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ABSTRACT This paper presents a novel data-driven approach to predict generator rejection/tripping for
preventing transient instability in power systems. Since calculating the total amount of generator rejection
and assigning the optimal amount of tripping to each generating facility is a time-consuming process, the
optimal generator tripping calculation might be impractical for a real-life interconnected power system.
In addition, communication delays deteriorate the efficiency of any wide-area remedial control action (RCA)
in response to fault events which quickly evolve into transient instability. The presented framework predicts
the optimal generator rejection for critical generators based on voltage data of generator terminals before
and after the occurrence of the contingency. To simplify the problem and enhance the prediction accuracy,
the framework is designed for each transmission line independently. The proposed framework is comprised
of two stages: offline optimization which involves calculating proper RCAs using a full dynamic model of
the power system for training the machine learning engine, and online prediction. In the offline stage, bulk
scenarios are generated for individual transmission lines, the unstable cases are determined, then the critical
generator patterns and generator rejection patterns are extracted for each unstable scenario. In the online
stage, the proposed framework predicts the stability status, critical generators, and the optimal amount of
generator tripping for each critical generator in real-time. The performance of the proposed framework is
tested on the IEEE 9-bus system and the Nordic test system. The obtained results show the effectiveness of
the proposed framework in responding to critical fault events in real-time.

INDEX TERMS Critical generator prediction, generator rejection, machine learning, remedial control action,
transient stability.

I. INTRODUCTION

A. MOTIVATION

Preventing transient instabilities and blackouts in power net-
work have drawn the attention of engineers and researchers
for decades; however, there are still major challenges and
unresolved technical issues which have caused the protection
schemes unable to efficiently prevent blackouts occurred in
different areas [1], [2], [3]. In addition, growing demand,

The associate editor coordinating the review of this manuscript and

approving it for publication was Pratyasa Bhui

96748

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

economic and environmental issues, and growing uncertainty
related to renewable energy sources and new technologies
cause power networks to operate close to their stability lim-
its. Consequently, modern power networks are more prone
to lose synchronism. Therefore, designing proper remedial
control action (RCA) schemes or special protection schemes
(SPS) is of great importance in saving power networks from
blackouts [1], [3].

RCAs are a set of corrective actions taken when emer-
gency conditions are detected to maintain the stability and
integrity of the system [4]. Generally, RCAs including
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controlled islanding [5], [6], [7], [8], load shedding [9],
[10], and generator rejection/tripping [11], [12], [13], [14],
can be classified into two main groups: event-based and
response-based. Event-based methods are designed based on
offline simulations [15]. Although the event-based methods
are very fast, they are only triggered for specific scenarios.
On the contrary, response-based methods are developed based
on collected data from phasor measurement units (PMUs)
and are able to determine proper RCAs for each scenario.
However, the available time to maintain the stability of the
system might be very short for some events since receiving
the PMU data, calculating the proper RCAs, and sending
back the commands take a relatively considerable amount of
time. Therefore, considering the very fast nature of transient
instability, and due to the communication delays, the existing
response-based methods may not be practical for those sce-
narios quickly evolving into transient instability [16]. In this
regard, designing an effective and fast RCA scheme capable
of preventing fast transient instability for severe fault events
is a necessity for a power network.

B. BACKGROUND AND LITERATURE REVIEW

One of the most commonly used RCAs to prevent transient
instability is generator rejection [12], [13]. Three important
factors need to be considered while designing a generator
rejection framework: 1) determining the accurate amount of
generator rejection to stabilize the network, 2) identifying the
critical generators, and 3) assigning the optimal amount of
generator rejection to each critical generator. Several research
studies have been conducted in the literature for online gen-
erator tripping to improve transient stability and prevent
blackouts while the power network is encountering a large
disturbance. Generally speaking, the previous studies can be
categorized into two groups, including energy function-based
and optimization-based methods.

The energy-based methods reduce the complexity of the
power network enabling the protection scheme to calculate
the amount of generator rejection quickly. In [17], a com-
bination of load shedding and generator tripping calcula-
tion is proposed which is based on relay setting limited
EAC for single machine infinite bus (SMIB) system repre-
sentation using PMU data. To do so, an SMIB equivalent
model is formed following the instability detection. Then,
the parameters of the SMIB system are estimated using
real-time PMU data, and the amount of generator tripping
and load shedding are calculated based on power-angle (P-6)
curve estimation. In [12], the virtual load concept is defined
as a safety margin for the generator tripping scheme, and
an offline look-up table is designed to trip generators for
a number of scenarios and calculate the amount of virtual
load at the generation side. In [18], the amount of generator
tripping and load shedding has been calculated based on EAC
and a STATCOM has been designed on the generation side
to reduce the amount of generation tripping and improve
the transient stability. In addition, an energy function-based
method is proposed in [19] to quickly identify the critical and
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non-critical generators and compute the required generation
rejection using the relative energy of the equivalent post-fault
system. In [11], a combination of load shedding and generator
tripping is designed to prevent relay mal-operation and loss
of synchronism, respectively. In this scheme, the amount of
load shedding and generator tripping are calculated based on
critical equivalent acceleration at the clearing time for stable
and unstable swings, respectively. In [20], a new index is
proposed to determine the stability status of the power system
using a two-layer SMIB framework. This method reduces
the communicational burden, identifies the critical generators
using the largest angle gap, and finally, calculates the amount
of generator rejection to prevent instability. In [21], a method
is proposed to predict transient instability and determine the
number of tripped generators using local measurements. This
method predicts the stability status by predicting the mag-
nitude of the P-§ curve and determines the number of gen-
erators needed to be tripped. Although the aforementioned
methods based on energy functions and EAC are fast and can
be employed for online applications, approximated models
are used in these approaches to reduce the computational
burden which affects the accuracy of calculated generator
rejection and the obtained solution might be far from the
optimal solution.

Another drawback of the energy function-based methods
is that they do not consider the optimal location of generator
shedding. Assigning the amount of generator rejection and
optimally dividing this amount between critical generators
is another important issue that needs to be addressed [19].
The existing methods usually select the sequence of generator
tripping based on out-of-step order [11] or energy index [19],
[22], [23]. Numerous methods such as angular separation,
generator frequency, kinetic energy, etc. are proposed in the
literature to determine critical generators [22], [23], [24].
In [19], relative kinetic energy and absorption capacity of the
network are used to identify the critical generators and assign
the amount of generator rejection based on their criticality
order. In [12], the sequence of generator tripping is deter-
mined based on the acceleration energy index of generators.

On the contrary, the optimization-based approaches
attempt to calculate the amount of generator rejection accu-
rately, because an excessive amount of generator tripping is
too costly and it can also lead to an excessive amount of
load shedding and a costly restoration process [12], [18].
In addition, a lower amount of generator rejection might
lead to instability and blackout. Therefore, one of the most
important research directions in transient stability studies
is generator rejection optimization. In [25], [26], and [27],
finding the proper RCAs (i.e., a combination of generator
tripping and load shedding) is modeled as a large-scale opti-
mization problem to prevent transient instability. These meth-
ods solve a non-linear optimization problem using methods
such as direct discretization [25] and a sequential approach
known as control vector parameterization [26], [27] which
are time-consuming. Although optimization-based methods
are accurate and find the optimal solutions, their relatively
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high computational time may cause the framework to fail
to prevent transient instability, particularly for those cases
evolving into transient instability very fast.

C. CONTRIBUTIONS

To overcome the shortcomings of the previous schemes, RCA
prediction has been proposed instead of RCA calculation.
Although a combination of controlled islanding and load
shedding prediction is proposed in our previous work [28],
in this paper a novel generator rejection prediction, which is
another common RCA is proposed to avoid transient instabil-
ity based on pre-contingency and post-contingency samples
of voltage data of generator terminals. For each transmission
line, the proposed method predicts the stability status, critical
generators, and the amount of optimal generator rejection for
each critical generator to stabilize the network for unstable
scenarios and increase the stability margin before the loss
of synchronism. The proposed method uses the full dynamic
model of the power system in the offline optimization prob-
lems without using approximated models that simplify the
dynamic response model of the power system elements. Also,
thanks to the machine learning applicability, the proposed
framework can be fast enough for real-time applications.
Reducing the computational time and using the optimization
models to improve the accuracy in an offline fashion solve a
big challenge in power system stability and control and is a
significant improvement on the existing methods. The main
contributions of the proposed framework are summarized as
follows:

a) A new RCA scheme based on generator rejection predic-
tion is proposed to prevent fast transient instabilities after the
occurrence of fault events. The proposed method eliminates
the need for performing computationally expensive calcula-
tions and therefore, is suitable for real-time applications.

b) In the offline stage of the proposed framework, a heuris-
tic optimization model considering the full dynamic model of
the power network is proposed to assign the optimal amount
of generator rejection to critical generators and maximize the
stability margin with high accuracy for training the machine
learning models.

D. PAPER ORGANIZATION

The rest of this paper is organized as follows. Section II
describes the mathematical formulation for generator rejec-
tion calculation based on the extended equal area crite-
rion (EEAC). Section III presents the optimization model of
the problem. The comprehensive framework is explained in
detail in section IV. Simulation results and discussions are
expressed in section V. Finally, Section VI gives the conclu-
sions of the paper.

Il. GENERATOR REJECTION CALCULATION BASED

ON EEAC

In this paper, EEAC has been used to determine the stability
status and calculate the needed amount of generator rejection
for each unstable scenario. Contrary to the previous methods
all the calculations are performed in an offline fashion to
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build the dataset. Therefore, the P-§ curve is calculated using
accurate full dynamic simulations.

The EEAC is used to convert the multi-machine power
system to a single-machine infinite bus system (SMIB) [29].
EEAC is a powerful graphical tool in the transient stabil-
ity study. It can assess the stability status, stability margin,
and amount of required generator rejection to stabilize an
unstable scenario by calculating the accelerating and decel-
erating areas in P — § curve. To do so, the generators are
grouped into two classes including critical machines (CMs)
and non-critical machines (NMs). CMs consist of all gener-
ators that have lost their synchronism. Therefore, the system
can be converted to a two-machine representation with CMs
and NMs. Next, the system can be reduced to SMIB using the
equations (1) - (6) [29]:

Mey = Y MiMyy =Y M; ey
ieCM JjENM
Mcy - Mm
My = Mcy +Myy, M = ———— 2
Mr
1 1
Sem = ——- ZMi-rSi,(SNM:—- Z M; - 5;
Mew Soy Mnm jeENM
3
1

Pp=——-

My My - Y Pui—Mey Y Pui| (4

ieCM jeNM

1
P, = — MNM'ZPei—MCM'ZPej ©)

Mr ieCM jeNM
d?s
5=5C1v1—51\/M,1V1-—dt2 =Py —P, (6)
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FIGURE 1. Schematic of the EEAC methods to (a) determine the stability
status of the power network, (b) determine the amount of required
generator rejection to prevent transient instability.
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where §, M, P,, and P, represent rotor angle, inertia,
mechanical power, and electrical power related to the equiv-
alent SMIB system, respectively. In addition, indices CM
and NM are used for critical and non-critical machines,
respectively. The process of determining stability status and
amount of generator rejection based on EEAC is explained in
detail.

As shown in Figure 1(a), Ay is the amount of energy
of generators that increases during the fault and Ag,. is the
maximum energy that the power system can dissipate in the
post-fault condition. The stability status of the power system
can be determined by calculating the difference between A,
and Ay, as follows:

el
Auce = [ (Pay = Pepr(@)as )
3o
Su
Adee = (Pepp (8) — Py)dé 3
el
N = Adec — Aacc 9

where 1 represents the stability margin. According to this
criterion, if n< 0, the system is unstable, otherwise the sys-
tem remains stable. In Figure 1, o, 8.1, SGr, u, and 8, are
rotor angels at fault moment, fault clearing time, moment
of applying generator rejection, the moment system reaches
the unstable equilibrium point before applying RCA, and the
instant of unstable equilibrium point after applying RCA,
respectively. Also, Pepr, and Pepr indicate the electrical
power during the fault and after clearing the fault, respec-
tively. In addition, the required amount of generator rejection
can be obtained using the procedure shown in Figure 1(b).
As shown in Figure 1(b), generator rejection can increase
the deceleration area and preserve the stability of the sys-
tem. Previous methods simplify the problem by considering
8. = 8,/ [12]. However, in this paper, the amount of generator
rejection based on a new stability margin model is calculated
using (10) for each unstable scenario.

SGR

Agee < Adec,mw = / (PePF ) — ng) dé

Sel

Y
+ / (Pepr (8) — Py, ) 5 (10)
)

GR

where Py, and §, are unknown variables to be deter-
mined. To calculate the amount of generator shedding
(AP,, = Pmo — Pmy,.,), a repetitive algorithm is devel-
oped as shown in Figure 2. First, an arbitrary value for
me,(?w necessarily lower than Pmy is chosen and using the
SMIB P — § curve, §,/ is determined. Then, Agec,,, is cal-
culated and compared with Age.. If A(dlgcnew = Agec + &,
where ¢ is a small positive constant. The process contin-
ues and the Pmy,,, will be updated until a stop criterion is
satisfied.

The amount of generator shedding for each unstable sce-
nario can be obtained using the explained strategy.
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FIGURE 2. Flowchart of generator rejection calculation for an unstable
scenario.

IIl. HEURISTIC OPTIMIZATION TO EXTRACT GENERATOR
REJECTION PATTERNS

In this section, the critical generator identification model is
explained. In addition, a heuristic optimization algorithm is
employed to distribute the total calculated amount of gen-
erator rejection among the critical generators to maximize
the stability margin and minimize the amount of generator
rejection.

A. CRITICAL GENERATOR IDENTIFICATION

The critical generators are identified for each unstable sce-
nario using the offline simulations. When an out-of-step event
occurs, the related generators are labeled as CM as expressed
in (11).

1 out of step =1 ,
i

CM; = =1,2,.,Ng (11)

0 otherwise

The criticality of the generators depends on the fault loca-
tion. In addition, there are 26 — 1 possible patterns for
critical generators in a network with Ng number of gen-
erators. Therefore, it is hard to identify critical generators
following a disturbance. To reduce the complexity of the
critical generator prediction problem, transmission lines are
classified into three groups and evaluated separately. Since
there are a limited number of patterns for critical generators
related to each transmission line, predicting critical generator
patterns for individual lines is much easier than the prediction
of critical generators for the whole network in one module.
In this regard, the transmission lines are categorized into three
groups as follows:

Neutral Nl.jCGP =0
Lijc» = { Non — critical Nl-jCGP =1
Critical NZ.J.CGP >2

ij=1,2,. Npi#j (12)

where LUC. and Nl..CGP represents the transmission line ij classes
and the number of critical generator patterns for line ij,
respectively. The set of neutral lines does not have any unsta-
ble cases in the scenario generation process. Therefore, if a
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fault occurs on these lines, no RCA action is required. In addi-
tion, sets of non-critical lines have only one pattern for criti-
cal generators. Therefore, critical generator prediction is not
required for non-critical lines. For critical lines, the patterns
are extracted for each unstable scenario using (11). Since
the number of patterns is limited, critical generator identi-
fication is a multi-class classification problem. Therefore,
using pre-contingency and post-contingency voltage data and
the generated dataset, the critical generator patterns for each
critical line can be predicted by a classification module.

B. HEURISTIC OPTIMIZATION ALGORITHM TO ASSIGN
GENERATOR REJECTION TO CRITICAL GENERATORS
Several methods have been proposed to assign the amount of
generator tripping to different critical generators based on the
amount of kinetic energy that each generator gained during
the fault [19], [22], [23], [26]. Also, some papers only assign
the amount of generator shedding based on the sequence of
out-of-step [25]. In this study, an optimization-based algo-
rithm is proposed to divide the amount of calculated generator
shedding between critical generators by maximizing the sta-
bility margin of the system. Note that every power plant con-
sists of a number of parallel generating units. Reducing the
mechanical power of generators is a slow process. Therefore,
to perform generator shedding, a number of generation units
should be selected from critical generators to be switched off
immediately following a transient instability detection. Also,
the total amount of generator rejection should be equal to or
greater than the amount of generator rejection calculated in
the previous section. Since the amount of generator shedding
is a discrete variable in real-life and may not be exactly
equal to the amount, the optimization algorithm tries to assign
generation rejection to generators so that the summation of
the assigned values is close to the calculated total generation
rejection. The goal of the optimization problem is to minimize
the amount of generation rejection and maximize the stability
margin. The objective function along with the operational
constraints can be expressed as follows.

min Z APG, — B(Adec — Adce) (13)
ieQO

> AP, = APy, (14)

ieQC

Note that the full dynamic model of the power system is
considered. As shown in Figure 3, a repetitive algorithm is
employed to find the minimum amount of generator shedding
considering (14). Then, among the considered RCA cases,
the RCA with the highest stability margin is selected as the
optimal RCA for each unstable scenario.

IV. GENERATOR REJECTION PREDICTION FRAMEWORK
In this paper, the details of the proposed generator rejection
prediction are presented. The proposed framework has three
main stages: 1) transient stability status prediction, 2) criti-
cal generator prediction, and 3) optimal generator shedding
prediction.
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Heuristic optimization Algorithm

Stepl. Colleet the data including APy, Critical generators, and amount of
generation units steps for critical generators

Step2. Divide the AP, between critical generators and form a set consist of all
possible options S = [sfn.sél), S

Step3. V.ij € s, if Bk L\.Péiﬂp > APy, , formnew S@
icluding all cases satisfy this condition, §* = {sfz).séz), it 552)}

Step4. Run the full dynamic simulation for those cases in S(*

StepS. Check stability status of all cases in stepd, form  $@ including all cases
stabilize the system, S@ = {s&, s, .., s&}

Step6. Calculate the stability margin for all cases in 5§

Step7. Report the best solution as optimize generator rejection scheme

FIGURE 3. Algorithm for finding the optimal generator rejection amount
for each critical generators.

A. BULK SCENARIO GENERATION

To train the machine learning models, a bulk scenario dataset
is generated for individual transmission lines. The dynamic
behavior of the power network is closely related to fault
location, fault duration, network configuration, and loading
condition. Therefore, the random variation of these parame-
ters is considered in the data generation process to generate
a comprehensive dataset. Also, the data are generated for
each line independently to reduce the complexities of the
prediction models and increase the prediction accuracy of the
modules. Moreover, a large number of scenarios are gener-
ated for each line to cover credible scenarios.

B. OPTIMIZED RANDOM FOREST CLASSIFIER

Since all the three modules predict specific patterns among
a limited number of patterns, an optimized random forest
classifier is trained for each module for individual lines.
Random forest is an ensemble method that is a combination of
different tree-structured classifiers. Assume a training dataset
as follows:

T = ((X;, Yol 1Xi € RM, ¥; € R) (15)

where N, and M indicate the number of samples and number
of features in the original dataset, respectively. The X;, and
Y; represent the i row of samples and its target. Each tree
is trained using a randomly selected dataset and a random
subset of features. The number of trees is an important
parameter that should be optimized. A higher number of
classifiers increases the accuracy, however, it also increases
the complexity of the model. Each tree can be shown as
{h(x,0;),k=1,2,...,l. where [ is the number of trees.
Moreover, {6} is a random parameter vector that deter-
mines how the k™ tree is grown. Every two of these random
variables 6 are independent and identically distributed.
Depending on the problem the optimal number of classifiers
is determined and after k iterations, the sequence of classifiers
is obtained as follows.

{h1(x), ha(x), ..., hi(x)} (16)
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Offline Calculation

Generate dataset for line ij |

!

Identify unstable scenarios according to equations
(7)-(9)

Calculate the amount of generator tripping based
on EEAC to stabilize the network using proposed
algorithm in Fig. 2

l

Find the patterns of critical generators for line ij

l

Assign the amount of generator shedding to each
critical generator based on algorithm in Fig. 3

i

Extract the gencrator shedding pattern for line ij

T S

Train prediction modules using the offline dataset for line ij

Training Process

Online Prediction

9

Detect fault on line §j
1

T |

H

[ Run stability prediction module I

Predict critical generators for line ij

l

Predict the gencrator rcjection for cach
critical generator

l

Report and send the command to ]
generation unit switches

FIGURE 4. A comprehensive diagram of the proposed framework to predict optimal generator rejection for line ij.

The final result of the random forest is determined by
an ordinary majority vote based on the decision function
expressed as follows:

k
H (x) = argmax, Z[(hi x)=Y)
i=1
where the H (x), h;, I, and Y are the combination of the
classification model, i decision tree, the indicator func-
tion, and the output variable respectively. There are different
hyper-parameters for a random forest that need to be tuned
according to the problem. For each module and for each line,
the optimal number of trees, the random subsets of features
to find the best split, and the maximum depth of the trees
are determined to improve the performance of the random
forest [31].

a7

C. STABILITY STATUS PREDICTION MODULE

In normal operation conditions, the system is operated
at a stable point and there is a balance between electrical
power and the mechanical power of generators. When a dis-
turbance occurs in a power network, generators start fluctuat-
ing and gain kinetic energy. If the generators can absorb the
released energy, the system goes to another stable point and
remains stable. Bulk scenarios are generated for each line,
and using EEAC, A 4. and A, are calculated for all scenarios
using (7)-(8). Scenarios with n< O are labeled as unstable
(i.e., 1), and scenarios with n > 0 are labeled as stable
(i.e., 0). Based on the generated dataset with two target
classes, the stability prediction is a binary classification
problem. Using the pre-contingency and post-contingency
samples of generators’ voltage data, the machine learning
engine is trained to predict the stability status of the power
network. Following instability detection, a signal will be sent
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to the next modules to finally determine the proper RCA for
maintaining the transient stability of the system.

D. CRITICAL GENERATOR PREDICTION MODULE

Instead of identifying the critical generators or predicting
the critical generators for the whole power network, in this
paper, the critical generators are predicted for individual lines
separately. If a scenario is predicted as unstable for those lines
with only one critical generator pattern, the generator rejec-
tion will be predicted immediately for the critical generators
in that pattern. Moreover, these lines have 100% accuracy for
the critical generator prediction module and therefore, they
increase the average accuracy of this module significantly.
In addition, the lines with more than one critical generator
pattern have a limited number of patterns which makes it
easier for the classifier to predict the right pattern.

Since each line has a limited number of patterns for
critical generators, predicting critical generators is a multi-
class classification problem. The pre-contingency and post-
contingency of generators’ terminal voltage data are input
data and patterns of critical generators represent the targets.
The machine learning model of this module is trained using
the generated dataset and critical generators are predicted for
individual lines. Therefore, if a fault scenario is predicted
as unstable by the transient stability prediction module, the
critical generator prediction module will predict the related
critical generators and send the predicted critical generators
pattern to the final module to predict the optimal amount of
generator shedding as RCA.

E. GENERATOR REJECTION PREDICTION MODULE
Practically, a generation facility consists of multiple
machines. In this paper, 10 parallel machines are considered
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for each power plant. It is assumed that parallel machines
have the same characteristics in each power plant. Therefore,
the generator rejection variable for critical generators is
practically a discrete variable. Therefore, it is not possible
to shed the exact calculated amount of generator rejection
based on EEAC. However, using the heuristic optimization,
the amount of generator rejection (i.e. number of units to
be tripped) that needs to be done for each critical generator
is the possible closest amount to the calculated amount of
generator rejection. For each unstable scenario, the number
of units for critical generators is extracted which is an integer
number between O (i.e. in case no generator shedding is
required for that critical generator) and 10 (i.e., in case the
whole power plant is required to be tripped). Therefore,
the generator shedding prediction is converted to a multi-
class classification with Ncg (number of critical generators)
targets. If generator shedding is implemented for the whole
network in one module, the generator shedding should be
implemented for all generators. However, only specific gen-
erators need generator shedding prediction when each line
is evaluated separately. It significantly reduces the solution
space and increases the overall accuracy of this module.

APLP € (K10 <k <10,k € z}i=1,2,..Ney (18)

In the training stage, the steps of generator rejection for
each critical generator and individual line are extracted offline
using the optimization model presented in section III. Then
for each transmission line, the dataset is built using the gener-
ator rejection patterns as targets and Vgre_f @it and ng_f ault
values along with critical generator patterns as inputs. The
comprehensive diagram of the proposed framework is illus-
trated in Figure 4.

V. TESTS AND RESULTS

To validate the performance of the proposed framework,
the IEEE 9-bus and 74-bus Nordic test systems are used.
Bulk scenarios are generated using DIgSILENT program-
ming language (DPL) commands. Full dynamic simulations
are performed using DIgSILENT PowerFactory to derive the

s S
i1 Critical Generator |/
Pattern

FIGURE 5. Schematic of single line diagram of the IEEE 9-bus system
along with critical generator patterns for each line.
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Share of cases involving fault
with N-1 contingency (20%)

Share of cases involving fault
with N-2 contingency (10%)

Share of cases involving fault
without outage (70%)

Generated dataset for individual
transmission lines

FIGURE 6. Scenario generation process for individual transmission lines.

rotor angle curves of the generators before and after apply-
ing RCA. All the calculations, optimizations, and machine
learning model training are coded and run using MATLAB.
In addition, DIgSILENT and MATLAB are linked in order
to apply possible solutions in each step of the optimization.
The simulations are performed on an Intel 3.4 GHz CPU
with 16 GB of RAM.

In this paper, randomly selected 80% and the remaining
20% of the dataset samples are used for training and testing
the machine learning engine, respectively.

A. IEEE 9-BUS SYSTEM

The IEEE 9-bus system has 3 generators, 6 transmission lines,
9 buses, and 3 loads. The single-line diagram of this network
is shown in Figure 5. Since there is no parallel transmission
line in this network, six frameworks are designed for this
system. In the following sub-sections, different parts of the
proposed framework are implemented on this network.

1) BULK SCENARIO GENERATION

To generate bulk scenarios for each line, different fault loca-
tions, fault durations, and system loadings are randomly cho-
sen. For the IEEE 9-bus system, 2000 scenarios are generated
for each line independently. Moreover, fault duration is ran-
domly set in the range of 30 ms up to 350 ms based on the
normal distribution function. In addition, the system’s loading
is varied randomly between 65% and 130%. Finally, the fault
locations are randomly chosen using a uniform distribution
function in the range of 0.05 to 0.95 of line length. In addition,
N-1 and N-2 contingencies are considered in the scenario
generation process to cover credible outage events for each

TABLE 1. Accuracy of transient stability prediction module in the IEEE
9-bus test system.

Set of transmission ~ Number of unstable Prediction
lines cases accuracy (%)
{5-4} 361/2000 (18.05%) 99.16%
{5-7} 875/2000 (43.75%) 99.48%
{7-8} 302/2000 (15.1%) 98.84%
{8-9} 484/2000 (24.2%) 99.05%
{9-6} 467/2000 (23.35%) 98.76%
{4-6} 469/2000 (23.45%) 99.11%
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FIGURE 7. The rotor angles of generators after applying different generator rejection strategies for a specific case study in the IEEE 9-bus
system, (a) the scenario without RCA, (b) scenario after applying RCA based on estimation methods, (c) Scenario after applying

optimization-based RCA, (d) Scenario after applying proposed RCA.

transmission line. Figure 6 shows the process of scenario
generation for each line.

2) STABILITY STATUS PREDICTION

The stability status of power system is predicted for each
fault event in this module. First, using (7)-(9), the stability
status of each scenario is investigated in an offline fashion.
The terminal voltage of the generators including one pre-fault
data and 10 post-fault cycles (PFCs) as inputs and the stability
status of the power network (0 or 1) as output are fed into
the machine learning engine for training. The accuracy of the
transient stability prediction module for each line is presented
in Table 1.

As shown in Table 1, the prediction accuracy of the stability
status prediction module related to the IEEE 9-bus system
is more than 98.76% following a large disturbance. When
the stability status of the system following the occurrence
of a new fault event is predicted as unstable, the critical
generator prediction module will be run to identify the critical
generators for finding a proper RCA.

3) CRITICAL GENERATOR PREDICTION

In this part, critical generator patterns for each line are
extracted to train the machine learning model in an offline
process. The critical generator patterns for each line of the
IEEE 9-bus test system are demonstrated in Figure 5. Next,
using the input data (i.e., the pre-contingency and post-
contingency voltage values) and the output data (i.e., the
critical generator patterns), the critical generators can be
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TABLE 2. Accuracy of critical generator prediction module in the IEEE
9-bus test system.

Average Acpuracy
Set of I}Iun}berl Prediction  accuracy WIthOUt
transmission ~ ° critica accuracy using using
lines generator (%) MMS MMS
patterns %) strategy
(%)
{5-4} 4 96.39
{5-7} 4 97.06
{7-8} 2 97.22
(8-01 3 96.87 96.77 94.89
{9-6} 3 96.68
{4-6} 4 96.44

predicted using the multi-class classifier. The accuracy of the
critical generator prediction module for all lines is shown in
Table 2.

According to Table 2, the average accuracy of critical gen-
erator prediction modules using the proposed strategy (i.e.,
building a framework for each line independently) is approx-
imately 2% higher than that of the existing methods which
predict the critical generators for the whole network using
a single integrated module. Therefore, the proposed strategy
enhances the accuracy of critical generator prediction.

4) GENERATOR REJECTION PREDICTION
In this part, the patterns of generator rejection as RCA
for all critical generators are identified using the heuristic
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FIGURE 8. Voltage magnitudes after applying different generator rejection strategies for a specific case study in the IEEE 9-bus system.

TABLE 3. Accuracy of generator rejection prediction module for
individual lines in the IEEE 9-bus test system.

Accuracy of generator Average
Set of rejection prediction (%) accuracy of
transmission generator
lines Gl G2 G3 shedding
prediction (%)
{5-4} 89.11 93.27 94.66 92.34
{5-7} 91.85 94.38 94.07 93.44
{7-8} - 95.23 94.62 94.92
{8-9} - 93.79 94.16 93.97
{9-6} - 93.18 95.06 94.12
{4-6} 90.57 94.30 94.68 93.18

optimization in an offline mode. Using the generated dataset
and depending on the number of critical generators for each
line, one, two, or three classifiers are trained for each line and
the amount of generator shedding for each critical generator is
predicted. The prediction accuracy of the generator rejection
prediction module for the IEEE 9-bus system is shown in
Table 3. Note that G1 does not exist in the critical generator
patterns for 3 lines including {7-8}, {8-9}, and {9-6}. There-
fore, there is no need to predict the number of generation units
of Gl for these lines in the generator shedding prediction
module. It can be seen that the obtained average accuracies
are high for this system.

5) PERFORMANCE COMPARISON BETWEEN THE
PROPOSED AND EXISTING METHODS

In this part, a comparison is performed to show the function-
ality of the proposed framework. A 3-phase fault is applied
on line 7-8 at t=5 s and is cleared after 297 ms. The first
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module (i.e., the stability prediction module) predicts that
the system becomes unstable following this contingency.
Figure 7 shows the rotor angle oscillations of all genera-
tors. The rotor angle instability for this scenario is shown in
Figure 7(a). The proposed optimization model is run and the
needed amount of generator shedding is 15.87 MW in this
case. Also, the amount of generation shedding is calculated
based on approximation §, = §, and the calculated amount
is 26.81 MW using the existing energy function-based meth-
ods. First, generator shedding is applied based on an energy
function-based method [11] using an approximated model
to calculate the generator rejection quickly. The generator
shedding value of 26.81 MW requires 3.16 generator units to
be tripped. Since these methods trip the generators based on
the sequence of out-of-step or energy index, the calculated
amount is tipped from G3. Therefore, four units of G3 are
tripped at t=5.72 s. As shown in Figure 7(b), these methods
are fast enough to effectively stabilize the network. Moreover,
based on another approach, generator shedding is performed
by running an optimization model with a computational
time of about 500 ms. Using this method, the optimal RCA
decision is tripping one unit of G2. The optimal generator
shedding is applied at t=6.197 s. The rotor angles of the
generators after applying the calculated generator shedding
are shown in Figure 7(c). Since the generator rejection is
applied relatively late, the system loses the synchronism.
Finally, the proposed framework predicts that one unit of G2
and one unit of G3 (totally 24.8 MW) need to be tripped
to stabilize the network. The predicted generator rejection is
applied at t=5.72 s and the rotor angles of the generators
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TABLE 4. Performance comparison of the proposed framework and existing methods for a specific case study in the IEEE 9-bus system.

Execution time

Amount of generator

heddi
Generator rejection Vo — Location of generator Stability of the

trat ideri ; heddi twork

strategy comnfﬁrﬁiﬁ?g?gelays practicality Z APET® practicality shedding networ]

=1

Estimation ~450 ms v 34 MW X G3 stable
Optimization ~1-2s X 16.3 MW v G2 unstable

Proposed framework ~450 ms v 24.8 MW N4 G2,G3 stable

FIGURE 9. Single line diagram of the Nordic test system.

for this case are shown in Figure 7(d). This comparative
analysis shows the effectiveness of the proposed framework.
Although the generator rejection based on estimation can
stabilize the network, it tripped around 9 MW higher than the
proposed framework. Figures 7(b) and 7(d) show the impor-
tance of choosing the right candidate generators for generator
shedding. The obtained bus voltages are also illustrated in
Figure 8 for all methods. Comparing Figures 8(b) and 8(d),
the proposed framework is able to recover voltage faster and
with fewer fluctuations.

In this regard, the performance of the existing methods
and the proposed method are summarized in Table 4. It is
clear that the optimization-based methods might be imprac-
tical for unstable fault scenarios quickly evolving into tran-
sient instability due to their relatively high computational
time. According to Table 4, the proposed framework benefits
from the merits of estimation-based methods in terms of low
computational time and optimization-based methods in terms
of the capability of maintaining the stability of the system.
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TABLE 5. Accuracy of two first modules of the proposed framework in
the Nordic test system.

Accuracy of  Number of  Accuracy of
Set of o . -
transmission stab}l{ty critical critical
lines prediction generator generator
module (%) patterns prediction (%)
{43-44, 43-44*} 98.96 11 94.57
{46-45, 46-45*} 99.49 1 100
{46-47} 99.05 1 100
{50-49} 98.85 4 95.84
{51-46} 98.88 1 100
{50-53} 99.04 3 95.31
{53-52} 99.15 10 94.17
{54-52} 99.02 8 94.31
{53-54} 98.90 1 100
{54-56} 99.12 2 96.54
{55-57, 55-57*} 99.25 8 94.23
{56-57} 99.49 11 94.78
{58-57, 58-57*} 99.25 17 93.84
{54-59} 99.06 1 100
{56-59} 99.21 4 94.96
{44-60} 98.69 6 94.72
{58-60} 99.02 16 93.73
{44-61} 98.98 9 95.41
{61-58} 99.23 14 93.96
{59-61} 99.13 10 94.75
{60-61} 99.04 16 93.82
{62-63, 62-63*} 99.27 2 95.48
{66-68, 66-68*} 99.06 1 100
{69-70,69-70*} 99.22 2 95.38
{74-71, 74-71*} 98.85 1 100

B. NORDIC TEST SYSTEM

To generalize the proposed methodology, the Nordic system
as a larger power network is used to evaluate the perfor-
mance of the proposed framework. The Nordic test system
consists of 74 buses, 20 generators, and 52 transmission lines.
According to the presence of parallel lines in this system,
37 sets of distinct lines exist in this network. For each set of
lines, 6000 scenarios are generated. The single-line diagram
of the Nordic system is shown in Figure 9. As shown in
Figure 9, the Nordic test system has three groups of lines,
1) lines with more than one pattern for critical genera-
tors (blue lines), 2) lines with only one pattern for critical
generators (red lines), and 3) lines with no unstable scenar-
ios (green lines). The effectiveness of individual evaluation
of lines is more noticeable in the Nordic test system. For
example, the sets of lines without any unstable cases do not
need any RCA prediction. According to Figure 9, there are
12 sets of lines that do not have unstable cases in the scenario
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TABLE 6. Details of the generator rejection prediction for the selected sets of transmission lines in the Nordic test system.

Set of Critical power Accuracy of generator rejection prediction (%)
transmission lines plant G4 G6 G7 G8 Gl1 GI12 GI3 Gl4 G15 Gl6 Gl17 GIS8
{59-54} Gl1 - - - - 96.5 - - - - - - -
{46-45, 46-45*} G17,GI18 - - - - - - - - - - 943 | 957
G4 97.3 - - - - - - - - - - -
(6970, 69-70%} G6-G8, G11-G18 - 91.5 | 100 | 93.8 | 93.2 | 90.1 | 100 | 100 100 100 | 93.8 ] 93.1
G8 - - - 96.2 - - - - - - - -
G6-G8, G11-G18 - 922 | 100 | 93.8 | 939 | 89.9 | 100 | 100 100 100 | 943 | 942
G6-G8, G13-G18 - 91.9 | 100 | 93.6 - - 100 | 100 100 100 | 953 | 95.1
G8, G12 - - - 94.6 - 91.8 - - - - - -
{55-57, 55-57*} G4, G8 96.8 - - 93.7 - - - - - - - -
G4-G8,GI11-G18 | 96.1 | 90.7 | 97.8 | 934 | 942 | 91.3 | 100 | 100 100 100 | 947 | 954
G6-G8, Gl11,
GI3-GI3 - 934 | 100 | 933 | 94.6 - 100 | 100 100 100 | 959 | 9%4.6
G4, G8, G12 97.5 - - 94.2 - 92.7 - - - - - -

generation process. However, for those neutral lines, there is
a possibility of mistakenly detecting instability and triggering
RCA if the prediction module is designed for the whole
network. In addition, for the set of lines with only one critical
generator pattern, the accuracy of the critical generator pre-
diction module is 100%. The stability and critical generator
prediction accuracies and the number of critical generator
patterns for all lines are illustrated in Table 5.

According to Table 5, there are 31 distinct critical generator
patterns in the Nordic test system. To show the effectiveness
of the individual line evaluation strategy, a comparison is
made between the proposed and the conventional methods
for critical generator prediction. First, using all patterns and
all scenarios in one module, critical generators are predicted
for the whole network using an optimized random forest. The
obtained prediction accuracy of critical generator prediction
is 93.22% in this case. However, the average accuracy of
the proposed framework for the Nordic system is 97.42%
using the proposed strategy (i.e., predicting the critical gen-
erator patterns for each line individually). This comparison
shows the satisfactory performance of the proposed frame-
work when implemented for a large-scale system.

Four sets of lines of the Nordic test system are selected
to show further details about the performance of the pro-
posed framework regarding the generator rejection predic-
tion. To this end, two non-critical sets of lines (i.e., {59-54}
and {46-45, 46-45*}) and two critical sets of lines (i.e., {69-
70, 69-70*} and {55-57, 55-57*}) are chosen. The critical
generator patterns along with the obtained accuracies in gen-
erator rejection prediction for these lines are given in Table 6.

VI. CONCLUSION

This paper presented a novel generator rejection prediction
to prevent rotor angle instability in a power network. The
following conclusions can be drawn based on the obtained
results.

1) Instead of RCA calculation, the RCA prediction
is proposed to make real-time RCA practical.
The proposed framework can predict the stability status
of the power system following a large disturbance and
in case instability is predicted, it predicts the critical
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generators and the proper generator rejection quickly
enough to stabilize the network.

2) A heuristic optimization method is utilized to calculate
the optimal amount of generator rejection for criti-
cal generators in an offline fashion for training the
machine learning engines. This method considers accu-
rate dynamic model of the system and hence has high
accuracy.

3) Transmission lines are classified into three groups and
a specific framework is designed for each transmission
line to enhance the accuracy of the prediction modules
and reduce the prediction complexity.

4) For each transmission line, three modules (i.e., stability
prediction, critical generator prediction, and generator
rejection prediction) are trained using the bulk dataset
and run subsequently following a fault occurrence in
the system.

5) The obtained results based on two small and large
test systems show the effectiveness of the proposed
framework.

Further research may be conducted to improve the accu-
racy of the generator rejection module using new machine
learning methods including deep learning and reinforcement
learning methods.
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