of 170,000
accounted for 62% of collisions.

The relative standard deviation (RSD) of the number of
read operations performed on each die is calculated as the
ratio of their standard deviation to the mean number of read
operations for a die. Table 3 shows the RSDs of the work-
loads presented in Fig. 4, and these numbers represent the
degree of bias in the distributions of read operations over
the dies.

The workloads in the upper row of Fig. 4 are commonly
characterized by uneven distributions of read operations over
the dies. On the contrary, the workloads placed in the lower
row commonly showed relatively uniform distribution of
read operations over the dies. However, even in these work-
loads, the top few collision pairs showed significantly high
repetition counts in comparison to the others. These highly
repetitive collision pairs indicate the existence of patterned
collisions.

The above observations reveal the existence of patterned
collisions in the read-dominant workloads. The collision
pairs they generated showed an overwhelmingly higher
occurrence frequency than the collision pairs generated
by accidental collisions. If these few frequent collision
pairs are eliminated, the read latency can be significantly
improved.
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FIGURE 4. Repetition count of each collision pair sorted in descending order, and the distribution of read operations over the 16 dies. The upper row
presents the workloads with high mean repetition counts while the lower row shows the workloads with low mean repetition counts.

lll. OUR APPROACH

In this study, we propose a method to identify repetitive
imbalanced read collision patterns with a small memory foot-
print and little computation overhead. We also propose a read
collision mitigation scheme that can reduce imbalanced read
collisions by replicating logical pages that are repetitively
involved in read collisions to properly select dies.

A. DETECTION OF MALIGNANT COLLISION PAIRS

When a collision pair repetitively causes imbalanced colli-
sions, we can get rid of the imbalanced collisions by moving
one of the pages in the collision pair to other die. This
approach requires the SSD to identify the frequently recurring
collision pairs without any hints given from the host. There-
fore, we propose a cost-benefit analysis model that estimates
the expected reduction in imbalanced read collisions by mov-
ing one page of a collision pair to other die. If the expected
benefit of moving a page of a certain collision pair exceeds
the cost to move the page, the mitigation scheme will replicate
one of the two pages in the pair to a die that is least likely to
cause new collisions by the moved page.

In the proposed scheme, as shown in Fig. 5, the FTL
maintains a collision pair list for each die to record the occur-
rences of patterned collision pairs observed during operation.
This list records the number of collisions caused by each
collision pair that occurred at the corresponding die based
on the categorization criteria explained in Section II-C. When
issuing a read command to a die, the FTL updates the collision
pair list of the die with the information about the collision,
if occurred, generated by the read operation. One collision
pair occupies one entry in the list, and a new entry is created
when a collision pair that is not in the list is observed. The
pages of the collision pairs with high occurrences in this table
are subject to the aforementioned page replication to other
die.
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For page replication, not only the page to be replicated but
also the destination die to accommodate the page must be
determined. A suitable candidate dies for the page replication
is the one with the least amount of outstanding read opera-
tions statistically in its queue when the page to be replicated
was involved in collisions. Therefore, an entry of a collision
pair list records the slack counter for each die. The slack
counter of a die is increased by one when the collision pair of
the entry generates a collision, and the die’s OCC is smaller
by at least two than that of the list owner die. As a result,
when replicating a page in a collision pair, the die with the
largest slack counter in the collision pair entry signifies the
most desirable destination for the page replication.

An entry in the collision pair list stores a pair of page
addresses, their occurrence counters, and per-die slack coun-
ters. The entry is only valid in the die. Therefore, each page
address field stores only 26 bits out of a 30 bit PPN address,
which is sufficient to address a page in a die. 16 bits are
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sufficient for each slack counter based on our experimental
results because they are periodically reset by the mechanism
to be described later and the overflow of a counter does
not cause any critical problem. Therefore, in a 1 TB SSD
having 16 dies, one entry occupies 38.5 bytes. The number of
entries in the collision pair lists increases the DRAM usage.
Therefore, the number of entries of a list must be limited to
a predefined threshold value, Ig. For this, the list is imple-
mented as a doubly-linked list. When an entry is updated, the
entry node will be inserted right after the head node of its list.
Naturally, the tail end of a list will have the least recently used
entry of the list. If the number of entries in a list exceeds /g,
the entry at the tail will be removed. To expedite the search
time of an entry, the FTL looks up the position of an entry
with a hash table, which uses the combination of the page
addresses as its hash key.

If a page in a collision pair that caused 4,000 imbalanced
collisions for a time interval, which can be observed in
Fig. 4a, is moved to another die with a significantly lower per-
die OCC, it is expected that the die will yield approximately
4,000 fewer imbalanced collisions in the next time interval.
When a page is moved to another die, we can define the
probability of collision reduction from this replication, p,
as (1) where d is the slack count of the destination die, and the
occurrence count of the target pair is o. The page replication
will reduce the occurrences of collisions that this page pair is
involved in by the rate of p.

p= ey

d
0
For example, page D and page B in die O of Fig. 5 were
involved in 13 imbalanced collisions. The slack count of die 1,
10 times in total, is the largest among all in the entry. If either
page D or B was stored in die 1, 10 out of 13 collisions could
have been avoided. Therefore, when die 1 is chosen as the
destination of page D or page B, p becomes 0.77.

Suppose that the number of collisions observed during a
certain period is repeated in the next period. In this case,
the gain from a page replication is the number of collisions
multiplied by p. Therefore, the read latency benefits that
can be obtained by replicating a page in a collision pair is
defined by (2) where tgrgap is the time required to finish a
read operation on a die.

benefit = 0 X trRgap X P
= IREAD X d (2)

We can determine whether it is desirable to replicate a
page of a collision pair by comparing this predicted gain
with the cost of the page replication. The destination die
cannot perform any other read operations while it is copying
the page to be replicated. If r read operations are issues to
the destination die every second, we can expect that read
operations as many as Rconfiic; defined in (3) are stalled by
the write operation in the destination die. Given that a read
operation may arrive at any time during the write operation,
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the sum of read operations’ stall time, which is the cost for
the page replication, can be estimated by (4).

Rconﬂict = r X IPROG 3)
cost = Rconﬂict X tproG % 0.5 4

The proposed scheme compares the benefit of page repli-
cation with its cost by using (2) and (4) when a collision
pair entry is updated. If the benefit exceeds the cost, the FTL
initiates page replication by selecting the victim page from
the pair. Between the two pages in the pair, the page that
appears more in the remaining pairs in the collision pair list
of the die will be chosen as the victim page. Subsequently,
the FTL replicates the victim page to the destination die.

After replicating the victim page to the destination die, the
victim page will no longer generate collisions in the source
die. Therefore, the collision pair list of the source die needs to
be updated to reflect this. However, deleting only the collision
pair of the victim page from the list does not fully reflect
the changes in collision patterns from the replication. For
example, in Fig. 5, the E and G pair in die 2 would not have
been recorded as an imbalanced collision pair if F did not
cause a collision. Hence, if F has been selected as the victim
page and replicated, the E and G pair must be removed from
the list as well. Since detecting and removing such derived
pairs are technically challenging, we clear all collision pair
entries of the source die when a page replication occurs in a
die.

B. REPLICATION AND COLLISION AVOIDANCE

To perform a page replication, it is necessary to read the data
of the victim page. Given that the decision to replicate is made
when the victim page’s read operation is in the command
queue, the victim page will eventually be read from the flash
memory. Therefore, the FTL waits for the read operation in
the queue to finish and starts the replication process. By doing
so, the FTL reuse the page contents stored in the buffer, and
the proposed scheme does not incur additional read overhead
for the replication.

Subsequently, the write operation to the destination die is
performed with a lower priority than host-issued operations.
That is, if host-issued writes or reads exist in die’s command
queue, a replication write will be placed after the host-issued
operations through command queue reordering [11].

After replication, two PPNs will exist that are mapped
to the replication target LPN. Therefore, it is necessary to
change the FTL structure so that the LPN can point to both
PPNss. For this, the proposed scheme builds a replication map,
which is an indirect mapping data structure, for a replicated
page as illustrated in Fig. 6. A replication map stores the LPN,
the original PPN, and the replication PPN.

Each entry of FTL’s L2P table has an additional flag that
denotes whether the LPN of the entry has the replicated page.
When replicating a page, the replication flag of the corre-
sponding LPN entry in the L2P table is set. If the replication
flag of an L2P entry is set, the PPN address field of the entry
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FIGURE 6. Indirect mapping structure of replication map.

is interpreted as the address of the replication map entry, not
as the PPN address.

When a request is to read a replicated page, the FTL first
finds out the die that has the original PPN and the one that has
the replicated PPN by referring to the replication map. In turn,
the FTL compares the OCC of the die having the original page
with that of the die having the replicated page. Between the
two, the FTL accesses the page in the die with the lower OCC.
At this point, if the replicated page is selected, the replication-
to-original counter of the replication map is incremented by
one. Conversely, if the original page is chosen, the counter is
decremented by one. This counter will be later used to choose
a page to leave between the original and replicated pages
when the number of replicated pages in an SSD exceeds a
predefined threshold.

As the number of replicated pages increases, the amount of
additional flash memory for storing them expands. In addi-
tion, the size of the replication maps stored in DRAM also
grows. Therefore, to limit the DRAM and flash memory
space consumption, the proposed scheme defines the maxi-
mum allowable number of replicated pages, /37, and deletes
replicated pages from the least recently used ones when the
number of replicated pages exceeds [j;. Because the flash
space used for storing the replicated pages is provisioned
in the over-provisioning (OP) area of an SSD, I); should
be determined so that the replicated pages can fit in the
OP space. As the number of replicated pages increases, the
effective OP space decreases. It is known that reducing OP
space ends up with the escalated write-amplification fac-
tor, performance degradation, and shortened life span of an
SSD [19], [20]. Consequently, the proper value of /3, should
be selected to minimize the adverse effects from the pro-
posed read collision mitigation scheme while maximizing its
benefit. The impact of the two parameters of the proposed
scheme, Ig and Iy, on the performance gain is analyzed in
Section I'V.

Replication maps are stored in a doubly-linked list. When
aread occurs on a replication map entry, the entry is inserted
next to the head node of the list. Consequently, an entry
that has not been accessed for the longest time is located
at the tail of the list. As stated, a replication map entry is
deleted along with its replicated or original physical page
when the number of replicated pages exceeds [j;. Before
deletion, as previously stated, the FTL decides the page to
be left between the original and the replicated ones based on
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the replication-to-original counter value. If the value of the
counter is zero or positive, the FTL will keep the replicated
page and invalidate the original one. In the opposite case, the
FTL will invalidate the replicated one and keep using the
original one. The LPN field of the victim replication map
entry is used to accordingly update victim’s L2P mapping
entry. Finally, the FTL removes the victim replication map
from the memory.

A replication map consists of one LPN and two PPN
fields, which take 30 bits each, one 32-bit counter, two 32-bit
pointers for managing the replication map linked list, and
six padding bits for 32-bit alignment of the replication map
data structure. To summarize, a replication map entry takes
24 bytes of the DRAM space.

Like the L2P mapping table, the replication maps must be
persistent. Therefore, it must be stored in the flash memory
when the power is off. In an 1 TB SSD, the replication maps
take only up to 32 MB even when [y, is set to 2% of the
total capacity. In comparison to the L2P mapping table, which
occupies 1 GB in 1 TB SSD, the space usage of the replication
maps is negligible. Consequently, syncing the replication
maps to the flash memory can be carried out together with
the L2P table sync.

Given that the replication map data structure is 4-byte
aligned, only 30 bits are required to store the address of
a replication map. Therefore, the current PPN field of the
L2P table can be used without any modifications to store the
address of the replication map instead of the PPN. The only
modification to the conventional L2P table is the addition of
the replication flag of which size is just 1 bit. To summarize,
the space overhead of the metadata management for the pro-
posed mitigation scheme is negligible.

IV. EVALUATION

The proposed scheme was implemented in MQSim, which is
able to simulate per-die operation handling, for evaluation.
The parameters used in the simulation are introduced in
Table 4. The evaluation was conducted with 34 traces out
of 36 MSR workload traces set [12], [13], excluding two
write-only workloads.

A. PARAMETER SELECTION

As explained in Section III, the proposed approach has two
configurable parameters: /g and ;. [g is the maximum num-
ber of tracked collision pairs per die, and /), is the maximum
number of replicated pages that can exist in an SSD. This
section analyzes the impact of these parameters on the effec-
tiveness of the proposed approach.

To analyze the effects of Ig, we evaluated our approach
with varying /. For this analysis, we assumed that /j; is indef-
initely large. Fig. 7 shows the average read latency and the
numbers of replications observed for the top four workloads
with the largest mean repetition counts, which were identified
in Section II-C, respectively.
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TABLE 4. Parameters of the simulated SSD.

Capacity 1TB
Host Interface PCI Gen3 x4
FTL L2P Mapping Page Mapping [21], [22]
SSD Channel Count 8
Dies per Channel 2
OP Area [23] 7% of Total Capacity
Bits per Cell TLC
Page Size 16 KB + 2 KB (Parity)
Flash Read Time 60 ps
Memory Program Time 700 ps
[9] Erase Time 3500 ps
P/E Suspend Time 50 ps
Channel Speed 1 Gbps
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FIGURE 7. Read latency improvement and number of replications
performed depending on varying I when I is set to be infinitely large.

When Iy is 0, the proposed method does nothing because
no collision pairs are kept track of. As Iz increases, more
collision pairs are monitored as the candidates of replica-
tion. Fig. 7a shows the degree of read latency improvement
depending on the varying value of Iz. The read latency was
improved by up to 14.6%, which was observed from HMI,
as [ increased. However, the degree of performance improve-
ment saturated in all four workloads after I exceeded five.
Although PROJ3 showed the larger mean repetition count of
collision pairs than USR1 and WEB?2, the performance gain
for PROJ3 was smaller than theirs. This is because, of USR1
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FIGURE 8. Read latency improvement and number of replications
performed depending on varying Iy; when I, is set to five. I; is denoted
as the percentage to the total SSD capacity.

and WEB2, a small numbers of collision pairs are extremely
popular in comparison to the others, whereas the repetition
count distribution over the collision pairs of PROJ3 shows a
gentle curve as previously illustrated in Fig. 4.

The amount of read latency improvement was trivial when
g increased from 5 to 100. Rather, as /g increased, the number
of replicated writes increased, as shown in Fig. 7b. This is
because, as the number of observed collision pairs increased,
collision pairs not having high collision rates were more
likely to be selected for the replication.

These results tell that a large performance gain can be
obtained by removing only a small number of frequently
appearing collision pairs.

Fig. 8 shows the average read latency and number of page
replication writes under the proposed approach with varying
Ip. In this analysis, based on previous observations, g was
set to 5. As shown in Fig. 8a, the degree of performance
gain rapidly grew as /s increased until it reached 0.05%, and
diminished after that. However, as shown in Fig. 8b, when
Iy is smaller than 0.05%, the replicated pages are frequently
replaced with each other especially for PROJ3 and USRI,
and this results in the increased number of replications. /s
larger than 0.2% of the total capacity did not significantly
reduce the number of replication operations nor increase the
performance gain.
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Fig. 9 shows the average read latency and replication
counts of USR1, which showed the large number of replica-
tions, but this time, we varied /s as well as [g. When [y was
set to be 0.2% of the total capacity or larger, the performance
gain saturated in the region where I is greater than five. This
assures that only a few collision pairs largely contribute to the
total number of read collisions.

We performed the same experiment shown in Fig. 9 to the
other MSR traces. Using the unlimited amount of space for
the page replication through setting Iz and Ij; to oo improved
1% or smaller additional performance gain in comparison to
the case with [p = 5 and [y = 0.2% of the total capacity in
15 out of the 34 traces. Rather, 17 traces showed similar or
better read latency under the /[r = 5 and [y = 0.2% setting
by selectively replicating highly influential pages.

Fig. 10 shows the average read latency under both settings,
respectively, of the top 8 workloads having the largest perfor-
mance gap between the two settings. The average read latency
under the proposed scheme was normalized to its original
value. Only PROJ4 and PRN1 showed 2.62 percent points and
1.46 percent points performance degradation, respectively,
by limiting /g and Iy;. This is because, in these workloads,
a relatively large fraction of collision pairs yield large colli-
sion counts and Iy, is not sufficiently large to accommodate
them, resulting in frequent and unnecessary replacement of
replicated pages. Limiting the resource usage for the page
replication, on the contrary, improved the read latency further
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FIGURE 10. Normalized average read latency under two different
parameter settings of the top 8 workloads having the largest performance
gap between the two settings.

by 1.69 percent points from the unlimited resource usage
configuration for USRO.

From these results, we can conclude that the impact of
these two parameters on the effectiveness of the proposed
scheme is inconsiderable as long as they are not extremely
small. We set Ig to 5 and /3y to 0.2% of the total capacity for
the following experiments. With these settings, the collision
pair lists occupy 5 Kbytes in DRAM, and the replication maps
take 3.23 Mbytes in DRAM.

B. EFFECTIVENESS ANALYSIS

The user-experiencing response time of a service is deter-
mined by the slowest component of the service architec-
ture [24], and a storage device is one of the primitive com-
ponents. Consequently, the tail latency of an SSD critically
determines the overall service response time while the aver-
age latency leads to the throughput of the service.

We measured both average and 99th-percentile read
latency of the MSR workload traces. Fig. 11 shows the results
normalized to that of the original FTL. The workloads are
listed in the descending order of average latency improve-
ment. Our approach reduced the average latency for PRXYO0
by 37%, and 12 out of the 34 workloads earned more than
10% of read latency improvement. The improvement of the
tail latency was greater than that of the average latency.
By removing a large portion of the read collisions, the pro-
posed approach could reduce the 99th-percentile read latency
by up to 53%, and 15 workloads earned 20% or larger tail
latency improvement.

Table 5 shows the changes in the number of imbalanced
collisions and the number of replications performed by the
proposed scheme. The workloads are listed in the descending
order of the collisions reduction ratio ratio on the table. The
top 16 workloads in Fig. 11a matches with the top 16 work-
loads of the table. These workloads share the common prop-
erty that a small number of collision pairs largely contribute
to their total collision counts, and thus a large portion of
their collisions, ranging from 10 to 45%, was removed by the
proposed approach.

The imbalanced collisions of PRXYO0 and SRC2-0, which
showed significant performance improvement, were reduced
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FIGURE 11. Average and 99th-Percentile read latency normalized to the original FTL.

by approximately 40%. Notice that the number of reduced
collisions per replication indicates the degree of the read
latency improvement earned from the proposed approach. For
example, a replication during WEB2 and PRXY0 removed
87 and 29 collisions, respectively, on average. The average
reduction of imbalanced collisions per replication for the
workloads in Fig. 11a was 15.34.

Workloads with relatively few or mostly accidental colli-
sions will not benefit from the proposed approach. Because
of this, the proposed approach did not show any significant
changes in both average and tail latency for the bottom
17 workloads in Fig. 11b.

Table 5 confirms why the bottom 17 workloads had little
performance gain from the proposed approach. Contrary to
the intent, the proposed approach increased the number of
read collisions of STG1, MDS1, SRC1-0 and USRO. This
tells that the replicated pages produced the same or larger
number of collisions in the destination dies. However, the
performance of STG1 and MDS1 were barely changed. The
average read latency of SRC1-0 was prolonged by 0.5% and
the tail latency was worsen by 1.7%. Despite the increase in
read collisions, the average read latency of USRO improved
because the collisions were spread across all dies, reducing
the wait latency on each die.

As previously stated, for some workloads, our approach
could not meaningfully reduce the number of collisions.
However, because the proposed approach selectively per-
forms replications based on the cost-benefit comparison
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model, it did not noticeably degrade the read performance
even for the workloads with unfavorable characteristics. The
only two workloads that the proposed approach worsened
the performance were SRC1-0, of which the performance
loss was explained previously, and WEB3. WEB3’s average
read latency was prolonged by 0.7% while its tail latency
remained the same. This is because WEB3 is a workload
with a small number of read requests, around 10000 or so,
and it is difficult to distinguish between pattern collisions and
accidental collisions in these small read requests.

The larger the mean repetition is shown in Fig. 4, the
greater the number of reduced collisions per replication.
As a result, the proposed scheme showed a considerable
performance improvement for those workloads. In the case
of USRI, a significantly higher performance improvement
was obtained compared to its mean repetition of collision
pairs because only 1.8% of its collision pairs accounted for
50% of its collision occurrences. Naturally, the proposed
scheme could not reduce significant imbalanced collisions for
the workloads that obtained little performance improvement.
On the contrary, the number of imbalanced collisions was
even increased by applying the mitigation scheme. This is
because the cause of imbalanced collisions for these work-
loads was more accidental collisions than repeated host I/O
patterns.

The proposed scheme incurs additional writes during page
replication. These writes may interfere with the host-issued
write operations and degrade the write performance. We
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TABLE 5. Change in the number of imbalanced collisions, and the
number of replications of each workload caused by the proposed scheme.

Original Our Appr. Change # of Repl.
PRXYO0 1621471 887017 -45.3% 24602
SRC2-0 588577 368177 -37.4% 10417
WDEV0 687519 432423 -37.1% 15423
TSO 404871 256012 -36.8% 18194
RSRCHO 298682 190125 -36.3% 9351
STGO 404187 259984 -35.7% 10221
PROJO 563821 367340 -34.8% 19820
MDS0 251301 169756 -32.4% 8444
HM1 1016264 704192 -30.7% 17250
SRCI1-2 905164 663523 -26.7% 21812
WEB2 4973465 3668995 -26.2% 14923
HMO 709505 532308 -25.0% 49212
WEBO 540993 411293 -24.0% 23406
PRNO 1044003 904225 -13.4% 55999
USR1 158037937 | 138059990 -12.6% 2306889
PRN1 9403308 8451724 -10.1% 607759
PROJ3 4208654 3917000 -6.9% 212234
PROJ1 15144549 14437805 -4.7% 1399767
WEBI1 22299 21297 -4.5% 1068
WEB3 1595 1533 -3.9% 68
PROJ4 10444705 10046809 -3.8% 897243
SRC1-1 18911488 18441783 -2.5% 335869
PROJ2 25547544 24960225 -2.3% 2429163
RSRCH2 149174 146771 -1.6% 24410
USR2 8460061 8375493 -1.0% 610011
SRC2-1 2200816 2189242 -0.5% 48135
SRC2-2 2310640 2309906 0.0% 8546
WDEV2 56 56 0.0% 1
RSRCHI1 2 2 0.0% 0
WDEV3 0 0 0.0% 0
STG1 394608 394635 0.0% 5754
MDSI1 5212874 5234471 0.4% 528315
SRCI1-0 30303775 30482230 0.6% 1934716
USRO 3702948 3859772 4.2% 17659

measured the average latency of host write requests for the
34 traces and found out that the average write latency was pro-
longed by less than 0.01% in all workloads. This extremely
low write overhead was due to the reduction of read collisions
along with preferential scheduling of host writes.

V. RELATED WORK

In Flash SSDs, write and erase operations are 60 times and
100 times slower than read operations, respectively. Thus,
die-level collisions with write and erase operations critically
increase the latency of read operations. Several studies have
been conducted to resolve this issue.

Jung et al. [4] proposed physically addressed queuing
(PAQ), a request scheduler that avoids resource contention
resulting from shared SSD resources. It places a com-
mand queue for each die and allows reordering operations
in the queue to fully utilize multiplane mode operations.
Gao et al. [25] also proposed parallel issue queuing (PIQ),
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a host-side I/O scheduler, to minimize flash die operation
collisions. The PIQ schedules I/O requests without collisions
within the same batch and I/O requests with collisions into
different batches. Hence, multiple I/O requests in one batch
can be fulfilled simultaneously. Given that PIQ is imple-
mented on the host side, it can utilize the rich resources of
the host system.

Significant read latency delays for host-issued read oper-
ations can occur intermittently, as garbage collection incurs
many write and die collisions. To prevent this problem, Jung
et al. [26] proposed an I/O scheduler that predicts the GC
operation of the FTL in the host interface layer inside the
device. The proposed I/O scheduler can avoid the collisions
between writes for garbage collection and host-issued read
operations. Also, Shahidi et al. [27] proposed a technique
for proactively performing GC on a plane in an idle state by
utilizing plane-level parallelism.

Studies have been conducted to reduce the performance
loss ascribed to read collisions by exploiting additional space.
Flash on Rails [28] operates an SSD group that only per-
forms read in an array of SSDs, which redundantly stores
data in an RAID-like manner to ensure latency of write and
mixed read. The set of SSDs in charge of read operations
is changed over time and selected by a sliding window. Hot
Data Replication (HotR) [29] outsources popular read data to
a surrogate space, such as a dedicated spare flash chip or an
OP area. If available, conflicting read requests are served by
the surrogate flash space. The concept of page replication to
avoid collisions is similar to our approach. However, HotR
immediately replicates the page when the read operation to
it collides with a write request, whereas our study selects
the victim pages based on collision statistics. This incurs
excessive amount of additional write operations and space
overhead. In addition, our approach not only replicates but
also permanently migrates a page to another die if beneficial.

He et al. [30] also proposed a page replication scheme that
counts the number of blocking operations per page and repli-
cates a page to other die when the blocking probability of the
operations to the page reaches a certain threshold. Although
their rationale behind the approach is similar to ours, keeping
tack of the per-page blocking probability imposes a large
amount of additional data structures to the per-page meta-
data. In addition, they did not consider the expected collision
probability when choosing the target die for a page replica-
tion. Through the carefully designed metadata structures, our
approach can choose the page and the destination die for a
replication to maximize the benefit with negligible overhead.

Li et al. [31] performed fast write with a high error rate to
reduce waits caused by collision. The page where a collision
occurs for subsequent read operations is reprogrammed at an
idle state. Reprogramming the page lowers the error rate and
reduces ECC processing time, and, as a result, reduces the
waiting time due to collisions.

Lie et al [15] proposed a novel single-operation-
multiple-location (SOML) read operation that performs sev-
eral small intra-chip read operations to different locations
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simultaneously, so that multiple requests can be serviced
in parallel, thereby mitigating the performance degradation
from read collisions. Although this can radically reduce the
number of read collisions, it imposes a significant level of
complexity on the architecture of flash memory chips and
SSD controllers.

VI. CONCLUSION

The ever increasing density of flash memory shrinks the
number of flash dies equipped in an SSD with the same
capacity. The reduced number of flash dies increases die-level
read collisions.

This paper categorizes die-level read collisions into two:
benign balanced collisions and malignant imbalanced col-
lisions. Most of imbalanced collisions are induced by the
repetitive host I/O patterns, and adversely affect the read
latency and throughput of a SSD. This paper analyzed the
patterns of read collisions observed in various workloads and
their impact to the performance.

Based on the analysis, this paper proposed a read colli-
sion mitigation scheme that replicates the pages frequently
involved in frequently recurring imbalanced read collisions
to appropriate dies. Our evaluation showed that the proposed
scheme improved the average read latency by 10% or more
for 12 out of the 34 MSR Cambridge traces, and the tail read
latency by at least 20% for 15 of them when using only 0.2%
of the total storage capacity for the replicated pages. Only two
workloads were adversely affected by the proposed approach,
however, their performance degradation was negligible.
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