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ABSTRACT In signal processing, empirical mode decomposition (EMD) first decomposes the received
single-channel signal into several intrinsic mode functions (IMFs) and a residual, and then uses machine
learning methods for source number enumeration. EMD, however, has an end effect that can undermine
the accuracy of source number enumeration. To address this issue, this paper proposed a new EMD method
named Supplementary Empirical Mode Decomposition (SEMD), which improved the accuracy by extending
the signal length. The proposed method can be better applied to the modal parameter identification of non-
stationary and nonlinear data in the engineering field. This method first identifies two candidate extreme
points, which are the closest to the function value of the first extreme point near the endpoint. Then, on one
side of the candidate point, it finds a waveform similar to that at the endpoint. Finally, the maximum and
minimum points at each end of the signal will be added to extend the length of the signal. The added extreme
points are candidate extreme points in similar waveforms. For the improved source number enumeration
method based on SEMD, the instantaneous phase is obtained first by SEMD and Hilbert transform (HT).
Then, the instantaneous phase feature is extracted to obtain a high-dimensional eigenvalue vector. Finally,
the back propagation (BP) neural network is used to predict the number of sources. Experiment shows that
SEMD can effectively restrain the end effect, and the source number enumeration algorithm based on SEMD
has a higher correct detection probability than others.
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INDEX TERMS Empirical mode decomposition (EMD), source number enumeration, end effect, supple-
mentary empirical mode decomposition (SEMD), BP neural network.

I. INTRODUCTION19

Research on array signal processing in the direction of arrival20

(DOA) estimation is vital and has been widely used in radar21

[1], sonar [2], communications [3], and other fields [4],22

[5]. The algorithms based on subspace are an integral part23

of DOA estimation algorithms. The multiple signal clas-24

sification (MUSIC) algorithm proposed by Schmidt [6] is25

representative of these algorithms. The MUSIC algorithm26

first performs eigenvalue decomposition on the covariance27

matrix data obtained by the array. Then, high-precision DOA28

estimation is realized by using the principle that the signal29

subspace and the noise subspace are orthogonal to each other.30

Researchers have proposed to improve the MUSIC algorithm31

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

with methods such as the minimum norm method (MNM) 32

[7], multi-dimensional MUSIC method [8], Root-MUSIC 33

method [9], etc. These algorithms, however, require spectral 34

peak search for all angles in the space, inevitably increasing 35

the computational complexity of the algorithm and undermin- 36

ing practical applications. The estimation of signal parame- 37

ters via rotational invariance techniques (ESPRIT) proposed 38

by Roy and Kailath [10] overcomes this shortcoming. Com- 39

paredwith theMUSIC algorithm, the ESPRIT algorithm does 40

not require spectral peak search, and provides the analyti- 41

cal solution required for the performance parameters to be 42

estimated, thus reducing the computational complexity, and 43

therefore, it is more conducive to hardware implementation 44

in practical applications. These DOA estimation algorithms, 45

however, can only be performed when the number of signal 46

sources is known and their estimation would be inaccurate 47
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if the number of signal sources is wrong. Therefore, the48

estimation of the number of signal sources is the primary task49

of DOA estimation.50

Early methods of estimating the number of signal sources51

were based on the method of hypothesis testing, but these52

methods may be affected by subjective behavior during man-53

ual settings. In order to avoid this problem, later researchers54

proposed estimation methods based on information theoretic55

criteria (ITC). Akaike information criterion (AIC) proposed56

by Wax and Kailath [11] is a representative of these algo-57

rithms. The AIC method has good estimation performance58

under a low signal-to-noise ratio (SNR), but the method is59

not consistent in estimation and performs poorly at high SNR60

and a large number of snapshots.Minimumdescription length61

(MDL) proposed by Wax and Ziskind [12] achieved consis-62

tent estimation, but it performs pooly at low SNR and a small63

number of snapshots. Later, researchers improved the source64

number estimation method based on ITC Guo et al. [13] pro-65

posed a new source number estimation method based on66

MDL, which uses the modified covariance matrix and its67

eigenvectors to replace the eigenvalues used to estimate the68

source number. A new decision variable with better anti-noise69

ability is obtained by a series of transformations on the snap-70

shot vector and the feature vector. Experiment shows that71

this method can estimate coherent and incoherent sources72

and perform well at low SNR Mariani et al. [14] proposed73

a new penalty strategy for source number estimation based74

on ITC, which controls the probability of overestimation75

below a specified level and is suitable for source number76

estimation in small samples Zhao et al. [15] proposed the77

Efficient Detection Criterion (EDC) to improve the penalty78

function in the ITC. Based on the framework of MDL crite-79

rion, Jian-jian et al. [16] proposed a new MDL criterion by80

combining some features of eigenvalue distribution in the81

random matrix theory with the density of observed data.82

Nevertheless, these source number estimation algorithms83

based on ITC can only be performed in white gaussian noise.84

Given that the noise is mostly coloured noise in real environ-85

ment, it is more meaningful to research the source number86

estimation in the coloured noise environment.87

Gerschgorin’s disk estimation (GDE) proposed by88

Wu et al. [17] can estimate unknown array signals in the89

background of white gaussian and coloured noise. This90

method uses the larger disc radius of the signal source91

eigenvalue, and the smaller disc radius of the noise eigenvalue92

to estimate the number of sources. But the GDE method is93

vulnerable to human interferences because it needs to manu-94

ally set the adjustment factor, and the estimation performance95

will be better only when the adjustment factor is properly96

selected. Therefore, this method is vulnerable to human fac-97

tors. The Canonical Correlation Technique (CCT) proposed98

by Chen et al. [18] has better estimation performance than99

the GDE method at low SNR. This method obtains the100

signal number from the canonical correlation coefficients101

derived from the data received by two separate arrays Lu102

and Zoubir [19] proposed a two-step test procedure based103

on random matrix theory for source number estimation. This 104

method utilizes the distribution information of eigenvalues. 105

The first test is to select a threshold to distinguish the signal 106

eigenvalues from the noise eigenvalues. Theoretically, the 107

number of signal sources is underestimated when the SNR is 108

low and the sample is small. In this case, the second step test 109

becomes necessary, i.e., the maximum a posterior probability 110

(MAP) test, with which, a special threshold is determined. 111

Experiment shows that this method can correctly estimate the 112

source number even when the sample size is small. 113

Higher order cumulants can restrain the Gaussian coloured 114

noise, so researchers proposed an algorithm to estimate 115

the source number based on fourth-order cumulants [20] 116

Yang et al. [21] proposed a source number enumeration algo- 117

rithm based on virtual array expansion. Combining the GDE 118

method with the fourth-order cumulant, this method shows 119

good estimation performance. 120

As artificial neural networks (ANN) [22] become more 121

powerful, ANN-based source number estimation algorithms 122

are becoming increasingly popular Rogers et al. [23] pro- 123

posed a method for estimating the number of narrowband 124

sources based on deep learning. This method designs a 125

15-layer deep neural network, which takes the covariance 126

matrix of the spatially smoothed signal and its eigenvalues 127

as input for training and testing. Experiment shows that 128

this method has good estimation performance at low SNR 129

Fan et al. [24] proposed a multipath features fusion network, 130

which fused the spatial features of the array and the temporal 131

features of the snapshots using the multi-scale scheme of 132

the Feature Pyramid Network and the Path Augmentation 133

Scheme of the Path Aggregation Network. Therefore, suf- 134

ficient source information can be extracted and better esti- 135

mation performance can be obtained in the real environment 136

Hu et al. [25] proposed an independent source number esti- 137

mation method based on the supervised learning convolu- 138

tional neural networks (CNN). The input of this CNN is 139

a mixed signal sequence. When the network has sufficient 140

data for training, the number of unknown sources can be 141

estimated, which prepares for blind source separation. 142

As a powerful time-frequency analysis method, EMD [26] 143

is also used in some source number enumeration algorithms 144

Pan et al. [27] proposed to use EMD to decompose the 145

original signal into several IMFs, and then extract features 146

from the instantaneous phase of each IMF component, and 147

finally use support vector machine (SVM) to predict the num- 148

ber of signal sources. However, EMD has certain inherent 149

defects such as end effect [28] and mode mixing [29], and the 150

elimination of these defects will improve the performance of 151

the source number enumeration algorithm. Ensemble Empir- 152

ical Mode Decomposition (EEMD) [30] makes improvement 153

based on the EMD method, which avoids the mode mixing 154

phenomenon. This improved method introduces uniformly 155

distributed white noise multiple times during decomposi- 156

tion, which suppresses the noise of the signal itself, thereby 157

obtaining a more accurate upper and lower envelope. Further, 158

Complementary Ensemble Empirical Mode Decomposition 159
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FIGURE 1. Array structure of the uniform circular array.

(CEEMD) [31] is an improved version of the EEMDmethod.160

It adds a pair of positive and negative white noises with oppo-161

site numbers to the source signal to eliminate the auxiliary162

white noise remaining after the decomposition of the EEMD163

method. The LocalMeanDecomposition (LMD)method [32]164

can adaptively decompose a multi-component signal into a165

series of product functions (PF), where each PF is multiplied166

by a pure frequency modulation function and an envelope167

function. By combining the instantaneous frequencies and168

amplitudes of all PFs, the time-frequency distribution of169

the original signal can be presented. Although the LMD170

method is able to avoid the end effect, there is no signifi-171

cant improvement in mode mixing in EMD. The Variational172

Mode Decomposition (VMD) method [33] is adaptive and173

completely non-recursive. When obtaining the decomposed174

components, this method determines the frequency center and175

bandwidth of each component by iteratively searching for176

the optimal solution of the variational model, so that the sig-177

nal components can be separated adaptively. Compared with178

EMD, VMD can effectively avoid the mode mixing and end179

effect in decomposition. This paper proposed a new method180

to restrain the end effect in EMD, and further proposed an181

improved source number enumeration algorithm.182

The following content is organized as follows: Section II183

presents the relevant theoretical background. Section III dis-184

cusses various application scenarios of the proposed SEMD185

method. Section IV introduced an improved source number186

enumeration method. Section V is the experiment and analy-187

sis of SEMD and the improved source number enumeration188

method. Finally, conclusions are given in Section VI.189

II. THEORETICAL BACKGROUND190

This section introduced the array signal model, the EMD191

method, and the BP algorithm.192

A. SIGNAL MODEL193

The uniform circular array (UCA) can obtain the azimuth and194

elevation angles of the signal source at the same time, and195

is often used for DOA estimation [34]. Therefore, this paper 196

used a UCA with M array elements for source number enu- 197

meration. The array structure is shown in Fig. 1. The signal 198

source is the Gaussian narrowband signal, and the wavelength 199

is twice the radius of the UCA. Assuming that K far-field 200

narrowband source signals are assumed to be incident with 201

wavelength λ, azimuth angle θ , and elevation angle φ. The 202

array signal mathematical model X (t) of the t th snapshot on 203

M array elements is: 204

X (t) = [x1(t), x2(t), . . . , xM (t)]T = AS(t)+ K (t) (1) 205

A = [a(θ1, φ1), a(θ2, φ2), . . . , a(θk , φk )] (2) 206

S(t) = [s1(t), s2(t), . . . , sK (t)]T (3) 207

K (t) = [k1(t), k2(t), . . . , kM (t)]T (4) 208

a(θi, φi) = [ejφi,1 , ejφi,2 , . . . , ejφi,M ]T (5) 209

φi,m =
2πr sin(θi) cos(φi −

2π (m−1)
M )

λ
, 210

(m = 1, 2, . . . ,M ) (6) 211

where X (t) is the output of M array elements; A is array 212

manifold; S(t) is the source vector; K (t) is the additive noise; 213

a(θi, φi) is the steering vector; and (θi, φi) is the azimuth and 214

elevation angles of the ith signal source. 215

B. EMD 216

The EMD can be applied to nonlinear and non-stationary 217

signals, with good self-adaptation [26]. In the decomposition 218

process, the cubic spline interpolation method [35] is used 219

multiple times to fit the upper and lower envelopes of the 220

signal. The average of the upper and lower envelopes are 221

taken to obtain several IMFs. Assuming that the signal s(t) 222

is composed of different IMFs, the specific decomposition 223

process is as follows: 224

1) All themaximum andminimum points of the signal s(t) 225

are fitted to the upper envelope and the lower envelope 226

respectively. 227

2) The mean value of the upper and lower envelopes are 228

taken, and recorded as m(t). The h1(t) can be obtained 229

as: 230

h1(t) = s(t)− m(t) (7) 231

3) If meets the conditions of IMF, h1(t) will be the first 232

IMF component of the s(t). Otherwise, let s(t) = h1(t), 233

then repeat the above steps until the first IMF compo- 234

nent c1(t) is obtained. 235

4) After obtaining the first IMF component, the residual 236

value sequence r1(t) can be obtained as: 237

r1(t) = s(t)− c1(t) (8) 238

5) The above steps are repeated to obtain each IMF com- 239

ponent: rn(t) is: 240

s(t) =
n−1∑
i=1

ci(t)+ rn(t) (9) 241

96068 VOLUME 10, 2022



S. Ge et al.: Effective Source Number Enumeration Approach Based on SEMD

where ci(t) is the ith IMF component and rn(t) is the242

residual component.243

C. BP ALGORITHM244

The BP neural network proposed by Rumelhart et al. [36]245

is capable of learning of the weights of the multi-layer neu-246

ral network with the error back-propagation algorithm. For247

each neural unit in the hidden layer, the weights learning248

can approximate all non-mapping relationship, and has a249

strong nonlinearmapping ability. This algorithm includes two250

propagation processes, namely the forward propagation of the251

sample data and the back propagation of the estimation error.252

The specific process is as follows:253

1) Initialize the BP neural network. Initial values are given254

for all values and thresholds in the neural network. Give255

a learning rate and the number of iterations. Pick a256

suitable excitation function.257

2) The output of the hidden layer can be obtained by258

transforming the input parameters with the excitation259

function:260

Hj = f (
n∑
i=1

wijxi − aj) (10)261

where f is the excitation function;wij is the weight262

between the ith layer node and the jth layer node; xi263

is the ith parameter of the input sequence; aj is the264

threshold of the jth layer node; and Hj is the output of265

the jth layer, where j = 1, 2, . . . , l.266

3) For the output of each node in the output layer.Hj267

linear fitting is performed by the weightwjk between268

the hidden layer node and the output layer node, and the269

threshold bk of the output layer node. The output value270

Ok of the k th node of the output layer can be obtained271

as:272

Ok =
l∑
j=1

Hjwjk − bk , (k = 1, 2, . . . ,m) (11)273

4) Depending on the k th ideal predicted value yk and the274

k th real output value Ok , the error can be obtained as:275

ek = yk − Ok (12)276

III. SEMD277

In order to restrain the end effect in EMD, this paper pro-278

poses the addition of the extreme points at both ends of the279

original signal to extend the signal length. This method uses280

the existing extreme points to predict the unknown extreme281

points, and then uses all the extreme points to obtain a new282

envelope curve. For a discrete signal x(t), the time series283

of the signal is {t1, t2, . . . , tn}, and the signal sequence is284

{x(t1), x(t2), . . . , x(tn)}. Suppose the signal has B maximum285

points and L minimum points. The time of the maximum286

point is TM (i)(i = 1, . . . ,B), and the function value is287

xM (i)(i = 1, . . . ,B). The time of the minimum point is288

TN (j)(j = 1, . . . ,L), and the function value is xN (j)(j =289

1, . . . ,L). The function value of the left endpoint of the signal 290

is xL and that of the right endpoint is xR. 291

In order to extend the signal length, a maximum point and 292

a minimum point are added to the left and right ends of the 293

signal. The method first finds extreme points in the signal that 294

are close to the function value of the first extreme point, and 295

takes them as candidate extreme points. The slope of the two 296

extreme points is used as an index to judge whether the two 297

waveforms are similar. Then, on one side of the candidate 298

point, the waveform that is the most similar to that on the left 299

endpoint or the right endpoint is found. Finally, the extreme 300

points in similar waveforms are the maximum and minimum 301

points to be added. The specific method of adding extreme 302

points is discussed as follows. 303

A. ADD EXTREME POINT AT LEFT END 304

1) Assuming that the first extreme point at the left end 305

of the signal is the maximum point. The following 306

definitions are available: 307

N2 = |xM (1)− xM (2)| 308

N3 = |xM (1)− xM (3)| 309

... (13) 310

NB = |xM (1)− xM (B)| 311

Np = min{N2,N3, . . . ,NB} (14) 312

Nq = min{N2,N3, . . . ,NB} (15) 313

where p ∈ {2, 3, . . . ,B}, q ∈ {2, 3, . . . ,B} and q 6= 314

p. Therefore, the closest function values xM (1) are 315

xM (p) and xM (q). Then, the extreme points where xM (p) 316

and xM (q) located are selected as candidate maximum 317

points. The waveform on the left side of the candidate 318

extreme point is similar to that at the left endpoint. For 319

the convenience of analysis, the function values of the 320

minimum point on the left side of the candidate point 321

are set as xN (u) and xN (v). Let the slopes of the straight 322

lines between the extreme points of the function values 323

xM (1) and xL , xM (p) and xN (u), and xM (q) and xN (v) be 324

k1, k2 and k3. Set the function values of the maximum 325

and minimum points added to the left end of the signal 326

be xM (0) and xN (0), and the times are TM (0) and TN (0). 327

The following derivation can be obtained: 328

F1 = |k1 − k2| (16) 329

F2 = |k1 − k3| (17) 330

If min{F1,F2} = F1 : 331

TN (0) = TM (1)− (TM (p)− TN (u)) (18) 332

xN (0) = xN (u) (19) 333

TM (0) = TN (0)− (TN (u)− TM (p− 1)) 334

(20) 335

xM (0) = xM (p− 1) (21) 336

If min{F1,F2} = F2 : 337

TN (0) = TM (1)− (TM (q)− TN (v)) (22) 338

VOLUME 10, 2022 96069



S. Ge et al.: Effective Source Number Enumeration Approach Based on SEMD

xN (0) = xN (v) (23)339

TM (0) = TN (0)− (TN (v)− TM (q− 1))340

(24)341

xM (0) = xM (q− 1) (25)342

2) Assuming that the first extreme point at the left end of343

the signal is the minimum point, the following defini-344

tions are obtained:345

N2 = |xN (1)− xN (2)|346

N3 = |xN (1)− xN (3)|347

... (26)348

NL = |xN (1)− xN (L)|349

Np = min{N2,N3, . . . ,NL} (27)350

Nq = min{N2,N3, . . . ,NL} (28)351

where p ∈ {2, 3, . . . ,L}, q ∈ {2, 3, . . . ,L} and q 6= p.352

Therefore, the extreme points where the function values353

xN (p) and xN (q) are located are candidate minimum354

points. Set the function values of the maximum point355

on the left of the candidate point as xM (u) and xM (v).356

Set the slopes of the straight lines between the extreme357

points of the function values xN (1) and xL , xN (p) and358

xM (u), and xN (q) and xM (v) be k1, k2 and k3. Other359

parameters are defined and similarly to section (1). The360

following derivation is obtained:361

F1 = |k1 − k2| (29)362

F2 = |k1 − k3| (30)363

If min{F1,F2} = F1 :364

TM (0) = TN (1)− (TN (p)− TM (u)) (31)365

xM (0) = xM (u) (32)366

TN (0) = TM (0)− (TM (u)− TN (p− 1))367

(33)368

xN (0) = xN (p− 1) (34)369

If min{F1,F2} = F2 :370

TM (0) = TN (1)− (TN (q)− TM (v)) (35)371

xM (0) = xM (v) (36)372

TN (0) = TM (0)− (TM (v)− TN (q− 1))373

(37)374

xN (0) = xN (q− 1) (38)375

B. ADD EXTREME POINT AT RIGHT END376

1) Assuming that the first extreme point at the right end of377

the signal is the maximum point, the function value of378

this extreme point is xM (B). The following definitions379

are obtained:380

N1 = |xM (B)− xM (1)|381

N2 = |xM (B)− xM (2)|382

... (39)383

NB−1 = |xM (B)− xM (B− 1)| 384

Np = min{N1,N2, . . . ,NB−1} (40) 385

Nq = min{N1,N2, . . . ,NB−1} (41) 386

where p ∈ {1, 2, . . . ,B− 1}, q ∈ {1, 2, . . . ,B− 1} and 387

q 6= p. Therefore, the closest function values xM (B) are 388

xM (p) and xM (q). The extreme point where the function 389

values xM (p) and xM (q) are located is selected as the 390

candidate maximum value point. The waveform on the 391

right side of the candidate extreme point is similar to 392

the waveform at the right endpoint. Set the function 393

values of the minimum point on the right side of the 394

candidate point as xN (u) and xN (v). Set the slopes of 395

the straight lines between the extreme points of the 396

function values xM (B) and xR, xM (p) and xN (u), and 397

xM (q) and xN (v) lie as k1, k2 and k3. Set the function 398

values of the maximum and minimum values added to 399

the right end of the signal as xM (B+ 1) and xN (L + 1), 400

and the time as TM (B+1) and TN (L+1). The following 401

derivation can be obtained: 402

F1 = |k1 − k2| (42) 403

F2 = |k1 − k3| (43) 404

If min{F1,F2} = F1 : 405

TN (L + 1) = TM (B)+ (TN (u)− TM (p)) (44) 406

xN (L + 1) = xN (u) (45) 407

TM (B+ 1) = TN (L + 1)+ (TM (p+ 1)− TN (u)) 408

(46) 409

xM (B+ 1) = xM (p+ 1) (47) 410

If min{F1,F2} = F2 : 411

TN (L + 1) = TM (B)+ (TN (v)− TM (q)) (48) 412

xN (L + 1) = xN (v) (49) 413

TM (B+ 1) = TN (L + 1)+ (TM (q+ 1)− TN (v)) 414

(50) 415

xM (B+ 1) = xM (q+ 1) (51) 416

2) Assuming that the first extreme point at the right end of 417

the signal is the minimum point, the function value of 418

this extreme point is xN (L). The following definitions 419

are available: 420

N1 = |xN (L)− xN (1)| 421

N2 = |xN (L)− xN (2)| 422

... (52) 423

NL−1 = |xN (L)− xN (L − 1)| 424

Np = min{N1,N2, . . . ,NL−1} (53) 425

Nq = min{N1,N2, . . . ,NL−1} (54) 426

where p ∈ {1, 2, . . . ,L − 1}, q ∈ {1, 2, . . . ,L − 1} 427

and q 6= p. Therefore, the extreme points where the 428

function values xN (p) and xN (q) are located at the 429

candidate minimum points. Let the function values of 430

the maximum point on the right side of the candidate 431
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point be xM (u) and xM (v). Set the slopes of the straight432

lines between the extreme points of the function values433

xN (L) and xR, xN (p) and xM (u), and xN (q) and xM (v)434

lie as k1, k2 and k3. Other parameters are defined in the435

same way as section (1). The following derivation is436

obtained:437

F1 = |k1 − k2| (55)438

F2 = |k1 − k3| (56)439

If min{F1,F2} = F1 :440

TM (B+ 1) = TN (L)+ (TM (u)− TN (p)) (57)441

xM (B+ 1) = xM (u) (58)442

TN (L + 1) = TM (B+ 1)+ (TN (p+ 1)− TM (u))443

(59)444

xN (L + 1) = xN (p+ 1) (60)445

If min{F1,F2} = F2 :446

TM (B+ 1) = TN (L)+ (TM (v)− TN (q)) (61)447

xM (B+ 1) = xM (v) (62)448

TN (L + 1) = TM (B+ 1)+ (TN (q+ 1)− TM (v))449

(63)450

xN (L + 1) = xN (q+ 1) (64)451

C. PROCESSING ENDPOINTS452

If the function value at the end point is greater than that453

at the first maximum value point closest to the end point,454

or less than the first minimum value point, the endpoint will455

be outside the upper and lower envelopes. In order to avoid456

this situation, this type of point is taken as the first maximum457

or first minimumpoint closest to the endpoint. Then the above458

method is used to add amaximum value and aminimum value459

at both ends of the signal.460

IV. SOURCE NUMBER ENUMERATION ALGORITHM461

Reference [27] proposed a source enumeration based on a462

UCA in a determined case, while our work improved this463

method. First, the Hilbert-Huang transform (HHT) [37] is464

performed on the received signal to obtain the instantaneous465

phase. Notably, the HHT process is based on the SEMD466

proposed in this paper, not EMD. Then eigenvalue decom-467

position (EVD) [38] is performed on the covariance matrix468

of the instantaneous phase to obtain the eigenvalue vector.469

In addition, in order to obtain a high-dimensional eigenvalue470

vector, three different eigenvalues are added to the original471

eigenvectors. Finally, the designed BP neural network is472

trained for source number enumeration. The process of the473

source number enumeration algorithm is shown in Fig. 2.474

A. GETTING THE SIGNAL INSTANTANEOUS PHASE475

HHT has two processes, i.e. EMD and HT, which can process476

non-stationary nonlinear signals and obtain the instantaneous477

phase [37], but EMD has an end effect that can cause errors in478

the IMF components. The SEMD effectively restrains the end479

effect by extending the signal length. Therefore, this paper480

FIGURE 2. Flow chart of the source number enumeration algorithm.

uses a new HHT method combined with SEMD and HT. The 481

spatial signal s(t) received by the UCA model with M array 482

elements is: 483

s(t) = [s1(t), s2(t), . . . , sM (t)] (65) 484

It can be known from sections II.B and III that the signal sk (t) 485

can be decomposed as: 486

sk (t) =
n−1∑
i=1

cki(t)+ rkn(t) (66) 487

where k = 1, 2, . . . ,M , sk (t) is the signal received on the k th 488

array element, cki(t) is the ith IMF, and rkn(t) is the residual. 489

HT for each IMF is as follows: 490

H [cki(t)] =
1
π
p

∫
∞

−∞

cki(τ )
τ − t

dτ (67) 491

where p is the Cauchy principal value. Then the instantaneous 492

phase of cki(t) can be expressed as: 493

ϕki(t) = arctan
H [(cki(t))]
cki(t)

(68) 494

B. EXPANDING THE EIGENVECTORS 495

Wu and So [39] theoretically proved that due to the differ- 496

ent positions of each array element in UCA, there will be 497

phase differences when each array element receives the signal 498

source. Therefore, the instantaneous phase can be used for 499

feature extraction. First, the covariance matrix of the instan- 500

taneous phase between the array elements is constructed as 501

follows: 502

R̂i =
1
L
1i1

T
i (69) 503

1i = [φ1i, φ2i, . . . , φMi]T (70) 504

φki = [φki(1), φki(2), . . . , φki(L)] (71) 505

where i = 1, 2, . . . , n−1, L is the number of snapshots. Then 506

do EVD on R̂i as: 507

R̂i = Ui3iUT
i (72) 508

where3i = diag(λ1i, λ2i, . . . , λMi) is the eigenvalue. By cal- 509

culating the correlation coefficient [40] between each IMF 510

and the signal, it can be known that the first three IMFs have 511

the largest correlation coefficient with the signal. Therefore, 512
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the first three IMFs were selected for data analysis. With the513

above method being performed on the instantaneous phases514

of the first three IMFs, the 3 ∗M dimension eigenvalues can515

be obtained as follows:516

(λ11, λ21, . . . , λM1, λ12, λ22, . . . , λM2, λ13, λ23, . . . , λM3).517

The signal is easily disturbed by the external environment,518

which will reduce the phase difference between the array ele-519

ments. Therefore, this paper adds three different eigenvalues520

to highlight the phase difference between each array element.521

The 3∗M dimensional eigenvalues are recorded as follows:522

λ1 ≤ λ2 . . . ≤ λ3M-1 ≤ λ3M (73)523

The three added difference eigenvalues are:524

λ3M+1 = λ3M − λ1 (74)525

λ3M+2 = λ3M-1 − λ2 (75)526

λ3M+3 = λ3M-2 − λ3 (76)527

The eigenvalue vector after dimension expansion is:528

T = (λ11, . . . , λ(M+1)1,λ12, . . . , λ(M+1)2, λ13, . . . , λ(M+1)3)529

All eigenvalues are normalized as:530

•

λi =
λi

3∗M+3∑
i=1

λi

(77)531

The normalized eigenvalue matrix is:532

A = (
•

λ11, . . . ,
•

λ(M+1)1,
•

λ12, . . . ,
•

λ(M+1)2,
•

λ13, . . . ,
•

λ(M+1)3)533

(78)534

C. THE NEURAL NETWORK SOURCE NUMBER535

ENUMERATION MODEL536

A reasonable network structure can ensure high prediction537

accuracy, and in this work, the network model used is the538

BP neural network. Since the subsequent experiments in this539

paper use UCA with 4 array elements, signals with 1, 2, and540

3 sources are enumerated respectively. Therefore, the number541

of nodes in the output layer of the network is 3, and the nodes542

in the input layer of the network are 15.543

At present, there is no scientific method to determine the544

number of nodes in the hidden layer of the BP neural net-545

work. If the number of hidden layer nodes is smaller, the546

network iteration speed will be faster. Too few hidden layer547

nodes, however, can also affect the prediction accuracy of the548

network. This paper experimented many times and decided549

to use 2 hidden layers. First, the neural network with only550

one hidden layer is used for training. The more nodes in the551

hidden layer, the less error in the network decreases. A second552

hidden layer is added when the error of the network is mini-553

mized. The number of nodes in the first hidden layer is kept554

unchanged, and the number of nodes in the second hidden555

layer is increased until the entire network error minimizes.556

The structure of the final BP neural network is 15-17-6-3,557

as shown in Fig. 3.558

FIGURE 3. BP neural network structure.

FIGURE 4. Distribution map of extreme value points based on SEMD.

V. EXPERIMENT AND ANALYSIS 559

This section verifies the effectiveness of SEMD in restraining 560

the end effect by comparing the decomposition performance 561

of EMD and SEMD. Then, the improved source number 562

enumeration algorithm based on SEMD is evaluated based on 563

computer data and radio frequency anechoic chamber data. 564

Then, the experimental results of this method are compared 565

and analyzed with other methods. The configurations of the 566

computer used in this experiment are Intel i7 CPU and 16G 567

memory, and the operating system is Microsoft Windows 10. 568

The software used for data simulation is Matlab 2016a. 569

A. THE EFFECTIVENESS VERIFICATION OF THE SEMD 570

In order to verify the effectiveness of the SEMD method to 571

restrain the end effect, this paper used a mixed signals to 572

compare the algorithm performance of EMD and SEMD. The 573

mixed signal x(t) is: 574

x(t) = g(t)+ h(t)+ f (t) (79) 575

g(t) = sin(4π t + 2) (80) 576

h(t) = sin(40π t) (81) 577

f (t) = cos(20π t + 1) (82) 578

First locate the extreme points of x(t) is located. Then, 579

a maximum point and a minimum point are added at both 580

ends of the signal based on SEMD. As shown in Fig. 4, 581

‘‘◦’’ represents the original extreme point of x(t), and ‘‘Q’’ 582

represents the newly added extreme point. 583
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FIGURE 5. Upper and lower envelope fitting based on SEMD.

FIGURE 6. Signal decomposition diagram. (a) Based on EMD. (b) Based
on SEMD.

Envelope fitting is performed on all maximum points and584

all minimum points by cubic spline interpolation. As shown585

in Fig. 5, the signal x(t) is completely enveloped between586

the upper and lower envelopes, which indicates that the cubic587

spline interpolation based on SEMD can realize the full enve-588

lope of the signal.589

The signal decomposition based on EMD and SEMD is590

shown in Fig. 6. In the figure, the blue and red lines repre-591

sent the decomposed IMFs and the actual signal component,592

respectively. Compared with EMD, the IMF decomposed by593

CEMD is more consistent with the actual signal components,594

which is even more evident near the endpoints. This proves595

that SEMD can well restrain the end effect.596

FIGURE 7. BP neural network training diagram.

B. THE SOURCE NUMBER ENUMERATION BASED ON 597

COMPUTER DATA 598

In this paper, three far-field narrowband signals with one, 599

two, and three sources are estimated by UCA with four array 600

elements (4-UCA). The incident angles of the signal include 601

the azimuth angles and the elevation angles. In order to train 602

the BP neural network, three signals with SNR=15dB, L=200 603

and incident angles of (80◦, 20◦), (60◦, 40◦), (30◦, 60◦) are 604

randomly selected, where L is the number of snapshots. The 605

coloured noise contained in the signal is obtained by filtering 606

the white gaussian noise [41]. 200 samples for each signal 607

with one, two, and three sources are taken by the method 608

in section IV. The samples of these three types of signals 609

were labeled differently and then were mixed randomly into 610

a dataset of 600 samples. This dataset is used to train the 611

BP neural network, and the error accuracy is set to 0.01. 612

As shown in Fig. 7, after 685 times of training, the network 613

model reaches the error accuracy and the training is com- 614

pleted. 615

1) DETECTION PROBABILITIES AGAINST DIFFERENT SNRS 616

Set L=100, the SNR has a step size of 2 and values from 617

−20dB to 20dB, 50 test samples are taken for each signal with 618

one, two, and three sources and then were mixed randomly 619

into a dataset containing 150 samples. It should be noted that 620

the incident angle of the signal used in the training and test 621

sample is different. The simulation results of this method are 622

compared with the D-AIC method [42], the D-MDL method 623

[42], the GDE method [43], the SORTE method [44] and 624

the HHT-SVM method [27]. 100 Monte Carlo experiments 625

were performed for each algorithm under different SNRs. 626

Fig. 8 shows the detection probabilities of the six methods for 627

signals with one source and three sources at different SNRs. 628

As can be seen from Fig. 8(a), except for the SORTE 629

method and the GDE method, the detection probability of 630

other methods has reached more than 90% in the entire SNR 631

range. The detection probability of the proposed method all 632

exceeds 95%, and the detection probability reaches 100% 633

when SNR ≥ −12dB. As can be seen from Fig. 8(b), as the 634

number of sources increases, the detection probability of the 635
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FIGURE 8. The detection probabilities of the six methods at different
SNRs. (a) One source. (b) Three sources.

six methods decreases. The SORTE method and the GDE636

method have completely failed when the number of signal637

sources is three and the detection probability is zero. The638

detection probability of the D-AIC and D-MDL methods is639

zero at low SNR. Both the proposed method and the HHT-640

SVM method have good performance, but the detection rate641

of the proposed method in this paper is higher than that of642

the HHT-SVMmethod in the whole SNR range. According to643

the above analysis, when the number of sources increases, the644

proposed method has better performance than other methods645

under different SNRs.646

2) DETECTION PROBABILITIES AGAINST DIFFERENT647

NUMBER OF SNAPSHOTS648

Set SNR = 200dB, the L has a step size of 10 and the value is649

from 40 to 100. 100 Monte Carlo experiments are carried out650

for each method under different snapshot numbers, and other651

requirements are the same as in section (1). Fig. 9 shows the652

detection probabilities of the six methods for signals with one653

source and three sources at different snapshots.654

FIGURE 9. The detection probabilities of the six methods at different
snapshots. (a) One source. (b) Three sources.

As can be seen from fig. 9(a), except for the SORTE 655

method, the detection probability of other methods increases 656

rapidly with the increase of the snapshots number. Compared 657

with other methods, the proposed method performs better 658

when the number of snapshots is less than 50dB. It can be 659

seen from fig. 9(b) that the SORTE and the GDE methods 660

failed. The detection probability of the other four methods 661

has also decreased compared with fig. 9(a). By contrast, the 662

performance of the proposed method is better than other 663

methods in the whole range of snapshot number, especially 664

under the small number of snapshots. 665

C. THE SOURCE NUMBER ENUMERATION BASED ON RF 666

ANECHOIC CHAMBER DATA 667

This paper used the signal data collected in the RF anechoic 668

chamber to verify the performance of each method in a real 669

environment. The parameters of the RF anechoic chamber are 670

shown in Table 1. 671

Three signals with SNR = 20, L = 200, and incident 672

angles of (70◦, 30◦), (50◦, 40◦), (80◦, 50◦) are randomly 673
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TABLE 1. Indexes of parameters in RF anechoic chambers.

FIGURE 10. BP neural network training diagram.

selected. The RF anechoic chamber equipment is utilized to674

acquire signals with one, two, or three sources. 200 samples675

are taken for signals with different numbers of sources and676

marked with different labels. After randommixing, a training677

set with a total of 600 samples is formed. The training of the678

BP neural network is shown in Fig. 10: the error accuracy is679

set to 0.01; and after 963 times of learning, the training of the680

BP neural network model is completed.681

1) DETECTION PROBABILITIES AGAINST DIFFERENT SNRS682

The signal samples were collected in the RF anechoic cham-683

ber by the method of section B.(1). The setting of the exper-684

imental parameters is also the same as that of section B.(1).685

The detection probabilities of the six methods for one source686

and three source signals under different SNRs are shown in687

Fig. 11.688

The trend of detection probability for each method in689

Fig. 11 is similar to that in Fig. 8. It should be noted that690

the signal data obtained from the RF anechoic chamber is691

different from the computer signal data. Because the former692

contains other colored noises from various types in the space.693

These noises will cause some errors in signal decomposition,694

which will affect the next step of source number enumeration.695

Therefore, compared with the Fig. 8, the detection probability696

of eachmethod in the Fig. 11 dropped. However, the proposed697

method is still the best performer. Notably, when the number698

of sources is 3, other methods have failed or performed poorly699

FIGURE 11. The detection probabilities of the six methods at different
SNRs. (a) One source. (b) Three sources.

except for the proposed method and the HHT-SVM method. 700

Besides the proposed method is even better than HHT-SVM 701

in the whole SNR range. Therefore, the proposed method is 702

more suitable for signal data in the real environment, and 703

performs well under different SNRs. 704

2) DETECTION PROBABILITIES AGAINST DIFFERENT 705

NUMBER OF SNAPSHOTS 706

This experiment used the signal samples collected in the RF 707

anechoic chamber, and all parameters are the same as in 708

section B.(2). Fig. 12 shows the detection probabilities of the 709

six methods for one source and three sources signal under 710

different snapshot numbers. 711

The trend of detection probability for each method in 712

Fig. 12 is similar to that in Fig. 9. The analysis is similar 713

to section C.(1). The proposed method performs the best 714

compared to other methods regardless of whether it is under 715

one source or three sources. It is worth noting that when the 716

number of sources is 3 and the number of snapshots is 40, the 717

detection probability of the proposed method exceeds 80%. 718
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FIGURE 12. The detection probabilities of the six methods at different
snapshots. (a) One source. (b) Three sources.

Therefore, the proposed method performs well under a small719

number of snapshots.720

VI. CONCLUSION721

This paper proposed an improved source number enu-722

meration method based on SEMD. The proposed method723

addresses the end effect caused by cubic spline interpolation724

in EMD by extending the signal length. The source number725

enumeration method first obtains the instantaneous phase of726

the signal with HHT, where the EMD is replaced by the727

improved SEMD. The feature extraction is then performed728

on the instantaneous phase to obtain the feature vectors.729

To achieve high-dimensional eigenvectors, three differenct730

eigenvalues are added to the original eigenvectors. Finally,731

a special BP neural network is designed to predict the sig-732

nal with an unknown number of sources. To evaluate the733

effectiveness of this source number enumeration method,734

a series of experiments are conducted in this paper. Firstly,735

SEMD and EMD are performed on the original signal, and736

the results obtained from both are compared. The result shows737

that SEMD can well restrain the end effect very well. Then, 738

the experiment is carried out by comparing the proposed 739

method with the HHT-SVMmethod, the SORTE method, the 740

GDE method, the D-AIC method, and the D-MDL method. 741

The experiment results show that the proposed method has 742

a higher detection probability and better performance than 743

other methods, especially when the number of sources is large 744

or the number of snapshots is small. Finally, the data of the 745

RF anechoic chamber is used to verify the effectiveness of the 746

proposed method in the real environment. One limitation of 747

the proposed method is that its computation is complicated. 748

Therefore, optimizing the calculation is the future research 749

direction of this work. 750
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