
Received 12 August 2022, accepted 2 September 2022, date of publication 6 September 2022, date of current version 15 September
2022.

Digital Object Identifier 10.1109/ACCESS.2022.3204746

Android Head Units vs. In-Vehicle ECUs:
Performance Assessment for Deploying
In-Vehicle Intrusion Detection Systems
for the CAN Bus
TUDOR ANDREICA, CHRISTIAN-DANIEL CURIAC, CAMIL JICHICI,
AND BOGDAN GROZA , (Member, IEEE)
Faculty of Automatics and Computers, Politehnica University of Timisoara, 300223 Timişoara, Romania

Corresponding author: Bogdan Groza (bogdan.groza@aut.upt.ro)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

ABSTRACT Following the numerous attacks that exploited vulnerabilities of Controller Area Networks
(CAN), intrusion detection systems have become a topic of prime importance for in-vehicle buses. Newer
in-vehicle communication layers, such as CAN-FD, despite the larger payloads which can easily integrate
cryptographic elements, need similar attention. But detecting intrusions may call for demanding algorithms
that are not computationally cheap while timely detection is necessary in order to process frames in real-time
and take the appropriate actions. In this work we evaluate the performance of several binary classifiers
on traditional in-vehicle Electronic Control Units (ECUs) and compare them to modern Android devices
which have become widespread inside cars with the adoption of Android-capable infotainment systems.
Needless to say, these modern devices benefit from higher computational and memory resources while cloud
connectivity may alleviate computational costs even further. Contrasting between traditional controllers and
Android devices has become necessary and so far there have been little efforts in this direction. To create
a realistic testbed, we use collected in-vehicle CAN bus traffic from an SUV as well as more demanding
logs from Advanced Driver-assistance Systems (ADAS) implemented on CAN-FD which we augment with
adversarial activity.

15 INDEX TERMS CAN bus, electronic control unit, intrusion detection systems, machine learning.

I. INTRODUCTION16

Modern cars are equipped with a high number of Electronic17

Control Units (ECUs) that are used to accomplish various18

functions, e.g., breaking and stability control, advanced driver19

assistance, comfort features, etc. Depending on the specific20

market segment, i.e., economy or luxury, vehicles may be21

equipped with more or less features and consequently the22

number of ECUs may range from a dozen or less up to more23

than a hundred. As the automotive industry is heading toward24

new trends, such as electrification, autonomous driving or25

vehicle-to-vehicle communication, we can only expect the26

number of ECUs and their interconnectivity to increase. The27

The associate editor coordinating the review of this manuscript and
approving it for publication was Parul Garg.

same is implied by recent regulations which are pushing the 28

vehicle industry to evolve in terms of electronics by develop- 29

ing new technologies that will make the driving experience 30

safer and decrease the environmental pollution or energy 31

consumption. But as a side-effect to the increased complexity 32

of in-vehicle electronics and interconnectivity, the number of 33

attack surfaces will increase as well. 34

More than three decades after its introduction by BOSCH, 35

the Controller Area Network (CAN) is still the most com- 36

monly used communication protocol inside vehicles which 37

makes it one of the most important assets that requires pro- 38

tection against malicious attacks. But the security of CAN 39

buses is lacking since no mechanisms were put in place at 40

design time and CAN offers no protection against malicious 41

adversaries. The potential of attacking in-vehicle networks 42

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 95161

https://orcid.org/0000-0003-3078-3635


T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

FIGURE 1. Inter-frame space as recorded in three in-vehicle traces: (i) the compact SUV Dacia Duster, (ii) an ADAS system and (iii) the Hyundai Sonata
from [1].

was demonstrated by many works, e.g., in [2], [3], and [4],43

which proved that vehicles are extremely vulnerable to cyber44

attacks. Because of this, manufacturers need to carefully45

develop and implement proper security mechanisms on forth-46

coming cars, as cyber attacks can easily lead to catastrophic47

situations. In addition to the preventive measures, e.g., cryp-48

tographic authentication which was commonly proposed in49

the literature [5], vehicles should be capable to monitor their50

subsystems and detect potential attacks. Within this scope,51

Intrusion Detection Systems (IDS) offer an additional protec-52

tion layer that strengthens the vehicles security architectures.53

Overview of contribution. While there are many recent54

works focusing on the design of in-vehicle intrusion detection55

systems (briefly surveyed by us in the following section),56

most of these works evaluate the performance of these sys-57

tems on regular computers. While this is fine for assessing58

the detection rates, it is not really effective in assessing their59

behavior on real-world in-vehicle ECUs. This is especially60

problematic as in-vehicle controllers have to cope with real-61

time delays. To get a more accurate image, in Figure 1,62

we depict the delays between consecutive frames, i.e., the63

inter-frame space (IFS), as recorded in the three in-vehicle64

traces that we use in our experiments: the compact SUVDacia65

Duster (i), an Advanced Driver-assistance Systems (ADAS)66

from a high-end sedan (ii) from which we collected data and67

a Hyundai Sonata from [1] (iii) which we keep as a reference68

in our experiments. Notably, in all three cases the IFS is69

generally around 200 µs. But in the worst case, the IFS can70

be as low as 3 recessive bits, i.e., 6 µs on a 500 kbps CAN71

bus. The IDS has to cope with such small delays and be fast72

enough in order to be effective for real world needs. Timing73

is not the only constraint of the problem since the IDS must74

also fit in the controller memory and it may also need to be75

updated to learn new attacks in a similar manner to anti-virus76

software, etc.77

For this purpose, in our work, we test the performance78

of automotive-grade controllers and compare them with79

Android-based devices such as car head units, in the context80

of detecting intrusions with machine-learning algorithms.81

Specifically, our work accounts for the following obvious82

setups that can be deployed inside a vehicle:83

1) IDS deployed on the Android capable devices. This84

setup is outlined in Figure 2 (i). There are two85

potential variations. First, the IDS can be deployed 86

on an Android head unit which is already a com- 87

mon component in modern vehicles. Besides exhibit- 88

ing increased computational resources, these units are 89

also equipped with 5G communication which can be 90

used for remote diagnosis (possibly via cloud-based 91

services, which can be used to enhance even further 92

the intrusion detection mechanism inside vehicles by 93

more demanding algorithms and large data pools). Sec- 94

ond, the IDS can be deployed on the user device, e.g., 95

a smartphone, that collects CAN bus data by using 96

WiFi connectivity to the OBD port as also outlined in 97

Figure 2 (i). This would allow similar capabilities to the 98

case of Android head units. However, there are addi- 99

tional advantages since users may easily change their 100

smartphone thus benefiting from increased computa- 101

tional and communication capabilities over the years 102

(changing the Android head unit is less convenient). 103

Also, this may open room for third-party software 104

that may be published in Android application stores 105

and may be aquired by users similar to existing anti- 106

virus software. An immediate disadvantage however is 107

that Android head units or smartphones may become 108

more easily corrupted than in-vehicle controllers. For 109

example, the authors of [6] performed some attack 110

experiments on real vehicles by repackaging Android 111

commercial apps. Another demonstration of possible 112

attacks on Android devices is made in [7], in which 113

an Android infotainment unit is hacked and enables 114

attackers to inject messages on the CAN bus. Further, 115

applications vulnerabilities are discussed in [8] and [9]. 116

Another possible disadvantage in implementing IDS 117

on Android devices is that Android smartphones are 118

not directly connected to the CAN bus and wireless 119

communication may induce additional delays (fortu- 120

nately, these delays may not be so significant but this 121

depends on the interface used for data collection, as we 122

show later in the experiments). Using smartphones may 123

also turn into an advantage from a security perspective, 124

since the smartphone is not directly linked to the CAN 125

bus and wireless connectivity to the bus may be imple- 126

mented in a read-only fashion. Thus, a compromised 127

phone will not be able to cause attacks on the bus. 128

95162 VOLUME 10, 2022



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

TABLE 1. Brief comparison between Android devices and in-vehicle ECUs (technical characteristics refer to devices in our experiments).

FIGURE 2. The two addressed scenarios for intrusion detection.

2) IDS deployed on in-vehicle controllers. This is the129

basic setup depicted in Figure 2 (ii) in which the130

IDS is deployed in the usual way on one (or sev-131

eral) ECUs inside the vehicle. The main drawback of132

this approach is that in-vehicle controllers may not133

have extensive computational resources, nor the com-134

munication capabilities or outside connectivity, e.g.,135

to garner cloud-based support. On the positive side, in-136

vehicle controllers should be harder to compromise and137

will exhibit a much more controlled real-time behavior.138

Ideally, the IDS should be deployed on each in-vehicle139

controller but this is rather debatable due to obvious140

computational and memory limitations as we discuss in141

the experimental section. Clearly, in-vehicle networks142

are heterogeneous and we cannot expect all devices to143

cope with such demands.144

In the light of these scenarios, our work tries to bring a145

clearer image on the advantages and disadvantages for each146

of the approaches, i.e., from the more rigid, less corruptible,147

in-vehicle ECUs to the more flexible, perhaps less secure,148

TABLE 2. Analyzed binary classifiers.

Android platforms that may benefit from remote connectivity 149

and increased computational power. A summary of the brief 150

comparison between in-vehicle ECUs and Android units is 151

given in Table 1. As a collateral contribution, though not 152

necessary the main focus of our work, we also evaluate the 153

efficiency of several machine-learning algorithms in detect- 154

ing intrusions. Table 2 summarizes the binary classifiers that 155

we use in our current work, the achieved performances will be 156

presented in the next sections. Our contributions are fourfold: 157

1) we design a two-stage IDS in which message arrival 158

time is used in the first stage to detect replay and 159

DoS attacks, then machine-learning algorithms are 160

employed in the second stage to detect frame manip- 161

ulations caused by fuzzing attacks, 162

2) we provide specific architectures for two possible 163

deployments, showing the integration of the IDS both 164

on Android devices (with the use of JNI) as well as 165

on embedded development boards (in an AUTOSAR 166

compliant architecture), 167

3) we collect CAN bus data from real-world vehicles, 168

including CAN-FD data from an ADAS system, aug- 169

ment it with adversarial actions and evaluate twelve 170

classifiers, out of which four are deployed in our exper- 171

imental setup, 172

4) we provide computational results regarding the offline 173

and online IDS performance on Android devices, cloud 174

VMs and three representative automotive-grade micro- 175

controllers, as well as memory requirements on the 176

latter due to the stringent constraints on such platforms. 177

The rest of the paper is organized as follows. In Section II 178

we provide some background on CAN buses and discuss 179

related work. Section III presents the utilized in-vehicle 180

VOLUME 10, 2022 95163



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

FIGURE 3. CAN and CAN-FD data frame format.

traces, the devices that we used in our experiments and the181

adversary model. In Section IV we present our experimen-182

tal testbed. Section V places the binary classifiers in the183

previously outlined setups and evaluates their performances.184

Finally, Section VI holds the conclusion of our work and185

section VI contains the list of acronyms.186

II. BACKGROUND AND RELATED WORK187

In this section we discuss some background on CAN buses188

and then we proceed to a brief survey on existing related work189

for intrusion detection on CAN.190

A. BRIEF INTRO ON CAN BUSES191

The CAN protocol specification was standardized by Interna-192

tional Organization for Standardization (ISO), which released193

the ISO 11898 standard. Data link layer and physical sig-194

nalling are part of ISO 11898-1 document [10] while the ISO195

11898-2 document [11] is dedicated for high-speed medium196

access unit. Physically, the CAN bus is designed as a two-197

wire (CAN-High, CAN-Low) bus connected by two 120Ohm198

resistors at the end. The CAN-High and CAN-Low lines carry199

two complementary signals thus employing differential sig-200

naling. The structure of the central communication element201

for CAN and its extension proposed by BOSCH, i.e., the202

CAN and CAN-FD (CAN with Flexible Data-Rate) frame is203

depicted in Figure 3.204

In what follows, we detail the most important parts of the205

frame structure and highlight the main differences between206

CAN and CAN-FD. In both cases, a dominant SOF bit and207

a recessive EOF bit marks the beginning and the end of the208

frame. The identifier of the frame (11 bits for standard format209

or 29 bits for extended format) along the RTR bit for CAN210

or RRS for CAN-FD establishes the arbitration field, which211

assures the collision avoidance mechanism (lower IDs values212

have a higher priority). We pay attention on the standard213

format since our CAN collected traffic does not contain any214

frame in the extended format.215

CAN provides bit rates of up to 1 Mbit/s and encloses up216

to 8 bytes in the data field while the CAN-FD enables faster217

communication speeds, it usually employs from 2 to 5Mbit/s,218

but there are transceivers that support up to 8 Mbit/s, while219

the data field carries of up to 64 bytes. Another relevant part220

from the control field is the DLC since it reveals the number221

of bytes that are carried by the CAN or CAN-FD frame. 222

A 15-bit CRC is employed for verifying the correctness of 223

the frame content. Finally, the correct reception of the frame 224

is enabled by the receiver which overwrites a dominant value 225

in the ACK slot. The most recent step in CAN evolution is 226

CAN-XL which enables payloads up to 2048 bytes and com- 227

munication speeds of up to 10 Mbit/s remaining compatible 228

with CAN-FD for mixed networks. 229

B. RELATED WORK 230

In the recent years, an extremely large number of attacks 231

were reported, e.g. [12] and [13], indicating that the current 232

security mechanisms deployed by vehicle manufacturers are 233

often not appropriate. 234

Surveys on in-vehicle network attacks and countermea- 235

sures can be found in several works, e.g., [14], [15], and 236

[16]. Many solutions were considered, ranging from the use 237

of cryptographic security up to physical layer protection [5] 238

and the industry was not slow in responding with security 239

standards that are part of the AUTomotive Open System 240

ARchitecture (AUTOSAR). AUTOSAR defined the Secure 241

Onboard Communication concept [17] which makes use of 242

Message Authentication Codes (MAC) and freshness values 243

to ensure the integrity and authenticity of the CANmessages. 244

A complementary layer for cryptographic security is the use 245

of an IDS which monitors the CAN network for malicious 246

traffic. Recently, IDS design is among the most commonly 247

debated topic and generates a considerable interest for the 248

research community. In this respect, several relevant works 249

were proposed, which we now discuss. However, most of 250

these studies focus only on the detection accuracy and do 251

not take into account the computational constraints which are 252

crucial in the context of automotive embedded platforms - 253

these constraints are the main focus in our work. In what 254

follows we survey more than twenty-five papers related to 255

the development of in-vehicle IDS, but only a small amount 256

of them, namely [18], [19], [20], [21] and [22] are using 257

embedded development boards. Also, a comparison between 258

in-vehicle controllers and Android units that are now com- 259

mon in cars is missing from related works. 260

In [18] an IDS based on remote frames is presented. The 261

authors measure the time-interval between request frames 262

(also known as remote frames) and response frames (also 263

known as data frames) and show how adversarial frames 264

cause offset variations that do not occur in a free attack sce- 265

nario. The use of Bloom filters was explored in [19] in order 266

to detect malicious activity on the CAN bus. The proposed 267

detection technique is based on a training stage that examines 268

the message periodicity in order to detect replay attacks and 269

the content for data field in order to detect injections with 270

random data. The authors show that the real-time classifi- 271

cation is time-memory efficient and obtain good detection 272

results. A graph-based IDS that models the CAN traffic is 273

considered in [23]. Other lines of works employ entropy 274

characteristics [24], [25] in order to distinguish between 275

normal or abnormal CAN bus activity. Other approaches 276

95164 VOLUME 10, 2022



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

include the use of Markov Model [26], decision trees [27] or277

finite-state automatons [28]. A number of studies found that278

hardware measurements can be used for intrusion detection.279

This accounts for the use of voltage thresholds [29], clock-280

skews [20] or signal characteristics [30].281

Significant attention is also given to machine learning282

based approaches. A hierarchical taxonomy on these method-283

ologies can be found in [31]. The authors from [32] provide284

a comparative view regarding the use of machine learning285

approaches for CAN IDSs. For example, in [33], the authors286

evaluate the performance of the K-Nearest Neighbour and287

Support Vector Machine algorithms against Denial of Ser-288

vice (DoS) and fuzzy attacks. The results obtained by them289

exhibit a good detection accuracy of over 90%. A poten-290

tial weakness of the work in [33] is not considering CAN291

messages frequency in the training phase (note that CAN292

bus traffic is always periodic) which leads to the inability293

of detecting replay attacks. In [34], a deep neural network294

is employed experiments are performed on CAN traffic gen-295

erated with a software tool, i.e. OCTANE [35] but not on296

real-world datasets. A recurrent neural network is employed297

in [36] where the authors prove the efficiency of the pro-298

posed method in detecting malicious frames on the CAN299

bus. The idea to convert the CAN frames into images in300

order to build a neural network based IDS was explored301

by [37]. A specification-based IDS using supervised learning302

and CAN timing is presented in [38]. The authors of [39]303

proposed a self-supervised method for intrusion detection304

which relies on the use of noised pseudo normal data. The305

detection system uses two deep-learning models, one is used306

to generate pseudo normal traffic data and the other one is307

used to detect anomalies. To detect variant attacks, the authors308

of [40] proposed an intrusion detection system based on the309

domain adversarial training of neural networks. An intrusion310

prevention system that detects and discards attack frames311

on CAN is presented in [21]. The proposed mechanism was312

implemented and validated on a Raspberry Pi, using the313

one-class support vector machine and the isolation forest314

algorithms for intrusion detection. The authors of [22] present315

a method to detect DoS attacks using the similarity of sliding316

windows. This method improves prior approaches that detect317

DoS attacks based on the entropy in a sliding window. For a318

broader image, recent surveys on intrusion detection mecha-319

nisms for vehicular networks can be found in [41] and [42].320

III. EXPERIMENTAL TRACES, DEVICES AND ADVERSARY321

MODEL322

In this section we describe the in-vehicle traces and experi-323

mental devices that we use in our evaluation. Also, we discuss324

the adversarial behavior that our intrusion detection system325

accounts for.326

A. COLLECTED IN-VEHICLE TRACES327

In our analysis we used two real-world datasets collected by328

us and a data-set from [1] which we use as a reference.329

FIGURE 4. Dacia Duster SUV from our experiments.

The collection of the CAN dataset from the cars was 330

performed using a Vector VN1630 USB-to-CAN interface. 331

We have implemented a Windows application using Vector 332

XL Driver Library to interface with the VN1630 hardware. 333

For the first CAN trace, we connected the VN1630 to the 334

Dacia Duster in-vehicle OBD port and extracted the CAN 335

bus traffic. Our second dataset was extracted directly from 336

a private CAN bus on which automotive radar ECUs were 337

connected, i.e., ADAS systems (Advanced Driver-Assistance 338

Systems). Using data from such a system is relevant since 339

future autonomous vehicles will directly depend on it, not 340

to mention the increased help these system have to offer to 341

regular drivers. 342

The CAN logging procedure is graphically depicted in 343

Figure 9 (i). Several details on these datasets are summarized 344

as follows: 345

1) the first data set comes from a Dacia Duster (Figure 4) 346

which is a compact sport utility vehicle (SUV) which 347

we see as representative for mid-range cars. The col- 348

lected data is more limited in terms of the number of 349

IDs, only 12 IDs are visible on the OBD port, but it 350

is almost identical to the rest in terms of delays and 351

entropy. 352

2) the second dataset comes from a high throughput 353

CAN-FD network that accommodates ADAS systems, 354

e.g., vehicle radars used to detect vehicles and pedes- 355

trians. This type of traffic is representative for mid to 356

high-end cars that posses modern equipment needed 357

for complex tasks such as autonomous driving. This 358

dataset is more complex containing more than 80 IDs 359

and frames of up to 512 bits. The communication layer 360

is the newer CAN-FD. 361

We also use the dataset from [1] which was recorded in a 362

Hyundai Sonata and we keep it as a reference to compare our 363

results with existing works. The trace contains 27 IDs making 364

it more similar to our first dataset and less complex than the 365

second. 366

A few words on the traces based on the depictions from 367

Figure 5 are necessary. This figure depicts some statistics for 368

one ID in each trace. We notice that in all traces the content 369

of the datafield shows clear patterns which would make it 370

VOLUME 10, 2022 95165



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

FIGURE 5. Example for the values of the data-field (left), cycle time
(right-up) and histogram distribution of the cycle time (right-down) for an
ID collected in the compact SUV Dacia Duster (i), ADAS systems (ii) and
the Hyundai Sonata from [1] (iii).

easy to detect certain attacks, e.g., randomized injection. For371

the first trace, there is also a limited set of identifiers which372

show more randomized patterns. The shortest cycle time for373

the IDs is at 10 ms in all traces. Interestingly, in the first374

trace the ID at 10 ms has a bimodal distribution of the arrival375

time. The variations however are generally of 1-2 ms at most376

in all traces. The CAN-FD trace, while carrying larger data377

payloads, does not exhibit more variability than the regular378

CAN traces. This suggests that the same mechanism for379

detecting intrusions will hold for all traces.380

B. DEVICES FROM OUR SETUP381

The first category of devices that we used in our setup com-382

prises the Android-based devices.We used a PNI A8020 head383

FIGURE 6. The two stage intrusion detection algorithm in our work.

unit whose production started in 2017 and a more recent one, 384

Erisin ES8791V, released in 2019. Due to their high usage and 385

capabilities, smartphones were also considered in our setup. 386

Consequently, we chose to work with a Samsung A6, a Sam- 387

sung S8 and a SamsungNote10+. In addition to smartphones, 388

we also included a tablet in our work, namely the Samsung 389

Galaxy Tab S7. 390

The second category of devices that we worked with con- 391

sists of automotive-grade microcontrollers. We used from 392

Infineon two devices from the Aurix 32-bit microcontrollers 393

family which are meant especially for automotive and indus- 394

trial applications. The first microcontroller is a TC224, 395

belonging to the 1st generation of AURIX, while the other 396

microcontroller is a Tricore TC397, which is part of the 2nd 397

generation of AURIX. From the low-end sector, we chose an 398

S12XEP microcontroller which is part of S12XE family that 399

provides 16-bit arhitecture microcontrollers having Hybrid 400

Electric Vehicle (HEV), Tire Pressure Monitoring Systems 401

(TPMS) or Motorcycle Engine Control Unit (ECU) as target 402

applications in the automotive sector. All devices that we 403

used in our experiments and their specifications are listed in 404

Table 3. 405

C. ADVERSARY MODEL 406

The following three types of attacks have been commonly 407

considered against CAN nodes. Fuzzing attacks in which an 408

attacker modifies the data-field of the genuine CAN frames 409

and transmits the malicious frames on the bus. The injected 410

data field is filled with random values. Replay attacks in 411

which genuine CAN frames are intercepted by an attacker 412

and retransmitted on the bus at a later time. In this scenario, 413

95166 VOLUME 10, 2022



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

TABLE 3. In-vehicle devices used in our evaluation.

asmalicious frames and genuine frames are identical, the only414

visible aspect on the bus is an increased frequency of frames415

with the corresponding IDs which eventually leads to a dif-416

ferent inter-frame delay for the respective ID. And finally,417

flooding attacks in which CAN frames with low valued IDs418

(that are not part of the dataset) and random data are injected419

on the CAN bus, causing a Denial of Service (DoS).420

From these three types of attack, the most involving for421

the machine learning algorithms is the fuzzing attack since422

it requires analysis of the complete frame. As for DoS and423

replay attacks, these may be detected by a simple inspec-424

tion of the arrival time and frame rate on the bus. Notably,425

in most cars the bus is kept at around 50% busload or less426

and all frames have fixed periodicity. When the frame rate427

exceeds the expected threshold a DoS or replay attacks can428

be signaled without the need of more expensive machine429

learning algorithms. This is suggested in Figure 6 which430

presents the two-stage intrusion detection mechanism that we431

envision. The first stage simply checks for known IDs and432

the correctness of the arrival time, possibly by performing433

some additional skew corrections to avoid synchronization434

issues, and only then the second stage enters to detect anoma-435

lies based on the machine learning classifiers. Consequently,436

we use the CAN IDs and timestamps as features in the first437

stage and the CAN IDs and data fields as features for the438

binary classifiers employed in the second stage. Figure 7439

suggests the feature extraction from a CAN frame and the440

allocation of the features to the two-stage IDS.441

In addition to our own datasets, we also executed our442

algorithms on datasets from related work [1] to validate them443

and have a common denominator with other related works,444

e.g. [36] and [43]. In this way, a more accurate comparison445

of the results is possible. Although essentially the same types446

of attacks that we previously mentioned are evaluated, there447

are small differences in how they are implemented or named.448

For this, we first clarify how the attacks used in [1] differ.449

Han et. al. focused on three types of attacks: flooding, fuzzy,450

and malfunction. The first type of attack consists of injecting451

messages with ID 0×00, which based on the CAN specifica-452

tion, is the ID with the highest priority. The consequence of453

FIGURE 7. Feature extraction for the two-stage IDS.

this attack is a DoS, i.e., the malicious ECU will occupy the 454

resources allocated to the CAN bus, limiting the communi- 455

cation among the other ECUs. The data field of the injected 456

messages is always set to zero. Departing from [1], in our 457

work, the flooding attack consists of frames with IDs whose 458

values are less than the genuine ID with the lowest value from 459

the dataset and the data field is filled with random values. The 460

effect is similar, although the attack is more difficult to detect 461

and more realistic since, with our adversary model, a DoS is 462

not caused by ID 0 × 00 alone. The second type of attack, 463

i.e. fuzzy attack, consists of sending frames with random IDs 464

and data. This type of attack will be much easier to detect 465

than ours since most of the random IDs will not be part of 466

the legitimate trace (for this, machine learning algorithms are 467

not needed since unknown IDs are easy to detect by a look- 468

up-table). Since this attack will be immediately detected by 469

filtering, we do not reproduce it in our dataset as it will be 470

trivial to detect by the first stage of the intrusion detecting 471

mechanism which checks that IDs belong to genuine ECUs. 472

Note that in real-world scenarios, the IDs are indeed known 473

by manufacturers at the time of designing the in-vehicle 474

VOLUME 10, 2022 95167



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

FIGURE 8. CANoe simulation setup.

components. The third and last attack, i.e. malfunction attack,475

is described by the authors of [1] as the attack in which a476

malicious ECU injects frames with IDs, which are part of the477

ID list for the respective network, and random data. This type478

of attack is similar with our fuzzing attack.479

IV. SETUP FOR THE EXPERIMENTS480

In this section we present the setup that we use for the481

synthetic analysis (off-line) of the attack traces as well as for482

the on-line analysis with physical devices plugged to the CAN483

bus to perform the attack detection in real-time.484

A. SETUP FOR OFF-LINE ANALYSIS485

To make the attacks realistic, we use the CANoe environment486

to mount attacks on the frames from the genuine datasets.487

This working scenario has also been considered by other488

works, e.g. [44]. For this, we configured inside the environ-489

ment a CAN node to replay the genuine dataset and another490

node to inject malicious frames. While the first node is491

a predefined replay block, for the second node we imple-492

mented the logic of the previously mentioned three attacks493

in CAPL (Communication Access Programming Language).494

Our CANoe simulation setup is depicted in Figure 8 and495

the attacks injection procedure in Figure 9 (ii). The resulting496

traces, which include both genuine and attack frames, were497

used as inputs for the IDS algorithms in the training and498

testing phase. The existing datasets from [1] are taken for499

comparison in the format provided by the authors and was500

not run by us inside the CANoe environment.501

B. SETUP FOR ON-LINE ANALYSIS502

For the on-line analysis we aimed to connect the Android503

units to the CAN bus in order to monitor the CAN bus traffic.504

We investigated two options to achieve this with the Android505

head unit and with Android smartphones respectively.506

We first used an USB to CAN adapter to connect the507

Android head unit to the CANbus. TheUSB to CAN adapter1508

is commercialized by Seeed Technology and supports both509

CAN 2.0A and CAN 2.0B with baudrates ranging from510

1https://www.seeedstudio.com/USB-CAN-Analyzer-p-2888.html

5 kbit/s to 1 Mbit/s. A software application is available for 511

Windows and Linux which may be used to work with the 512

adapter. In addition, a document that describes the UART 513

protocol and the way in which the device can be configured 514

and controlled is available on Github.2 Therefore, as our 515

target was to use it on the Android head unit, we implemented 516

our own control code in Android Studio. To enable the UART 517

communication on Android, we have used a library also 518

hosted on Github [45]. 519

As a second option, we used a Raspberry Pi module to 520

wirelessly route the CANmessages to the Android head unit. 521

This is the scenario in which the Raspberry Pi is connected 522

to the CAN bus using the OBD port and forwards all the 523

CAN messages from the bus to the head unit or smart- 524

phone via WiFi. The Raspberry Pi device does not feature 525

an embedded CAN transceiver, therefore we needed to use 526

an external one. We chose to work with MCP2518FD click 527

board3 from MikroElektronika which provides a complete 528

CAN and CAN-FD solution. The board is equipped with the 529

MCP2518FD CAN controller, which has SPI interface, and 530

the ATA6563 transceiver. Both integrated circuits are pro- 531

duced by Microchip. The MCP2518FD click board ensures 532

CAN communication speeds up to 5 Mbps and can run in one 533

of the followings operating modes: normal CAN 2.0, normal 534

CAN FD, restricted operation, sleep, listen only, internal and 535

external loop back modes and configuration. The CAN click 536

board is connected to the Raspberry Pi via the Pi 3 Click 537

shield, which is designed by MikroElektronika to support a 538

wide range of click boards. 539

For both scenarios we used the CANoe environment and a 540

VN1630 hardware to replay the attack traces on the CAN bus. 541

The replay procedure is ilustrated in Figure 9 (iii). The frames 542

were monitored, processed and classified in genuine or attack 543

frames by the Android smartphone in one scenario or by the 544

head unit in the other scenario. The results are discussed in 545

the next section. 546

Our experimental setup with all components that we used 547

to deploy the two scenarios is presented in Figure 10.We used 548

a Mastech power supply for the PNI head unit, a laptop to 549

run CANoe Application, a VN1630 hardware to connect the 550

laptop to the CAN bus, a CAN decoder to enable the head 551

unit to communicate on the CAN bus, a Raspberry Pi to route 552

the CAN traffic from the CAN bus to the smarthone and 553

eventually the Samsung A6 and PNI head unit which ran the 554

IDS procedures. 555

The four classifiers that we later used in our on-line 556

analysis, i.e. AB, CART, ET and RFC, were trained in 557

Python and the generated code was converted to C code 558

using sklearn-porter library [46], so that it becomes easy 559

to adapt and use for Android devices and microcontrollers. 560

On the Android devices, we used the Native Development Kit 561

(NDK) which allows developers to use C and C++ code with 562

Android applications. Therefore, we compiled the C code of 563

2https://github.com/SeeedDocument/USB-CAN-Analyzer
3https://www.mikroe.com/mcp2518fd-click

95168 VOLUME 10, 2022



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

FIGURE 9. The three stages employed in our testing: (i) traffic collection, (ii) attack frames injection and (iii) trace replay.

FIGURE 10. Experimental setup for the intrusion detection systems (IDS).

the classifiers into a native library which was then included564

in our Android Application Package (APK). The connec-565

tion between the Java code and C code is made using the566

Java Native Interface (JNI) framework. We built an Android567

application which receives CAN messages via WiFi (from568

Raspberry Pi) or USB (from CAN decoder) and using JNI569

calls accesses the four machine learning (ML) algorithms and570

classfies the received CAN messages into genuine or attack571

frames. Figure 11 depicts the classic Android architecture572

extended with the modules that we developed (highlighted573

with yellow).574

With small adaptations, the C code was usable for all575

microcontrollers, with few exceptions where the compiled576

code of some algorithms did not fit into available memory of577

devices. From our perspective, in classic AUTOSAR ECUs,578

the machine learning algorithms should be developed as579

AUTOSAR software components, being part of the Appli-580

cation Layer. The AUTOSAR community already released581

some specifications regarding vehicle onboard IDS [47], [48].582

According to the AUTOSAR requirements [48], an onboard583

IDS consists of Security Sensors, Security Event Memory584

(Sem), Intrusion Detection System Manager (IdsM) and585

Intrusion Detection System Reporter (IdsR). Briefly, security586

sensors are modules used to detect security events which are587

then reported to IdsM. The IdsM is a module which manages588

the received security events by passing them through a filter589

chain. If the events pass all filters, they will be classified590

as Qualified Security Events (QEVs). These events can be591

FIGURE 11. Android architecture including IDS modules.

locally stored in the Security Event Memory or transmitted to 592

the IdsR which collects the QEVs from multiple ECUs and 593

can provide the data to Security Operation Centers for fur- 594

ther processing. Currently there is no specification for IdsR 595

provided by AUTOSAR. In our case, we consider that our 596

intrusion detection mechanism should be categorized as an 597

advance security sensor and its deployment should be done on 598

the application layer of the AUTOSAR architecture. This is 599

suggested in Figure 12. The ML module would receive CAN 600

frames from the communication (COM) stack and would 601

report security events to IdsM if intrusions are detected. 602

V. EXPERIMENTAL RESULTS 603

In this section we discuss experimental results both from 604

the off-line and on-line analysis. We also focus on compu- 605

tational and memory requirements and particularly highlight 606

the importance of delays. 607

A. OFF-LINE EVALUATION 608

In order to compare the performance of the binary classifier 609

candidates and decide which of them is suitable to be embed- 610

ded in a vehicular CAN bus IDS, we used regular metrics for 611

machine-learning algorithms. 612

VOLUME 10, 2022 95169



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

FIGURE 12. AUTOSAR architecture including CAN IDS modules.

Each CAN frame that is classified in genuine or intrusion613

frame by the machine learning algorithms is categorized into614

one of the following four groups based on the correctness of615

the classification:616

• TP – ‘‘true positive’’, when an intrusion frame is617

correctly classified as intrusion;618

• FP – ‘‘false positive’’, when a genuine frame is619

incorrectly classified as intrusion;620

• TN – ‘‘true negative’’, when a genuine frames is cor-621

rectly classified as genuine;622

• FN – ‘‘false negative’’, when an intrusion frame is incor-623

rectly classified as genuine;624

Some of the most common performance metrics used in625

machine learning classification are the accuracy, precision,626

recall and specificity. The first one, also called positive pre-627

dictive value, is the fraction of intrusion frames correctly628

classified as intrusions among all the frames reported as629

intrusions:630

precision =
TP

TP+ FP
631

The recall is defined as the overall number of true intrusion632

frames divided by the overall number of frames classified as633

intrusions:634

recall =
TP

TP+ FN
635

Specificity, also called true negative rate, indicates the636

proportion of genuine frames that are correctly reported as637

genuine. Therefore, the definition of specificity is formalized638

as:639

specificity =
TN

TN + FP
640

The accuracy score is a metric that defines the ratio of641

correctly classified frames to the total number of frames642

processed by the machine learning algorithms:643

accuracy =
TP+ TN

TP+ TN + FP+ FN
644

We first ran our machine learning algorithms on the Sur-645

vival Analysis datasets from [1]. These datasets were logged646

FIGURE 13. Frame cycle time as recorded on: (i) original attack trace,
(ii) WiFi bridge, (iii) CAN decoder, (iv) drifts on WiFi bridge, (v) drifts on
CAN decoder, (vi) drifts histogram on WiFi bridge and (vii) drifts
histogram on CAN decoder.

from three different vehicles, i.e. Hyundai YF Sonata, KIA 647

Soul, and CHEVROLET Spark. Then, the authors of [1] 648

created for each vehicle three different traces, each of them 649

containing one of the three attacks that they defined in their 650

work, i.e. flooding, fuzzy and malfunction attack. In our off- 651

line analysis, we evaluated the datasets which contained the 652

fuzzing and malfunction attacks on the Hyundai Sonata CAN 653

traffic. Both datasets contain approximately 60 seconds of 654

CAN traffic. We trained the algorithms on the CAN frames 655

from the first half of the datasets (≈30 seconds) while the 656

second half of the datasets was used for the evaluation phase. 657

The results are presented in Table 4 and Table 5. The 658

performance of the algorithmswas almost perfect in detecting 659

fuzzing attacks. The recall was the only metric whose value 660

was 0.99 for half of the classifiers, while the other metrics 661

values were 1.00 for all classifiers. In case of malfunction 662

attacks, the results decreased a bit, especially in precision. 663

95170 VOLUME 10, 2022



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

TABLE 4. Survival analysis dataset (HYUNDAI YF Sonata) - Fuzzing attack.

TABLE 5. Survival analysis dataset (HYUNDAI YF Sonata) - Malfunction
attack.

However, the overall performance is still pretty good, i.e.664

accuracy and specificity between 0.97 and 0.98, precision665

of 0.92 for the most classifiers, while the recall was perfect666

for all algorithms. When compared to the results obtained667

in [36] on the Hyundai Sonata datasets, we achieved similar668

scores in terms of accuracy and recall (with differences of669

at most 0.01) for fuzzing attacks. In case of malfunction670

attacks, we achieved the same recall score, i.e. 1.00, but a671

lower accuracy (i.e. with 0.02 lower in case of the most672

algorithms and with 0.03 lower in case of LDA) compared to673

the results obtained in [36]. Next, we ran our algorithms on674

the datasets that we collected in our work.We only considered675

the fuzzing attack for the off-line analysis, since machine676

learning algorithms are part of stage 2 of our IDS. The other677

attacks, flooding and replay, are handled in the 1st stage of678

our IDS and were considered in the on-line evaluation that679

will be presented later. From the Duster dataset, we used the680

first 20% of the frames (i.e. the first 60 seconds from the681

trace) for training the classifiers and the rest of the frames682

(≈240 seconds) were considered in the evaluation phase.683

In case of the ADAS Systems dataset, we trained the algo-684

rithms on the first half of the traffic (≈150 seconds) while685

the second half of the traffic was included in the evaluation686

set. The performance results for Duster dataset are listed in687

Table 6. The accuracy is more than 0.95 for all classifiers,688

except GB and BC, which have an accuracy of 0.89. These689

two algorithms performed poor also in terms of precision,690

with a score of 0.64, but they also ranked last in terms of691

specificity. The rest of the ten algorithms ranged between692

TABLE 6. Duster dataset - Fuzzing attack.

TABLE 7. ADAS systems dataset - Fuzzing attack.

0.89 and 0.96 in precision and between 0.97 and 0.99 in 693

specificity. The last dataset that we assessed was the ADAS 694

Systems dataset which contains CAN-FD traffic. The results 695

are presented in Table 7. Perhaps not surprising, as this dataset 696

is the most complex from the ones that we evaluated, the 697

classifiers recorded the lowest performance results on this 698

trace. Except for the NB, which did not performed well on 699

this dataset, for the rest of the algorithms the accuracy varied 700

between 0.89 and 0.98, precision between 0.72 and 0.97 and 701

specificity between 0.87 and 0.99. 702

The results from the off-line analysis prove better than the 703

ones obtained in the on-line analysis and this is due to the 704

fact that in the on-line evaluation variations of the timestamps 705

are possible due to frame overlaps on the bus. This points 706

out that the off-line analysis presented in most papers may 707

provide more optimistic results compared to the real-world 708

evaluation. 709

B. ON-LINE EVALUATION 710

One specific problem in the on-line evaluation is that the 711

devices which we used for recording CAN bus traffic, have 712

their own imperfections which influenced the performance 713

of the IDS. We note that the timestamps of the frames may 714

have slight variations according to the device. In particular, 715

the Raspberry Pi that we used over theWiFi bridge performed 716

excellent, offering almost identical timestamps to that from 717

the VN1630. The CANdecoder however did not perform very 718

well, giving poor accuracy for the recorded timestamps. 719

Figure 13 first shows frame cycle time as recorded on 720

(i) original attack trace, (ii) WiFi bridge, (iii) CAN decoder, 721

VOLUME 10, 2022 95171



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

TABLE 8. Duster dataset - Fuzzing and replay (WiFi dridge).

TABLE 9. ADAS systems dataset - Fuzzing and replay (WiFi bridge).

then it depicts (iv) drifts on WiFi bridge, (v) drifts on CAN722

decoder, (vi) drifts histogram on WiFi bridge and (vii) drifts723

histogram on CAN decoder. The depiction is for a frame with724

a cycle time of 10ms, in part (i) of the figure the legitimate725

frames are depicted in blue and attack frames are in red (this726

is a fuzzing attack where attack frames with random content727

arrive at random time interval). It is obvious that the WiFi728

bridge records almost identical timestamps compared to the729

original attack trace. There are only several drifts of 10 ms730

when the classification algorithm confused one legitimate731

frame with an attack frame and thus the legitimate frame is732

missing in that time slot. For the CANdecoder the timestamps733

are no longer accurate, the histogram in part (vii) of the figure734

shows that drifts of up to 2 ms are common. These drifts of735

around 20% of the 10 ms frame cycle time may lead to false736

positives in case of legitimate frames. This suggests that the737

CAN decoder with the employed Android drivers from our738

experiments is not a very good tool for implementing an IDS,739

a reason for which we used a Raspberry Pi as a WiFi bridge740

between the CAN bus and the Android devices. As shown in741

Figure 13 (ii) the delays over WiFi bridge are nearly identical742

to the original trace.743

We ran the on-line evaluation using the first IDS scenario744

with WiFi Bridge and a smartphone, using both the Duster745

and ADAS systems datasets. For this, we connected the Sam-746

sung A6 and the Raspberry Pi over WiFi. To ensure security,747

a WPA2 (WiFi Protected Access II) connection was used,748

which encrypts all packets with AES (Advanced Encryp-749

tion Standard). The delays caused by the WiFi network,750

i.e., by encrypting the traffic and retransmitting it, were too751

small to affect the real-time performance. We evaluated four752

algorithms, i.e., AB, CART, ET and RFC, on two types of753

attacks (fuzzing and replay). We chose to work with these754

four classifiers, since it was at hand to generate C code for755

them using the sklearn-porter library. In the on-line evalua-756

tion, we ran both stages of the proposed intrusion detection757

algorithm, described in section III-C. Since the IDS has two758

stages, we have to redefine the true and false positives as759

TP = TP1 + TP2 and FP = FP1 + FP2 respectively since760

a frame will be classified as an intrusion if it is marked so by761

any of the two IDS stages. The true and false negatives will be 762

the true and false negatives that pass the second stage which 763

means that none of the two stages reported them as intrusions 764

thus TN = TN2 and FN = FN2 respectively. 765

The results obtained on the Duster dataset are presented 766

in Table 8 and the results on the ADAS systems dataset in 767

Table 9. In case of Duster datasets, the detection performance 768

of the four algorithms was almost identical, i.e. accuracy of 769

0.89, precision of 0.64, recall of 1 and specificity of 0.86 in 770

detecting fuzzing attacks. The detection of replay and flood- 771

ing attacks is made only in stage 1, so it’s independent of what 772

algorithms are used in stage 2. Flooding attacks are trivial to 773

detect with the proposed approach since the legitimate IDs of 774

the network are known (this is always the case in the auto- 775

motive industry). For the replay attacks, the IDS performed 776

a score of 0.78 in terms of accuracy, 0.44 and 0.45 in terms 777

of precision and recall, and 0.86 in terms of specificity. The 778

performance results are better in case of the ADAS systems 779

datasets, the accuracy ranges from 0.88 to 0.97, precision 780

from 0.64 to 0.89, recall from 0.96 to 0.97 and specificity 781

from 0.86 to 0.97. The replay attacks were detected with an 782

accuracy of 0.90, a precision of 0.89, a recall of 0.57 and a 783

specificity of 0.98. 784

C. COMPUTATIONAL RESULTS 785

In addition to the detection performance evaluation, we also 786

assessed the proposed IDS mechanism in terms of runtime 787

speed and memory requirements on several Android devices 788

and three automotive-grademicrocontrollers. It is well known 789

that controllers employed nowadays as automotive ECUs 790

have limited computational power and memory. On the other 791

hand, ECUs communicate in real time inside the in-vehicle 792

network, so the IDS algorithms have to be very efficient in 793

terms of execution speed. Computational time and memory 794

requirements are the main challenges in adopting IDS solu- 795

tions in the automotive world. 796

The first stage of our proposed IDSmechanism,which sim- 797

ply evaluates the arrival time and frame rate, is of no concerns 798

in terms of execution speed or memory consumption. There- 799

fore we focus our evaluation on the four selected machine 800

95172 VOLUME 10, 2022



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

TABLE 10. Infotainment Units - computational time for IDS algorithms
[µs] - multiple JNI calls.

TABLE 11. Infotainment Units - computational time for IDS algorithms
[µs] - one JNI call.

learning algorithms. We ran the algorithms on six Android801

devices, i.e. two Android based head units, three smartphones802

and one tablet. For these devices we evaluated the execution803

speed, since all our devices are equipped with at least 8 GB of804

ROMmemory, so there are no problems regarding the needed805

memory to employ machine learning algorithms. The results806

for the head units are listed in Tables 10 and 11. The results807

for each classifier contains the average time in microseconds808

that is needed to classify a CAN frame (Duster trace) and a809

CAN-FD frame (ADAS Systems trace). In order to compute810

the average time, we ran each classifier on one thousand811

messages that include both genuine and attack messages.812

As explained in section IV-B, within our Android application813

we had to perform JNI calls in order to access the ML814

algorithms. Obviously, each JNI call requires an additional815

execution time. Therefore, each message which is received in816

the application layer of the Android architecture and has to be817

classified would require a JNI call. The results from Table 10818

reflect this situation. We performed a JNI call for each of819

the one thousand evaluated messages. On the head units,820

CART, ET and RFC are executed between 6.20 and 16.07 µs821

when classifying regular CAN frames and between 9.22 and822

35.77 µs when classifying CAN-FD frames. It seems that for823

AB the generated code for CAN-FD frames is very similar824

to the regular CAN frames, consequently the execution time825

varies by a few micro-seconds. The AB classifier requires up826

to 107.12 µs to be executed on the PNI head unit and up to827

84.01µs to be executed on the Erisin head unit, which proves828

to be faster. We consider that the communication procedure829

(via WiFi or USB) may also be implemented on the native830

level, enabling the CAN messages to be received directly at831

this level, and finally avoid multiple JNI calls. This approach832

would decrease the overall execution time per message. With833

TABLE 12. Android devices - computational time for IDS algorithms [µs] -
multiple JNI calls.

TABLE 13. Android devices - computational time for IDS algorithms [µs] -
one JNI call.

this in mind, we also measured the execution time with only 834

one JNI call. For this, we hardcoded the evaluated messages 835

in a C file which we compiled with the application so that 836

we can ran the algorithms on all messages at the native layer. 837

Consequently, we reduced the numbers of JNI calls to one. 838

These results are presented in Table 11. With only one JNI 839

call, the time decreases significantly for all algorithms on 840

both head units. On Duster dataset, the required execution 841

time of CART, ET and RFC ranges between 0.47 µs and 842

3.82 µs and between 1.55 µs and 10.67 µs in case of the 843

ADAS Systems dataset. AB is executed in less than 86 µs on 844

the PNI head unit and in less than 72 µs on the Erisin head 845

unit. 846

We further did the same evaluations on the Android 847

smartphones and tablet. The results are presented in 848

Tables 12 and 13. Table 12 contains the execution times eval- 849

uated with multiple JNI calls, while Table 13 lists the exe- 850

cution time results with one JNI call. The smartphones and 851

the tablet prove to be somewhat faster than the head units. 852

According to the results, the fastest algorithm is CART, which 853

required an execution time in the ranges of 0.77 µs (on Sam- 854

sung Galaxy Tab S7) to 5.76 µs (on Samsung A6) when clas- 855

sifying frames from the Duster dataset. As expected, the time 856

VOLUME 10, 2022 95173



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

TABLE 14. Azure virtual machines.

FIGURE 14. Computational results on Android (multiple JNI calls) and cloud VMs for the four ML classifiers.

is higher for the CAN-FD frames (ADAS Systems dataset),857

ranging from 1.27µs (on Samsung Galaxy Tab S7) to 8.02µs858

(on Samsung A6). The algorithm which requires the highest859

execution time is AB, which classifies CAN frames in≈8 µs860

on the most powerful device and in ≈60 µs on the slowest861

device. The required execution time for ET and RFC lies862

between CART and AB, with values between 1.02 µs and863

13.56 µs. With only one JNI call, CART, ET and RFC are864

executed in less than 2 µs by all devices in case of Duster865

dataset frames, and in less than 6.71 µs in case of the ADAS866

Systems dataset frames. AB is executed between 6.90 µs and867

54.57 µs in case of both datasets.868

As described in the introductory part, an important advan-869

tage of Android devices, which can be connected on the870

CAN bus, is that they can be also easily connect to cloud871

services. This opens road to deploy more complex IDS algo-872

rithms on cloud and take advantage of the high computational873

resources that the cloud servers are capable of. In order to874

get a clear picture of the computational capabilities of cloud875

TABLE 15. Cloud VMs - computational time for IDS algorithms [µs].

solutions, we evaluated the four classifiers (i.e. AB, CART, 876

ET and RFC) on cloud virtual machines (VMs). There- 877

fore, we deployed four VMs using Microsoft Azure service. 878

95174 VOLUME 10, 2022



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

TABLE 16. Automotive grade controllers - computational time and memory consumption for IDS algorithms.

FIGURE 15. Computational results on Android (m-multiple/o-one JNI call(s)) and cloud VMs vs. ECUs for the CART classifier.

We created two VMs running Ubuntu and two Windows879

based VMs. For each operating system we chose a general880

purpose VM with 8 GB of RAM and a CPU running at881

2.10 GHz and a compute optimized VM with 4 GB RAM882

and a CPU running at 2.59 GHz. Each VM features two883

virtual CPUs (vCPUs). The VMs specifications are listed884

in Table 14. The runtime measurements are represented in885

Table 15. In general, the cloud VMs seem to be the most886

performant devices, from the ones that we evaluated, in terms887

of execution speed. CART, ET and RFC classifiers are exe-888

cuted in less than 1 µs by all the four VMs while AB is exe-889

cuted between 5.37 µs and 10.31 µs, depending on the VMs890

configuration. It seems that VMs running Ubuntu are 891

somewhat faster than the Windows based VMs. However, 892

an important aspect that needs to be considered for cloud 893

solutions is the data transmission time, which depending on 894

various factors (e.g. location of the server, internet connec- 895

tion) can range from tens of milliseconds to hundreds of 896

milliseconds or even more. For a better visualization, the 897

computational results on the Android devices and cloud VMs 898

are depicted as bar-charts in Figure 14. 899

Next, we evaluated the algorithms on the automotive-grade 900

microcontrollers. In our experiments, we compiled the C code 901

with the default compiler options for each microcontroller, 902

VOLUME 10, 2022 95175



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

which leaves room for optimization in terms of memory or903

execution speed, depending on the needs. For this class of904

devices, in addition to execution speed, we also evaluate the905

required code flash for each algorithm, since memory con-906

sumption is one of the most stringent limitations of the auto-907

motive microcontrollers. The results are listed in Table 16.908

Regarding memory consumption, the situation looks good for909

the algorithms that were trained on the Duster dataset. The910

necessary free memory ranges up to 2.0263 kB in case of911

CART, up to 7.83 kB in case of AB, up to 6.5976 kB in case of912

RFC and up to 28.07 kB in case of ET. These values should913

be acceptable for deploying IDS algorithms on automotive914

ECUs. However, the situation gets more complicated with915

the code that was generated for the ADAS Systems dataset.916

Except AB, the required available memory increased a lot for917

the other three classifiers. ET could be loaded only on the918

Tricore TC397 memory. CART and RFC could be compiled919

and linked by both the Infineon devices TC224 and TC397.920

However, even if they fit in the memory, the requirements are921

not very convenient, at least in case of RFC which requires922

476.4375 kB of code flash memory on TC224, i.e., already923

more than 40% of the entire available memory of this micro-924

controller. We were not able to include and assess CART or925

RFC on S12 as the compiler that we used for S12 has a 64 kB926

code limitation.927

From the execution point of view, most of the results for the928

Infineon microcontrollers are comparable with the Android929

devices. CART, ET and RFC algorithms trained on Duster930

dataset are executed between 0.59 µs and 5.60 µs. In order to931

classify CAN-FD frames, CART and RFC requires between932

1.0321 µs and 11.6 µs on the two Infineon devices. The ET933

algorithm which was trained on the ADAS Systems dataset934

could be successfully evaluated only on the Infineon TC397.935

It requires a bit over 2000 kB of code flash memory and936

it’s executed in less than 11.5 µs. Based on our results,937

the S12 microcontroller requires a few seconds to execute938

the machine learning algorithms which is way too much for939

the IDS requirements. This indicates that it’s not possible940

to deploy such an IDS mechanism on microcontrollers with941

low CPU operating frequencies. Based on the results that we942

obtained, CART seems to be the most convenient classifier943

to be deployed in terms of execution speed and required944

memory (only applicable for microcontrollers). In Figure 15945

we depicted the execution speed of CART classifier on the946

Android devices and on the two Infineon microcontrollers.947

VI. CONCLUSION948

In this work we made a comparative analysis between two949

implementation options for deploying an intrusion detection950

system on the CAN bus: the use of an in-vehicle ECU and the951

use of Android head units connected via a CAN decoder or of952

an Android device connected to a WiFi bridge. The Android953

devices do outperform in-vehicle ECUs, but not by such a954

high margin when using one of the most powerful in-vehicle955

controllers available on the market, i.e., an Infineon TC397.956

However, this happens only if one can avoid expensive API957

calls over the JNI interface and if the code is run at the native 958

level on the ARM processor of the Android unit. This will 959

depend on the number of JNI calls that are time consuming, 960

i.e., when multiple calls are used, the high-end controllers 961

will outperform low-end Android devices. This implemen- 962

tation detail may significantly reduce the capability of such 963

devices. For example, when performing multiple calls from 964

Java to the C/C++ code of the classifier, the Android head 965

unit proved to be slower than the fastestmicrocontroller. Also, 966

we notice that the CAN decoder that was linked through the 967

serial interface to the Android Unit is not reliable enough for 968

recording the timestampswhich further impedes the detection 969

rates of the IDS. Nonetheless, the same CAN decoder was 970

unable to cope with the frame rate from the bus and there was 971

a consistent frame loss. Finally, the WiFi bridge performed 972

very well giving almost identical results in terms of times- 973

tamps compared to industry standard VN1630. This suggests 974

this option as a reliable one for implementing an IDS inside 975

vehicles. The flexibility offered by implementing an IDS on 976

Android devices, which may take advantage of high CPU and 977

memory resources as well as cloud support, may open road 978

for the deployment of more advanced IDS in future cars. 979

LIST OF ACRONYMS 980

AB Adaptive Boosting.
ACK Acknowledge.
ADAS Advanced Driver-Assistance Systems.
AES Advanced Encryption Standard.
API Application Programming Interface.
APK Android Application Package.
AUTOSAR AUTomotive Open System ARchitecture.
BC Bagging Classifier.
CAN Controller Area Networks.
CAPL Communication Access Programming

Language.
CART Classification And Regression Tree.
COM Communication.
CPU Central Processing Unit.
CRC Cyclic Redundancy Check.
DLC Data Length Code.
DoS Denial of Service.
ECU Electronic Control Units.
EOF End of Frame.
ET Extra Tree.
FN False Negative.
FP False Positive.
GB Gradient Boosting.
HEV Hybrid Electric Vehicle.
IDS Intrusion Detection Systems.
IdsM Intrusion Detection System Manager.
IdsR Intrusion Detection System Reporter.
IFS Interframe Space.
ISO International Organization for

Standardization.
JNI Java Native Interface.
KNN K-Nearest Neighbors.

981

95176 VOLUME 10, 2022



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

LDA Linear Discriminant Analysis.
LR Logistic Regression.
MAC Message Authentication Codes.
ML Machine Learning.
MLP Multi-Layer Perceptron Network.
NB Gaussian Naive Bayes.
NDK Native Development Kit.
OBD On-Board Diagnostic.
QEVs Qualified Security Events.
RFC Random Forest.
ROM Read-only Memory.
RRS Remote Request Substitution.
RTR Remote Transmission Request.
Sem Security event memory.
SOF Start of Frame.
SPI Serial Peripheral Interface.
SUV Sport Utility Vehicle.
SVM Support Vector Machine.
TN True Negative.
TP True Positive.
TPMS Tire Pressure Monitoring Systems.
UART Universal Asynchronous

Receiver/Transmitter.
VM Virtual Machine.
WPA2 WiFi Protected Access II.

982

REFERENCES983

[1] M. L. Han, B. I. Kwak, and H. K. Kim, ‘‘Anomaly intrusion detection984

method for vehicular networks based on survival analysis,’’ Veh. Commun.,985

vol. 14, pp. 52–63, Oct. 2018.986

[2] S. Checkoway, ‘‘Comprehensive experimental analyses of automotive987

attack surfaces,’’ in Proc. USENIX Secur. Symp., San Francisco, CA, USA,988

2011, pp. 77–92.989

[3] C. Miller and C. Valasek, ‘‘A survey of remote automotive attack990

surfaces,’’ Black Hat USA, p. 90, Aug. 2014. [Online]. Available:991

https://ioactive.com/pdfs/IOActive_Remote_Attack_Surfaces.pdf992

[4] J. Petit and S. E. Shladover, ‘‘Potential cyberattacks on automated vehi-993

cles,’’ IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 546–556,994

Apr. 2015.995

[5] B. Groza and P. Murvay, ‘‘Security solutions for the controller area net-996

work: Bringing authentication to in-vehicle networks,’’ IEEE Veh. Technol.997

Mag., vol. 13, no. 1, pp. 40–47, Mar. 2018.998

[6] Y. Lee, S. Woo, J. Lee, Y. Song, H. Moon, and D. H. Lee, ‘‘Enhanced999

Android app-repackaging attack on in-vehicle network,’’ Wireless Com-1000

mun. Mobile Comput., vol. 2019, pp. 1–13, Feb. 2019.1001

[7] G. Costantino and I. Matteucci, ‘‘CANDY CREAM—Hacking infotain-1002

ment Android systems to command instrument cluster via can data frame,’’1003

in Proc. IEEE Int. Conf. Comput. Sci. Eng. (CSE), IEEE Int. Conf. Embed-1004

ded Ubiquitous Comput. (EUC), Aug. 2019, pp. 476–481.1005

[8] M. Ruef, ‘‘Car hacking—Analysis of the Mercedes connected vehicle1006

API,’’ Scip AG, Zürich, Switzerland, Tech. Rep., Apr. 2018.1007

[9] H. J. Jo, W. Choi, S. Y. Na, S. Woo, and D. H. Lee, ‘‘Vulnerabilities of1008

Android OS-based telematics system,’’ Wireless Pers. Commun., vol. 92,1009

no. 4, pp. 1511–1530, Feb. 2017.1010

[10] Road Vehicles—Controller Area Network (CAN)—Part 1: Data Link Layer1011

and Physical Signalling, Standard ISO11898-1, 2nd edition, Dec. 2015.1012

[11] Road Vehicles—Controller Area Network (CAN)—Part 2: High-Speed1013

Medium Access Unit, Standard ISO11898-2, 2nd edition, Dec. 2016.1014

[12] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,1015

D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage, ‘‘Exper-1016

imental security analysis of a modern automobile,’’ in Proc. IEEE Symp.1017

Secur. Privacy, Dec. 2010, pp. 447–462.1018

[13] C. Miller and C. Valasek, ‘‘Adventures in automotive networks and control1019

units,’’ Def Con, vol. 21, pp. 260–264, Aug. 2013.1020

[14] J. Liu, S. Zhang, W. Sun, and Y. Shi, ‘‘In-vehicle network attacks and 1021

countermeasures: Challenges and future directions,’’ IEEE Netw., vol. 31, 1022

no. 5, pp. 50–58, May 2017. 1023

[15] N. Khatri, R. Shrestha, and S. Y. Nam, ‘‘Security issues with in- 1024

vehicle networks, and enhanced countermeasures based on blockchain,’’ 1025

Electronics, vol. 10, no. 8, p. 893, Apr. 2021. [Online]. Available: 1026

https://www.mdpi.com/2079-9292/10/8/893 1027

[16] X. Sun, F. R. Yu, and P. Zhang, ‘‘A survey on cyber-security of connected 1028

and autonomous vehicles (CAVs),’’ IEEE Trans. Intell. Transp. Syst., 1029

vol. 23, no. 7, pp. 6240–6259, Jul. 2022. 1030

[17] Specification of Secure Onboard Communication, AUTOSAR, Munich, 1031

Germany, 2020. 1032

[18] H. Lee, S. H. Jeong, and H. K. Kim, ‘‘OTIDS: A novel intrusion detection 1033

system for in-vehicle network by using remote frame,’’ in Proc. 15th Annu. 1034

Conf. Privacy, Secur. Trust (PST), Aug. 2017, pp. 57–66. 1035

[19] B. Groza and P.-S. Murvay, ‘‘Efficient intrusion detection with bloom 1036

filtering in controller area networks,’’ IEEE Trans. Inf. Forensics Security, 1037

vol. 14, no. 4, pp. 1037–1051, Apr. 2019. 1038

[20] K.-T. Cho and K. G. Shin, ‘‘Fingerprinting electronic control units for 1039

vehicle intrusion detection,’’ in Proc. 25th USENIX Secur. Symp., 2016, 1040

pp. 911–927. 1041

[21] P. Freitas De Araujo-Filho, A. J. Pinheiro, G. Kaddoum, D. R. Campelo, 1042

and F. L. Soares, ‘‘An efficient intrusion prevention system for CAN: 1043

Hindering cyber-attacks with a low-cost platform,’’ IEEE Access, vol. 9, 1044

pp. 166855–166869, 2021. 1045

[22] S. Ohira, A. K. Desta, I. Arai, H. Inoue, and K. Fujikawa, ‘‘Normal and 1046

malicious sliding windows similarity analysis method for fast and accurate 1047

IDS against DoS attacks on in-vehicle networks,’’ IEEE Access, vol. 8, 1048

pp. 42422–42435, 2020. 1049

[23] R. Islam, R. U. D. Refat, S. M. Yerram, and H. Malik, ‘‘Graph-based 1050

intrusion detection system for controller area networks,’’ IEEE Trans. 1051

Intell. Transp. Syst., vol. 23, no. 3, pp. 1727–1736, Mar. 2020. 1052

[24] M. Müter and N. Asaj, ‘‘Entropy-based anomaly detection for in- 1053

vehicle networks,’’ in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2011, 1054

pp. 1110–1115. 1055

[25] M. Marchetti, D. Stabili, A. Guido, and M. Colajanni, ‘‘Evaluation of 1056

anomaly detection for in-vehicle networks through information-theoretic 1057

algorithms,’’ in Proc. IEEE 2nd Int. Forum Res. Technol. Soc. Ind. Lever- 1058

aging Better Tomorrow (RTSI), Sep. 2016, pp. 1–6. 1059

[26] S. N. Narayanan, S. Mittal, and A. Joshi, ‘‘Obd_securealert: An anomaly 1060

detection system for vehicles,’’ in Proc. IEEE Int. Conf. Smart Comput. 1061

(SMARTCOMP), Jun. 2016, pp. 1–6. 1062

[27] D. Tian, Y. Li, Y. Wang, X. Duan, C. Wang, W. Wang, R. Hui, and P. Guo, 1063

‘‘An intrusion detection system based on machine learning for can-bus,’’ in 1064

Proc. Int. Conf. Ind. Netw. Intell. Syst. Cham, Switzerland: Springer, 2017, 1065

pp. 285–294. 1066

[28] I. Studnia, E. Alata, V. Nicomette, M. Kaâniche, and Y. Laarouchi, 1067

‘‘A language-based intrusion detection approach for automotive embedded 1068

networks,’’ Int. J. Embedded Syst., vol. 10, no. 1, pp. 1–12, 2018. 1069

[29] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, ‘‘VoltageIDS: Low- 1070

level communication characteristics for automotive intrusion detection sys- 1071

tem,’’ IEEE Trans. Inf. Forensics Security, vol. 13, no. 8, pp. 2114–2129, 1072

Aug. 2018. 1073

[30] P.-S. Murvay and B. Groza, ‘‘Source identification using signal charac- 1074

teristics in controller area networks,’’ IEEE Signal Process. Lett., vol. 21, 1075

no. 4, pp. 395–399, Apr. 2014. 1076

[31] Y. Luo, Y. Xiao, L. Cheng, G. Peng, and D. D. Yao, ‘‘Deep learning-based 1077

anomaly detection in cyber-physical systems: Progress and opportunities,’’ 1078

2020, arXiv:2003.13213. 1079

[32] T. Moulahi, S. Zidi, A. Alabdulatif, and M. Atiquzzaman, ‘‘Compar- 1080

ative performance evaluation of intrusion detection based on machine 1081

learning in in-vehicle controller area network bus,’’ IEEE Access, vol. 9, 1082

pp. 99595–99605, 2021. 1083

[33] A. Alshammari, M. A. Zohdy, D. Debnath, and G. Corser, ‘‘Classification 1084

approach for intrusion detection in vehicle systems,’’ Wireless Eng. Tech- 1085

nol., vol. 9, no. 4, pp. 79–94, 2018. 1086

[34] M.-J. Kang and J.-W. Kang, ‘‘Intrusion detection system using deep neural 1087

network for in-vehicle network security,’’ PLoS ONE, vol. 11, no. 6, 1088

Jun. 2016, Art. no. e0155781. 1089

[35] C. E. Everett and D. McCoy, ‘‘Octane (open car testbed and network 1090

experiments): Bringing cyber-physical security research to researchers 1091

and students,’’ in Proc. 6th Workshop Cyber Secur. Experimentation Test. 1092

USENIX, 2013, pp. 1–8. 1093

VOLUME 10, 2022 95177



T. Andreica et al.: Android Head Units vs. In-Vehicle ECUs: Performance Assessment for Deploying In-Vehicle IDS

[36] M. D. Hossain, H. Inoue, H. Ochiai, D. Fall, and Y. Kadobayashi, ‘‘LSTM-1094

based intrusion detection system for in-vehicle can bus communications,’’1095

IEEE Access, vol. 8, pp. 185489–185502, 2020.1096

[37] M. Han, P. Cheng, and S. Ma, ‘‘CVNNs-IDS: Complex-valued neu-1097

ral network based in-vehicle intrusion detection system,’’ in Proc. Int.1098

Conf. Secur. Privacy Digit. Economy. Cham, Switzerland: Springer, 2020,1099

pp. 263–277.1100

[38] H. Olufowobi, C. Young, J. Zambreno, and G. Bloom, ‘‘SAIDuCANT:1101

Specification-based automotive intrusion detection using controller area1102

network (CAN) timing,’’ IEEE Trans. Veh. Technol., vol. 69, no. 2,1103

pp. 1484–1494, Feb. 2020.1104

[39] H. M. Song and H. K. Kim, ‘‘Self-supervised anomaly detection for in-1105

vehicle network using noised pseudo normal data,’’ IEEE Trans. Veh.1106

Technol., vol. 70, no. 2, pp. 1098–1108, Feb. 2021.1107

[40] J. Wei, Y. Chen, Y. Lai, Y. Wang, and Z. Zhang, ‘‘Domain adversarial1108

neural network-based intrusion detection system for in-vehicle network1109

variant attacks,’’ IEEE Commun. Lett., early access, Aug. 1, 2022, doi:1110

10.1109/LCOMM.2022.3195486.1111

[41] O. Y. Al-Jarrah, C. Maple, M. Dianati, D. Oxtoby, and A. Mouzakitis,1112

‘‘Intrusion detection systems for intra-vehicle networks: A review,’’ IEEE1113

Access, vol. 7, pp. 21266–21289, 2019.1114

[42] T. Limbasiya, K. Z. Teng, S. Chattopadhyay, and J. Zhou, ‘‘A systematic1115

survey of attack detection and prevention in connected and autonomous1116

vehicles,’’ Veh. Commun., vol. 37, Oct. 2022, Art. no. 100515.1117

[Online]. Available: https://www.sciencedirect.com/science/1118

article/pii/S22142096220006261119

[43] S. Park and J.-Y. Choi, ‘‘Hierarchical anomaly detection model for in-1120

vehicle networks using machine learning algorithms,’’ Sensors, vol. 20,1121

no. 14, p. 3934, Jul. 2020.1122

[44] C. Jichici, B. Groza, and P.-S. Murvay, ‘‘Integrating adversary models and1123

intrusion detection systems for in-vehicle networks in canoe,’’ in Innova-1124

tive Security Solutions for Information Technology and Communications,1125

E. Simion and R. Géraud-Stewart, Eds. Cham, Switzerland: Springer,1126

2020, pp. 241–256.1127

[45] F. Herranz. Usbserial. Accessed: Jun. 28, 2022. [Online]. Available:1128

https://github.com/felHR85/UsbSerial1129

[46] D. Morawiec. Sklearn-Porter, Transpile Trained Scikit-Learn Estimators1130

to C, Java, JavaScript and Others. Accessed: Jun. 28, 2022. [Online].1131

Available: https://github.com/nok/sklearn-porter1132

[47] Specification of IntrusionDetection SystemProtocol, AUTOSAR,Munich,1133

Germany, 2020.1134

[48] Requirements on Intrusion Detection System, AUTOSAR, Munich,1135

Germany, 2020.1136

TUDOR ANDREICA received the B.Sc. and1137

M.Sc. degrees from the Polithenica University of1138

Timisoara, in 2016 and 2018, respectively, where1139

he is currently pursuing the Ph.D. degree. He was1140

a Research Student in the CSEAMAN and PRES-1141

ENCE projects. Since 2015, he has been work-1142

ing as a Software Engineer at HELLA Romania,1143

focusing on the security of various in-vehicle sys-1144

tems. His research interest includes automotive1145

cybersecurity.1146

CHRISTIAN-DANIEL CURIAC received the B.Sc. 1147

andM.Sc. degrees in electrical and computer engi- 1148

neering from the Technical University of Munich 1149

(TUM), in June 2019 and June 2021, respectively. 1150

He is currently pursuing the Ph.D. degree with the 1151

Politehnica University of Timisoara. His research 1152

interests include cybersecurity, signal processing, 1153

and machine learning. He was a recipient of a 1154

DAAD Scholarship (2016–2021) to support his 1155

bachelor’s and master’s degree studies. 1156

CAMIL JICHICI received the Dipl.Ing. and 1157

M.Sc. degrees from the Politehnica University of 1158

Timisoara (UPT), in 2016 and 2018, respectively, 1159

where he is currently pursuing the Ph.D. degree. 1160

He has been working as a Software Integrator in 1161

the automotive industry for Continental Corpora- 1162

tion, Timişoara, since 2014. Since 2018, he has 1163

been working as a Young Researcher in the PRES- 1164

ENCE project. His research interests include secu- 1165

rity of in-vehicle components and networks. 1166

BOGDAN GROZA (Member, IEEE) received the 1167

Dipl.Ing. and Ph.D. degrees from the Politehnica 1168

University of Timisoara (UPT), in 2004 and 2008, 1169

respectively. In 2016, he successfully defended 1170

his habilitation thesis having as core subject the 1171

design of cryptographic security for automotive 1172

embedded devices and networks. He is currently 1173

a Professor at UPT. He has been actively involved 1174

inside UPT with the development of laboratories 1175

by Continental Automotive and Vector Informatik. 1176

Besides regular participation in national and international research projects 1177

in information security, he lead the CSEAMAN (2015–2017) and PRES- 1178

ENCE (2018–2020) projects, two national research programs dedicated to 1179

in-vehicle security and the interaction between vehicles and smartphones. 1180

1181

95178 VOLUME 10, 2022

http://dx.doi.org/10.1109/LCOMM.2022.3195486

