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ABSTRACT During the long-term operation of a coal-fired boiler, some defects of its inner wall are
unavoidable. The traditional manual detecting method is time-consuming and not safe for maintenance
engineers. In this paper, we propose an automatic detection method to deal with inner wall defects based
on an improved YOLO-v5 network and data augmentation technologies. Specifically, some shallow features
and original deep features are fused on the basis of the original YOLO-v5 network for the small objects.
Meanwhile, a squeeze-excitation (SE) attention module is added behind the network’s backbone to improve
the feature extraction efficiency of the network, and a varifocal loss function is adopted to make it easier for
the network to detect those dense objects. Moreover, 176 images including four types of typical inner wall
defects (castables falling off, anti-wear layer damage, perforation and bruise) are collected from a power
plant boiler, and five data augmentation technologies are introduced to increase the number of samples. The
experimental results demonstrate that the proposed method can effectively detect various defects of a boiler
inner wall with a satisfactory accuracy, and bring a great facilitation to the maintenance of a power plant.
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INDEX TERMS Boiler inner wall defects, object detection, improved YOLO-v5 network, data augmenta-
tion.

I. INTRODUCTION15

Owing to the complex structure and harsh environment in a16

boiler of coal-fired power plants, some defects are inevitable17

during the long-term uninterrupted operation process, espe-18

cially on the inner wall of a boiler. Although a boiler can19

run steadily at most of time, once unexpected defects occur,20

it must be shut down for maintenance. As a result, the cost21

of the power plant should be increased and the safety of the22

boiler’s operation will be threatened [1], [2], [3]. Therefore,23

it is of great significance to accurately and automatically24

detect the defects of a boiler inner wall.25

Traditionally, the manual maintenance method requires26

maintenance engineers of power plants to carry numerous27
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detection instruments (e.g., endoscopes) into a boiler inner 28

wall for inspecting the steel pipes one by one [4]. This 29

inspecting process costs great workload and its effects depend 30

largely on the maintenance engineers’ experiences. Clearly, 31

such a traditional method is not effective, especially for the 32

safety of engineers. Therefore, an effective automatic detec- 33

tion technology for inner wall defects of a boiler is required 34

instead. 35

The development of deep learning technologies makes 36

it possible to solve the problem aforementioned. Among 37

them, convolutional neural networks are widely used in 38

image classification, object detection, semantic segmenta- 39

tion and other tasks due to their powerful image feature 40

extraction ability [5], [6], [7], [8]. In object detection tasks, 41

the mainstream two-stage network is regions with convo- 42

lutional neural networks features (R-CNN) [9], [10], [11], 43
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FIGURE 1. Four main types of inner wall defects in a boiler.

[12], and the mainstream one-stage networks are you only44

look once (YOLO) [13], [14], [15], [16], [17] and single45

shot multibox detector (SSD) [18], [19]. In reference [20],46

Fang et al. developed a hybrid network, which adopted a47

Faster R-CNN to robustly detect the object parts, and used48

a model-driven clustering algorithm to group the related49

partial detections and suppress false detections. Based on50

YOLO-v3 network, Kou et al. added several dense convolu-51

tional blocks to make the network more efficient in extract-52

ing image features and improve the network’s performance.53

Some experimental results in [21] showed that the proposed54

object detection network can detect various defects on the55

surface of steel bars well, which is superior to the original56

YOLO-v3 network. Noting the shortcomings of unmanned57

aerial vehicles in detecting pedestrians near the ground in low58

illumination environment, Wang et al. proposed a pedestrian59

detection method based on image fusion and YOLO-v3 net-60

work, and introduced a convolutional block attention module61

to improve the network’s performance [22]. In reference [23],62

Zeng et al. added an adversarial occlusion network to the63

standard Faster R-CNN detection network, and this improved64

network showed a fine accuracy. As for the insensitivity65

problem of existing object detection algorithms for large66

or medium defect targets on bearing covers, Zheng et al.67

developed an improved YOLO-v3 network to detect defects68

in real-time [24].69

The above results show some effective applications of70

excellent object detection networks in practice. Nevertheless,71

few of them take the density and size of the objects to be72

detected into account. Moreover, the training efficiency of73

a detection network is of great importance. Thus, it is sig-74

nificant to improve the performance of an object detection75

network from the perspective of training efficiency.76

During a training process, the quality and quantity of a77

dataset play crucial roles in a network’s performance, and78

the sample number of a dataset used for object detection79

is insufficient in many cases. As an effective technique80

to increase the number of samples, data augmentation has81

attracted more and more attention of researchers [25], [26],82

[27]. In reference [28], Zhang et al. input the augmented83

dataset into a convolutional neural network to classify the84

images, and their data augmentation technology showed a85

satisfactory effect. To enhcance the accuracy of image classi- 86

fication, Takahashi et al. applied a novel data augmentation 87

technology, and achieved a new state-of-the-art test error of 88

2.19% on CIFAR-10 [29]. These research results indicate that 89

data augmentation technologies can effectively increase the 90

network’s capacity to extract features from samples. 91

Given the above-mentioned problems, in this paper, three 92

aspects are improved based on the original YOLO-v5 net- 93

work. First, some shallow features are fused with the original 94

deep features to enhance the network’s ability to extract 95

features of small objects. Then a squeeze-excitation (SE) 96

attention module is added at the end of the YOLO-v5 net- 97

work’s backbone to make the network more efficient for fea- 98

ture extraction. Third, the detection network’s loss function 99

is replaced with a varifocal loss to improve the detection 100

ability of the network for those dense objects. Moreover, 101

to deal with the shortage of some defect images in the original 102

dataset, five data augmentation technologies are utilized to 103

augment the original inner wall defects dataset of a boiler. 104

Finally, experimental results demonstrate that the improved 105

YOLO-v5 network can detect the defects effectively while 106

having a satisfactory accuracy, and is superior to the original 107

YOLO-v5 network and some commonly used networks. Fur- 108

thermore, the data augmentation technologies adopted in this 109

paper are also shown to be effective. 110

The rest of this paper is organized as follows. The inner 111

wall defects of a boiler under study are described in Sec. 2. 112

Sec. 3 introduces the research methods involved in this paper. 113

And the detailed experiment results are represented in Sec. 4. 114

At last, remarkable conclusions are drawn and future works 115

are given in Sec. 5. 116

II. RESEARCH OBJECT DESCRIPTION 117

As recommended by some skilled power plant engineers, 118

there are four main types of common defects on the inner 119

wall of a boiler, namely castables falling off, anti-wear layer 120

damage, perforation, and bruise, as shown in Fig. 1. Specifi- 121

cally, the castables wrapped in the inner wall of a boiler can 122

effectively prevent the inner wall from being affected by harsh 123

environments such as high temperature, high pressure, and 124

corrosion, thereby prolonging the service life of the boiler. 125

Once the castables fall off somewhere, it is likely to crack 126
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FIGURE 2. Flow chart of the proposed defects detection process.

there and its nearby areas, this situation will greatly endanger127

the boiler’s safe operation. An anti-wear layer plays a signif-128

icant role during the safe operation of a boiler, and its main129

function is to improve the fire resistance of its components130

and prevent damage to these components. Besides, some131

perforations and bruises are found on the inner wall during132

the process of collecting dataset on site, and they are mostly133

caused by the damage and maintenance of certain parts in the134

boiler.135

The above defects affect the boiler’s stable operation to136

various degrees. However, as represented in Sec. I, manual137

detection is time-consuming, inefficient, and not conducive138

to the safety of maintenance engineers. Consequently, the139

research object of this paper is to fully use a large amount140

of data collected on site in the boiler to train a network that141

automatically detects various defects on the inner wall of the142

boiler, so as to facilitate the maintenance of the boiler, and143

reduce the cost of the power plant, more importantly, ensure144

the safe operation of the boiler. Specifically, the flow chart of145

detection process of inner wall defects in a boiler is shown in146

Fig. 2.147

III. RESEARCH METHODS148

A. Data AUGMENTATION149

In the field of computer vision, data augmentation is a pow-150

erful technology to improve a network’s performance [30].151

Similar to a human learning process, if a network fully learns152

various characteristics of the objects in a training process,153

it will show an excellent performance in a test set. Benefical154

from some data augmentation technologies, a network can155

learn the objects’ characteristics in different lighting, angles,156

and scales, leading to an improvement over a network’s rea-157

soning ability.158

Among data augmentation technologies, image rotation159

and flipping are the most common. Scale transformation,160

adding noise, and illumination processing are also useful161

methods [31], [32]. Besides, generative adversarial networks162

also perform well in data augmentation tasks [33], [34], [35].163

TABLE 1. Number of samples for each type of defect before and after
data augmentation.

According to the different characteristics of various defects 164

in the original dataset, five technologies are adopted to aug- 165

ment the original dataset, namely rotating, blurring, darken- 166

ing, random clipping, and flipping. The above technologies 167

improve the original dataset’s quality from different aspects, 168

and the number of samples is increased from 176 to 1501. 169

The augmented images of four types of defects are shown in 170

Fig. 3. And the number of image samples for various types of 171

defects before and after augmentation is shown in Table 1. 172

Clearly, the defect images under different angles, light 173

intensity, scale, and noise intensity are added after the five 174

data augmentation technologies. When an object detection 175

network fully learns these features, it will have a strong 176

robustness.Moreover, the effectiveness of these data augmen- 177

tation technologies on the network’s performance is verified 178

in Sec. 4.2. 179

B. YOLO-v5 NETWORK 180

Similar to YOLO-v4 network, the overall structure of YOLO 181

v5 network changes little, but its detection speed and accuracy 182

are greatly improved. Specifically, at the input side of the 183

YOLO-v5 network, four images from the original dataset 184

are randomly cropped and spliced to one image by a mosaic 185

method. At the same time, some black edges are adaptively 186

added to images with different length-to-width ratios so as to 187

accelerate network reasoning. During each training process, 188

the prediction anchors are output according to the initial set 189

anchor values, and the best anchor values suitable for differ- 190

ent training data are continuously adjusted. The network’s 191

backbone is composed of a focus module and some CSP 192

modules, in which the image with the size of 608 ∗ 608 ∗ 3 is 193

sliced and convoluted to obtain a feature map with the size of 194

304 ∗ 304 ∗ 32 in the focus module, and the CSP module is 195

mainly composed of convolution, batch normalization, mish, 196

residual and concat operations, as shown in the blue box in 197

Fig. 4. At the neck side of the network, various features at 198

different levels are fused together to improve the detection 199

ability of the network for different objects. Besides, a focal 200

loss is chosen as the loss function, which considers the length- 201

to-width ratios of both prediction anchors and object anchors, 202

and a non-maximum suppression operation is applied to 203

improve the prediction anchors’ accuracy. 204

C. IMPROVED YOLO-v5 NETWORK 205

The original YOLO-v5 network has a high accuracy in the 206

detection of large objects, such as pedestrian detection, vehi- 207

cle detection, etc. However, it does not perform pretty well for 208
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FIGURE 3. Defect images before and after data augmentation.

objects that are relatively small or dense, such as inner wall209

defects of a boiler. Therefore, the following three improve-210

ments are made to the original YOLO-v5 network.211

1) FUSION OF MULTILEVEL FEATURES212

In object detection tasks, pedestrians, buildings, etc. are213

usually considered as larger objects, and in this paper, the214

four defects to be detected are relatively medium or small.215

Moreover, from Fig. 1, it can be seen that there are obvious216

differences among the four types of defects. Specifically, the217

defect objects of anti-wear layer damage, perforations and218

bruise aremostly small, while those of castables falling off are219

mostly large. During a network training process, the essence220

of convolutional layers is the layer-by-layer extraction of221

image features. So, the former convolutional layers can form222

some larger feature maps to capture those small objects, 223

while the latter ones can form some smaller feature maps 224

to capture those large objects. For the four types of defects 225

in the dataset, the feature levels required for each type of 226

defect are different. However, the original YOLO-v5 network 227

has only some deep-level feature extraction modules, but 228

not a shallow one [36]. As a result, those deep-level feature 229

extraction modules may not be enough to comprehensively 230

extract the features of the small objects. 231

In response to the above problem, a shallow-level fea- 232

ture extraction module for small objects is introduced to 233

the original YOLO-v5 network, as shown in Fig. 4. An up- 234

sampling operation is taken behind the 19th block so as to 235

further expand the feature map. After the 20th block, the 236

obtained feature map is concatenated with that of the second 237
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FIGURE 4. Detailed structure of the improved YOLO-v5 network.

convolutional block in the network’s backbone, see the red238

connecting line in Fig. 4. Meanwhile, the detection of small239

objects is added to the detection side. Through such changes,240

multiple levels of features are thoroughly fused, hence the241

detection network may have a more powerful capacity of242

detecting the relatively small defects, such as anti-wear layer243

damage and bruise.244

2) SE ATTENTION MODULE245

In an object detection task, different features of objects are246

extracted by different convolutional channels, and these fea-247

tures have different importance to the object detection task.248

Once the network invests too many training resources into249

those less important features, its training efficiency will be250

affected, so is the network’s accuracy.251

For this reason, an SE attention module is added behind252

the feature extraction layer of the original YOLO-v5 network,253

as shown in Fig. 4. The calculation of this module mainly254

consists of two stages: feature compression and feature exci- 255

tation. Firstly, in the feature compression stage, the feature 256

map (h ∗ w ∗ c) extracted in the previous step outputs the 257

compressed global features (1∗1∗c) through a global average 258

pooling operation. Then in the feature excitation stage, the 259

compressed global feature passes through two fully con- 260

nected layers of two activation functions, relu and sigmoid, 261

and outputs the weights (importance) of each convolutional 262

channel. Finally, the original feature map is multiplied by the 263

different weights of the corresponding channels [37], see the 264

orange box in Fig. 4. 265

After some multi-layer convolutional operations, the net- 266

work has extracted different features of the objects. And it 267

gives different weights to different convolutional channels 268

by adding this SE attention module. The more important 269

the feature, the larger the weight, and vice versa, thereby 270

improving the network’s feature extraction efficiency as well 271

as the performance. 272
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3) VARIFOCAL LOSS273

The loss function is an important factor affecting the net-274

work’s convergence. During a training process, the network275

aims at minimizing the loss function and continuously per-276

forms gradient descent. Sometimes, however, the objects to277

be detected is relatively dense, making it difficult for the net-278

work to accurately detect, so the optimization direction of the279

network gradually deviates from what we want, as described280

in [38].281

For alleviating this problem, a varifocal loss is adopted as282

the loss function, which is given by283

VFL(p, q) =

{
−q(qlog(p)+ (1− q)log(1− p)), q > 0
−αpγ log(1− p), q = 0

(1)284

where p is the predicted IoU-aware classification score; q285

represents the object’s IoU score; a IoU score describes the286

ratio of the intersection and union of the predicted bounding287

box and the ground truth bounding box. Specifically, the q288

values of negative samples are 0, while for positive samples,289

they are their IoU scores. Besides, α and γ are the weight290

coefficients, and VFL(·) is the varifocal loss.291

With this setting, the network uses q to increase the weight292

of the positive sample loss with high IoU, so as to focus293

the training on high-quality samples, hereby enhancing the294

network’s performance.295

The above three operations improve the original YOLO-v5296

network from three aspects of small objects detection, fea-297

ture extraction efficiency and dense objects detection. And298

the detailed structure of the improved YOLO-v5 network299

is shown in Fig. 4. Furthermore, the effectiveness of the300

proposed improved YOLO-v5 network is verified in Sec. 4.3.301

IV. EVALUATION INDICATORS AND EXPERIMENT302

RESULTS303

In this section, the network performance evaluation indicators304

are introduced and the effectiveness of the research methods305

used in this paper is comprehensively verified through several306

experiments.307

Some hyper-parameters of the proposed improved308

YOLO-v5 network are set as follows: the size of each training309

batch is 4, the network is optimized by using an adam opti-310

mizer and runs 150 epochs for training. 80%of the augmented311

dataset are chosen for training the network while the rest are312

tested. And the settings of other hyper-parameters are the313

same as the original YOLO-v5 network.314

A. EVALUATION INDICATORS315

MAP is adopted to evaluate the network performance, and its316

formulas are as follows:317

IOU =
area(Bp

⋂
Bgt )

area(Bp
⋃
Bgt )

(2)318

P(r) =
TP

TP+ FP
(3)319

AP =
∫ 1

0
P(r)dr (4)320

TABLE 2. Comparison of the network performance before and after data
augmentation.

MAP =

∑
(AP)

Nclass
(5) 321

where Bp and Bgt are the predicted anchor and actual anchor 322

of an object, respectively, and IOU is the degree of overlap 323

between the two anchors. Besides, TP is the number of detec- 324

tion anchors with IoU > 0.5, while FP is the number of 325

detection anchors with other cases. AP is the precision of a 326

certain type of defect. AndMAP is the mean AP of four types 327

of defects. 328

B. EFFECTIVENESS OF THE DATA AUGMENTATION 329

TECHNOLOGIES 330

The datasets before and after augmentation are input into 331

the original and improved YOLO-v5 network, respectively, 332

so as to fully test the effectiveness of the data augmentation 333

technologies adopted in this paper. 334

Specifically, for the original YOLO-v5 network, the MAP 335

values of the data before and after augmentation are 77.0% 336

and 88.9%, respectively, that is, the data augmentation tech- 337

nologies utilized in this paper increase the MAP value of the 338

original YOLO-v5 network by 11.9%. And for the improved 339

YOLO-v5 network proposed in this paper, using the data 340

before and after augmentation, the MAP values are 84.3% 341

and 94.9%, respectively. The data augmentation technologies 342

increase the MAP value by 10.6%. A detailed comparison of 343

the network performance before and after data augmentation 344

is listed in Table 2. 345

In conclusion, the data augmentation technologies utilized 346

in this paper can effectively enhance the quantity and quality 347

of the original dataset, and then improve the network’s per- 348

formance. 349

Furthermore, the data augmentation technologies used in 350

this paper can also be extended to other scenarios, such as 351

wall defects, surface defects of solar panels, surface defects 352

of parts in industrial production, surface defects of high-risk 353

buildings, etc. 354

C. EFFECTIVENESS OF THE IMPROVED YOLO-v5 355

NETWORK 356

To thoroughly verify the effectiveness of the improved 357

YOLO-v5 network proposed in this paper, the augmented 358

dataset is used to compare the performance of the network 359

in five experiments: (1) Original YOLO-v5 network; (2) 360

Replacing the loss function in the original YOLO-v5 net- 361

work with a varifocal loss function; (3) Adding an SE atten- 362

tion module to the original YOLO-v5 network; (4) Adding 363

a shallow-level feature extraction module to the original 364

YOLO-v5 network; (5) Replacing the loss function of the 365

original YOLO-v5 network with a varifocal loss function, 366
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FIGURE 5. Detection results of the improved YOLO-v5 network.

FIGURE 6. Box, objectiveness and classification loss during network
training.

adding an SE attention module and a shallow-level feature367

extraction module.368

The detection results of the improved YOLO-v5 network369

in the test set are shown in Fig. 5, and Fig. 6 reveals the box,370

objectiveness, and classification loss during the training pro-371

cess, respectively. It can be seen fromFig. 6 that the network’s372

training loss first decreases gradually, and then tends to be373

stable. Specifically, the MAP value of the network in experi-374

ment 1 is 88.9%, while those of experiments 2, 3, 4, and 5 are375

89.7%, 93.0%, 94.0% and 94.9%, respectively. Evidently,376

the methods used in this paper improve the performance377

of the original YOLO-v5 network in varying degrees from378

three aspects: loss function, shallow-level feature extraction,379

and feature extraction efficiency. And Table 3 summarizes380

the MAP and Frames Per Second (FPS) values of the five381

experiments. Besides, in experiment 1, the AP values of the382

four types of defects are 93.9%, 84.2%, 87.7% and 89.8%,383

respectively. While in experiment 4, they are 94.4%, 93.7%,384

91.5% and 96.4%, respectively. The fusion of multi-level385

features in this paper is shown to be effective.386

D. COMPARISON WITH OTHER NETWORKS387

To comprehensively verify the performance of the improved-388

YOLO-v5 network, we compared it with several commonly389

TABLE 3. Comparison of the five experiments’ detection results.

TABLE 4. Comparison of detection results for the four networks.

used object detection networks: Faster R-CNN, SSD, and 390

Retinanet. And Table 4 summarizes the MAP and FPS values 391

of the four networks. 392

To sum up, the data augmentation technologies used in this 393

paper can effectively ameliorate the quality of the original 394

dataset, and then improve the performance of the object 395

detection network. More importantly, our improvements over 396

the original YOLO-v5 network have also achieved a satisfac- 397

tory result. 398

V. CONCLUSION 399

To deal with the low efficiency and safety problems of the 400

manual maintenance method in inner wall defects of a boiler, 401

in this paper, some deep learning technologies are applied to 402

the automatic detection of inner wall defects in a boiler. The 403

main contributions can be summarized as follows: 404

(1) The original YOLO-v5 network has been improved 405

from three aspects of shallow-level feature extraction, feature 406

extraction efficiency, and loss function. And the effectiveness 407
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of these three improvements has been verified through our408

experiments.409

(2) The improved YOLO-v5 network in this paper is supe-410

rior to other commonly used networks and has a satisfactory411

performance.412

(3) Five data augmentation technologies adapted to differ-413

ent defects of a boiler inner wall have been utilized to increase414

the number of samples, thereby improving the performance of415

the object detection network. Moreover, these data augmen-416

tation technologies can be extended to other similar fields.417

With the improved YOLO-v5 network proposed in this418

paper, the maintenance engineers of a power plant only need419

to use wall climbing robots or other tools to capture the420

images of each height and position of a boiler inner wall and421

input the images into the fine trained improved YOLO-v5422

network, so as to automatically detect and locate the defects423

of a boiler inner wall, and then repair the defects at the424

specified position in time, which avoids the faults in boiler425

operation and protects the personal safety of power plant426

engineers.427

Nevertheless, the augmentation of the original dataset428

inevitably increases the object detection network’s training429

burden. At the same time, the SE attention module and430

shallow-level feature extraction module added in the network431

can increase the parameters to a certain extent, which makes432

the training more difficult. How to reduce the training burden433

and simplify the training as much as possible while main-434

taining the network performance is one of important issues435

to be considered in our follow-up researches. Besides, using436

semantic tags on images along with an ontology to describe437

the meaning of the tags are also beneficial to our methods,438

and the detection effect of the proposed improved YOLO-v5439

network in other scenarios is also our future experiment440

content.441
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