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ABSTRACT Data visualization is a powerful skill for the demonstration of meaningful data insights
in an interactive and effective way. In this survey article, we collected 70 articles from last five years
(2017-2022) to identify, classify, and investigate the various scopes, aspects and theories of data visualization.
We also investigated the powerful applications of data visualization in various domains and fields such as
visualization apps for health sector, Internet of things (IoTs), business dashboards, urban trafficmanagement,
smart buildings and environmental data visualization. However, after thorough investigation and classifica-
tion, we conclude that, a comprehensive study is still missing about interactive, effective and efficient data
visualization survey explaining basic current state-of-the-art best interactive visualization techniques, web-
based tools and platforms, best performance theories, data structures and algorithms. In this survey article,
we perform a thorough investigation to fill the gap on theoretical, analytical, statistical models and techniques
for improving the performance of visualization. Current primary and domain specific future challenges are
also reviewed, and related future research directions and opportunities are recommended.
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INDEX TERMS Data visualization, interactive tools, effective techniques, web-based platform, collabora-
tive visualization platform.

I. INTRODUCTION15

Effective and interactive data visualizations are particularly16

significant across all formats. It converts abstract (raw) data17

into physical (actionable) data, such as shape, color, position,18

length, height, width etc, to present persuasive stories in a19

clear, logical, smart and plausible way. In this way, large20

numbers of data are analyzed promptly to make visualization21

efficient and interactive. The rows and columns of data are22

inadequate to create persuasive stories to appeal the audience.23

The aim should be to draw the visualization in a clear, smart24

and persuasive way to assist the decision makers to conclude25

the decisions with no time. Interactive visualizations can be26
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useful even for non-professional customers to make graphs 27

and charts to take significant decisions accordingly. With 28

the advantages of people’s natural affinity to interactive and 29

influential visualization, it should be easy to see insights and 30

hidden values choosing right visualization. With these bene- 31

fits, data visualizations have been widely applied across all 32

formats such as health sector, business sector, Urban sector, 33

smart cities, smart buildings and so on. Before pondering 34

motivation and contribution of this article, we first discuss 35

a brief exposition of the data visualization articles in various 36

domains in the last 5 years (2017-2022). Figure. 1 shows the 37

keywords cloud of the articles which have been investigated 38

for this article. The size of the words describes the rate of 39

recurrence which has been frequent during the visualization 40

literature search. It can be seen that ‘‘Data’’, ‘‘Visualization’’, 41
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FIGURE 1. Keywords Cloud of Data Visualization related Published Papers
(2017-2022).

‘‘Interactive’’ and ‘‘Web-based’’ are the most searched key-42

words during journals analysis process.43

A. TAXONOMY OF DATA VISUALIZATION ARTICLES44

The taxonomy of data visualization is laborious task. Since,45

several data visualization techniques, tools and platforms are46

available to generate effective and interactive visualization.47

However, in this survey, we classify data visualization with48

respect to various scopes and applications where advanced49

and interactive visualization techniques are still required to50

make better informed decisions. In the first stage, this sur-51

vey collects 70 articles from last five years (2017-2022)52

to identify the various scopes, aspects and application of53

data visualization. We divide the 65 articles into 7 different54

scopes. We also classify these articles according to their55

domain research and approaches. The contribution of each56

article has been highlighted and cited in the Table 1. In this57

initial stage, this survey discusses the various aspects of58

7 scopes. In Scope-1, the techniques to handling of various59

types of data, graphs, colours interaction and its integration60

are discussed. In Scope-2, the focus is on the data mining61

networks, environment and structure. In Scope-3, the role of62

decision-making techniques in data visualization is empha-63

sised. In Scope-4, data visualization for big data and its64

emerging applications are analysed. Scope-5 shares the visu-65

alization competencies in data security. In Scope-6, the key66

role of statistical analysis for visualization is explored. In the67

final Scope-7, various applications are reviewed to check68

the performance of visualization in specific domain. The69

contribution of each scope can be seen in the Figure. 2which70

explains the taxonomy of data visualization and classification71

of each scope using Circular Packing data visualization72

technique.73

1) DATA VISUALIZATION ESSENTIALS74

With the advancement of modern computers and algorithms,75

the scientific approaches to dealing with data and its visu-76

alization are evolving rapidly. The first scope covers the77

essentials of data of visualization. References [1], [2], [3], [4],78

[5], [6], and [7] summarized the essentials of data driven tech-79

niques to analyse the sampling methods to focus on important80

features for better and deeper understanding and to achieve 81

better results of information visualization. Sarica et al. [5] 82

used data driven technique to locate the better position for 83

implementation of innovation which is also competitive data 84

intelligence analytics. For better visualization, [3] employed 85

machine learning algorithms. Machine learning models are 86

used to forecast future visualization. To consider and cover 87

all the features of information, [8], [9], [10], [11] proposed 88

a knowledge-based visualization of information techniques. 89

These techniques are developed to understand, interpret and 90

demonstrate the pattern of existing visualization techniques 91

and tools. They also share a complete guidance for interac- 92

tive data visualization. References [12], [13], [14],and [15] 93

mainly focused on spatial-temporal techniques and abstrac- 94

tion visualization. Descriptive visualization techniques and 95

framework focused on several data observations, data points, 96

units and highlight patterns and interpret the information. 97

A descriptive framework can also provide a platform to eval- 98

uate the different categories of data visualizations [16]. 99

References [17], [18], [19], [20], [21], [22], and [23] dis- 100

cussed the design of interactive data visualization. The con- 101

struction of interactive graphs is a stark technique focusing 102

on high level declarative features specifically on distributed 103

data. For this, developers must have the expertise to handle 104

the asynchronous data events for the construction of inter- 105

active visualization. Wu et al. [17] worked on two ideas; 106

logical constraints and immutable distributed programming. 107

Ono et al. [20] used three Jupyter Notebooks (matplotlib 108

of callbacks, HTML and toolkits) for interactive visual- 109

ization. This article [22] used feature oriented interactive 110

visualization. 111

The tools in this review article [24] highlight the 112

visualization tools which are used for collaborative visual- 113

ization platforms and are very helpful for better decision 114

making coordination. These papers [25], [26] summarized the 115

implementation and advantages of collaborative visualiza- 116

tion and application on multiple platforms. References [24], 117

[25], [26], and [27] reviewed the various platforms to create 118

an impactful collaborative foundation to produce interactive 119

visualizations to improve and enhance the understanding of 120

data insights. 121

References [28] and [29] reviewed the significant growth 122

of ensemble visualization and highlighted the rising demand 123

across multiple disciplines. They observed that ensemble 124

visualization used the same facet and aggregation techniques 125

for visualization. This survey [29] article covers ensemble 126

visualization techniques and analytical tasks perspectives. 127

It elaborates the surface and volume and emphasises the 128

comparison and clustering techniques for analytical tasks 129

in various visualization research opportunities. According 130

to [30] scalability of visualization is incapable of discerning 131

the issues between various datasets and plots. When the 132

datasets change, the pattern of visualization is also changed 133

and the issue of matching and mismatching generates. Ref- 134

erences [31], [32], [33], and [34] reviewed and proposed the 135

methods to assess the multicriteria robustness evaluation and 136
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FIGURE 2. Taxonomy of Data Visualization.

impact of aggregation on the spatial and temporal distribution137

pattern of charts and maps.138

2) DATA MINING AND VISUALIZATION139

Data mining for visualization is a novel technique for mining140

of enormous datasets. Due to the advancement of technolo-141

gies, every move of life is being recorded. Data has been142

generated in all fields of life [38]. The main task is to find143

and explore the beneficial information from the captured data.144

This is not a simple job inside massive data. This article [35]145

introduced the features of huge data and data mining tech-146

nologies and highlighted the advantages and disadvantages147

of data mining techniques in terms of visualization. Bav-148

ishi et al. [36] introduced a novel approach of automatic149

synthesis visualization to use data mining techniques with150

best function and create better visualizations for customer.151

In the [39] authors developed data mining visualization envi-152

ronment aiming to design, investigate and assessment of visu-153

alization results. Researchers also evaluated the visualization154

challenges in the perspective of human computer interac-155

tion. In this article [40] integration of scalable methods and156

techniques proposed for data mining, data visualization and157

workflow formicro-task. These techniques created intelligent158

system that supported and assisted each other in visualization159

decision making and facilitation.160

3) DECISION MAKING IN VISUALIZATION 161

Data visualization is used to visualize not only the charts, 162

graphs and maps but insights. Therefore, data visualization 163

is a significant method to deal with the hidden information 164

of large datasets. Visualization helps researchers, scientists 165

and industrialists to understand data, identify the expected 166

risks and mitigate them proactively with valuable results. It is 167

crucial for improving the decision making of the researchers, 168

businessman and industrialists etc. Scope 3 highlights mul- 169

tiple techniques and models from top researchers and data 170

scientists for enhancing decision making techniques and 171

approaches of big data analytics and effective presentation 172

and visualization of data. This research article [41] worked 173

on new domain of visualization, uncertainty and decision 174

making for interactive visualization. The actual work was to 175

interpret the datasets and exploit the insight to assess effec- 176

tive decision making. It also helped to limit the uncertainty 177

in visualizations. Kim et al. [42] proposed a visualization 178

supporting tool to support decision making in visualization 179

and implement interactive visualization for users. Design 180

guidelines were also developed to evaluate the visualization 181

to support domain experts. In this article [43] researchers 182

worked on various methods to design an automatic decision 183

making for visualization of quantitative tasks data. Automatic 184

decision making is an evolving approach in big data problems 185
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TABLE 1. Taxonomy of Data Visualization.

and helps to monitor and interpret quantitative data insights.186

Perdana et al. [44] proposed a decision-making model for187

interactive data and visualization. This model is capable to188

share the meaningful insights for interactive visualization189

and support to work on maximum features for better data190

visualization.191

4) BIG DATA AND VISUALIZATION192

Transforming big data into interactive and effective visualiza-193

tion needs expertise, skills and great attention from various194

data scientists and researchers. Scope 4 reviews the influence 195

of researchers on big data environments and data visualiza- 196

tion. In the article [45] the authors explored the techniques to 197

exploit the big data, in terms of data fusion and data visual- 198

ization using various charts and maps. Researchers worked 199

on algorithms to propose visualization maps for complex 200

networks of data. This [46] study provided a comprehensive 201

analysis on big data, visual communication and visualization 202

models. This work optimised the traditional technology and 203

shared the analysis of the visual design of heterogeneous 204
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multidomain data. This research work [47] utilized the big205

data and created a web-based platform to visualise the results206

of energy consumption in terms of graphs, charts and maps.207

This work designed a dashboard to visualise the consumption.208

Authors [48] worked on the challenges that emerged with big209

data in terms of visualization. They mentioned that big data210

could be noisy, dynamic and heterogeneous to deal with for211

visualization.212

5) PRIVACY AND VISUALIZATION213

Data visualization is a useful tool for the interpretation and214

analysis of features, structure, and relationships among var-215

ious variables. Therefore, privacy issues and the risk of data216

concealing could occur in tabular data. Scope 5 argues on the217

concept of privacy of visualization. This scope has limited218

literature work to discuss privacy issues of visualization.219

In the work [49], researchers investigated the application220

of visualization and implemented the two scenarios to assess221

the privacy of visualization. They summarised that it is still222

needed to explore the ideas on visualization privacy for223

emerging technologies [50], [53]. This paper [51] discussed224

the privacy preservation of sensitive information and key role225

of data visualization in privacy awareness for digital com-226

munications. It also investigated the relationship between227

information provision policies and privacy measurement228

parameters. Chen et al. [52] introduced federated learning229

technique for the encryption of visual features in local data230

modules and executed two approaches; query and prediction231

based federated learning. Wang et al. [54] proposed ‘Graph-232

Protector’ which guides users for the privacy preservation233

of visual interface and supports several visualization privacy234

schemes. For the better control of privacy, [55] proposed a235

compressive privacy preserving technique which compresses236

the information in a collaborative learning manner to process237

information in a securer mode.238

6) STATISTICS IN VISUALIZATION239

Statistical modeling is a mathematical technique of using240

statistical theories in data analysis. Statistical theories can241

play a vital role to mapping between statistical data and visu-242

alization of univariant, bivariant and multivariant datasets.243

Multiple algorithms have been developed for recommending244

effective and interactive charts, graphs and maps using statis-245

tical models and theories. Several algorithms have also been246

proposed to highlight the errors and their solutions for data247

analysis using statistical techniques. Scope 6 studies the con-248

tribution of statistical models in data visualization. Patil [56]249

used statistics to generate charts avoiding possible errors.250

Statistical models increased the reproducibility of interactive251

visualization. Statistical models are very significant for the252

effective and interactive visualization of big data. Multi-253

ple statistical algorithms have been discussed and proposed254

for interactive visualization. Statistical algorithms introduced255

z-axis for better and more interactive visualization. Statistics256

is also very helpful to generate more interactive shapes, charts257

and graphs [56], [57], [58], [59].258

7) APPLICATIONS OF VISUALIZATION 259

Scope 7 investigates the powerful application of 260

data visualization in various domains and fields. Data 261

visualization techniques were used and analysed for urban 262

traffic, emissions, and air quality data. A dashboard design 263

generates effective and interactive visualization for all pub- 264

lic and private roads, and traffic signals. The informa- 265

tion from sensors used to generate effective visualization 266

for Urban Traffic Monitoring [60]. Verschaffelt et al. [61] 267

discussed JavaScript visualization library to create effec- 268

tive and interactive visualization. In this article, four types 269

of visualizations are used for the visualization of bio- 270

logical data; Heatmap, Sunburst, Treeview and Treemap. 271

Wang and Wang [62] explored the developed applications 272

(apps) on data visualization for health sector. These apps 273

provided an effective presentation, worked for interactive 274

design methodology and developed trends analysis for a 275

better understanding of visualization. Data visualization 276

for the health department is very substantial to predict, 277

examine and manage the patient data. Visualization plays 278

essential role to build up the health service mechanism 279

and system. In [63] a web-based application is discussed 280

to visualise similar characteristics of materials and their 281

online search. This application showed best results for 282

correct and effective visualization using multidimensional 283

data. This application shared the correct information of 284

groups of metals and the origin of metals using visual- 285

ization. This article [64] used performance and interactive 286

visualization and five metrics to explore load imbalance for 287

geophysics. It is substantial work to visualise the imbal- 288

ances of loads during uneven conditions. Iram et al. [66] 289

explored the inter-dependencies of cross domain data for 290

the visualization of context aware data for smart homes. 291

Chen et al. [67] worked on the data visualization of urban 292

planning, construction, operation, and management. Data 293

visualization for smart cities worked for whole life cycle 294

presentation to investigate, explore and establish a thorough 295

platform for analysis. It has reviewed the various types of 296

data inputs, multiple graphs techniques, and colour com- 297

bination. Internet of Things (IoTs) is a system of inter- 298

connected networks aiming to collect, share and exchange 299

data between sensors to the Internet for further processing. 300

Wireless sensors network is an essential component of the 301

IoT and mobile agents have been identified as an efficient 302

technique for data collection from sensors [71], [72]. How- 303

ever, the challenge is to select a suitable mapping technique 304

in which the data generated by sensors can be visualized 305

effectively and efficiently. The mapping between IoTs data 306

and visualization depends upon the data dimensions and 307

spatio-temporal aspects of the data. The direct visualization 308

of IoTs data requires machine learning algorithms to over- 309

come the issue of mapping. It discusses the contribution on 310

visualization tools, techniques and platforms for the Internet 311

of Things (IoTs). Protopsaltis et al. [65] focuses on develop- 312

ing efficient and effective data collection and visualization 313

techniques. It also explores different techniques to make 314
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visualization descriptive, interactive and collaborative. It has315

explored the effectiveness of scalability and aggregation in of316

visualization.317

B. MOTIVATION AND NEED OF THIS SURVEY318

After reviewing the existing visualization articles, which can319

be seen in Table 1 on various scopes, it has been found that320

a comprehensive study is still missing that can be valuable321

(i) to measure and highlight the best tools, techniques, and322

platforms (ii) to learn about best visualization algorithms and323

data structures enhancing the performance of visualization324

and (iii) to support in better understanding of web-based data325

visualization. To meet the requirement of the state-of-the-art326

survey, the following sections need thorough investigations.327

1) TECHNIQUES FOR ENHANCING THE PERFORMANCE OF328

VISUALIZATION329

The performance of visualization should be effective and330

scalable covering the basic components such as data manip-331

ulation and data mapping. Efficient visualization depends332

upon the various approaches such as integrated, interactive,333

automatic, and collaborative etc.334

a: APPROXIMATE VISUALIZATION335

With the increasing amount of data, the traditional models are336

not suitable to provide fast, efficient and interactive visual-337

ization. This visualization technique covers the gap between338

huge data and interactive presentation. This technique speeds339

up the process and enhances the performance of visualization.340

b: PROGRESSIVE VISUALIZATION341

This visualization technique works for hierarchical structure342

and aggregation of data. This is very efficient for various343

zones of spatial and temporal values and used to support344

exploration of user-based visualization. This is very effective345

to increasing the performance of visualization resolutions346

(zoom in & out).347

c: RECOMMENDATION VISUALIZATION348

In data visualization, it is highly desirable to work and349

involve every step of information. This technique works on350

the challenge to enhance the performance of visualization351

using automatic visualization recommendation systems and352

this solution plays an important role for better understanding353

of data insights.354

2) ALGORITHMS AND DATA STRUCTURE FOR BETTER355

UNDERSTANDING OF DATA VISUALIZATION356

a: GRAPH VISUAL ANALYSIS357

Graph visual analysis is the visual representation of network358

data such as nodes and edges and it stores the pattern of infor-359

mation in the form of graph. It is an essential representation360

of data dealing with complex structure of information. It is361

significant algorithm which assists the data scientists making362

forecasting visual analysis effective and interactive.363

b: BUBBLE SORT VISUAL ANALYSIS 364

Bubble sort visual analysis works on the idea sorting algo- 365

rithm. This algorithm compares the adjacent pairs elements 366

and analyse the positions before visualization. For wrong 367

sequence of adjacent elements, this algorithm helps in swap- 368

ping the positions of variable for better understanding of data 369

visualization. 370

c: LINK LIST VISUAL ANALYSIS 371

Link list visual analysis works on a group of nodes (vertices) 372

which make an orders (sequences). In this algorithm, each 373

node is consisted of information and is connected to another 374

node of sequence. For effective and interactive visualization 375

variations such nodes (vertices) and orders (sequences) are 376

employed as a data structure. 377

d: TREE TRAVERSAL VISUAL ANALYSIS 378

Tree traversal visual analysis works in the form of graph 379

traverse. This algorithm is employed in each vertex (node) 380

in the data structure (tree) for better understanding of data 381

visualization. For checking the process of each node, this 382

algorithm is classified into depth first search and breadth first 383

search operations. 384

C. CONTRIBUTION OF THIS SURVEY 385

Our survey paper differs in several aspects. Therefore, the 386

contribution of this survey article is summarised as follows. 387

• A comprehensive study has been reviewed on several 388

data visualization scopes and classifications to empha- 389

size the importance of this survey. 390

• State-of-the-art tools, techniques, and platforms are pre- 391

sented in this survey to measure, highlight, and achieve 392

the best and most interactive visualization. 393

• A thorough investigation on theoretical, analytical, and 394

data structural models and techniques is presented for 395

better understanding and improving the performance of 396

data visualization. 397

• Current primary and domain specific future challenges 398

are reviewed, and related future research directions and 399

opportunities are also recommended in this paper. 400

The structure of this article is presented in Figure 3 401

and drafted as follows. Section 2 reviews the state-of-the- 402

art tools, techniques, and platforms of data visualization. 403

Section 3 investigates the theoretical, analytical, and statisti- 404

calmodels and techniques. Section 4 highlightsmajor domain 405

specific data visualization challenges. Furthermore, related 406

future directions and opportunities are also recommended in 407

this section. Section 5 concludes this survey. 408

II. PRELIMINARIES OF DATA VISUALIZATION 409

Data visualization has been extensively used for data process- 410

ing to generate an efficient, effective and interactive graphs, 411

charts, and maps. In this section, we review and examine the 412

existing state-of-the-art data visualization techniques, tools 413

and better-performed platforms for efficient, interactive and 414
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FIGURE 3. Structure of the Article.

effective data visualization. Firstly, we start by giving a dis-415

cussion on the techniques and related effective chart, graph416

andmap types. Secondly, we review the most commonly used417

tools focusing on the top three programming languages in418

particular Python, R and JavaScript. Lastly, we explore and419

present interactive data visualization platforms, which have420

been extensively used for interactive data visualization in421

academia and industries. Several contributions have already422

been made in the scientific society from these prospective423

platforms.424

A. STATE-OF-THE-ART VISUALIZATION TECHNIQUES425

This section discusses a brief summary of interactive data426

visualization techniques, tools and platforms [73]. Primarily,427

we divide data visualization techniques into seven (7) var-428

ious groups to understand the interactive functionalities of429

data insights and visualize them effectively. We group them430

into data distribution, data correlation, data ranking, data431

evolution, data maps and data flow. This is demonstrated in432

Figure 4. We also classify each group according to their visu-433

alization types such as line, graph, area, plot, map, bubble,434

network, radial and parallel coordinates. InGroup-1, various435

data points allow visualization distribution techniques which436

explore the relationship between various numeric variables437

in various perspective. In Group-2, the different data visu-438

alization correlation techniques are reviewed to handling the439

correlation of various types of data, graphs, colours interac-440

tion, visualization and its integration. InGroup-3, the focus is441

on the data visualization ranking structure, various interactive442

environment, and visual network mining. In Group-4, the443

various data points, entities, and links are represented in444

a hierarchical structure to explain the relationship among445

nodes, edges and links as a part of a whole in data visual-446

ization. In Group-5, the area of data line, charts, and graphs447

represent the evolution of data visualization for one or numer-448

ous numeric variables to visualize the pattern over intervals449

of data insights. In Group-6, the data points are displayed 450

to extract the specific useful information to have effective 451

and interactive graphical map visualization. InGroup-7, each 452

variable is displayed as a flow or links among numerous vari- 453

ables and entities. The size of the visualization significance is 454

proportional to the data linking or flow. These are the state-of- 455

the-art and most significant visualization techniques, which 456

have been extensively used in academia, industries, and in 457

business corporations. 458

B. BEST VISUALIZATION TOOLS 459

Data visualization tools are useful in the advancement of 460

data analysis and visualization. Most of the data visualization 461

tools have effective visualization libraries that require less 462

code to perform analysis, and to manipulate the entities of 463

datasets. Visualization tools are used to transform the data 464

into effective and interactive visual lines, charts, graphs, and 465

maps and allow generating rich attractive graphics in the 466

browser locally. These tools help to explore various univari- 467

ate, bivariate and multivariate visualization methods. They 468

also provide web-based user interfaces to facilitate interactive 469

visualization. In this survey article, we discuss the top three 470

programming languages (Python, R, JavaScript) and their 471

libraries for effective and interactive data visualization which 472

can be seen in the Figure 5. Therefore, our first goal of 473

discussing interactive data visualization tools is to make easy 474

for researchers, scientist, engineers and business analysts 475

to understand and comprehend which language and library 476

can create interactive and effective visual graphics for the 477

exploratory, empirical and investigative data analysis and 478

visualization. The second goal is to explore and present tools 479

and related libraries that could effectively be used for gener- 480

ating complex and intuitive charts and plots for categorical 481

and numerical data. In the Table 2, we have explored and 482

presented the strength and effectiveness of various libraries 483

in top three programming languages (Python, R, JavaScript) 484

for providing better understanding of their functionalities that 485

can provide effective, efficient and interactive visualization 486

techniques. 487

C. TOP VISUALIZATION PLATFORMS 488

There are several data visualization platforms available today. 489

But among them, we consider the state-of-the-art data visual- 490

ization platforms on the following features: i) open-source, 491

ii) easy to learn iii) powerful and customisable iv) require 492

less code v) support web services vi) variety of chart, graphs, 493

maps vii) upgrade continuously viii) higher numbers of users 494

ix) multiple data import options and x) support dynamic data 495

and visualization. Based on these features and characteristics, 496

the researchers, scientist, engineers and business analysts 497

could easily choose a platform that is more suitable according 498

to their case studies to perform better, interactive and effec- 499

tive data visualization. We use Circular Packing visualiza- 500

tion technique, that is presented in Figure 6 to discuss the 501

strengths and weakness of top data visualization platforms. 502
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FIGURE 4. State-of-the-Art Data Visualization Techniques.

Table 3 is also helpful selecting the best platform form for503

future work.504

III. EFFECTIVE TECHNIQUES FOR ENHANCING THE505

PERFORMANCE OF DATA VISUALIZATION506

A. APPROXIMATE VISUAL ANALYSIS507

Visual study and analysis of high dimensional information508

is still a challenging task. Direct visual analysis works well509

for few metrics such as scatterplot and parallel coordinate.510

However, this technique is not effective for high dimen-511

sional dataset. Indirect visual analysis is capable to work512

and provide better performance on the high dimensional- 513

ity challenges. Aggregation queries is also crucial class for 514

the sequence of columns values. The main issues are to 515

manage selective arbitrary predicates and to offer thorough 516

error guarantees without keeping the huge samples size. 517

The effective way to provide speedy answers to aggregation 518

queries, [97] proposed measure biased sampling scheme. 519

They also proposed a solution for random samples aggre- 520

gation. Similarly, they conducted experiments on real as 521

well as synthetic datasets. In [98] interactive visual system 522

developed to inspect the approximation level and analysis of 523
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TABLE 2. Visualization Libraries in R, Python, JavaScript.

high dimensional data for visualization. They investigated the524

interactive visual modification within high dimensional data525

without compromising the visual quality and analysis. They526

also highlighted that how their interactive visual system is527

beneficial for the real-world problems and is very supportive528

for the analysis of high dimensional information. Alabi and529

Wu [99] worked on the challenge to link visual interactiv-530

ity and data volumes. They investigated the sample-based531

model for approximate query processing. It was explored532

to build approximate solution for interactive visualization.533

In the model, the algorithm was used to employ on linear and534

non-linear functions to observe the correctness and approxi- 535

mate answers of query approximation automatically. 536

Optimistic approximate queries visualization proposed 537

in [100]. This method used to detect and investigate the 538

approximate errors and results in an interactive way. The 539

focus in this research work was to enhance the speed and 540

interactivity for exploratory visual analysis. They developed 541

a tool ‘‘Pangloss’’ which was used for multi and high dimen- 542

sional datasets. They used sample-based model for the study 543

of interactive visualization. Agarwal et al. [101] worked on 544

the accuracy of ‘‘exploratory queries’’ for high dimensional 545
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FIGURE 6. Best Platforms for Visualization.

data. In this research work, authors worked on the algorithm546

to diagnose the techniques that used for the error bars can547

sometimes be inaccurate operations. They developed a tech-548

nique that can be used to validate the runtime errors for549

various procedure. They worked on the multiple optimization550

techniques for the diagnosis of the error bars and ensuring551

the interactivity of complete query visualization. In the end552

of this research article, they developed an end-to-end model553

using sampling for the approximation of query processing.554

B. RECOMMENDATION VISUAL ANALYSIS555

Recommendation system is very effective and interactive556

for visual analysis. Multiple recommendation systems have557

been developed and proposed for interactive, effective and558

efficient data visualization. The objective behind these rec-559

ommendation systems is to uncover the hidden meanings560

and values of data automatically. Multiple algorithms have561

been proposed for recommending effective and interactive562

charts, graphs and maps. Several recommendation algorithms563

have also been proposed to highlight the errors and their564

solutions using statistical techniques. Zeng et al. [102] pro- 565

posed a framework that is efficient to compare the visual 566

algorithms recommendations for empirical and theoretical 567

data visualization. The proposed framework works for the 568

central connecting system to create effective recommendation 569

for interactive visualization. The algorithm of this framework 570

listed the best space for effective visualization and ranked the 571

best space by comparing and approximating. The framework 572

has three components. First is network for effective visualiza- 573

tion, second is algorithm for recommendation system and the 574

third one is prediction for the ranking and approximation of 575

visualization that will be listed. 576

Chakrabarti et al. [103] proposed ‘‘rule-based’’ recom- 577

mendation system for data visualization. In this paper, authors 578

developed ‘‘knowledge-based’’ rule for effective and impar- 579

tial data visualization. The proposed recommendation system 580

used the characteristics such as user feedback and intended 581

tasks for interactive visualization. Therefore, the article sum- 582

marized its contribution into following categories; a) Data 583

classification taxonomy for visual analysis b) Taxonomy of 584
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TABLE 3. Best Platforms for Visualization.

FIGURE 5. Top Visualization Libraries in R, Python, JavaScript.

mapping visual structures c) Draft rules for ‘‘knowledge-585

based’’ rule. Maruta and Kato [104] proposed a recommender586

system for the visual analysis of tabular data. This system587

was capable to predict the interactive visualization of bar588

charts, line, pie, networks etc. The proposed system used the589

statistical algorithms to visualize the intent features as well as590

data columns. Authors also proposed amodel that was used to 591

classify and find the essential graph columns along important 592

parts of the targeted visualization using headers. They used 593

neural algorithms in the model to achieve better visualization 594

results for columns and targeted data. 595

Qian et al. [105] focused on the issue of personalized 596

visual recommendation and developed a learning framework 597

to provide a best solution. Explicitly, the focus was on indi- 598

vidual user visual interactions for effective visualization. The 599

developed framework can learn from associated visualiza- 600

tions from various user’s experiences, although, the visual- 601

izations are generated from several datasets. Zhu et al. [106] 602

is a survey article on an automatic visual and infographic 603

recommendations. This article reviewed automatic recom- 604

mendation systems and classified the visual system into the 605

following visualizations categories such as annotation, graph, 606

network, graph-network and storytelling. The current chal- 607

lenges and their future direction are also reviewed. 608

C. PROGRESSIVE VISUAL ANALYSIS 609

Investigating large volume of data requires speedy feedback 610

from the specialist to the system. When the data becomes 611

huge and complex, it is very difficult to analyse, and compu- 612

tation can no longer be finished in a required time. There- 613

fore, the process of information investigation is severely 614

impeded. In this scenario, a new paradigm is significant 615

and appropriate that brings the latency level low performing 616
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TABLE 4. Effective Techniques for Enhancing the Performance of Data Visualization.

computations in a progressive way [110]. Chen et al. [107]617

introduced ‘‘pyramid-based’’ sampling technique. The goal618

of this work was to facilitate progressive visualization. This619

work proposed technique used to carry progressive visual620

analysis deal with high dimensional data in pieces and621

updated the scatterplots with visible and effective changes.622

Ventocilla and Riveiro [108] developed a model for pro-623

gressive visual analysis. The key objective of progressive624

visualization is an abstraction on various elements for625

constructing an effective visualization using constant626

response and interactions for computational driving.627

Zgraggen et al. [109] explored the impact of progressive628

visual analysis in empirical settings. This article proposed629

three visual conditions which are progressive, instantaneous630

and blocking. They analysed that the performance and pre-631

sentation were equally well and effective with either progres-632

sive or instantaneous visual analysis. The contributions from633

this article are; a) progressive visual analysis outperforms634

blocking visualization in user activity metric and b) progres- 635

sive visual analysis is similar to instantaneous visualization in 636

many metrics. Therefore, progressive visual analysis is sus- 637

tainable solution to attain scalability in exploration systems. 638

our aim for this section is to explore the techniques 639

which are significant to improve the performance of data 640

visualization. Because Visual study and analysis of high 641

dimensional information are still needed to be investigated 642

to meet the challenges of data scalability, aggregation and 643

dimensionalities. In Figure 7, we have investigated the data 644

visualization relation among approximate, recommendation 645

and progressive visual analysis. We also discuss various 646

research work for the effective techniques in Table 5 for 647

better performance of data visualization. In Table 5, we dis- 648

cuss the contribution and performance evaluation of each 649

technique. Therefore, this table is helpful to provide better 650

understanding of state-of-the-art techniques for future data 651

visualization. 652
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FIGURE 7. Effective Techniques for Enhancing the Performance of Data
Visualization.

IV. ALGORITHMS AND DATA STRUCTURE FOR BETTER653

UNDERSTANDING OF DATA VISUALIZATION654

A. GRAPH VISUAL ANALYSIS655

Graph supports predefined visual analysis. Graph structures656

are very useful to visualize data in various domain problems.657

A graph can connect the objects in visualization called ver-658

tices and build relationships between objects to make visu-659

alization more effective called edges [111]. The operations660

of graph algorithms work for visualization are Depth First661

Search (DFS) and Breadth First Search (BFS) algorithm. BFS662

algorithm is used queuing for efficient ordering the nodes for663

effective visualization. DFS algorithm employs stack visual-664

ization for better explanation in order to make visualization665

more interactive. While working on the graph visualization666

with selected algorithm, the nodes must be demonstrated in a667

correct order during visual analysis.668

B. BUBBLE SORT VISUAL ANALYSIS669

Bubble sort supports predefined and interactive visual anal-670

ysis. The predefined visual analysis works on the algorithm671

where arrays are generated randomly. These randomly gen-672

erated arrays operate dynamically for visual analysis [112].673

This visual analysis algorithm runs the multiple sorting algo-674

rithms such as merge sorting, selection sorting etc. This675

algorithm is useful for the following visualization: front676

end, implementation, design and assessment etc [113]. The677

steps in bubble sort visual analysis are operated dynamically678

that allow user to use custom entries to generate interactive679

visualization [114].680

C. LINK LIST VISUAL ANALYSIS 681

The linked list supports both interactive and predefined visual 682

analysis. The operations for interactive and predefined visual 683

analysis are insert, append, prepend and remove but in the 684

linked list append and prepend are not effective operations for 685

interactive visualization. The aptness of append and prepend 686

in link list are conditional on the pointer operations [115]. 687

D. TREE TRAVERSAL VISUAL ANALYSIS 688

Tree traversal supports predefined visual analysis. The oper- 689

ations for predefined visual analysis are preorder, inorder 690

and postorder. In this algorithm the visualization shares the 691

similar relation and structure. Therefore, it is easy to under- 692

stand this tree traversal algorithm for visual analysis [116]. 693

According to [84] tree traversal algorithm is recursive, and 694

an effective visualization of stack can be generated. 695

E. STACK VISUAL ANALYSIS 696

Stack supports both interactive and predefined visual anal- 697

ysis. The operations for the stack visual analysis are push 698

and pop. Data structure of stack visual analysis uses stack, 699

indexed array and pointer. The first operation is push to add 700

new value in the stack and second operation pop uses to 701

retrieve the value for interactive visualization [117]. 702

V. INTERACTIVE WEB-BASED TOOLS AND APPLICATION 703

In the previous sections, we have already discussed 704

and explored various data visualization tools, techniques, 705

libraries, and platforms. However, in this section, we explore 706

the latest web-based data visualization tools in various appli- 707

cations. These web-based tools deal with the huge and 708

complex datasets quickly and easily to generate interac- 709

tive visualization. These tools are recently published and 710

easily available and accessible online. Colantoni et al. [119] 711

provided a web-based edge-computing solution to handle 712

data of spectral images with visualization interaction using 713

Edge Computing, Spectral Reflectance Images, Hierarchical 714

Transformation of the Information. Jin et al. [120] trained 715

and implemented machine learning algorithms on datasets of 716

Operational Taxonomic Unit (OTU) to identify and inves- 717

tigate key groups of taxonomic and its composition using 718

numerical metadata by applying linear regression or a deep- 719

neural network, Data Normalization, and User Configurable 720

Parameters. Rodríguez et al. [121] developed a web-based 721

platform for convenient histograms and contact maps display 722

and analysis using parser module, contact map formats. 723

Sherlock et al. [122] developed a platform for exploration 724

and investigation of interactive and context-aware datasets 725

using the client–server model of ‘‘Discrete Global Grid 726

System’’. Qin et al. [123] developed an effective and inter- 727

active web-based tool for 3D visualization applications. 728

Qin et al. [123] developed a web-based interactive visual- 729

izations platform for instant and convenient analysis, com- 730

parisons, and generalization. Lu et al. [124] developed 731
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TABLE 5. Data Structures and Algorithms for Better Understanding of Data Visualization.

web-based real-time interactive and effective 3Dweather data732

visualization platform using ‘‘WebGIS’’ technology [125].733

Built an open-source interactive JavaScript platform based734

on WebGL for quick graph visualization large datasets735

using graph and layout algorithms, node connections and736

link. Wang et al. [126] developed a G6 platform for flexi-737

ble usability of high template graph visualization with the738

implementation of graph instance, data flow, graph ele-739

ment, graph interaction, event graph listening, graph state740

style, graph interaction mode, graph layout, graph analy-741

sis algorithm and graph plugin. Bimonte et al. [127] devel-742

oped a geovisualization platform for an effective pivot743

tables and map visualization using geovisualization, dimen-744

sions order, nested data spatial levels, and demo scenario.745

Kupssinskü et al. [128] developed a platform to visual-746

ize the spectra. Saska et al. [129] developed an open-source747

JavaScript library for complex datasets to visualize the fea-748

tures of complex networks [130]. Developed a tool for scien-749

tist and non-scientist to tackle the complexity of data through750

5D multivariant data visual analytics with graph controls,751

data controls, and download/upload data. Nagel et al. [131]752

developed a web-based tool for exploration and investiga-753

tion of sensors data about spatial and temporal dimensions.754

We also discussed the contributions and challenges of these755

web-based tools in Table 6.756

VI. CHALLENGES AND FUTURE OPPORTUNITIES757

In this section, we outline several challenges in data visu-758

alization that still need proficient expertise through advance759

approaches.760

A. CHALLENGES761

1) SCALABILITY762

Scalability is a traditional challenge in visual analysis.763

In modern day issues, experts need to monitor, understand764

and visualize important information and changes in the data.765

The challenge is to distinguish variations in data when766

data changes between visualizations. Significant approaches767

and algorithms can be used to investigate and explore the768

behaviour of datasets. Therefore, data visualization shows769

scalability issues during planning and designing [132], [133].770

It is still required to work on corresponding data variations771

and rendering visualization scalability issues.772

2) VISUAL ANALYSIS OF SPATIO-TEMPORAL DATA773

A dataset consists of a series of time variations and774

positions aiming at the interpretation and visualization of775

information pattern to recipients. Despite the current progres- 776

sive resources, visual analysis seeks to improve and enhance 777

the strategies of understanding the fundamental infrastruc- 778

ture of spatio-temporal data analysis. A mathematical and/or 779

statistical approach is required to deal with modern day 780

datasets relations and correlations algorithms. This approach 781

will also be expected to combine distinct datasets to create 782

an interactive and user-friendly experience and practices for 783

spatio-temporal data [134], [135]. 784

3) AUTOMATIC VISUAL ANALYSIS 785

One of the key challenges is to develop automatic data visu- 786

alization techniques which assures automatic effective and 787

interactive visualization regardless of the size and complexity 788

of the data. Similarly, the technique facilitates to explore and 789

investigate the interesting insights of the datasets automati- 790

cally and should be able to monitor these insights uninterrupt- 791

edly. Automatic visual analysis can help to solve the issues of 792

visualization aware data searching, cleaning, integration and 793

visualization [136], [137], [138]. 794

4) VISUAL ANALYSIS OF DATABASE 795

Databases are a crucial part of the public and private 796

sectors. Databases build special operators for optimization 797

and effective visualization. Thus, multiple operators sup- 798

port to visualize huge volume datasets. Special operators 799

assist collaborative visualization for multiple consumers 800

using multiple smart devices at the same times. Hence, 801

efficient and interactive visual analysis for databases is 802

also a key challenge in modern days applications. An effi- 803

cient technique is imperative to enhance the performance of 804

visualization [139], [140]. 805

5) FEDERATED VISUAL ANALYSIS 806

Privacy preservation of visual analysis is overlooked since 807

long. Nevertheless, it is a key challenge for collabo- 808

rative and promising data visualization across numerous 809

sectors. The idea behind federated visual analysis is to 810

reformulate the learning data framework to visual feder- 811

ated services. It encompasses the encrypted externalizations 812

of translated visual aspects of datasets. There are three 813

approaches for privacy preservation of visual analysis that 814

have been reported. They are query-based federated visual 815

analysis, prediction-based and multi-agent-based federated 816

visual analysis. An efficient approach is yet to be devel- 817

oped for the usefulness, practicality and robustness of visual 818

analysis [141], [142]. 819
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TABLE 6. Web-based Data Visualization Tools.

6) COGNITIVE VISUAL ANALYSIS820

Cognitive visualization deals with complexity and uncer-821

tainty in visualization. Cognitive visual analysis is useful822

for the alignment of theoretical and map framework and to 823

enhance the performance of visualization in the data learning 824

process. It can learn, develop the strange pattern of data and 825
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increase the interactivity of visualization. The visual cogni-826

tive modelling is still a challenge to work on observable data827

and to reconstruct the complex issues [143], [144], [145].828

7) PROVENANCE VISUAL ANALYSIS829

The extraction of contextual data for visualization with830

prominence reasoning is a key challenge. Extracting required831

information from datasets involve the approaches such as832

conceptualization, summarization, querying, comparisons833

and visualization. Several techniques have been proposed for834

provenance visual analysis. But it is still required to evaluate,835

summarize and compare the provenance data and discover836

related solutions [146], [147], [148].837

8) BIG DATA VISUAL ANALYSIS838

The challenges of big data visualization are still existed. They839

are directly linked with the volume, variety, velocity, veracity,840

scalability and interoperability of domain specific data. The841

big data needs more space and memory, hence requires a842

platform that could potentially store large datasets which is843

still a key challenge. For big data visualization, the designing844

of structures, working onmultiscale variables and to visualize845

the whole pattern of information are still daunting tasks to846

perform. Multiple user datasets need special care to deal, and847

scalability is directly linked with the large datasets [149],848

[150], [151], [152], [153], [154], [155], [156].849

9) INTERNET OF THINGS VISUAL ANALYSIS850

The challenges of big data visualization are still existed and851

need to deal with the volume, variety, velocity, veracity,852

scalability and interoperability of domain specific data. The853

big data needs more space and memory, and it demands the854

platform that store large datasets which is still a key chal-855

lenge. For big data visualization, the designing of structures,856

working on multiscale variables and to visualize the whole857

pattern of information are still daunting tasks to perform.858

Multiple user datasets need special care to deal, and scala-859

bility is directly linked with the large datasets [157], [158],860

[159], [160]861

10) MACHINE LEARNING VISUAL ANALYSIS862

The algorithms of machine learning have the ability to learn,863

adapt, analyse, and reason to create the best visualization.864

The integration of machine learning algorithms with visu-865

alization can strengthen the feature prediction and enhance866

the decision-making process of visualization [132], [155],867

[161], [162].868

B. FUTURE WORK869

1) CONCEPTUAL FRAMEWORK FOR VISUALIZATION OF870

SMART HOUSE DATA871

For the purpose of good research work, a two Storey Smart872

House facility will be used as a test bed to learn, investigate,873

plan, and develop distributed algorithms for effective and effi-874

cient visualization and carry out new ideas for the application875

FIGURE 8. Conceptual framework for data visualization.

of data analytics and visualization for smart houses and build- 876

ings. This facility will also be used as a data collection hub 877

for future research work. This research facility will be a won- 878

derful opportunity for collaboration work among public and 879

private sectors that will help us to learn and collaborate with 880

professionals nationally and internationally. Smart sensors 881

and technologies are installed and used for construction as 882

well as to monitor and control the indoor environment and 883

gadgets for smart houses and buildings. The purpose of our 884

research work is to design and develop a web based real 885

time visual analytics platform using data from Smart house 886

Building. A visual platform will be used for visualizing the 887

quality of the indoor environment to become more efficient 888

and environmentally friendly. This platform will also be used 889

to help in the construction of high-quality buildings. This is a 890

good opportunity for us to focus and work on the issues and 891

challenges that have been faced by various stakeholders like 892

Government and Energy Providers, Smart Housing Agencies 893

and Smart house Builders etc. This work is also a good 894

opportunity for us to collaborate with various stakeholders 895

to explore, highlight and work on the solutions they are 896

looking for. In our research, we intend to tackle the challenges 897

addressed in this area. Consequently, we propose an efficient 898

real time visualization platform. Figure 8 illustrates the con- 899

ceptual framework of the proposed visualization platform. 900

The conceptual framework consists of four (4) components 901

including: 1) sensors layers, 2) gateway, 3) data storage and 902

processing and 4) data visualization. In sensors layer, nodes 903

will be deployed to sense data, while mobile agent will be 904

used for efficient data collection from sensors [163], [164]. 905

The mobile agent will introduce a dynamic itinerary planning 906

mechanism [165], [166], [167] using intuitionistic fuzzy logic 907

where ranking will be based on various use case scenarios. 908

It will also avoid node failure duringMAmigration. Gateway 909

will be used for sending data for further processing and 910

storage before visualization. Finally, data will be visualized 911

to the end user using a novel visualization technique. 912

VII. CONCLUSION 913

With the thorough investigation of last five years data visu- 914

alization articles at first, we concluded that a comprehensive 915

study is still missing about interactive, effective and efficient 916
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data visualization tools, platforms, best performance theories,917

data structures and algorithms. We conducted a thorough918

investigation to fill the gap on theoretical, analytical, data919

structural models and techniques for improving the perfor-920

mance of visualization. The taxonomy of each visualization921

scope aimed to draw the visualization in a clear, smart and922

persuasive way to assist the decision makers to conclude the923

decisions with no time. Interactive visualizations can be use-924

ful even for non-professional customers to make graphs and925

charts significant to take decisions succinct. With the advan-926

tages of people’s natural affinity to interactive and effective927

visualization, it is easy to produce insights and hidden values928

that are helpful to take better-informed decisions. With these929

benefits, data visualizations have been widely applied across930

all sectors.931
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