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ABSTRACT A reinforcement learning-based adaptive optimal fuzzy controller is proposed for maximum
power point tracking (MPPT) control of a variable-speed permanent magnet synchronous generator-based
wind energy generation system. The algorithm consists of a critic, an adaptive optimal fuzzy controller, and
an adaptive optimal fuzzy estimator. The critic is built based on an adaptive neuro-fuzzy inference system
(ANFIS) network instead of the neural network as normal to reduce the computation. The error between
the system output and the estimator output is used as the input of the critic. In addition, the critic is used to
calculate the update law for the parameters of the adaptive optimal fuzzy controller and adaptive optimal
fuzzy estimator based on minimizing the input error function. Moreover, the proposed control scheme
is output feedback instead of state feedback, which does not require a system model as well as system
parameters, so the system is robust to uncertainties and external disturbances. Besides, the stabilization proof
is accomplished by using the Lyapunov stability theorem for the closed-loop system and the convergence
of the update law. Finally, the effectiveness of the proposed reinforcement learning-based adaptive optimal
fuzzy control scheme is verified through simulation with various scenarios such as step wind speed, random
wind speed, and system parameter variations. Also, the comparisons with other control schemes in the state-
of-art (neural network reinforcement learning based adaptive optimal fuzzy controller, PI controller) are
executed to demonstrate the advantages of the proposed control scheme.

INDEX TERMS Adaptive, fuzzy logic, optimal, MPPT, permanent magnet synchronous generator, rein-
forcement learning, wind turbine.

I. INTRODUCTION

Nowadays, among fuel sources, wind energy has become
an attractive and competitive clean renewable energy source
because of its reliable operation and sustainable development
[1], [2]. A wind energy conversion system (WECS) is a com-
bination of aerodynamic, mechanical, and electrical compo-
nents, so its operation mainly depends on considerable factors
such as the type of generator, the wind speed, the installed
location, etc. In these factors, the wind speed changes dur-
ing the working period while other elements are determined
carefully in the design and construction processes. In terms
of wind speed variation, the main operation of the WECS
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is divided into two modes: maximum power point tracking
(MPPT) mode in the region below the rated speed [3] and
output power limitation mode in the region above the rated
speed [2]. For above the rated wind speed operation region,
the pitch angle controllers are used to limit the rotor speed to
the rated value [4]. Meanwhile, below the rated speed region,
the efficiency of the system depends on the working point that
is controlled to track the maximum power point (MPP) in the
power-speed curves [2].

Over the last years, many researchers have focused on
developing advanced algorithms for MPPT control. Most
MPPT control methods typically include two phases: the
first is the MPP searching process, and the second is the
control of the working point to follow this MPP. In particular,
due to system nonlinearities, system parameter uncertainties,
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and the influences of external disturbances (e.g., mechanical
torque), the controller design for the machine side inverter is
challenged in the second phase. To cope with these problems,
numerous control strategies have been introduced such as
PI control [5], sliding mode control (SMC) [6], [7], [8],
[9], adaptive control [10], [11], and model predictive control
(MPC) [12]. In [5], a PI controller is employed for the
current control loop of the multi-motor wind turbine system.
However, this PI controller cannot ensure good performance
under condition variations due to the nonlinearity of WEGS
and the affection of the environment (e.g., wind speed, air
density). Next, SMC is considered as the nonlinear control
technique used to deal with the parametric uncertainties and
disturbances of WECS for the MPPT control. In [6] and [7],
the high-order SMCs are applied to improve the performance
of the WECS by reducing the chattering phenomenon with
the continuous control input. However, the fluctuation of the
output voltage and power is still high [7]. In [8], an enhanced
reaching law-based SMC method is introduced for the MPPT
control of offshore WECS, which consists of two loops: the
current control loop with a conventional PI controller and
the speed control loop with a finite time reaching SMC,
and a mechanical torque observer. This control strategy
significantly improves the ability of the WEGS to resist
uncertainties and disturbances. In [9], a fixed-time fractional-
order SMC is designed for both rotor side converter (RSC)
and grid side converter (GSC) to improve the power quality of
the PMSG wind turbine system. In this strategy, the friction-
order expresses the controller in the continuous form while
finite time stability guarantees that the system is stable within
a given time. In parallel with sliding mode control, adaptive
control is also a favorite strategy to deal with uncertainties
and disturbances. In [10] and [11], the PMSG-based wind
turbine system is controlled by a nonlinear adaptive con-
trol technique. The nonlinearities, the uncertainties, and the
external disturbances are estimated by a high-gain observer
then they are compensated to provide better performances
for the system. The simulation and experimental results of
this proposed controller are compared with other different
observer-based control methods as well as other conventional
vector control methods to verify the effectiveness. In [12],
an MPC scheme is presented for PMSG-based WECS to
obtain a fast dynamic response time in case of overmodu-
lation. However, the steady-state error issue can exist in the
normal modulation when the effort in reducing the sampling
frequency is carried out.

Recently, the learning control methods such as fuzzy
logic, neural network, or reinforcement learning (RL) become
active solutions to handle the problems of nonlinear and
uncertain systems [13], [14], [15], [16]. In [13] and [14],
fuzzy wavelet networks are utilized for nonlinear dynamic
systems. These algorithms guarantee predefined perfor-
mances and reject the requirement of system dynamics. How-
ever, the optimal performance indexes are not mentioned in
these works. A single-network adaptive critic fuzzy optimal
tracking control is introduced for hypersonic flight vehicles
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in [15]. In this scheme, the unknown functions are approx-
imated by fuzzy networks and the critic is estimated by an
adaptive law. The optimal controller in this work is obtained
by solving the Hamilton—Jacobi—-Bellman (HJB) equation so
the dynamic model should be partially known. Another adap-
tive optimal fuzzy control algorithm based on RL is addressed
in [16] for nonlinear uncertain systems. In this control
scheme, the critic is approximated by a neural network while
the actor is built from the Takagi-Sugeno (TS) fuzzy system.
The requirement of a dynamic model is removed; however,
the computation burden of the neural network is heavy.

In the field of WECS, the control schemes based on
learning techniques are also widely popular [17], [18], [19],
[20], [21], [22], [23], [24], [25]. These intelligent method-
ologies can be applied for wind speed estimation [17], [18],
MPP searching algorithms [19], [20], or MPP tracking meth-
ods [21], [22], [23], [24], [25]. In the MPP tracking category,
the nonlinearities in the dynamic model and disturbances
are identified by the fuzzy logic system then they are com-
pensated by the adaptive fuzzy controller [21] or sliding
mode controller [22]. In [23], the current loop is controlled
directly by a fuzzy logic controller with input tracking errors
to overcome the disadvantages of the PI controller. The fuzzy
logic technique is also employed in [24] to calculate the elec-
tromagnetic torque for current loop control using the error of
mechanical speed and the change of this error as the inputs.
This control structure enhances the performance of the WT
under oscillation wind speed and guaranteed efficient and
reliable grid integration of the wind turbine. In [25], adaptive
dynamic programming (ADP) is employed for the MPPT
control scheme of a WECS. Firstly, the dynamic model of
the system is reconstructed to the data-driven model by the
recurrent neural network using available input-output data
then the adaptive optimal controller is designed based on
the ADP technique. This configuration stabilizes the working
point of the system near the optimal point; also, the dynamic
responses and the robustness of the system are enhanced
significantly.

All the above strategies are presented to face the chal-
lenges of the MPPT control for wind turbine systems such as
nonlinearities, uncertainties, and disturbances by introducing
suitable techniques. However, most of the introduced algo-
rithms are state feedback controllers that need a dynamic
model of the system as well as the complete measurement.
Moreover, the mentioned methods just focus on improving
the dynamic responses and reducing steady-state error for
wind turbine systems, while the optimal performance is not
investigated. In this paper, an RL-based adaptive optimal
fuzzy control method for MPPT control of a PMSG-based
WECS is introduced. The proposed control system is com-
posed of the critic, the adaptive optimal fuzzy controller, and
the adaptive optimal fuzzy estimator. First, the critic is formed
based on the ANFIS technique with a hybrid update rule to
lower the computation and storage capacity as compared to
the neural network-based critic. Next, the adaptive optimal
fuzzy controller and the adaptive optimal fuzzy estimator
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are established by using the T-S fuzzy system. Besides, the
parameters of both adaptive optimal fuzzy controller and
adaptive optimal fuzzy estimator are updated by the critic
which is subjected to minimizing the input error function. The
stability of the overall system and the convergence of updated
parameters are proven by using the Lyapunov stable theory.
The advantages of the proposed control scheme are listed as
the following:

- Unlike the existing control algorithm for MPPT control
of WECS [5], [6], [7], [8], [9], [10], [11], [12] and [21],
[22], [23], [24], [25], the proposed controller is output
feedback and does not use the system dynamic model as
well as system parameters. Also, the requirement for a
mechanical torque observer is omitted.

- In comparison with [13], [14], this proposed control
scheme guarantees optimal performance along with the
static and transient responses.

- The fuzzy optimal tracking control developed in [15] is
limited to affine systems. Meanwhile, the newly devel-
oped controller in this study is capable of handling non-
affine systems.

The effectiveness of the proposed RL-based adaptive opti-
mal fuzzy control scheme is validated by simulation results in
MATLAB/Simulink on a 5-kW PMSG-based WECS using
the direct-drive configuration with a back-to-back (BTB)
converter. Various scenarios are investigated to illustrate the
efficacy of the proposed method such as the step wind speed,
random wind speed, nominal system parameters, and varying
system parameters. In each scenario, the dynamic responses
of the proposed control system are compared with the ones of
the neural network RL-based adaptive optimal fuzzy system
and the PI control system.

Il. SYSTEM MODELING

In this paper, a direct-drive PMSG-based WECS configura-
tion is used to investigate the proposed control method. The
electric power produced by the PMSG is transferred to the
grid through a BTB structure which includes a machine-side
converter (MSC) and a grid-side converter (GSC). The MSC
is controlled by appropriate duty cycles to extract the max-
imum power based on an MPPT algorithm when the wind
speed is lower than the rated speed, or to limit the maximum
extracted power at the rated value for speeds above the rated
speed. Besides, the GSC is controlled to regulate the active
and reactive power of the grid-connected WECS via a direct-
current (DC) link regulator or satisfy the requirements about
quality of voltage of the distribution feeders [26]. Within
this context, the proposed method focuses on controlling the
MSC to achieve the MPPT control capability, while assum-
ing that another controller is adopted for the GSC control.
Figure 1 shows the typical configuration of a direct-drive
PMSG-based WECS using the BTB-connected.

A. WIND TURBINE AERODYNAMIC MODEL
In a practical WECS, the mechanical power that a
wind turbine extracted from the wind is represented
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FIGURE 1. Configuration of direct-drive PMSG-based WECS using
BTB-connected.
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FIGURE 2. Wind turbine power-rotor speed characteristic curves for
different wind speeds.

as the following [3]:
_l 2y/3 1
Py = ZﬂpR V2Cp(R, B) (1)

where P, is the mechanical power (in Watts), p is the air
density (in kg/m3), R is the radius of the turbine blade (in m),
V is the wind speed (in m/s), and Cp is the power coefficient
which is identified by the tip speed ratio A and the blade pitch
angle B. It is noted that the pitch angle B of the blades is
always constant during the MPPT control process in the event
of the wind speed being below the rated value. The value of
C, is calculated as the following [24]:

Cp = 0.5176(116/7; — 0.48 — 5)e™2'/* 4 0.0068%.  (2)

in which:
1 1 0.035
At A+0088 pB°+1
C()[R
A= —, 4
v 4)

where w; is rotor speed.

Fig. 2 shows the typical wind turbine power-rotor speed
characteristic curves for different wind speeds. At each value
of wind speed, the extracted mechanical power is maximized
by controlling the rotational speed of the generator at the
optimal value [24]:

Vv
Wopt = E)\opt (5)
where A, depends on each certain wind turbine and is given
by the manufacturer. This is the principle of the MPPT control

algorithm in this work.

B. PERMANENT MAGNET SYNCHRONOUS GENERATOR
MODEL

In this paper, the surface-mounted PMSG is adopted because
of the uniform air gap and high power density due to the
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greater flux linkage between the permanent magnets and
the stator windings. The mathematic model of PMSG in the
dg-reference frame is expressed as the following [3]:

dw, 1

dr Zj(Tm_Bwr_Te)

diq —Ry . YmPn 1

o = L ig — Pnwriq — L wy + L_qu (6)
dia’ —R; . + i+ 1

i 1 Wyl —V,

dr L d T PnWrlg L, d

where w, is the rotor speed of PMSG, T}, is the mechanical
torque of the wind turbine; 7 is the electromagnetic torque of
PMSG:; iy and i, are d-axis and g-axis currents, respectively;
L, is the stator inductance; Ry is the stator resistance; p,, is the
number of pole pairs; v, is the magnet flux linkage; J is the
equivalent rotor inertia; B is the equivalent viscous friction
coefficient. The electromagnetic torque can be calculated by
the following equation:

3
T, = El/fmpniq @)

It should be noted that the direct-drive PMSG-based
WECS configuration is adopted in this study. Thus, the
turbine rotating speed (w;) is the same as the rotor
speed (w;) [27].

Ill. REINFORCEMENT LEARNING BASED ADAPTIVE
OPTIMAL FUZZY CONTROLLER DESIGN

Equation (6) can use the defined state variable vector
x = [x1x2x3]7 to establish the new error dynamics, where
X| = @y — Wref; X2 = ig— Igrefs X3 = Iq— lgrer- In which
Wref = Wop 18 the desired rotor speed, igrer = %pnlm(Tm —

d . . . . .
Bwrp — J c;ff ) is g-axis desired current, and iz = 0 is

d-axis desired current.
It is noted that when the system works at the optimal point
we have:

max

1
t 5P 2 2
T, = T,Zp = —2,071R 2[” Wopy = Kop,wopt (8)

Then

. 2 1
Lgref = 5 W
nyYm

dow
(KWwL—B@ﬁ—J éd> )

The time derivative of x using (6) is obtained by the
following:

Ci
X=X
1 .
j (T — Boy — T,) — Wref
— _&,‘ — [ — M —i l
= L q — Pn®rld L Wy — lgref + L Vg
_f_jid +pnwriq - idref + ivd

(10)
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FIGURE 3. Block diagram of the proposed algorithm.

Dynamic model (10) can be rewritten as:

x = f(x,u)
y=0Cx (11)
where
1 .
7(Tm_Bwr_Te)—a)ref
R;. . Ymp . 1
flx,u) = _L_jlq_l?nwrld— anwr—lqref-i-L—SVq ;
_L_zid + Pnwrig — idref + L_SVd
_[va]. |t 0 0
=] oe=[o ¥ 5] o

In this section, an adaptive optimal controller based on
reinforcement learning is proposed for the system (11). The
process of designing consists of the following steps:

- Step 1: Design the system model estimator and system
controller using the T-S fuzzy technique.

- Step 2: Critic network design based on ANFIS tech-
nique.

- Step 3: Update the parameters of the fuzzy estimator and
fuzzy controller based on the optimal rule.

The block diagram of the proposed scheme is presented in
Fig. 3.

A. T-S FUZZY CONTROLLER AND ESTIMATOR
In this section, the model of the system will be identified by
fuzzy technique for each local working point. For each local
model, a local controller is designed based on this estimated
model. Finally, the global model and controller are achieved
by the Weighted Average defuzzification.

The j™ rule for estimator and controller has the following
form [28]: i _

Rj: IF y(k) is Y{ and y(k — 1) is Y3 THEN

¥ (k+1)
_ | &+D
3k + 1)
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[ d), (k) y1 (k) + d)y (k) y1 (k — 1)
_ APy (k) ur (k) + By (k) up (k= 1) (13)
dhy (k) y2 (k) + dhy (k) y2 (k — 1)
+ by, (k) up (k) + by (k) uz (k — 1)
W (k)
RAG
_u’ (k)
(s (@ 0 ®© 4y k-
- +b’12 k) uy (k — 1))
= (e 31 () -y By (k= 1)
by ()1 (h n)
(14)
where d(k) = [d,,(k), dy(k), db (k). dp@)]” and
b(k) = [b),(k), b,(k), b, k), b,(K)]" are parameters

that will be updated after each step.

The global output of the estimator and controller obtained
from local rules using Weighted Average defuzzification have
the following form:

N
y(x(0)|8) =Y W(k)© Y (k) (15)
j=1
N . .
uk) = Z k) © (k) (16)
j=1

where N is the number of rules, © is the Hadamard product,
. ) . T
W = [Hw) o |
j j r
B [ 1, (k) 15 (k) ] a7
Y k) I k)

in which Mjl:(k) (i=1,2;j=1,2,...,N) is the membership
function corresponding with the rule j,

M
W) = “}}
L %2
1 (yl(k)—cﬂl(k))
exp| —=
2 o1, (k)
1<y1(k—1>— 2(1«))
exp| —=
B 2 ol (k)
1 (yz(k)—cjﬂ(k)) ’
exp =
2 o3, (k)
2
1 ()’2(k —1)- %(k))
exp| —= -
i 2 o3 (k) ]

(18)

s = {aj b ol } is the set of system parameters.
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FIGURE 4. Structure of the Critic network.

B. THE CRITIC NETWORK DESIGN
In this work, the Critic network is designed based on an adap-
tive neuro-fuzzy inference system (ANFIS). The structure of
the Critic network is illustrated in Fig. 4.

The input of the Critic network is the error function which
is defined as the following:

E(k) = lle(®)|l 19)

where e(k) is the error between the outputs of the system and
the fuzzy estimator.

The output V (k) of the Critic network is used to approxi-
mate the value:

Vik—1) = r(k) + aV(k) (20)

where o € (0, 1) is the discount factor, r(k) is the reward at
the iteration k. The reward function is defined by the designer
and depends on the specific problem. In this work, the rework
function is defined as the following:

o) — {0 if E(k) <& on

1 others

in which ¢ is the small enough scalar.
The output of the Critic network is the approximated value
function which is determined as follows:

N
Vk) = Z i (k)Vi(k) (22)
j=1

where n/ (k) = V(k) Zj’[ L V(k)in which V(k) (j = 1,2, ...,
N) is the membership function which is chosen as bell-shaped

function:
i\ 2
U(k) = exp <— (W) ) (23)

The value function of each rule is approximated as:
VIi(k) = t/(k) + 5/ (K)E (k) (24)

In equations (23) and (24), {p/, ¢/} and {#/, s/} are ANFIS
parameter sets that will be updated online during the training
process by using the Hybrid Learning Rule (HLB) in two
phases:
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- In the forward phase: consequent parameters {#, s/} are
updated based on the Least Squares method [29]. The
updating formula has the following form:

ChAD) = £h)
olk+ D+ 1) (87 (1) — T h+1D2(0)

v(k)d(k+1)dT(k+1)v(k)}
A+dT (k+1)v(k)d(k+1)

I CE
(25)

where ¢(k) = [H/(k) §k)]", g(k) is desired out-
put vector, A € (0,1) is a scalar, and d(k) =
[m/ (k) m ()EK)]".

- In the backward phase: premise parameters p/ = {p/, ¢/}
are updated by the following rule:

; o viec(k) dec(k)
Pk +1)=p/(k)+m s )

where v; and v, are positive scalars, 17 is the learning
rate, and e.(k) is the prediction error of the critic net-
work. The e.(k) is defined as follows:

ek)=V(k —1)—rk) —aV(k). 27

(26)

Remark 1: In comparison with the neural network-based
adaptive critic, the proposed ANFIS-based critic significantly
reduces the computation and storage. Thoroughly, in [16],
a feedforward neural network with a hidden layer of 20 neu-
rons is addressed to deal with the nonlinear optimal problems.
More specifically, this neural network has 40 scalars that
need updating: 20 parameters for the weight of the output
layer and 20 parameters for the weight of the hidden layer.
Meanwhile, to build the ANFIS network, we only need to
update 12 parameters: 6 premise parameters {p,,;,, g, },m = 1,
2, 3 in the first layer and 6 consequent parameters {,,, Sy },
m = 1, 2, 3 in the fourth layer. That is why the proposed
ANFIS network reduces the computational cost.

C. CONTROLLER AND ESTIMATOR PARAMETERS UPDATE
The parameters of two T-S fuzzy systems are updated based
on the principle that minimizes the error function:

1
E, = —¢ (28)

where ¢, is the error between the output of approximation and
its desired value.

eq(k) =V (k) — V*(k) (29)

In this work, the desired value V*(k) = 0.
The update law of the system parameter set is given by the
following:

viea(k) deq(k)
2vy 08 (k)
The stability of the system as well as the convergence of
the updated parameters are provided in the next section.

Remark 2: The action component (i.e., the controller) of
the algorithm which is based on reinforcement learning is

Shk+1) =8k +nm (30)
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obtained by solving the HIB equation [15] so the system
model is partially known. Thoroughly, with the given system
x = f(x) + g(x)u, the adaptive optimal controller has the
formula u = —%R‘lg(x)% where R is the positive definite
matrix, and V is the value function which is approximated by
the critic network. This means that the g(x) component should
be known. In our work, the dynamic model is considered in
the general nonaffine form as (11), the controller is addressed
by the T-S fuzzy controller (14) and the parameters are opti-
mized by solving (28); therefore, the dynamic model is not
required in this work.

D. STABILITY ANALYSIS

Define general variables 8, = {&/,V/,d, 0/, p/, ¢}, e, =
{ec,eq}, ng = {m,n2}. Using this definition, the update
laws (26) and (30) are rewritten in the following general form:

vieg(k) deg(k)

8ok + 1) = 8,(k . 31
ok +1) o(k) + ng 21, 83g(k) (31)
Choose the Lyapunov function as follows:
Vi V2 2
L(k) = 3(eg(k))2 +5 | A8, (k)| (32)

The time derivative of the Lyapunov function has the fol-
lowing formula:

Vi 2 2
AL(k) = EA(eg(k))2 +5A | A8~ (33)
Each component in equation (33) is analyzed as the follow-
ing
141 V1 141
= Dlegl))? = —(eglk + 1) = egk))®. (34)

Using Taylor series expansion [30] for the first term of (34),
the following is obtained:

vt 2V e 2(Fe®))
2(€g(k+1)) = 2(6g(k)) + 95,00

+HOC (35

A8, (k)

where the symbol “HOC” represents the higher-order com-
ponents which can be omitted.

Also, applying Taylor series expansion for eg(k + 1), the
following result is obtained:

de, (k
eq(k+1) = eq (k) + a?—ﬁkiﬂg (k) (36)
8
or
deg(k)
98,(k)

Replace (35) and (37) into (34) yields:

A8y (k) = eg(k + 1) — eg(k) = Aeg(k).  (37)

T A0 = vieck) Aec() (38)

Similarly, the second component of (33) is shortened as the
following:

A (Iap®17) = v2 80K (39)
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Substituting (38) and (39) into (33), the derivative of the
Lyapunov function is obtained as:

AL(K) = vieg(k)Aeg(k) + va | AS, () |- (40)
Equation (40) can be rewritten as:
02 [ A8 2 + vieet) 2N asy)]| - ALK) = 0
Aol T

(41)

Equation (41) is the second-order equation of || A(Sg(k)”.
This equation has a unique solution if the following is
satisfied:

( eyl 288 ) +4n AL(Kk) = 0. (42)
Ap()
Equation (42) leads to the following result:

v2 < ()Aeg(k)> <0 43)
T4, \CVapmr) =

Inequation (43) implies that the closed system is stable,
and the estimation errors converge to zero according to the
Lyapunov theorem.

AL(k) =

IV. SIMULATION RESULT AND DISCUSSION

In this section, the correctness and feasibility of the proposed
adaptive optimal control scheme are verified through Mat-
lab/Simulink. The parameters of the wind turbine and PMSG
are given in Table 1 [3].

TABLE 1. PMSG and wind turbine nominal parameters.

Parameters Value
Rated Power (Prareq) SkW
Stator Resistance (Ry) 0.3676 Q
Stator Inductance (Ly) 3.55mH
Magnet Flux Linkage () 0.2867 Wb
Inertia (J) 7.856 kg.m?
Viscous Friction Coefficient (B) 0.002 kg.m%/s
Number of Pole Pairs (P) 14
Rotor Radius of Blades (R) 1.84 m
Air Destiny (p) 1.25 kg/m?
Optimal tip-speed ration A, 8.1

The validation of the proposed control algorithm is exe-
cuted under various conditions such as step wind speed, ran-
dom wind speed, nominal system parameters, and uncertain
system parameters. Also, in each condition, the performances
of the proposed ANFIS-based reinforcement learning adap-
tive optimal fuzzy control scheme (ANFIS-RL) are compared
with PI controller and neural network-based reinforcement
learning adaptive optimal fuzzy control scheme (NN-RL).

The configuration of the neural network for the neural
network-based reinforcement learning control scheme is as
the following:

- The number of layers: three layers (input layer, hidden

layer, output layer).
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FIGURE 6. Comparative results of power coefficient with a random wind
speed of three controllers. (a) Nominal parameters. (b) Variation
parameters (i.e., +50% variations of Rs, Ls, B, J, ¥m).

- The number of neurons: 1 for the input layer, 20 for the
hidden layer, and 1 for the output layer.
- The active function: tansig function.

A. STEP WIND SPEED

The profile of wind speed is given in Fig. 5 whereas the wind
speed is steeply changed in the range of 7—10m/s. The simu-
lation results for the step wind speed condition are presented
in Figs. 6—8. In each figure, the response of the proposed
ANFIS-based reinforcement learning (ANFIS-RL) control
scheme, NN-based reinforcement learning (NN-RL) control
scheme, and PI control scheme are compared in both nominal
parameter and varying parameters (i.e., +-50% variations of
Rs, Lg, B, J, Yry,) conditions.

In the case of nominal parameters, the steady-state perfor-
mances of the three controllers are almost the same for power
coefficient response, mechanical response, and rotor speed
response. Thoroughly, in Fig. 6(a), the power coefficient
response of the three control schemes has the same value
as the ideal power coefficient (0.49) at a steady- state. Also,
in Figs.7(a) and 8(a), the difference in response of the three

95777



IEEE Access

N. T.-T. Vu et al.: RL-Based Adaptive Optimal Fuzzy MPPT Control for Variable Speed Wind Turbine

4000 T T T T T T T T
3500 |- E
2 3000 E
5 —— ANFIS-RL]
o - -
i 2500 o NNAL
a —Pl
= 2000 - = =REF
2
§ 1500 E
£
H
2 1000 E
500 4
0 - 1 1 1 1
0 1 2 3 4 5 6 7 ] 10
Time(s)
(a)
4000 T T T T T T T T
3500 E
3000 g
T —— ANFISRL
g 2500 —-—NNRL |
2 - P
= 2000 - -reF |
]
< 1500 E
£
H
£ 1000 4
500 -
0 1 L I 2 o | L 1 L 1
0 1 2 3 4 5 6 7 8 ] 10

Time(s)

(b)
FIGURE 7. Comparative results of mechanical power with a step wind
speed of three controllers. (a) Nominal parameters. (b) Variation
parameters (i.e., +50% variations of Rs, Ls, B, J, ¥m)-
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FIGURE 8. Comparative results of rotor speed with a random wind speed
of three controllers. (a) Nominal parameters. (b) Variation parameters
(i.e., +50% variations of Rs, Ls, B, J, ¥m).

controllers is not countable even though the wind speed
changes. However, the transient responses of the proposed
ANFIS-based reinforcement controller, the NN- based rein-
forcement controller, and the PI controller are much different.
In Figs. 6(a) and 7(a), the transient time of the presented
ANFIS-RL controller is about 0.02s, meanwhile, the tran-
sient response of the NN-RL controller and PI controller is
about 0.1s. Moreover, the NN-RL controller response has
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FIGURE 10. Comparative results of power coefficient with a random wind
speed of three controllers. (a) Nominal parameters. (b) Variation
parameters (i.e., +50% variations of Rs, Ls, B, J, ¥m)-

the highest undershoot (about 22.5% for ANFIS-RL and PI
controllers, about 25% for NN-RL controller). In Fig. 8(a),
the transient time of the ANFIS-RL control scheme is 0.05s
and the response has no overshoot, however, the response
time of the NN-RL and PI control schemes is much slower
(0.35s) and the response of the PI controller has overshoot of
about 7.5%.

For the system parameters change case, the simulation
results are depicted in Figs. 6(b)—8(b). Similar to the case of
nominal parameters, the introduced ANFIS-RL control algo-
rithm has the best responses in both transient and steady states
with the fastest response time (about 0.05s), no overshoot, and
zero steady-state error. The response of the NN-RL controller
is still good with no overshoot, and zero steady-state error, but
the transient time is longer (0.2s for power coefficient and
mechanical power responses, 0.4s for rotor speed response).
The response of the PI controller is worst when the system
parameters increase by 50%, i.e., the transient responses of
all variables are fluctuation, high overshoot (about 10% in
Fig. 6(b), and long transient time (0.35s in Figs. 7(b) and 0.6s
in Fig. 8(b).

B. RANDOM WIND SPEED

The profile of random wind speed tested in this work is
shown in Fig. 9, the dynamic responses of the WECS
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FIGURE 12. Comparative results of rotor speed with a random wind
speed of three controllers. (a) Nominal parameters. (b) Variation
parameters (i.e., +50% variations of Rs, Ls, B, J, ¥m).

with different controllers are presented in Figs. 10—12.
Also, the dynamic responses of each controller under con-
ditions of 50% increased system parameters are illustrated in
each figure.

As shown in Figs. 10—12, when the wind speed changes
randomly, the proposed ANFIS-RL controller still remains
the best dynamic response for both nominal system parame-
ters and varying system parameters, i.e., fast and no overshoot
transient response and almost zero steady-state error. For the
NN-RL controller, the dynamic responses are also good, but
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the response time is longer and the steady-state error is larger
than the responses of the proposed ANFIS-RL controller.
In the case of the PI controller, the dynamic responses are
good at steady-state with almost zero error. However, the
overshoot and transient times are high, and these responses
become worse when the system parameters increase by 50%.

V. CONCLUSION

In this paper, the reinforcement learning-based adaptive opti-
mal fuzzy control method is proposed for MPPT control of a
direct drive PMSG-based WECS. The control system consists
of three parts: the critic, the adaptive fuzzy controller, and the
adaptive fuzzy estimator. The critic is designed based on the
ANFIS technique with a hybrid update rule to reduce both
the computational burden and storage capacity in comparison
with the NN-based critic. The adaptive fuzzy controller and
the adaptive fuzzy estimator are built using the T-S fuzzy
system. The parameters of both the controller and estimator
are updated from the critic with the optimal rule so that
the input error function is minimized. The superiority of the
proposed control algorithm is the employing of only output
feedback, so the knowledge about the system dynamic model
as well as system parameters is omitted. The stability of the
control system and the convergence of updated parameters
are proven via the Lyapunov stable theory. The efficiency
of the proposed control scheme is evaluated via simulation
with various scenarios: step wind speed, random wind speed,
nominal system parameters, and varying system parameters.
In each scenario, the dynamic responses of the proposed
control system are compared with the ones of the NN-RL
adaptive optimal fuzzy control system and the PI control
system. Finally, the simulation results show that the proposed
ANFIS-RL adaptive optimal fuzzy control scheme guaran-
tees the best performances in all cases with fast response,
no overshoot, zero steady-state error, and robustness against
the system parameter variations. In the future, the value
iteration can be employed to find the optimal value function
V (k) instead of approximation. In this trend, the convergence
conditions and convergence speed are still issues that need to
be investigated.
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