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ABSTRACT Improving the efficacy and dependability of aeroengines requires timely and effective sensor
fault diagnosis. Deep learning-based fault diagnosis method is a current research hotspot. To overcome some
of the method’s existing shortcomings and improve the reliability of fault diagnosis, this paper proposes a
novel intelligent fault diagnosis framework with higher quality features and more effective fault classifiers.
The proposed plan includes three stages. Firstly, multidomain features (time and frequency domain features)
are extracted to describe the sensor’s health from several dimensions. Secondly, the advanced Henry gas
solubility optimization algorithm (HGSO) is applied to improve classification accuracy through feature
selection, and the operating conditions and the features extracted by the network are fused as fault indicators.
Finally, an adaptive deep belief network (ADBN) with relu-softsign combination activation layers, variable
learning rate, and optimized network structure is proposed as the fault identifier. The advantages of the first
two stages lie in the complete utilization of information and reducing the data dimension. In addition, the
detection performance and the convergence speed is enhanced by the proposed ADBN. The experimental
data are derived from a combination of measured and simulated data generated from the aeroengine model.
The experimental results indicate that the improved method can produce better performance and outcomes
than the unimproved methods for all fault scenarios, with a higher diagnostic accuracy of 98.1% and a
reduced time of 98 s. The efforts of this study provide a efficient and adaptable way to aeroengine sensor
fault diagnosis.

INDEX TERMS Aeroengine control system, Henry’s gas solubility optimization algorithm, adaptive deep
belief network, sensor fault diagnosis, multidomain features.

I. INTRODUCTION The great reliability contributes to the plant’s stable

Aeroengine sensors must be reliable for aircraft performance
and flight safety [1], [2]. Aeroengines control and health
management are strongly dependent on accurate sensor mea-
surements. However, the aeroengine sensors are prone to
faults because of the extreme working conditions, making the
engine run abnormally and even catastrophic events [3], [4].
To prevent accidental faults and reduce maintenance costs,
an effective strategy is needed to ensure the reliability and
safety of the aeroengine.
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operation and safety. Numerous efforts have been devoted
to designing and evaluating complex systems with high
reliability. The literature [S] developed a vectorial surrogate
modeling method to accomplish the comprehensive reliabil-
ity design of multi-objective structures. The literature [6]
proposed an improved extremum response surface method for
mechanism reliability evaluation.

Another route is to increase the reliability of systems
through fault diagnosis. In reported literature, the fault
diagnosis methods of engine sensors include model-based
and data-driven methods [7]. The model-based technique
compares available measurements to a priori information
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represented by a mathematical model and treats the difference
between the two as a fault indicator [8], [9]. Therefore, this
method can better express the dynamic relationship within the
system. The model-based approach has been widely used in
many applications, such as Kalman filter [10], unknown input
observer [11], sliding mode observer [12], parity space [13],
and so on. Due to its high dependence on an accurate
aeroengine model, this method has limitations in practical
application despite its excellent performance. Specifically,
an aeroengine is a complicated device with multi-field cou-
pling, resulting in complex and difficult modeling. With
growing modeling uncertainty and nonlinear complexity,
diagnostic performance may decline.

In contrast, data-driven approaches do not need prior
knowledge, such as esoteric engine working principles and
complex modeling techniques [14]. It obtains fault infor-
mation directly from the massive aeroengine running data.
Data-driven methods have received much attention from
researchers because of their advantages in describing non-
linear functions, minimal human involvement, and handling
large amounts of data [15], [16].

The quality of the extracted features and fault classifiers
is the key to data-driven fault diagnosis, directly influenc-
ing diagnosis results. Along with the increasing accuracy of
fault diagnosis, the feature extraction technique is growing in
importance, and many related works have been conducted in
this area. Fei et al. [17] developed a new feature extraction
method, that is, hierarchical quantum entropy, to effectively
conduct the fault diagnosis of inter-shaft bearings with pre-
cision and stability. Ai et al. [18] suggested a fusion method
based on n-dimensional characteristic parameters distance to
monitor rolling bearing operating status with casings in real-
time efficiently and accurately. These works demonstrate the
potential of high-quality features to enhance fault diagnosis
accuracy.

Extraction of multi-domain features greatly adds to the
improvement of feature quality. Chen er al. [19] extracted
time and frequency domain features from the different sen-
sor signals and pointed out that multi-domain features can
be regarded more effectively as machine health indicators.
Anam et al. [20] proposed a combined multidomain feature
set that exploits the diversified information contained within
the signals and can capture anomalies under various con-
ditions. The multi-domain feature set can capture the fault
information of the equipment more comprehensively and
improve the classification accuracy.

Existing technology for feature extraction in sensor fault
diagnosis is short. (1) The multi-domain features extracted
need to be more concise. A large-sized feature subset
composed of similar redundant features might lead to
overfitting and misclassification. The compromise between
fewer dimensions and better information is a question that
requires careful consideration. (2) The influence of the oper-
ating conditions (different H and Ma) on the measurement
results of the sensors has often been ignored in previous
studies. This may hurt the accuracy of fault diagnosis.
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Moreover, the performance of the fault classifier can have
a direct impact on fault diagnosis. Examples include autoas-
sociative neural networks [21], support vector machines
[22], and various hybrid intelligence techniques[23], among
others. The fault diagnosis of engine sensors is extremely
challenging because of the increasingly complex structure of
aeroengines, variable operating conditions, and noise cou-
pling. Fortunately, deep learning (DL) provides a powerful
solution for fault diagnosis. Deep learning has unique advan-
tages in dealing with complex problems [24]. It simulates
the information processing mechanism of the human brain
by constructing deep neural networks capable of learning,
interpreting, and analyzing input data and deciphering data
knowledge [7], [25]. Several research initiatives based on
DL in real applications such as aeroengines[26], wind tur-
bines [27], bearings[19], planetary gearboxes[28], etc., have
been reported in the literature to improve the reliability and
safety of the considered systems.

A common DL structure is the Deep Belief Network
(DBN), which has a high ability to handle complex recogni-
tion tasks, is a typical DL structure. In recent years, it has been
increasingly utilized for sensor fault diagnosis. Tamilselvan
and Wang [29] presented a novel sensor health diagnosis
method using a deep belief network and successfully applied
it to aircraft engine health diagnosis and electric power
transformer health diagnosis. Liu et al. [30] proposed a
DBN-based fault detection method for aircraft engine sensors
and demonstrated that it is more precise than BP neural
networks and SVM. Feng et al. [31] offered a new method-
based DBN for engine fault diagnosis. It is worth mentioning
that he extracted the entropy of the original signal and used it
as an input to the DBN, and achieved a higher accuracy.

However, the performance constraints of classical DBN
hinder diagnosis accuracy, and its diagnostic performance has
the potential to improve. For example, constant learning rate
and saturated activation layers (such as sigmoid and tanh)
lead to low diagnostic accuracy and slow convergence. Again,
for example, the structure of deep learning networks often
comes from very time-consuming trial and error.

Motivated by the above challenges, this work aims to
provide generic solutions to address the challenges. A novel
intelligent fault diagnosis method is presented in this paper.
The diverse fault information contained in the signal is cap-
tured from multiple dimensions (time domain and frequency
domain). Then, multi-domain features should be filtered to
remove redundant information and train the fault diagno-
sis model with the least dimensional but knowledgeable
and high-quality information. Traditional feature selection
schemes have the potential for local solutions. Meta-heuristic
algorithms are ideally suited to solve optimization problems
[32], including feature selection problems. The Henry Gas
Solubility Optimization (HGSO) algorithm has been widely
used in feature selection problems, because to its increas-
ing convergence speed, reducing computational costs, and
quickly eliminating local optima. The HGSO algorithm is
employed to successfully filter sensitive features in this paper.
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Finally, the adaptive DBN(ADBN) model is proposed and
trained for fault classification. Notably, the operating condi-
tions and the features obtained from ADBN are fused to serve
as fault indicators jointly.

The main contributions of this work are summarized as
follows.

(1) The HGSO algorithm, a new meta-heuristic algorithm,
is introduced to self-adapt optimized features.

(2) A fusion feature is proposed. On the one hand,
multi-domain features are extracted as the main features of
the signal. On the other hand, the influence of operating
conditions is considered and creatively used as a secondary
feature. The two parts are fused to obtain complete fault
information.

(3) An adaptive ADBN model for fault classification is
investigated. The model has a dynamically trained activa-
tion layer relu-softsign and an adaptive learning rate for
high accuracy and fast convergence. And introducing an
advanced meta-heuristic algorithm, the Harris Hawk Optimi-
sation (HHO) algorithm achieves automatic acquisition of the
optimal network structure.

(4) A hybrid flexible diagnosis framework for aeroengine
sensors integrating multi-domain features, feature optimiza-
tion and fusion, dynamic training, and structure optimization
is proposed.

The rest of this article is organized as follows. In Section 2,
the theoretical background about HGSO, DBN, and HHO was
introduced. In Section 3, the proposed fault diagnosis method
is described. In Section 4, we verify the method’s practicabil-
ity through experimental comparison. Section 4 presents the
main conclusions.

Il. THEORETICAL BACKGROUND
A. BRIEF INTRODUCTION OF THE HGSO ALGORITHM
The Henry gas solubility optimization algorithm is a new
metaheuristic algorithm proposed in 2019 [33]. The meta-
heuristic algorithm is constructed based on biological or
physical phenomena in nature. The stochastic factors in the
evolution process enable it to escape from the optimal local
solution, which has the benefits of simple operation, gen-
eralization, and good generalization [34], [35]. The famous
physics law, Henry’s law, inspires the HGSO algorithm,
which explains the phenomenon of solubility of a gas in a
liquid under a certain pressure. The concept is depicted in
Figure 1 [33].

The above Henry’s law is mathematically formulated as an
optimization process containing 8 steps:

Step 1: Initialization. The position X; of the i’ gas particle
in the population is initialized as

Xio (t+ 1) =1b+ rand (n, dim) x (ub — Ib) €))

In which ub, Ib and dim depict the upper bound, the lower
bound, and the dimension of the problem, respectively. The
initial values of Henry’s constant H; for cluster j, the partial
pressure P; ; of gas i in cluster j, and the constant value C; of
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FIGURE 1. Gas particles dissolving into a liquid under partial pressure.

cluster j are formulated as,

HY(t) = I x rand(m, 1), P); = I, x rand(n, 1),

C) = I3 x rand(m, 1) )

In which m represents the number of gas clusters. /1, 2, I3
are constants equal to 5e-03, 100, 1e-02, respectively.

Step 2: Clustering. The gas particles with n population
are distributed into m clusters as the gas type. Each cluster
contains a similar group of candidate particles with the same
Henry’s coefficient H; and constant value C;. Each cluster gas
has constant values H; and C;.

Step 3: Evaluation. In each cluster j, the best candidate
particle x; pes; Which obtains the best fitness value in cluster j
is evaluated to find the global best gas-particle xg pes; among
the population n.

Step 4: Update Henry’s coefficient. In different iteration
and different cluster, the Henry’s coefficient is updated refer
to the Henry’s law as

11
Hj(t + 1) = H;j (1) x exp (_Cj x (F B ﬁ)) 3)

In which T! = exp(%) which changes in every iteration, T
depicts the temperature, and 7% is a constant set to 298.15.

Step 5: Update solubility. The solubility S; ; of gas particle
i in cluster j is mathematically expressed as

Sij(t) = K x H; (1) x P j(t) 4

in which K is a constant value equal to 1.
Step 6: Update position. The next position of the i gas
particle in the j* cluster is updated as

Xi!./ (t + 1) = Xi,j (t) +f X rand X ¢l',j
X (Xj,pest — Xij (1)) + flag x rand x o

X (Sij (1) X Xpesr (1) — Xij (1)),
Fpest (1) + ¢

i = B X exp(———— 5
¢l,j B P( Fij(D)+e ) (5)
In which f is a flag index equal to —1 or 1, which is utilized
to change the direction of the search agents. rand donates
random values in (0,1), and every rand represents a different
random value. ¢;; is the ability of the gas particle i in the
cluster j. o donates the influence of other gas particles on
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FIGURE 2. The diagram of the DBN structure and training process.

the i gas candidate which is set to 1. 8 and ¢ are constant
coefficients equal to 1 and 0.05, respectively.

Step 7: Obtain the worst agent. The worst agent N,, is
ranked and employed in the optimization process to avoid
local optima, which is formulated as

Ny, =n X (rand x (c3 —c1) +¢;) (6)

In which ¢; and ¢, is constantly equal to 0.1 and 0.2,
respectively. All rand functions in the model donate random
vectors (0,1).

Step 8: Update the worst position. The position of the
worst particle is updated by a random value using

X, = Ib + rand x (ub — Ib) 7

After the above mention processes, the position X;1 of the
(i + 1) gas particle is initialized

B. BRIEF INTRODUCTION OF THE DBN MODEL
DBN is one of the deep learning models that excels at feature
extraction and classification ability. It is a probabilistic gen-
erative model that consists of multiple Restricted Boltzmann
Machine (RBM) stacks. The. DBN model also contains a
classifier (after the last RBM) to accomplish the classification
task. The structure diagram of DBN is depicted in Figure 2.
The RBM is an energy-based two-layer model consisting
mainly of visible and hidden layer. They are connected by
weighting factors. The following functions give joint proba-
bility density and joint probability distribution.

E(w,h)=— Z]m:l ajVj—Z?:] bihj—Z:l:l Zj’i]\/jwl’jhi
(®)

pv, h; 0) = exp(—E(v, h; 0)) )]

Z(0)
where 6 is the model parameters, 0 and 1 represent neurons’
inactivation and activation states, respectively. v and & are the
activation states of visible and hidden unit, a and b are the
respective deviations, and wy; is the weights between the vis-
ible and hidden unit. Z = Y 3", e E™" is a normalization
constant that simulates a physical system.
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FIGURE 3. Flow chart of HHO algorithm.

The conditional probability distributions p (h | v), p (v | h)
are obtained by Bayesian inference.

1
[l + exp I:—C,' - Z]rll VjWi,j:|:|
n
p I =1/[1+exp[=b =Y hwiy]] an
The essence of RBM is to maximize the probability that
the learned RBM model matches the input sample distribu-

tion. The parameter updating process is performed using the
contrast divergence algorithm [35].

= w;}_l + 7 (vifi)gaea — (vitti)y)

aj; = ag'il + 7 (it o — (Vitii})
by = b 4y (vik) gy — (iti)) 12)

phiv) = (10)

w

where y € [0, 1] is the learning rate that can be used to
adjust the learning speed, n denotes the number of iterations
of training, and k is the step size of the contrast divergence.

C. BRIEF INTRODUCTION OF THE HHO ALGORITHM
In 2019, the HHO algorithm was proposed as a new swarm
intelligence optimization algorithm [37]. It was inspired by
the collaborative foraging behavior of Harris hawks [38],
[39]. The HHO algorithm comprises two phases: explo-
ration and exploitation. The whole method flow is illustrated
in Figure 3.

Phase 1: exploration. During this phase, Harris’s hawk
randomly perches on several locations to track and detect
prey. The following update functions are available.

t+1
_ Xrana (t) — 11 | Xpana (1) — 2r2X (1)], q= 0.5
(Xrabwit () =X (t)) —r3 (Ib+rq (ub—1b)), ¢ <0.5
(13)

where, X,4nq (f) is the randomly selected individual in the
current population, X,.ppir (f) denotes the current optimal
individual,, rq, r2, r3, r4 are random numbers from O to 1, ub
and [b represent the upper and lower bounds of the population
respectively, N is the population number.
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X (¢) is the average position of the current population and
is obtained as:

1
Xa) == 30 %0 (14)

where, X; (¢) denotes the position of the i-th Harris hawk in
this iteration.

Phase 2: Transition. The shift of Harris Hawk from global
to local search is mainly controlled by the escape energy
factor E, which is calculated as follows.

t
E =2Ey(1 — —) (15)
IMAX

where, Ey is a random number from —1 to 1, ¢ denotes
the current number of iterations, and fp4x is the maximum
number of iterations.

Phase 3: Exploitation. The actual predation process is
complex. For example, beleaguered prey may escape the har-
ris hawks’ enclosure. Harris hawks will make the necessary
adjustments to the hunting strategy based on the behavior of
the prey. To better simulate hunting behavior, this phase is
represented in 4 modes.

(1) Soft besiege

When |E| > 0.5 and r > 0.5, the prey has enough energy
to try to escape from the enclosure by random jumps but
ultimately cannot escape. The Harris hawk hunts using a soft
enclosure with the following equation.

X+ 1) = AX(1) — E|JXrapbis (1) — X (1) | (16)

In which AX (1) = X,appir (t) — X (t) denotes the difference
between the optimal individual and the current individual,
J = 2(1 —r5) is the jump distance during the rabbit’s escape,
rs € [0, 1] is a random number.

(2) Hard besiege

When |E| < 0.5 and r > 0.5, the prey has neither enough
energy to escape nor a chance to escape. The function of a
hard besiege is described as follows:

X+ 1) = JXyappic (1) — E|X (1) | 7)

(3) Soft besiege with progressive rapid dives
When |E| < 0.5 and r > 0.5, the prey has a chance to
escape from the enclosure with sufficient escape energy. The
hawk’s location can be modified via the following equation.
X¢t+1)
_ VY =Xoapbis (0) = EVXrappir () =X (D], F(Y) <F (X (1))
Z=Y+S xLevy(D),F(Z) < F(X(t))
(18)
where D Indicates number of dimensions, S is a D-dim ran-

dom vector, and Levy(-) represents the Levy flight function
with the following equation.

1
re  T(1+8) x sin(%) )6 (19)
1715 T2 x 8 x 20°7)

Levy(x) = 0.01 x

where rg, 7 € [0, 1] are random values and § is a constant
that can be set to 1.5.
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FIGURE 4. Flowchart of the proposed method.

(4) Hard besiege with progressive rapid dives

When |E| < 0.5 and r < 0.5, the prey has a chance to
escape but not enough escape energy. Harris’s hawks will use
the following strategy for hunting.

Xt+1)
)Y =Xoabbit (1) = E|I X rapbic 1) — X ()], F (Y) < F (X (7))
|z =Y +S x Levy (D), F(Z) < F(X(1))
(20)

IIl. THE PROPOSED INTELLIGENCE FAULT DIAGNOSIS
METHOD

To perform accurate fault diagnosis of aeroengine sensors,
an intelligent fault diagnosis framework based on optimized
and fused multidomain feature and ADBN is presented. The
flow chart of the proposed algorithm is shown in Figure 4.

The overall process of this algorithm is as follows.

(1) Data acquisition: The sensor history data from the
aeroengine control system is collected under various operat-
ing conditions. The dataset is then split into two categories,
with the first 70% of the data used for training and the rest for
testing.

(2) Signal to preprocess: The signal is normalized and
rescaled to the range [0,1].

(3) Multidomain feature extraction: Multiple dimen-
sions knowledge (time and spectral domain) provide excel-
lent and comprehensive system understanding.

(4) Feature selection: In this step, the fault features are
optimized by HGSO to obtain a subset of significant features
after filtering.

(5) Feature fusion: Two kinds of features appear in this
method. A subset of multidomain features is input to ADBN,
and the obtained network extracted features are the pri-
mary features. The operational conditions are the secondary
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TABLE 1. Multidomain feature set.

Number Feature Number Feature
1 Maximum 14 Peak factor
2 Minimum 15 Pulse factor
3 Mean value 16 Square root amplitude
4 Median 17 Margin factor
5 Peak value 18 Kurtosis factor
6 Peak-peak value 19 Gravity frequency
7 Rectified mean value 20 Mean square frequency
8 Variance 21 RMS frequency
9 Standard deviation 22 Frequency variance
10 Kurtosis 23 Frequency standard

deviation

11 Skewness 24 Spectral entropy
12 RMS 25 Signal complexity
13 Waveform factor

features. To fully use both types of features, they are con-
nected to form a complete feature set.

(6) ADBN classification: A series of enhancements are
made to the DBN model to produce a more general and robust
ADBN. The classification layer of the ADBN is performed
to classify the fused feature vectors, which eventually auto-
matically gives the final fault diagnosis results. It is worth
mentioning that the method has two stages: offline training
and online diagnosis.

The intelligent fault diagnosis method suggested in this
paper outperforms previous methods in terms of diagnos-
tic accuracy. It avoids the problem of insufficient fault
information sources brought by single-domain features
and minimizes the interference of irrelevant information
by optimizing multidomain features. Furthermore, features
fusion and DBN improvement boost the model’s diagnostic
accuracy.

The whole technique specifications are discussed below.

A. SENSOR SIGNAL PRE-PROCESSING

In practice, aeroengine variables are generally measured in
different units. Because it is critical to eliminate mistakes
in signal capture, measurement data should be standardized.
In general, normalizing a signal allows it to be treated at
the mean level (Eq.(21)). This can lower the complexity of
computation and processing time in subsequent steps.

_x (k) — 3k
YO == o)

where y (k) is the processed signal and x (k) is the sensor
signal to be processed.

21

1 n
Fk) =~ i k)

1
1 n
o (k) =\ = (i (k) = £(k))?
i=1
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FIGURE 5. Flowchart of the HGSO feature selection.

B. MULTIDOMAIN FEATURE EXTRACTION

A signal can be conveyed by multidomain information, such
as waveform, statistical facts, spectrum, etc. Compared with
the traditional single domain features, multidomain features
are used in this study. The signal is observed from multiple
perspectives to obtain different forms of expressions and
achieve more comprehensive fault information. Table 1 lists
25 features (time and frequency domain) selected in this

paper.

C. PROCESS OF THE HGSO FEATURE SELECTION

The selection of appropriate information for exploitation
and classification is crucial. A good feature selection(FS)
algorithm can efficiently extract essential information from
a dataset while removing redundant information and irrel-
evant features. In this context, the primary objective of
feature selection is to improve the classification accuracy
under a specific evaluation criterion or reduce the num-
ber of feature dimensions without compromising classifi-
cation accuracy. It can select a subset of essential features
from the original high-dimensional features and then use
the selected subset of features together with some practical
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TABLE 2. Pseudocode of HGSO feature selection.

1.Input:ty 4x: maximum number of iterations, and n: number of solution

2.Initialization HGSO: Generate the initial solutions N using Eq. (1)
3.Distribute the initial solutions N into j groups with the same Henry’s
coefficient H; and constant value C;, while H; and C; are different in every
cluster.

4.while t<tpax

5. for each agent j do

6.  Compute the fitness value for each N; in group j using Eq.(23).

7. Determine the best solution x; s in each group, and the best solution
Xgpest Overall N.

8. Update each N using operators of HGSO as defined in Eq. (5)

9.  Update coefficients: while t<iteration number

10.  Update Henry’s coefficient H; and solubility S; ; using Eq.(3)-(4)

11.  Update worst agents

12.  Rank the worst gas particle N,, and update its position X,,, using Eq. (6)-(7)
13. End for

14.End while

15.Return the best particle and the best solution

16.Output: the best solution

algorithms to accomplish the task of data clustering and
classification.

Since the extensively large feature size in fault datasets of
aeroengine sensors leading a rather large solution space, there
is a high probability that traditional feature selection methods
will encounter local optimality problems. This shortcoming
may be overcome by metaheuristic algorithms, which evolve
with a stochastic element allowing them to escape from local
optimal solutions and thus obtain globally optimal solutions.
The Henry Gas Solubility Optimization (HGSO) algorithm
is a novel metaheuristic algorithm and an efficient search
method. Its dynamic search behavior and global search capa-
bility enable it to solve complex FS problems efficiently.

This section will discuss the HGSO algorithm and its
implementation steps for the FS problem, as shown in
Figure 5. The proposed algorithm is described in the follow-
ing subsections.

1) INITIAL POPULATION

An initial population containing N candidate solutions is
first generated, where each individual represents a subset of
the features to be selected. Each candidate solution’s upper
and lower bound are in the range of [0,1]. To facilitate the
selection of feature subsets, the solution xlp is converted into
Boolean solution xf’i”, as shown in Eq.(22) above.

bin _ |1 ifx)>05 @)

! 0 otherwise

where 1 indicates the selected feature and O represents the
unselected feature.

2) EVALUATING SOLUTIONS
In this step, the fitness function Fit; of each solution xf’i"
is calculated. The Fit; can serve as an evaluation index for
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feature quality, and is defined as
d.
Fit; = wi x ERRj+w» x Bl (23)

where ERR; refers to the diagnostic error obtained according
to the features selected from the i solution. d; indicates the
number of selected features, and D is the number of features
in the original data set. w; and wyp are weighting factors,
which can be set as w; = 0.99, wr) = 1 — wy.

3) UPDATING SOLUTIONS

The optimal solutions x; pes; and xg pes; With optimal fitness
are first determined. Then Eq.(3)-(7) is applied to update
some solutions and coefficients based on the classical HGSO
strategy.

4) STOPPING CONDITION
Keep repeating steps (2) (evaluating solutions) and Step (3)
(updating solutions) until the maximum number of iterations
is reached. Finally, the optimal solution is obtained, and the
optimized multidomain feature subset is obtained.

The pseudocode of HGSO feature selection is given in
Table 2.

D. FAULT IDENTIFICATION MODEL BASED ON FEATURE
FUSION AND ADBN
1) FEATURE FUSION
The proposed multidomain feature extraction and feature
selection methods provide the most effective feature
combinations for fault identification. Subsequently, the
multi-domain feature subsets are fused with the operating
conditions of the aeroengine to obtain a complete feature set
containing information about the operating environment. The
multi-domain features and operating conditions represent
different engine information. The details are described as
follows.

Multi-domain characteristics are the cross-sectional
parameters measured by the sensor that represent engine
performance, such as temperature, pressure, etc. Sensor fault
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relu-softsign combinatorial activation functien

FIGURE 7. Curve of relu-softsign combinatorial activation function.

will be reflected in the variation of these measurements and
is the main feature in this paper.

Operating conditions refer to the measured parameters
of the aeroengine running environment (altitude and Mach
number), which are used as auxiliary features in this inves-
tigation. This was done to account for the fact that when an
aeroengine operates under varying operating conditions, its
sensor measurements are affected by the operating conditions
to some extent. Previous studies have not considered, which
can hurt the fault diagnosis accuracy.

The feature fusion step proposed in this paper combines
operating conditions and the features subset extracted from
the cross-sectional parameters measured by the sensors in the
previous subsection to provide more information for the fault
diagnosis system.

The specific connection process is as follows: multi-
domain features are input into the ADBN, and the first output
is obtained after three RBM. Simultaneously, operational
conditions serve as auxiliary input features that are fed into
a fully connected layer. The two outputs are concatenated to
form a complete feature set. Lastly, the classification layer of
ADBN is used for fault diagnosis. The general layout of this
step is displayed in Figure 6.

2) THE PROPOSED ADBN MODEL FOR FAULT
IDENTIFICATION

Deep learning algorithms that combine brain-like mecha-
nisms possess superior data mining capabilities and logical
expression. As a result, it is better to use deep learning
as a fault identification model than other methods. Among
them, DBN, as one of the classical deep learning models, has
become a buzzword in the field of intelligent fault diagnosis.
Driven by the same spirit, DBN is selected as the fault iden-
tification model in this study.

As mentioned before, the performance limitations of
traditional DBN negatively impact diagnostic accuracy. For
example, constant learning rate and saturated activation
layers (such as sigmoid, tanh) lead to low diagnostic accuracy
and slow convergence [27]. Again, for example, the structure
of deep learning networks applicable for a specific problem
often comes from very time-consuming trial and error in the
context of experience.

This paper proposes a series of improvements to the DBN
model, and the adaptive DBN(ADBN) model is proposed.
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TABLE 3. Pseudocode of optimization search process.

L.Input: ty4x: maximum number of iterations, and N: Size of population.
2: Generate random N solutions (X).

3: Set the initial value for = 1.

4: While t<tj,x do

5: Compute the fitness value (F;) for each X;.
6: Set X, appitas as the location of prey (best location).
7: For each X; do

8: If|E| > 1then

9: Use Eq. (14) to enhance X;.

10: End if

11: If|E| < 1 then

12:  If|E| = 0.5and r = 0.5 then

13: Use Eq. (16) to enhance X;.

14: Elseif |E| < 0.5and r = 0.5 then

15: Use Eq. (17) to enhance X;.

16:  Elseif |E| = 0.5and r < 0.5 then

17: Use Eq. (18) to enhance X;.

18:  Elseif |E| < 0.5and r < 0.5 then

19: Use Eq. (19) to enhance X;.

20:  Endif

21: Endif

22: End for

23: End while

24: Output: the best solution.

TABLE 4. Types and labels of sensor faults.

Fault type Cause of fault Label
Shori-circuit Pollutlog cau.sed by the brldge- road 0
corrosion line short connection
Open-circuit Signal line is broken, chip pin is not 1
connected
Spike Random dlsturbance‘ln power supply 5
and ground wire, surge,
Bias Bias current or bias voltage 3
Drift Temperature drift 4
Normal - 5
Periodic disturbance 50Hz interference from the power supply 6

The upgrades adopt a new activation function and use an
adaptive learning rate. Further, the optimal structure of the
DBN determined by the advanced HHO algorithm allows
the model to be adaptively applied to specific problems. The
above process is described in detail as follows.

a: THE RELU-SOFTSIGN COMBINATORIAL

ACTIVATION FUNCTION

Activation-functions play an crucial role in DBN to enhance
the expressiveness of the network. However, the more widely
used activation function such as Sigmoid and tanh functions
are prone to the problem of gradient dispersion.

To address this problem, an improved activation function is
developed and applied to the DBN model. The relu-softsign
combinatorial activation function makes the x-negative semi-
axis derivative no longer constant to zero, effectively alle-
viating the irreversible necrosis of neurons. It speeds up
the convergence of the model and improves the learning
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FIGURE 8. The training process of ADBN.

and generalization ability of the model. Its mathematical
formula is:
X
, x<0
1+ [x| (24)
X, x>0

fx) =

The relu-softsign function is shown in Figure 7.

b: ADAPTIVE LEARNING RATE

A fixed learning rate usually leads to slow training conver-
gence. Considering the drawback of a fixed learning rate, it is
replaced by an adaptive learning rate. First, a small learning
rate is initialized, and then the learning rate is adaptively
adapted according to the reconstruction error. The calculated
equation is described by:

AE
AE =E(k)—E(k-1); Egp=|——
E (k)
v =y AE>0
yk :fiykfl; AE < 0&ER <o
vk =951 AE <0&Eg >0 (25)

c: ADAPTIVE NETWORK STRUCTURE OPTIMIZED BY HHO
The number of nodes in the hidden layer has a significant
impact on classification performance. Theoretically, as the
number of nodes increases, the network’s learning ability also
increases. However, more nodes bring higher complexity and
higher computational cost, which may leading to overfitting.
An evolutionary strategy of HHO with an adaptive training
procedure is used to obtain the optimal structure of the DBN.
The decision variable is set to be the number of hidden
layers of the DBN, and the fitness function is the diagnostic
error ERR.

The pseudocode of the optimization search process is
shown in Table 3.

The classifier of ADBN is a Softmax regression model.
The Softmax classification layer determines the output of
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the ADBN, and the category corresponding to the maxi-
mum probability is the type to which the fault belongs.
In this study, the aeroengine control system sensor has a
total of seven health conditions: six fault types and a nor-
mal state. That is, the fault identification model has seven
possible outputs: the sensor is normal, or the sensor has
a fault labeled 1, or the sensor has a fault labeled 2, and
so on. It should be added that since supervised training
is essential in this paper, labels should be set up based
on the health of the sensors. A detailed description of the
faults of the sensors and the labeling process is depicted
in Table 4.

The loss function is a cross-entropy loss function. Com-
bining the two employs an interclass competition mechanism
to learn inter-class information effectively. The cross-entropy
loss function is calculated as:

1

Fo=—-
n

N,
>, e dnyy + (1= yo) x In(1 =yl (26)
where, Ng denotes the dimensionality of the samples in the
dataset, y, and y, are the output labels and reference labels of
the classifier, respectively.

The training process of DBN consists of two phases:
pre-training and fine-tuning, as illustrated in Figure 8.
In pretraining, the log-likelihood function of the RBM is
maximized using stochastic gradient ascent approach and
the joint distribution defined by the RBM model is obtained
using K times Gibbs sampling, called the contrastive diver-
gence(CD) approach. And the RBMs are trained in an unsu-
pervised manner using the hierarchical greedy technique.
The lower layer serves as input to the upper layer until the
last RBM is trained. After that, the model parameters are
fine-tuned using a back-propagation algorithm based on the
labels of known fault types. The purpose of fine-tuning is
to optimize the model training results to achieve the desired
performance.

E. EVALUATION INDICATOR

To better evaluate the performance of the proposed fault diag-
nosis method, the following evaluation indicators are selected
in this paper.

1) AVERAGE ACCURACY

Accuracy refers to the probability that a fault is correctly
classified. The average accuracy is the average of the accura-
cies obtained after running the fault diagnosis method several
times and is calculated by:

11 M Ng
ACCuean = 31 3= D iy 2oy G ==0) D)

where M is the number of runs, sum(y. == y,) denotes the
summation of the number of samples with the same model
output and labeled results, i.e., the total number of correctly
classified faults of each type.
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FIGURE 10. Structural sketch of the aeroengine model.

TABLE 5. Fault simulation methods

Fault Simulation method

Short-circuit
Open-circuit

Signal is close to 0.1
Signal approaches maximum

Spike Add a pulse signal to the original signal

Bias Add a small constant or random signal to the
original signal

Drift Signal is offset by a certain rate

Normal No change

Periodic Signal of a certain frequency superimposed on the

disturbance original signal

2) AVERAGE COMPUTATION TIME
This index emphasizes the rate of operation. Its mathematical
expression is as follows.

1 M
Tnean = M Zk:l (Tk)

operation.

(28)
where T} is the time spent for the i

IV. EXPERIMENT AND DISCUSSION

The effectiveness of the proposed method is validated exper-
imentally in the MATLAB 2018b environment. Inspired
by ablation experiments, existing methods are compared to
demonstrate the performance of the proposed method, The
experiment’s flowchart is visualized in Figure 9.

A. DATA PREPARATION
The dataset used in the following experimentation is pro-
vided from two scenarios. One part is from some sensor
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FIGURE 12. Frequency-domain waveform of sensor signals for 7 health
conditions.

signals collected from the running records of a certain type of
aeroengine, and the other part is from MATLAB simulation.
There are about 300 pieces of real data and 3200 pieces of
simulated data.

The simulation model of the sensor needs to be determined
first. Referring to the previous literature, the second-order
inertia plan [4] was used to build the simulation model of the

sensor. Its transfer function is:
w2
) Gs)= 55— _—.e7 ™
S2 + 2£Wns + W%

where § =1.25,w, =9, 7 =1.2.

(29)
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TABLE 6. Description of the dataset.

Fault type Collected signals Label
Short-circuit 500 0
Open-circuit 500 1

Spike 500 2

Bias 500 3

Drift 500 4
Normal 500 5
Periodic disturbance 500 6

015 HGSO
5 . N
10 20 30 40 S50 60 70 80 90 100
Number of terations

FIGURE 13. The graph of fitness changes of HGSO with iteration.

The input signal for the sensor simulation model comes
from the C-MAPSS aeroengine simulation model. It can
be clearly seen in Figure 9 that the sensor model is con-
nected in series with the engine model. This engine model
is built based on the component characteristics and the
input-output relationships between the components. The
aeroengine model includes the fan, compressor, combustion
chamber, turbine, and exhaust nozzle. Its structure sketch is
illustrated in Figure 10.

Next, random faults are injected into the output signals
of the sensor model the sensor signals. That is, the sensor
signals are processed according to the method in Table 5 for
fault simulation. In this study, a large amount of simulated
fault data is generated by randomly varying the fault set time,
mode, level, period, and other parameters. Ambient noise
(Gaussian white noise) is then randomly injected into the
input and output signals to make the experimental data as
realistic as possible and to realistically reflect the robustness
of the proposed method.

During the experiment, the data acquisition time interval is
0.01s. In practice, sensor faults might be subjected to different
types. The dataset used in this paper contains sensor signals
for seven health conditions. That is, it encompasses six faults
types and the normal state of the sensor. The time domain
and frequency domain curves of sensor signals are presented
in Figures 11 and 12.

It must be mentioned that although the simulated fault data
are hardly identical to the recorded operating data, this study
still attempts to simulate the fault to a large extent and provide
the most considerable discrimination. It makes meaningful
sense since deep learning algorithms require a lot of data
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FIGURE 15. Raw multi-domain features without feature selection.

FIGURE 16. The optimized multi-domain features by HGSO.

for training. Due to limited conditions, there is not enough
running data recorded to support the good performance of the
deep learning algorithm. Furthermore, because some faults
are naturally rare and difficult to obtain, an effective method
is needed to utilize this information, just like the suggested
study.

The data set contains 7 types of sensor health conditions.
There are 500 samples for each sensor fault type, and the
total number of samples is 3500. The dataset was randomly
divided into two parts: 70% for the training set and 30%
for the test set. Regarding the generalizability of the model,
the idea of K-fold cross-validation was adopted. The original
dataset was divided into 10 equal parts. Randomly, three
of these parts were used as the test set and the rest were
used as the training set to train the model and calculate the
accuracy of the model on the test set. Each time, different data
is considered as the test set and repeated 30 times(M=30),
and the average accuracy is finally taken as the final model
accuracy.
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FIGURE 17. The graph of fitness changes of HHO with iteration.

TABLE 7. Network parameters

Name Parameter of DBN Parameter of ADBN

Input layer Input data(1*10) Input data(1*10)
Hidden layer 1 10 10
Hidden layer 2 30 30
Hidden layer 3 30 30
Hidden layer 4 30 30

Output layer Output data(7*1) Output data(7*1)

Leaming rate for 01 Adaptive
weights

The max epoch 100 100

B. RESULTS AND DISCUSSION

1) INFLUENCE OF OPTIMIZED FEATURES

To capture the diagnostic information, there are 18 time-
domain features and 7 frequency-domain features extracted
from the sensor signal, as listed in Table 1, 25 in total.
Then, to obtain a sufficiently reduced feature subset, feature
optimization is performed by the HGSO algorithm. The max-
imum number of iterations is 100, and the remaining of the
parameters that need to be set for HGSO are mentioned in
the previous description of the algorithm. It should be noted
that most of the parameters are set with reference to the
literature [29]. The feature selection process was repeated
30 times. The HGSO algorithm automatically selects ten
primary features from a pool of twenty-five features after
multiple iterations. The variation of HGSO fitness value dur-
ing the iterative process is shown in Figure 13. The final
feature selection’s results were [6], [8], [11], [15], [16], [17],
[19], [21], [23], [24], representing peak-peak value, variance,
skewness, pulse factor, square root amplitude, margin factor,
gravity frequency, RMS frequency, frequency standard devi-
ation, and spectral entropy, respectively. These ten features
are the most fault-sensitive features that were selected. They
form the best subset of features for providing the fault recog-
nition model with minimal but high-quality fault information,
thereby reducing the computational burden and enhancing the
classification accuracy.

To verify the effect of feature optimization, the idea of
an ablation experiment is adopted to compare the optimized
multi-domain features with the raw ones. The metric for com-
parison is the data classifiability effect by the T-distributed
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stochastic neighbor embedding (T-SNE) technology. TSNE
technology is a nonlinear method for visualizing dimension-
ality reduction [23]. It allows evaluating the separability of
data and visualizing the data structure based on clustering
performance. T-SNE is used to evaluate the effectiveness of
optimized multi-domain features. Data of the same fault type
are clustered in T-SNE. The higher the similarity between
data points, the better the clustering performance of the data.
Additionally, the visual graphs of the raw sensor signal is
drawn. As can be seen from Figure 14, the characteristics of
sensor data for different health conditions are overlapped and
crossed together, making it difficult to distinguish the fault
type. This again demonstrates the need for feature extraction.

Figure 15 and Figure 16 display the graphical represen-
tations of the raw multi-domain features and the simplified
features, respectively. It is intuitive to conclude that the data
separability in Figure 16 is better compared to Figure 15.
That is, the optimized multi-domain features are more effec-
tive than the raw ones. It can be seen that using the raw
features have a negative impact on the performance of fault
diagnosis. It is also obvious that the raw features have a
higher dimension which increases the structural complexity
of the network. The optimization of the features permits the
retention of salient features and the discarding of redundant
information. The most appropriate architecture subset results
in efficient fault detection performance when accompanied
by thoroughly chosen by HGSO. The performance of the
proposed method is outstanding, even in the case of minimal
knowledge.

2) INFLUENCE OF FUSED FEATURES AND FAULT CLASSIFIER
Once a subset of multidomain features has been obtained,
the ADBN model is applied to fault diagnosis. The proposed
ADBN model as a fault classifier is one of the ways to
improve the accuracy of engine sensor fault diagnosis, which
is the subject of this study. In addition, the fusion feature
considering H and Ma is also one of the advantages of the pro-
posed method. To further demonstrate the superiority of the
proposed method in this paper, the proposed method (referred
to as Algorithm 3), the other two fault diagnosis methods.
In the same spirit as the ablation experiment, one comparative
fault diagnosis method did not consider the fusion features
(referred to as Algorithm 1), and the other utilizes the tra-
ditional DBN model as the fault classifier (referred to as
Algorithm 2).

In this research, the ADBN model consists of three layers
of RBM superimposed. The number of nodes in the input
layer is set according to the dimensionality of the input data.
This suggests that the input of ADBN is the optimized feature
with the size of 1*10. The output layer nodes are set to 1*7.
This means that the output of ADBN is the health condition of
the sensor. Since the number of nodes in the hidden layer has
a great impact on the classification performance. In this study,
the HHO algorithm is employed to determine the optimal
structure of the ADBN, which improves diagnostic accuracy
and reduces training time. The evolutionary trajectory of

VOLUME 10, 2022



H. Li et al.: Fault Diagnosis of Aeroengine Control System Sensor Based on Optimized and Fused Multidomain Feature

IEEE Access

Comparison of different methods

Algorithm1
| Aigorithm2
| )

[ Aigarithm3ithe proposed method)

Accuracy rate

0O 1 20 30 4 5 6 70 8 9 100
epoch

FIGURE 18. The comparison of different methods.

Comparison of different activation function

sigmod
tanh

rolu
16 relu-sofisign

ERROR

0O 10 20 30 4 5 6 70 & % 10
epoch

FIGURE 19. The comparison of different activation function.

the optimization process is given in Figure 17. Finally, the
number of nodes in the hidden layer of the ADBN provided
by HHO is [30, 30, 30]. The parameters to be set are listed
in Table 7. Among them, the maximum number of epochs
for training the model is a relatively important parameter.
Therefore, the loss of the model on the test set after each
epoch is dynamically observed during the training process.
The selection criterion was a compromise between accuracy
and computational burden. The parameter settings in DBN
used are given in Table 7, and the number of nodes in the
hidden layer of DBN is obtained using the traditional try and
error method.

The obtained classification results are shown in Figure 18,
and the specific calculation results are in Table 8. It is
mentioned that the proposed method in the research offers
considerable performance. From Figure 18 and Table 8, it is
observed that the proposed method achieves an eminent
diagnostic accuracy of 98.1%. It indicated that the proposed
method is prone to improving the discrimination of faults. Itis
worth mentioning that the computation time of the proposed
method is also ideal, which is 98s. It shows the merit of the
proposed method in the data processing. Further, the ADBN
model is considered an excellent fault recognition model due
to its powerful feature learning and data expression capabili-
ties. When facing complex tasks, the deep structure of ADBN
is a propulsive factor. This advantage becomes more evident
in the fault diagnosis of aeroengine sensors because there are
numerous variables and a highly non-linear relationship.

According to the experimental findings, short-circuit fault,
and open-circuit fault have the highest diagnostic accuracy.
Short circuit fault, open circuit fault, pulse fault, and bias
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TABLE 8. Comprehensive comparison of the performance of each
method.

Number Name  Algorithml Algorithm 2 (the ;log;g;te}:im;e thod)
1 Short-circuit ~ 0.993 0.973 1.00
2 Open-circuit ~ 0.993 0.960 0.993
3 Spike 0.967 0.953 0.987
4 Bias 0.947 0.940 0.980
5 Drift 0.933 0.920 0.960
6 Normal 0.940 0.940 0.960

Periodic 0.960
7 disturbance 0.973 0.987
Total accuracy 0.964 0.950 0.981
Train time(s) 99 120 98

fault belong to sudden hard faults that are easier to identify
and have a higher accuracy. Once an open/short circuit fault
occurs, the measured value of the sensor quickly rushes to
its maximum/minimum value, which is the easiest fault to
identify. High accuracy rates of them were achieved in all
three algorithms. In particular, in Algorithm 3, the accuracy
of short-circuit faults and open-circuit faults reached 100%
and 99.3%. Pulse fault, bias fault, and periodic fault were the
next highest. The Pulse fault and bias fault are also sudden
hard faults that are easier to identify. Because the duration
of pulse fault is relatively short, the accuracy rate is slightly
lower compared to faults with longer fault durations, such
as open-circuit fault or short-circuit fault, which reached
98.7% in Algorithm 3. However, despite the small magnitude
of individual bias faults, the overall accuracy of this type
of fault is lower than that of open-circuit or short-circuit
faults, which have larger fault magnitudes. In Algorithm 3,
the bias faults reached 98.0%. Periodic faults are not hard
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FIGURE 22. The confusion matrix of Algorithm 1.
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FIGURE 23. The confusion matrix of Algorithm 2.
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FIGURE 24. The confusion matrix of Algorithm 3.

faults, but the fault accuracy is also higher due to their fixed
frequency. In Algorithm 3, the accuracy of periodic fault
reaches 98.7%. The drift fault, on the other hand, is a time-
dependent soft fault, and its fault severity increases gradually
as time increases. It has weak characteristics in the early stage
of the fault. It is easily drowned in the noise, making it more
difficult to distinguish from the normal condition. Therefore,
the diagnosis accuracy of the drift fault and the normal state is
the lowest. In Algorithm 3, their accuracy reaches both 96%.
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To further verify that the fusion features proposed in
this paper have a positive impact on fault diagnosis results,
Algorithm 1 is compared with Algorithm 3. Both methods
use the same ADBN and optimized multi-domain features;
the only difference is that Algorithm 2 does not consider
feature fusion. The experimental result is represented graph-
ically, as shown in Figures 18, 20, and 21. It demonstrates
that the average accuracy of Algorithm 1 is only 96.7%,
which is lower than Algorithm 3. And as can also be seen
in Table 8, the computation time for Algorithm 1 is 99s.
The main difference between Algorithm 1 and Algorithm 3
is the improvement of fault accuracy rather than time. This
is because the inclusion of additional features makes fault
diagnosis results less influenced by operating conditions.
Due to aerodynamic relationships, the measured values of
the engine’s sensors are affected by H and Ma. Fusing the
operating conditions with the features learned by the ADBN
enables the classifier to understand their relationship and thus
can provide better diagnostic results.

Comparing Algorithm 3 with Algorithm 2, it is clear that
Algorithm 3 has the best diagnostic accuracy. The experimen-
tal results in Table 8 show that even though both use the same
features as input, the accuracy of Algorithm 3 is higher than
that of Algorithm 2 because of the improvements made to the
DBN model. Specifically, the accuracy of Algorithm 3 was
as high as 98.1%, but the accuracy of Algorithm 2 was only
95%. 1t indicates that the proposed ADBN classification is
more accurate compared to the traditional DBN model. More
importantly, the results show that the proposed ADBN has
a fast training speed. As can be seen in Figure 18, ADBN
converges at about 40 rounds, while DBN converges at about
50 rounds, which is slower than the ADBN’s convergence
rate. The results validate the improved effectiveness of the
proposed ADBN to a great extent, involving adaptive learning
rates and adaptive structures.

To further verify the positive effect of relu-softsign on
ADBN, we added comparative experiments with different
ADBN structures. Each structure of the ADBN model uses
a different activation function, Sigmoid, tanh, relu, relu-
softsign. The results in Figure 20 show the error function of
the training process after each training period. It is clear that
the training process of the proposed relu-softsign is fast and
smooth with the fastest convergence rate at about round 40.

In effort to more explicitly describe the diagnostic
capability of the three methods, confusion matrices are cal-
culated for each. The confusion matrix is a visual sketch of
the classification effect, which can depict the relationship
between the real class attributes of the sample data and the
recognition outcomes. It is frequently employed to assess
classifier performance. Figures 22, 23, and 24 illustrate the
confusion matrix for each method. For instance, there are
150 samples of fault type 1, of which 149 samples were
correctly classified by Algorithm 1 with an accuracy rate of
93.3%. Algorithm 2 correctly classified 146 samples with
an accuracy of 97.3%. Algorithm 3 proposed in this paper
correctly classified all 150 samples with an accuracy rate
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TABLE 9. Comprehensive comparison of the performance of each
method.

Rank Number Weight Rank Number ~ Weight
1 6 1 14 18 0.592
2 11 0.942 15 3 0.590
3 19 0.939 16 7 0.589
4 21 0.916 17 13 0.532
5 24 0.905 18 14 0.528
6 23 0.877 19 17 0.522
7 20 0.861 20 25 0.522
8 8 0.839 21 10 0.339
9 11 0.809 22 9 0.233
10 16 0.762 23 1 0.231
11 15 0.678 24 2 0.086
12 12 0.671 25 5 0
13 4 0.627

TABLE 10. Comprehensive comparison of the performance of each
method.

Algorithm 3

Number Name the proposed method Algorithm 4 Algorithm 5
1 Short-circuit 1.00 0.980 0.960
2 Open-circuit 0.993 0.973 0.953
3 Spike 0.987 0.947 0.933
4 Bias 0.980 0.933 0.913
5 Drift 0.960 0.927 0.900
6 Normal 0.960 0.940 0.920
7 Periodic 0.987 0.953 0.940
disturbance
Total accuracy 0.981 0.950 0.931

of 100%. These three confusion matrices demonstrate the
significant advantages of the proposed method for aeroengine
sensor fault diagnosis. The main reason is the use of feature
selection, feature fusion, and ADBN. The above influencing
factors lead to better results for the fault diagnosis proposed
in this paper.

3) COMPARISON WITH OTHER METHODS

The quality of the developed algorithm in this paper is com-
pared with some popular methods that has been applied with
success to solve the fault diagnosis problem.

The excellent performance of the proposed method in this
paper is due to good features and an excellent fault identifier.
In order to demonstrate the superiority of the used meta-
heuristic intelligent algorithm approach(HGSO), the ReliefF
algorithm was selected as a comparison algorithm for feature
selection (referred to as Algorithm 4). Also, during the fault
diagnosis process, they use the same ADBN model as fault
classifier and auxiliary features for a fair comparison between
these two methods.

The ReliefF algorithm is considered as one of the most
successful preprocessing algorithms due to its advantages
such as high efficiency and no restriction on data types, and is
also widely used in the field of fault diagnosis[40], [41]. The
algorithm assigns different weights to features according to
the relevance of each feature and category, and features with
weights less than a certain threshold will be removed. The
advantage of feature ranking method is that it is independent
of classifier used and the features are selected based on their
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ranking. Tables 9 shows the feature ranking of the calculated
features, and Table 10 shows the comparison results of differ-
ent methods.

Features are ranked in order of weight from largest to
smallest, and then the weights are normalized. The normal-
ized weights less than 0.6 are eliminated, and the features are
selected according to the order of their weights to form the
feature set. It is observed from Table 9 that 13 characteristics
are eligible. The final feature selection’s results were [4], [6],
[8], [11], [12], [15], [19], [20], [21], [23], [24]. Similar to the
method used in this paper, a subset of features and auxiliary
features are fed into the ADBN model to automatically obtain
fault diagnosis results. Since by comparing the behavior of
ReliefF with HGSO, it is noticed the superiority of HGSO
over ReliefF. In Table 10, the accuracy of Algorithm 3 was
98.1%, and the accuracy of Algorithm 4 was 94.6%. for one
thing, the ReliefF actually ranks the original feature variables
in terms of merit, and does not determine the number of
extracted feature dimensions. It requires manual setting of
thresholds to filter the desired features, and cannot achieve
adaptive feature extraction. In contrast, the HGSO method
can adaptively determine the optimal combination of fea-
ture subsets, which can produce higher classification accu-
racy. For another, since the evaluation criteria of ReliefF are
independent of the specific learning algorithm, while HGSO
belongs to the wrapper type method, which takes the fault
classification accuracy as the evaluation criteria of the feature
subset, the feature set selected by ReliefF is lower than HGSO
in the classification accuracy method.

Another advantage of the proposed method in this paper
is the use of deep learning networks. To verify this, SVM
is chosen as the fault classifier for comparison (referred to
as Algorithm 5). Both methods take the same features as the
indicator vector to characterize the health status. SVM is one
of the most popular supervised learning algorithms[42], [43].
SVM can construct a hyper plane or set of hyper planes in
a high-dimensional space, which can be used for classifi-
cation and regression. The parameters of SVM are set with
reference to the literature [43]. The experimental results in
Table 10 show that the accuracy of method 3 is higher than
that of method 5 even if the same features is used. It is
seen from Table 9 that the accuracy rate of method 3 is as
high as 98.1%, but the accuracy rate of method 5 is only
92.8%. Compared with SVM, the ADBN model has pow-
erful feature learning and data representation capabilities,
which can be well adapted to complex fault identification
tasks. ADBN extracts more detailed and obvious feature
differences of fault types through multi-dimensional multi-
layer mapping, and achieves the optimization of diagnos-
tic model parameters through backward tuning. The deep
structure of ADBN is its advantage, and this advantage
becomes more obvious in fault diagnosis of aero-engine sen-
sors, where highly nonlinear relationships and the influence
of disturbances are included in the process. The experimental
results demonstrate ADBN has improved diagnostic accuracy
compared to SVM.
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V. CONCLUSION

Fault diagnosis of aeroengine control system sensors has
become a vital issue that requires prompt solutions. To meet
the need for high accuracy and low computational effort,
this paper presents a new intelligent fault diagnosis method
for aeroengine sensor with better features and more effec-
tive fault classifiers. Some conclusions are summarized as
follows:

(1) The selected multidomain feature by HGSO reduces the
input dimension of the fault identification model and redun-
dant information in the signal. This improves the classified
performance compared with the unprocessed multidomain
feature.

(2) The solution considers the influence of operating con-
ditions on the measured values of the aecroengine sensors. The
operating conditions and features learned by ADBN are fused
to improve diagnostic performance.

(3) The proposed ADBN is verified to be potential for
efficient sensor fault classification. The optimal structure
of DBN is determined by HHO. A Relu-softsign activation
layer and variable learning rate are developed to speed
up the training process. The ADBN has improved con-
vergence speed and detection performance. It also can
be a generic solution that can be applied to different
aeroengines.

(4) The framework’s performance is validated experimen-
tally and is proved to be promising for accommodating a
compromise between the requirements for high diagnostic
accuracy and low computational burden. In short, this study
provides a efficient and adaptable way to aeroengine sensor
fault diagnosis.

Future work will focus on building a more efficient and
robust framework for applications of sensor fault diagnosis
when unknown faults exist, as well as applying transfer learn-
ing to improve the generalizability of the models.
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