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ABSTRACT In signal processing, empirical mode decomposition (EMD) first decomposes the received
single-channel signal into several intrinsic mode functions (IMFs) and a residual, and then uses machine
learning methods for source number enumeration. EMD, however, has an end effect that can undermine
the accuracy of source number enumeration. To address this issue, this paper proposed a new EMD method
named Supplementary Empirical Mode Decomposition (SEMD), which improved the accuracy by extending
the signal length. The proposed method can be better applied to the modal parameter identification of non-
stationary and nonlinear data in the engineering field. This method first identifies two candidate extreme
points, which are the closest to the function value of the first extreme point near the endpoint. Then, on one
side of the candidate point, it finds a waveform similar to that at the endpoint. Finally, the maximum and
minimum points at each end of the signal will be added to extend the length of the signal. The added extreme
points are candidate extreme points in similar waveforms. For the improved source number enumeration
method based on SEMD, the instantaneous phase is obtained first by SEMD and Hilbert transform (HT).
Then, the instantaneous phase feature is extracted to obtain a high-dimensional eigenvalue vector. Finally,
the back propagation (BP) neural network is used to predict the number of sources. Experiment shows that
SEMD can effectively restrain the end effect, and the source number enumeration algorithm based on SEMD
has a higher correct detection probability than others.

INDEX TERMS Empirical mode decomposition (EMD), source number enumeration, end effect, supple-
mentary empirical mode decomposition (SEMD), BP neural network.

I. INTRODUCTION

Research on array signal processing in the direction of arrival
(DOA) estimation is vital and has been widely used in radar
[1], sonar [2], communications [3], and other fields [4],
[5]. The algorithms based on subspace are an integral part
of DOA estimation algorithms. The multiple signal clas-
sification (MUSIC) algorithm proposed by Schmidt [6] is
representative of these algorithms. The MUSIC algorithm
first performs eigenvalue decomposition on the covariance
matrix data obtained by the array. Then, high-precision DOA
estimation is realized by using the principle that the signal
subspace and the noise subspace are orthogonal to each other.
Researchers have proposed to improve the MUSIC algorithm
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with methods such as the minimum norm method (MNM)
[7], multi-dimensional MUSIC method [8], Root-MUSIC
method [9], etc. These algorithms, however, require spectral
peak search for all angles in the space, inevitably increasing
the computational complexity of the algorithm and undermin-
ing practical applications. The estimation of signal parame-
ters via rotational invariance techniques (ESPRIT) proposed
by Roy and Kailath [10] overcomes this shortcoming. Com-
pared with the MUSIC algorithm, the ESPRIT algorithm does
not require spectral peak search, and provides the analyti-
cal solution required for the performance parameters to be
estimated, thus reducing the computational complexity, and
therefore, it is more conducive to hardware implementation
in practical applications. These DOA estimation algorithms,
however, can only be performed when the number of signal
sources is known and their estimation would be inaccurate

VOLUME 10, 2022


https://orcid.org/0000-0003-2030-1479
https://orcid.org/0000-0002-9900-0531
https://orcid.org/0000-0003-0698-5413

S. Ge et al.: Effective Source Number Enumeration Approach Based on SEMD

IEEE Access

if the number of signal sources is wrong. Therefore, the
estimation of the number of signal sources is the primary task
of DOA estimation.

Early methods of estimating the number of signal sources
were based on the method of hypothesis testing, but these
methods may be affected by subjective behavior during man-
ual settings. In order to avoid this problem, later researchers
proposed estimation methods based on information theoretic
criteria (ITC). Akaike information criterion (AIC) proposed
by Wax and Kailath [11] is a representative of these algo-
rithms. The AIC method has good estimation performance
under a low signal-to-noise ratio (SNR), but the method is
not consistent in estimation and performs poorly at high SNR
and a large number of snapshots. Minimum description length
(MDL) proposed by Wax and Ziskind [12] achieved consis-
tent estimation, but it performs pooly at low SNR and a small
number of snapshots. Later, researchers improved the source
number estimation method based on ITC Guo et al. [13] pro-
posed a new source number estimation method based on
MDL, which uses the modified covariance matrix and its
eigenvectors to replace the eigenvalues used to estimate the
source number. A new decision variable with better anti-noise
ability is obtained by a series of transformations on the snap-
shot vector and the feature vector. Experiment shows that
this method can estimate coherent and incoherent sources
and perform well at low SNR Mariani ef al. [14] proposed
a new penalty strategy for source number estimation based
on ITC, which controls the probability of overestimation
below a specified level and is suitable for source number
estimation in small samples Zhao ef al. [15] proposed the
Efficient Detection Criterion (EDC) to improve the penalty
function in the ITC. Based on the framework of MDL crite-
rion, Jian-jian et al. [16] proposed a new MDL criterion by
combining some features of eigenvalue distribution in the
random matrix theory with the density of observed data.

Nevertheless, these source number estimation algorithms
based on ITC can only be performed in white gaussian noise.
Given that the noise is mostly coloured noise in real environ-
ment, it is more meaningful to research the source number
estimation in the coloured noise environment.

Gerschgorin’s disk estimation (GDE) proposed by
Wu et al. [17] can estimate unknown array signals in the
background of white gaussian and coloured noise. This
method uses the larger disc radius of the signal source
eigenvalue, and the smaller disc radius of the noise eigenvalue
to estimate the number of sources. But the GDE method is
vulnerable to human interferences because it needs to manu-
ally set the adjustment factor, and the estimation performance
will be better only when the adjustment factor is properly
selected. Therefore, this method is vulnerable to human fac-
tors. The Canonical Correlation Technique (CCT) proposed
by Chen et al. [18] has better estimation performance than
the GDE method at low SNR. This method obtains the
signal number from the canonical correlation coefficients
derived from the data received by two separate arrays Lu
and Zoubir [19] proposed a two-step test procedure based
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on random matrix theory for source number estimation. This
method utilizes the distribution information of eigenvalues.
The first test is to select a threshold to distinguish the signal
eigenvalues from the noise eigenvalues. Theoretically, the
number of signal sources is underestimated when the SNR is
low and the sample is small. In this case, the second step test
becomes necessary, i.e., the maximum a posterior probability
(MAP) test, with which, a special threshold is determined.
Experiment shows that this method can correctly estimate the
source number even when the sample size is small.

Higher order cumulants can restrain the Gaussian coloured
noise, so researchers proposed an algorithm to estimate
the source number based on fourth-order cumulants [20]
Yang et al. [21] proposed a source number enumeration algo-
rithm based on virtual array expansion. Combining the GDE
method with the fourth-order cumulant, this method shows
good estimation performance.

As artificial neural networks (ANN) [22] become more
powerful, ANN-based source number estimation algorithms
are becoming increasingly popular Rogers et al. [23] pro-
posed a method for estimating the number of narrowband
sources based on deep learning. This method designs a
15-layer deep neural network, which takes the covariance
matrix of the spatially smoothed signal and its eigenvalues
as input for training and testing. Experiment shows that
this method has good estimation performance at low SNR
Fan et al. [24] proposed a multipath features fusion network,
which fused the spatial features of the array and the temporal
features of the snapshots using the multi-scale scheme of
the Feature Pyramid Network and the Path Augmentation
Scheme of the Path Aggregation Network. Therefore, suf-
ficient source information can be extracted and better esti-
mation performance can be obtained in the real environment
Hu et al. [25] proposed an independent source number esti-
mation method based on the supervised learning convolu-
tional neural networks (CNN). The input of this CNN is
a mixed signal sequence. When the network has sufficient
data for training, the number of unknown sources can be
estimated, which prepares for blind source separation.

As a powerful time-frequency analysis method, EMD [26]
is also used in some source number enumeration algorithms
Pan et al. [27] proposed to use EMD to decompose the
original signal into several IMFs, and then extract features
from the instantaneous phase of each IMF component, and
finally use support vector machine (SVM) to predict the num-
ber of signal sources. However, EMD has certain inherent
defects such as end effect [28] and mode mixing [29], and the
elimination of these defects will improve the performance of
the source number enumeration algorithm. Ensemble Empir-
ical Mode Decomposition (EEMD) [30] makes improvement
based on the EMD method, which avoids the mode mixing
phenomenon. This improved method introduces uniformly
distributed white noise multiple times during decomposi-
tion, which suppresses the noise of the signal itself, thereby
obtaining a more accurate upper and lower envelope. Further,
Complementary Ensemble Empirical Mode Decomposition
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FIGURE 1. Array structure of the uniform circular array.

(CEEMD) [31] is an improved version of the EEMD method.
It adds a pair of positive and negative white noises with oppo-
site numbers to the source signal to eliminate the auxiliary
white noise remaining after the decomposition of the EEMD
method. The Local Mean Decomposition (LMD) method [32]
can adaptively decompose a multi-component signal into a
series of product functions (PF), where each PF is multiplied
by a pure frequency modulation function and an envelope
function. By combining the instantaneous frequencies and
amplitudes of all PFs, the time-frequency distribution of
the original signal can be presented. Although the LMD
method is able to avoid the end effect, there is no signifi-
cant improvement in mode mixing in EMD. The Variational
Mode Decomposition (VMD) method [33] is adaptive and
completely non-recursive. When obtaining the decomposed
components, this method determines the frequency center and
bandwidth of each component by iteratively searching for
the optimal solution of the variational model, so that the sig-
nal components can be separated adaptively. Compared with
EMD, VMD can effectively avoid the mode mixing and end
effect in decomposition. This paper proposed a new method
to restrain the end effect in EMD, and further proposed an
improved source number enumeration algorithm.

The following content is organized as follows: Section II
presents the relevant theoretical background. Section III dis-
cusses various application scenarios of the proposed SEMD
method. Section IV introduced an improved source number
enumeration method. Section V is the experiment and analy-
sis of SEMD and the improved source number enumeration
method. Finally, conclusions are given in Section VI.

Il. THEORETICAL BACKGROUND
This section introduced the array signal model, the EMD
method, and the BP algorithm.

A. SIGNAL MODEL
The uniform circular array (UCA) can obtain the azimuth and
elevation angles of the signal source at the same time, and
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is often used for DOA estimation [34]. Therefore, this paper
used a UCA with M array elements for source number enu-
meration. The array structure is shown in Fig. 1. The signal
source is the Gaussian narrowband signal, and the wavelength
is twice the radius of the UCA. Assuming that K far-field
narrowband source signals are assumed to be incident with
wavelength A, azimuth angle 6, and elevation angle ¢. The
array signal mathematical model X (¢) of the ™ snapshot on
M array elements is:

X(t) = [x1(0). x2(0), ..., x; (0] = AS(1) + K@) (1)
A = [a(01, $1), a(02, ¢2), .. ., a(Ok, Pr)] @)

S@) = [s1(0), 52(0), ..., sg (O] 3
K(t) = [ki(), ka(0), ..., ke (D]" 4)
a(6;, ¢;) = [ei¢>i,1 , e]'¢>i,2’ o, e/¢i.M]T (5)
277 sin(9;) cos(¢; — Zun=D)
¢i,m = Y s
m=12,...,.M) (6)

where X (¢) is the output of M array elements; A is array
manifold; S(¢) is the source vector; K(t) is the additive noise;
a(6;, ¢;) is the steering vector; and (6;, ¢;) is the azimuth and
elevation angles of the i signal source.

B. EMD

The EMD can be applied to nonlinear and non-stationary
signals, with good self-adaptation [26]. In the decomposition
process, the cubic spline interpolation method [35] is used
multiple times to fit the upper and lower envelopes of the
signal. The average of the upper and lower envelopes are
taken to obtain several IMFs. Assuming that the signal s(¢)
is composed of different IMFs, the specific decomposition
process is as follows:

1) All the maximum and minimum points of the signal s(z)
are fitted to the upper envelope and the lower envelope
respectively.

2) The mean value of the upper and lower envelopes are
taken, and recorded as m(z). The h;(t) can be obtained
as:

hy(t) = s(t) — m(1) )

3) If meets the conditions of IMF, h(¢) will be the first
IMF component of the s(¢). Otherwise, let s(t) = hy(¢),
then repeat the above steps until the first IMF compo-
nent ¢ (¢) is obtained.

4) After obtaining the first IMF component, the residual
value sequence r1(¢) can be obtained as:

ri(t) = s(1) — c1(2) ®)

5) The above steps are repeated to obtain each IMF com-
ponent: r,(t) is:

n—1

s() =Y cit) + ra(t) ©)

i=1
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where c;(7) is the i IMF component and r,(¢) is the
residual component.

C. BP ALGORITHM

The BP neural network proposed by Rumelhart et al. [36]
is capable of learning of the weights of the multi-layer neu-
ral network with the error back-propagation algorithm. For
each neural unit in the hidden layer, the weights learning
can approximate all non-mapping relationship, and has a
strong nonlinear mapping ability. This algorithm includes two
propagation processes, namely the forward propagation of the
sample data and the back propagation of the estimation error.
The specific process is as follows:

1) Initialize the BP neural network. Initial values are given
for all values and thresholds in the neural network. Give
a learning rate and the number of iterations. Pick a
suitable excitation function.

2) The output of the hidden layer can be obtained by
transforming the input parameters with the excitation
function:

n
Hp =} wixi — @) (10)
i=1
where f is the excitation function;w;; is the weight
between the i layer node and the j layer node; x;
is the /" parameter of the input sequence; a; is the
threshold of the j layer node; and Hj is the output of
the /™ layer, where j = 1,2, ..., [.

3) For the output of each node in the output layer.H;
linear fitting is performed by the weightw;, between
the hidden layer node and the output layer node, and the
threshold by of the output layer node. The output value
Oy of the k™ node of the output layer can be obtained
as:

1
O =Y Hwi —by, (k=1,2,....m) (1)
j=1

4) Depending on the k" ideal predicted value y; and the
kth real output value Oy, the error can be obtained as:

ex = yx — Ok (12)

lll. SEMD

In order to restrain the end effect in EMD, this paper pro-
poses the addition of the extreme points at both ends of the
original signal to extend the signal length. This method uses
the existing extreme points to predict the unknown extreme
points, and then uses all the extreme points to obtain a new
envelope curve. For a discrete signal x(¢), the time series
of the signal is {t1, 12, ..., t,}, and the signal sequence is
{x(t1), x(12), .. ., x(¢,)}. Suppose the signal has B maximum
points and L minimum points. The time of the maximum
point is Ty;(()i = 1,...,B), and the function value is
xy()(@ = 1,...,B). The time of the minimum point is
Tn(G)G = 1,...,L), and the function value is xy(j)(j =
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1, ..., L). The function value of the left endpoint of the signal
is x7, and that of the right endpoint is xg.

In order to extend the signal length, a maximum point and
a minimum point are added to the left and right ends of the
signal. The method first finds extreme points in the signal that
are close to the function value of the first extreme point, and
takes them as candidate extreme points. The slope of the two
extreme points is used as an index to judge whether the two
waveforms are similar. Then, on one side of the candidate
point, the waveform that is the most similar to that on the left
endpoint or the right endpoint is found. Finally, the extreme
points in similar waveforms are the maximum and minimum
points to be added. The specific method of adding extreme
points is discussed as follows.

A. ADD EXTREME POINT AT LEFT END
1) Assuming that the first extreme point at the left end
of the signal is the maximum point. The following
definitions are available:

Ny = |xp (1) — xpm (2)]
N3 = |xp (1) — xpu (3)]

: (13)
Np = |xu (1) — xm(B)|
N, = min{N2, N3, ..., Np} (14)
Ny = min{N2, N3, ..., Np} (15)

where p € {2,3,...,B},q € {2,3,...,B} and q #
p. Therefore, the closest function values xj;(1) are
xp (p) and x7(q). Then, the extreme points where x7 (p)
and xys(q) located are selected as candidate maximum
points. The waveform on the left side of the candidate
extreme point is similar to that at the left endpoint. For
the convenience of analysis, the function values of the
minimum point on the left side of the candidate point
are set as xy («) and xy (v). Let the slopes of the straight
lines between the extreme points of the function values
xp (1) and xp, xp7 (p) and xy (1), and xps(g) and xy (v) be
k1, kp and k3. Set the function values of the maximum
and minimum points added to the left end of the signal
be x37(0) and xx (0), and the times are T;(0) and T (0).
The following derivation can be obtained:

Fy = |ki — kol (16)
Fr, = |k1 — k3| a7

If min{F1, F»} = F1 :
Tn©) = Ty (1) — (Tu(p) — Tn@)) (18)

xn(0) = xn (u) 19)

Ty(0) = Tn(O0) = (In(w) = Tu(p — 1))
(20)

xm(0) = xy(p — 1) 2D

If min{Fy, Fp} = F> :
InO) = Tu (1) — (Tu(g) — Tn(v))  (22)
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xy(0) = xn(v) (23)

Tm(0) = Ty(0) — (Tn(v) — Tm(g — 1))
(24)

xm(0) = xp(g — 1) (25)

2) Assuming that the first extreme point at the left end of
the signal is the minimum point, the following defini-
tions are obtained:

Ny = |xy(1) — xn(2)]
N3 = [xn(1) — xn(3)]

: (26)
Ny = lxn(1) —xn(L)]

N, = min{Ny, N3, ..., Ni} Q27)
N, = min{N,, N3, ..., N.} (28)

wherep € {2,3,...,L},q € {2,3,...,L}and g # p.
Therefore, the extreme points where the function values
xy(p) and xy(gq) are located are candidate minimum
points. Set the function values of the maximum point
on the left of the candidate point as xps(x) and xps(v).
Set the slopes of the straight lines between the extreme
points of the function values xy (1) and xr, xy(p) and
xp(u), and xy(q) and xps(v) be ki, ko and k3. Other
parameters are defined and similarly to section (1). The
following derivation is obtained:

Fi = |ki — ks (29)
Fy = |ki — k3] (30)

If min{F1, Fr} = F1 :
Ty(0) = Ty(1) — (In(p) — Tu(w))  (31)

xm (0) = xa (u) (32)

In(0) = Ty (0) — (Tm(w) — Tn(p — 1)
(33)

xnO0) =xn(p—1) (34)

If min{F, Fr} = F> :
Tm(0) = Ty(1) — (In(@) — T (v))  (35)

xp (0) = xpr(v) (36)

Tn(0) = Tn(0) = (T () — Tn(g — 1))
37)

v (0) =xnv(g—1) (38)

B. ADD EXTREME POINT AT RIGHT END
1) Assuming that the first extreme point at the right end of
the signal is the maximum point, the function value of
this extreme point is x;(B). The following definitions
are obtained:

Ny = |xpu(B) — xp (1))
Ny =[xy (B) — xp(2)]

(39)
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Np—y = |xp(B) — xpu (B — 1)|
Np =min{N1,N2,...,NB_1} (40)
Ny = min{N, N2, ..., Np_1} (G3))

wherep € {1,2,...,B—1},q€{1,2,...,B—1}and
q # p. Therefore, the closest function values xs(B) are
xp (p) and xps(g). The extreme point where the function
values xps(p) and xy7(g) are located is selected as the
candidate maximum value point. The waveform on the
right side of the candidate extreme point is similar to
the waveform at the right endpoint. Set the function
values of the minimum point on the right side of the
candidate point as xy(z) and xy(v). Set the slopes of
the straight lines between the extreme points of the
function values xy;(B) and xg, xpr(p) and xy(u), and
xp(q) and xy (v) lie as ki, k2 and k3. Set the function
values of the maximum and minimum values added to
the right end of the signal as x);(B + 1) and xy (L + 1),
and the time as Ty;(B+1) and Ty (L +1). The following
derivation can be obtained:

Fi1 = k1 — k| (42)
Fr = |ki — k3| (43)

If min{Fy, F»} = F1 :
In(L+1) =TuB)+ Inw) —Tu(p))  (44)

xy(L+1) = xn(u) (45)
TviB+1)=TnL+ 1)+ Typ+1)—Tyw)

(46)
xyB+1) =xyp+1) @7

If min{F, Fo} = F3 :
INn(L+ 1) =TuB)+ (In(v) —Tu(g)  (48)

xy(L+1) = xn(v) 49)
TyB+1) =Tn(L+1)+Tylg+1)—TyW)

(50)
xyB+1)=xyl@+1) (29

2) Assuming that the first extreme point at the right end of
the signal is the minimum point, the function value of
this extreme point is xy(L). The following definitions
are available:

N1 = [xn(L) — xn(1)]
Ny = |xn(L) — xn(2)]

: (52)

Np—1 = [xn(L) —xn(L — 1|
Ny = min{Ni, N, ..., Np_1} (53)
Ny = min{N{, N2, ..., N1} 54)

where p € {1,2,...,L —1},q € {1,2,...,L — 1}
and g # p. Therefore, the extreme points where the
function values xy(p) and xy(g) are located at the
candidate minimum points. Let the function values of
the maximum point on the right side of the candidate
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point be x;7 (1) and xps (v). Set the slopes of the straight
lines between the extreme points of the function values
xn(L) and xg, xy(p) and xps(u), and xy(gq) and xps(v)
lie as kp, k> and k3. Other parameters are defined in the
same way as section (1). The following derivation is
obtained:

Fi = |k1 — ky| (55)
Fr = |k1 — k3| (56)

If min{F, F»} = F; :
TyB+1) =TnL) + (Tu) — Tnp)) (57)

xmB+1) = xy(u) (58)
InL+1) =TyB+1)+TInp+1) —Tyw)

(59)
xN(L+1)=xy@+1 (60)

If min{F1, Fr} = F>:
TuB+1) =TyL)+ Tu) —Tn(g) (61)

xyB+1) =xm®) (62)
InL+1) =TyB+ 1D+ AN+ 1) —Tu®)

(63)
xn(L+1)=xn(@+1) (64)

C. PROCESSING ENDPOINTS

If the function value at the end point is greater than that
at the first maximum value point closest to the end point,
or less than the first minimum value point, the endpoint will
be outside the upper and lower envelopes. In order to avoid
this situation, this type of point is taken as the first maximum
or first minimum point closest to the endpoint. Then the above
method is used to add a maximum value and a minimum value
at both ends of the signal.

IV. SOURCE NUMBER ENUMERATION ALGORITHM
Reference [27] proposed a source enumeration based on a
UCA in a determined case, while our work improved this
method. First, the Hilbert-Huang transform (HHT) [37] is
performed on the received signal to obtain the instantaneous
phase. Notably, the HHT process is based on the SEMD
proposed in this paper, not EMD. Then eigenvalue decom-
position (EVD) [38] is performed on the covariance matrix
of the instantaneous phase to obtain the eigenvalue vector.
In addition, in order to obtain a high-dimensional eigenvalue
vector, three different eigenvalues are added to the original
eigenvectors. Finally, the designed BP neural network is
trained for source number enumeration. The process of the
source number enumeration algorithm is shown in Fig. 2.

A. GETTING THE SIGNAL INSTANTANEOUS PHASE

HHT has two processes, i.e. EMD and HT, which can process
non-stationary nonlinear signals and obtain the instantaneous
phase [37], but EMD has an end effect that can cause errors in
the IMF components. The SEMD effectively restrains the end
effect by extending the signal length. Therefore, this paper
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FIGURE 2. Flow chart of the source number enumeration algorithm.

uses a new HHT method combined with SEMD and HT. The
spatial signal s(¢) received by the UCA model with M array
elements is:

s(t) = [s1(2), 52(1), . . ., sm(1)] (65)

It can be known from sections I1.B and III that the signal s (¢)
can be decomposed as:

n—1
sk(t) =Y ckilt) + ria(t) (66)
i=1
where k = 1,2, ..., M, si(¢) is the signal received on the kth

array element, cg;(t) is the i" IMF, and 7k (1) is the residual.
HT for each IMF is as follows:

Hlcw()] = %p / a0 (67)

where p is the Cauchy principal value. Then the instantaneous
phase of c;(t) can be expressed as:

@ki(t) = arctan w (68)

cri(t)

B. EXPANDING THE EIGENVECTORS
Wu and So [39] theoretically proved that due to the differ-
ent positions of each array element in UCA, there will be
phase differences when each array element receives the signal
source. Therefore, the instantaneous phase can be used for
feature extraction. First, the covariance matrix of the instan-
taneous phase between the array elements is constructed as
follows:

~ 1 T

R; = ZAiAi (69)

Ai = [b1i dais - - -, duil” (70

Ori = [i(1), Pri(2), ..., Pri(L)] (71)
where i = 1,A2, ..., n—1, L is the number of snapshots. Then

do EVD on R; as:
R; = U;A;UT (72)

where A; = diag(Ay;, i, - - ., Ayi) is the eigenvalue. By cal-
culating the correlation coefficient [40] between each IMF
and the signal, it can be known that the first three IMFs have
the largest correlation coefficient with the signal. Therefore,

96071



IEEE Access

S. Ge et al.: Effective Source Number Enumeration Approach Based on SEMD

the first three IMFs were selected for data analysis. With the
above method being performed on the instantaneous phases
of the first three IMFs, the 3 %« M dimension eigenvalues can
be obtained as follows:

(A11, A2t -

The signal is easily disturbed by the external environment,
which will reduce the phase difference between the array ele-
ments. Therefore, this paper adds three different eigenvalues
to highlight the phase difference between each array element.
The 3*M dimensional eigenvalues are recorded as follows:

G AML, A2, A22, ey AM2, AL, A23, Ly AM3).

Al < A2... < A3M1 < A3m (73)

The three added difference eigenvalues are:

A3M41 = A3M — A (74)
A3M42 = A3M-1 — A2 (75)
A3M43 = A3M2 — A3 (76)

The eigenvalue vector after dimension expansion is:

T =11, AMEDLA2, -5 AMED2 M35 - -+ AMED3)
All eigenvalues are normalized as:
L 77
M= s 77)
> A
i=1
The normalized eigenvalue matrix is:
A= 115 AMEDLAL2s -« o AM+1)2> A35 -« - s AM+1)3)
(78)

C. THE NEURAL NETWORK SOURCE NUMBER
ENUMERATION MODEL

A reasonable network structure can ensure high prediction
accuracy, and in this work, the network model used is the
BP neural network. Since the subsequent experiments in this
paper use UCA with 4 array elements, signals with 1, 2, and
3 sources are enumerated respectively. Therefore, the number
of nodes in the output layer of the network is 3, and the nodes
in the input layer of the network are 15.

At present, there is no scientific method to determine the
number of nodes in the hidden layer of the BP neural net-
work. If the number of hidden layer nodes is smaller, the
network iteration speed will be faster. Too few hidden layer
nodes, however, can also affect the prediction accuracy of the
network. This paper experimented many times and decided
to use 2 hidden layers. First, the neural network with only
one hidden layer is used for training. The more nodes in the
hidden layer, the less error in the network decreases. A second
hidden layer is added when the error of the network is mini-
mized. The number of nodes in the first hidden layer is kept
unchanged, and the number of nodes in the second hidden
layer is increased until the entire network error minimizes.
The structure of the final BP neural network is 15-17-6-3,
as shown in Fig. 3.
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FIGURE 3. BP neural network structure.
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FIGURE 4. Distribution map of extreme value points based on SEMD.

V. EXPERIMENT AND ANALYSIS

This section verifies the effectiveness of SEMD in restraining
the end effect by comparing the decomposition performance
of EMD and SEMD. Then, the improved source number
enumeration algorithm based on SEMD is evaluated based on
computer data and radio frequency anechoic chamber data.
Then, the experimental results of this method are compared
and analyzed with other methods. The configurations of the
computer used in this experiment are Intel i7 CPU and 16G
memory, and the operating system is Microsoft Windows 10.
The software used for data simulation is Matlab 2016a.

A. THE EFFECTIVENESS VERIFICATION OF THE SEMD

In order to verify the effectiveness of the SEMD method to
restrain the end effect, this paper used a mixed signals to
compare the algorithm performance of EMD and SEMD. The
mixed signal x() is:

x(t) = g(#) + h@) + 1 (1) (79)
g(t) = sin(4nt + 2) (80)
h(t) = sin(40mt) (81)
f(t) = cos(20mrt + 1) (82)

First locate the extreme points of x(¢) is located. Then,
a maximum point and a minimum point are added at both
ends of the signal based on SEMD. As shown in Fig. 4,

o” represents the original extreme point of x(¢), and ““%k”
represents the newly added extreme point.
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FIGURE 5. Upper and lower envelope fitting based on SEMD.
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FIGURE 6. Signal decomposition diagram. (a) Based on EMD. (b) Based
on SEMD.

Envelope fitting is performed on all maximum points and
all minimum points by cubic spline interpolation. As shown
in Fig. 5, the signal x(¢) is completely enveloped between
the upper and lower envelopes, which indicates that the cubic
spline interpolation based on SEMD can realize the full enve-
lope of the signal.

The signal decomposition based on EMD and SEMD is
shown in Fig. 6. In the figure, the blue and red lines repre-
sent the decomposed IMFs and the actual signal component,
respectively. Compared with EMD, the IMF decomposed by
CEMD is more consistent with the actual signal components,
which is even more evident near the endpoints. This proves
that SEMD can well restrain the end effect.

VOLUME 10, 2022

Best Training Performance is 0.0099962 at epoch 685

= Train
Best
Goal

100 F

Mean Squared Error (mse)
=

. . . . . .
0 100 200 300 400 500 600
685 Epochs

FIGURE 7. BP neural network training diagram.

B. THE SOURCE NUMBER ENUMERATION BASED ON
COMPUTER DATA

In this paper, three far-field narrowband signals with one,
two, and three sources are estimated by UCA with four array
elements (4-UCA). The incident angles of the signal include
the azimuth angles and the elevation angles. In order to train
the BP neural network, three signals with SNR=15dB, L=200
and incident angles of (80°, 20°), (60°, 40°), (30°, 60°) are
randomly selected, where L is the number of snapshots. The
coloured noise contained in the signal is obtained by filtering
the white gaussian noise [41]. 200 samples for each signal
with one, two, and three sources are taken by the method
in section IV. The samples of these three types of signals
were labeled differently and then were mixed randomly into
a dataset of 600 samples. This dataset is used to train the
BP neural network, and the error accuracy is set to 0.01.
As shown in Fig. 7, after 685 times of training, the network
model reaches the error accuracy and the training is com-
pleted.

1) DETECTION PROBABILITIES AGAINST DIFFERENT SNRS
Set L=100, the SNR has a step size of 2 and values from
—20dB to 20dB, 50 test samples are taken for each signal with
one, two, and three sources and then were mixed randomly
into a dataset containing 150 samples. It should be noted that
the incident angle of the signal used in the training and test
sample is different. The simulation results of this method are
compared with the D-AIC method [42], the D-MDL method
[42], the GDE method [43], the SORTE method [44] and
the HHT-SVM method [27]. 100 Monte Carlo experiments
were performed for each algorithm under different SNRs.
Fig. 8 shows the detection probabilities of the six methods for
signals with one source and three sources at different SNRs.
As can be seen from Fig. 8(a), except for the SORTE
method and the GDE method, the detection probability of
other methods has reached more than 90% in the entire SNR
range. The detection probability of the proposed method all
exceeds 95%, and the detection probability reaches 100%
when SNR > —12dB. As can be seen from Fig. 8(b), as the
number of sources increases, the detection probability of the
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FIGURE 8. The detection probabilities of the six methods at different
SNRs. (a) One source. (b) Three sources.

six methods decreases. The SORTE method and the GDE
method have completely failed when the number of signal
sources is three and the detection probability is zero. The
detection probability of the D-AIC and D-MDL methods is
zero at low SNR. Both the proposed method and the HHT-
SVM method have good performance, but the detection rate
of the proposed method in this paper is higher than that of
the HHT-SVM method in the whole SNR range. According to
the above analysis, when the number of sources increases, the
proposed method has better performance than other methods
under different SNRs.

2) DETECTION PROBABILITIES AGAINST DIFFERENT
NUMBER OF SNAPSHOTS

Set SNR = 200dB, the L has a step size of 10 and the value is
from 40 to 100. 100 Monte Carlo experiments are carried out
for each method under different snapshot numbers, and other
requirements are the same as in section (1). Fig. 9 shows the
detection probabilities of the six methods for signals with one
source and three sources at different snapshots.
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FIGURE 9. The detection probabilities of the six methods at different
snapshots. (a) One source. (b) Three sources.

As can be seen from fig. 9(a), except for the SORTE
method, the detection probability of other methods increases
rapidly with the increase of the snapshots number. Compared
with other methods, the proposed method performs better
when the number of snapshots is less than 50dB. It can be
seen from fig. 9(b) that the SORTE and the GDE methods
failed. The detection probability of the other four methods
has also decreased compared with fig. 9(a). By contrast, the
performance of the proposed method is better than other
methods in the whole range of snapshot number, especially
under the small number of snapshots.

C. THE SOURCE NUMBER ENUMERATION BASED ON RF
ANECHOIC CHAMBER DATA
This paper used the signal data collected in the RF anechoic
chamber to verify the performance of each method in a real
environment. The parameters of the RF anechoic chamber are
shown in Table 1.

Three signals with SNR = 20, L =200, and incident
angles of (70°,30°), (50°,40°), (80°,50°) are randomly
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TABLE 1. Indexes of parameters in RF anechoic chambers.

Parameters Index
RF anechoic chamber size 6.4m X 4.4m X 5.5m
VSG number 3
antenna number in UCA 4
transmitting antenna number 3

carrier frequency of RF signal 1561.092MHz

carrier frequency of observed signal 15.48MHz
signal bandwidth 1.5MHz
sampling frequency 62MHz
down conversion circuit bandwidth 20MHz

Best Training Performance is 0.0099993 at epoch 963
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FIGURE 10. BP neural network training diagram.

selected. The RF anechoic chamber equipment is utilized to
acquire signals with one, two, or three sources. 200 samples
are taken for signals with different numbers of sources and
marked with different labels. After random mixing, a training
set with a total of 600 samples is formed. The training of the
BP neural network is shown in Fig. 10: the error accuracy is
set to 0.01; and after 963 times of learning, the training of the
BP neural network model is completed.

1) DETECTION PROBABILITIES AGAINST DIFFERENT SNRS
The signal samples were collected in the RF anechoic cham-
ber by the method of section B.(1). The setting of the exper-
imental parameters is also the same as that of section B.(1).
The detection probabilities of the six methods for one source
and three source signals under different SNRs are shown in
Fig. 11.

The trend of detection probability for each method in
Fig. 11 is similar to that in Fig. 8. It should be noted that
the signal data obtained from the RF anechoic chamber is
different from the computer signal data. Because the former
contains other colored noises from various types in the space.
These noises will cause some errors in signal decomposition,
which will affect the next step of source number enumeration.
Therefore, compared with the Fig. 8, the detection probability
of each method in the Fig. 11 dropped. However, the proposed
method is still the best performer. Notably, when the number
of sources is 3, other methods have failed or performed poorly
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FIGURE 11. The detection probabilities of the six methods at different
SNRs. (a) One source. (b) Three sources.

except for the proposed method and the HHT-SVM method.
Besides the proposed method is even better than HHT-SVM
in the whole SNR range. Therefore, the proposed method is
more suitable for signal data in the real environment, and
performs well under different SNRs.

2) DETECTION PROBABILITIES AGAINST DIFFERENT
NUMBER OF SNAPSHOTS

This experiment used the signal samples collected in the RF
anechoic chamber, and all parameters are the same as in
section B.(2). Fig. 12 shows the detection probabilities of the
six methods for one source and three sources signal under
different snapshot numbers.

The trend of detection probability for each method in
Fig. 12 is similar to that in Fig. 9. The analysis is similar
to section C.(1). The proposed method performs the best
compared to other methods regardless of whether it is under
one source or three sources. It is worth noting that when the
number of sources is 3 and the number of snapshots is 40, the
detection probability of the proposed method exceeds 80%.
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FIGURE 12. The detection probabilities of the six methods at different
snapshots. (a) One source. (b) Three sources.

Therefore, the proposed method performs well under a small
number of snapshots.

VI. CONCLUSION

This paper proposed an improved source number enu-
meration method based on SEMD. The proposed method
addresses the end effect caused by cubic spline interpolation
in EMD by extending the signal length. The source number
enumeration method first obtains the instantaneous phase of
the signal with HHT, where the EMD is replaced by the
improved SEMD. The feature extraction is then performed
on the instantaneous phase to obtain the feature vectors.
To achieve high-dimensional eigenvectors, three differenct
eigenvalues are added to the original eigenvectors. Finally,
a special BP neural network is designed to predict the sig-
nal with an unknown number of sources. To evaluate the
effectiveness of this source number enumeration method,
a series of experiments are conducted in this paper. Firstly,
SEMD and EMD are performed on the original signal, and
the results obtained from both are compared. The result shows
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that SEMD can well restrain the end effect very well. Then,
the experiment is carried out by comparing the proposed
method with the HHT-SVM method, the SORTE method, the
GDE method, the D-AIC method, and the D-MDL method.
The experiment results show that the proposed method has
a higher detection probability and better performance than
other methods, especially when the number of sources is large
or the number of snapshots is small. Finally, the data of the
RF anechoic chamber is used to verify the effectiveness of the
proposed method in the real environment. One limitation of
the proposed method is that its computation is complicated.
Therefore, optimizing the calculation is the future research
direction of this work.
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