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ABSTRACT The presence of outliers in tea traceability data can mislead customers and have a significant
impact on the reputation and profits of tea companies. To solve this problem, an unsupervised outlier
detection mechanism for tea traceability data is proposed. Firstly, tea traceability data is uploaded to the
MySQL database, and then the data is preprocessed to aggregate features based on relevance, which makes
it easier to identify abnormal features. Secondly, the LOKI algorithm based on Local Outlier Factor (LOF),
Isolation Forest (IForest), and K-Nearest Neighbors (KNN) algorithms is used to achieve unsupervised
outlier detection of tea traceability data. In addition, a Density-Based Spatial Clustering of Applications
with Noise (DBSCAN-based) tuning method for unsupervised outlier detection algorithms is also provided.
Finally, the types of anomalies among the identified outliers are identified to investigate the causes of the
anomalies in order to develop remedial procedures to eliminate the anomalies, and the analysis results are
fed back to the tea companies. Experiments on real datasets show that the DBSCAN-based tuning method
can effectively help the unsupervised outlier detection algorithm optimize the parameters, and that the LOF-
KNN-IForest (LOKI) algorithm can effectively identify the outliers in tea traceability data. This proves that
the unsupervised outlier detection mechanism for tea traceability data can effectively guarantee the quality
of tea traceability data.

INDEX TERMS Feature combination, LOKI algorithm, machine learning, outlier detection mechanism,
parameter tuning method, tea traceability.

I. INTRODUCTION
Tea originated in China and has a lengthy history. Tea drinks

of globalization, more regulatory authorities have focused
on the traceability of tea safety and reliability, and customer

are one of the world’s three most popular beverages. In China,
there are six tea families: green tea, yellow tea, oolong tea,
black tea, dark tea, and white tea. China was the world’s first
country to discover and use tea as well as the first to trade tea
commodities. Chinese tea has also played an essential role
in economic growth, enhancing China’s international trade
efficiency. Pesticide residues and heavy metals have harmed
the quality and safety of tea in recent years and have had
an influence on the tea industry’s development. As a result
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expectations for tea quality are increasing. The majority of
existing tea quality monitoring tools offer customers trace-
ability information, but there are few tools that can be used
by businesses to examine and manage this information. Tea
traceability data analysis can assist tea businesses in identify-
ing issues in the production management process and can be
used to control tea quality at the source.

Traceability data show how things have evolved and may
be used to investigate the root and source of things. The
gathering of traceability data may be classified into three
categories based on the input method used: manual, semi-
automatic, and sensor input. With the rapid growth of the
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internet and IoT technologies, more and more traceability
data application scenarios, such as agricultural product trace-
ability [1], [2], medication traceability [3], and food trace-
ability [4], [5], are becoming available. Tea traceability data
are information about a tea’s traceability from manufacture to
sale.

Tea traceability data are the tracking information for all
parts of tea production and sales and may offer customers
information about all aspects of tea, from planting to sell-
ing [6]. Consumers are particularly worried about the quality
and safety of tea. It is difficult for businesses to acquire
trustworthy tea traceability data, since the tea-producing envi-
ronment is significantly influenced by uncontrollable external
factors such as the soil and climate [7], and the data obtained
become increasingly convoluted. As a result, anomalies in the
tea traceability data gathering process are common, resulting
in a low traceability data quality, customers being deceived by
incorrect information, and the enterprise’s credibility being
harmed. High-quality tea traceability information may add
value to the product and raise the selling price of tea. It is
easier to ensure the quality and safety of tea that can be
traced back to its source. With the growth of the economy and
the rising affluence, customers are prepared to spend more
money on traceable tea for the benefit of their health. High-
quality traceability data may also be used by tea enterprises
to enhance production and operational issues. As a result,
tea traceability data outlier detection techniques for tea enter-
prises are required.

Outlier detection methods aim to find unusual data that
differ considerably from other data and are created by various
mechanisms. Depending on whether there are labels, outlier
detection methods may be classified as unsupervised [8], [9],
[10], [11], semi-supervised [12], [13], and supervised [14],
[15]. The original data set is generally partitioned into a
disjoint training set and a test set for the supervised outlier
detection approach, and the training data have accurate cate-
gory labels. The training set is used to improve the model’s fit
to the data so that the supervised algorithm can perform better
on the experimental data. However, in the real-world case of
outlier identification, the data are frequently unlabeled, and
the disparities between outliers are considerable; thus, the
supervised algorithm is ineffective. The normal data in the
dataset have labels for the semi-supervised outlier detection
method, but the outliers do not. The outlier detection algo-
rithm splits normal data with labels into training and test sets,
which are used for model training and performance verifica-
tion, respectively, and then labels the unlabeled data using the
trained model. There are no labels on the unsupervised outlier
detection method’s training data. The anomaly score for each
data point is calculated using the general features of the data,
and the anomaly scores are correlated to the data’s anomaly
degree. Finally, some of the data with the greatest anomaly
scores are printed. Statistical-based methods, density-based
methods, distance-based methods, clustering-based meth-
ods, tree-based and subspace-based methods, angle-based
methods, deep-learning-based methods [16], [17], [18], and
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linear-model-based methods are the most common unsuper-
vised outlier detection methods.

The credibility of tea enterprises would suffer greatly if
they gathered incorrect tea traceability information through-
out the manufacturing process, presented it to customers,
and consumers were misled by the incorrect tea traceability
information. This will then harm the profits of tea enterprises.
However, enhancing the quality of the traceability data can
contribute to the product’s value growth. High-quality tea
traceability data may also be utilized to help tea enterprises
resolve production and administrative problems.

In order to solve the problems caused by the poor quality
of tea traceability data and to obtain the benefits from high-
quality tea traceability data. The main contributions of this
paper are as follows.

(1) An unsupervised outlier detection mechanism is pro-
posed, with the goal of identifying outliers in the data, ana-
lyzing the results, and then returning the analysis results to
the tea enterprises.

(2) The LOKI algorithm is proposed with the aim of
combining different types of outlier detection algorithms to
improve the accuracy of outlier detection.

(3) A DBSCAN-based [19] tuning method for unsuper-
vised anomaly detection algorithms is proposed to help
the unsupervised outlier detection algorithm determine the
parameters.

The remainder of this work is arranged in the following
manner. The study on the use of outlier detection in many
domains is reviewed in Section 2. The unsupervised outlier
detection mechanism for tea traceability data is described in
Section 3. The experimental data and analyses are presented
in Section 4. Section 5 concludes the articles, examines the
limits, and proposes future research areas.

Il. RELATED WORK

The use of unsupervised outlier detection is also very popular
in tea traceability data as well as in other areas. There has
been a significant amount of research conducted on how to
identify abnormalities in complicated systems using unla-
beled data. Liu er al. [20]. suggested the use of an incre-
mental unsupervised anomaly detection method to rapidly
analyze large-scale, real-time data from industrial control
systems. This technique generates a random binary tree set
from the data stream’s sampled data, combines fresh data
information into the current model on a continuous basis,
and provides a weighting mechanism to ensure that the set’s
findings are reasonably stable, even if some trees are elimi-
nated. Mikhailova [21]. employed deep learning approaches
to address civil infrastructure engineering challenges and cre-
ated an unsupervised system that can automatically identify
the ‘train event’ point. Yanjun et al. [22]. established an
anomaly detection framework and gathered more detailed
data on the time series’ shape and morphological charac-
teristics through data representation for anomaly detection
in order to better detect outliers in time series data. Time
series data outlier identification is also commonly employed
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FIGURE 1. Unsupervised outlier detection mechanism used for tea traceability data.

in other domains. Alvaro et al. [23], for example, looked
at the use of unsupervised anomaly detection technology
in wood moisture content data and technology to automat-
ically monitor abnormalities in time series data recorded
from wood structures. To discover areas of vulnerability in
water distribution networks and decrease false positive rates,
Ane et al. [24]. suggested the use of a leak detection system
based on self-supervised categorization of flow time series.
Peng et al. [25]. proposed an improved Bidirectional Gen-
erative Adversarial Networks anomaly detection system to
detect faults by tracking anomaly scores in order to lower the
operating costs of autonomous systems operating in complex
and dynamic marine environments and to achieve large-scale
parallel deployment. In order to ensure successful and steady
training of the generative confrontation model, the system
is led by periodic supplemental prompts. Park er al. [26]
proposed a machine anomaly detection system that com-
bines unsupervised and non-parametric learning to detect
abnormalities during machine operations using vibration data
collected by the sensor.

A literature search identified very few cases of outlier
detection in the world of tea traceability data. Unlike pre-
vious work, the unsupervised outlier detection mechanism
proposed in this research for tea traceability data may be
able to reliably discover several abnormal characteristics.
To begin, the data are merged based on feature correlation
to establish the types of abnormal feature combinations,
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and the reasons for the existence of abnormal features in
each group are analyzed, followed by the implementation
of appropriate improvement methods. Simultaneously, the
LOKI algorithm, which combines the LOF [27], IForest [28],
and KNN [29] algorithms, is proposed to increase the out-
lier detection accuracy by merging multiple types of outlier
detection algorithms. In addition, the parameter adjustment
method of an unsupervised outlier detection algorithm is
suggested to aid in the optimization of parameters in an
unlabeled data environment. The results of the experiments
suggest that the proposed mechanism is capable of detecting
outliers in tea traceability data.

lil. METHOD

As illustrated in Figure 1, the tea traceability data outlier
detection mechanism consists of four parts: data collection,
data access, outlier detection, and anomaly analysis. Manual
input, sensor input, and semi-automatic input are all exam-
ples of data collection methods. The data are uploaded to
a MySQL database, which is accessible using JDBC, and
the various characteristics are then integrated via correlation
analysis [30]. The outlier detection part first detects outliers
using the LOF, IForest, and KNN algorithms, assigns weights
to the data in the detection results of the three algorithms,
and finally, filters the optimal common subset of the three
result sets using the weights to achieve more effective outlier
detection. The anomaly analysis identifies abnormal types
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FIGURE 2. Distribution of normal values and outliers.

based on the feature combination, investigates the reasons for
the occurrence of abnormal types, and lastly, provides cor-
rective measures and feedback to the tea enterprises. A plan-
tation information table, planting information table, inputs
information table, tea information table, picking information
table, processing information table, operation record table,
product information table, and packaging information table
are all present in MySQL. The plantation information table,
for example, has fields for the plantation name, plantation
number, longitude, and latitude. The longitude and latitude
fields in the plantation information table are extracted to
detect outliers in the traceability data.

This mechanism has three important functions: (1) It finds
outliers at a finer level and identifies specific traits that
appear to be outliers. In this work, the goal of the correlation
analysis is to integrate characteristics with comparable causes
of outlier occurrence to make the anomaly analysis easier.
(2) A new algorithm combining different outlier detection
algorithms is proposed to achieve more accurate outlier detec-
tion. (3) A list of the different sorts of anomalies found in
the tea traceability data is compiled and the reasons for each
anomaly are identified so that appropriate steps may be taken
to eradicate them at their sources.

A. DATA DESCRIPTION

Tea enterprises acquire tea traceability data by sensor input,
manual input, and semi-automatic input during the produc-
tion process. This experiment used data (1000 records) from
a tea-producing enterprise in Anhui Province. The visualiza-
tion of the data [31], [32] is shown in Figure 2.

Table 1 shows the feature fields for each data set. There
are 17 features and 1D labels. There are 950 normal data
points and 50 outliers with outliers accounting for 5% of the
total data. In the process of data collection, the longitudes
and latitudes may be anomalies due to sensor failure. The
tea grade, tea shape, tea color may cause anomalies in the
data input due to the use of improper operation methods by
employees; The weeding area, digging terraces area, planting
quantity, fertilizing quantity, pruning area, picking quan-
tity, weeding dates, digging terraces dates, planting dates,
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TABLE 1. Data feature field.

Feature Name
Longitudes
Latitudes
Weeding area
Digging terraces area
Planting quantity
Fertilizing quantity
Pruning area
Picking quantity
Tea grade
Tea shape
Tea color
Weeding dates
Digging terraces dates
Planting dates
Fertilizing dates
Pruning dates
Picking dates

fertilizing dates, pruning dates, and picking dates may contain
anomalies due to employee errors, such as repeated data entry,
data omissions, and data input errors.

B. DATA PREPROCESSING
1) NORMALIZATION
Normalization [33] involves compressing data between 0 and
1 to eliminate the order of magnitude difference between
samples, ensure each data point is of the same order of
magnitude, and to make the data points comparable. The
normalized data follow a normal distribution, and the formula
is as follows:

o — X — Xmin (1

Xmax — Xmin

where X, represents the maximum value in the data, and
Xmin Tepresents the minimum value in the data.

2) CORRELATION ANALYSIS

Correlation analysis is a method for analyzing the inherent
links between data features. It may be used to visually illus-
trate the direction and degree of an intrinsic association. The
linear relationship [34] between two features can be examined
using the Pearson correlation coefficient. The value ranges
from —1 to 1, and the closer it gets to —1, the higher the
negative linear correlation between the two characteristics
is. The linear correlation between two features becomes
higher the closer it is to 1; the linear correlation between
the two characteristics becomes smaller the closer it is to 0.
The formula used to determine the Pearson correlation
coefficient is

Cor M.N) = VM. N) )
0 SVar (M) Var (N)
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where Cov (M, N) represents the covariance of M and N,
Var (M) represents the variance of M, and Var (N) represents
the variance of N.

C. UNSUPERVISED OUTLIER DETECTION

1) LOF

The LOF algorithm is an unsupervised outlier detection algo-
rithm based on density, which is mainly suitable for outlier
detection in low-dimensional local area space. The idea of
the algorithm is to calculate the discreteness of each sample
and then calculate the discreteness ratio of each sample to
the sample in the field. If the obtained value is greater than
a given threshold, the sample is identified as an outlier.
The description of the algorithm depends on the following
definitions:

Definition 1: Let di (m) be the k distance of sample
point m:

In data set D, the distance between the two sample points
m, n is denoted by d (m, n), if In set D, there are at least
k points n' € S{x # m} that do not include m, satisfying
d (m, n’) <d (m,n).

In set D, there are, at most, k — 1 points n’ € S {x # m}
that do not include m, satisfying d (m, n/) < d (m, n).

Then, dj, (m) = d (m, n).

Definition 2: Let dstancey (m, n) be the reachable distance
from sample point n to m:

distancey (m, n) = max {distancey (m) ,d (m,n)} (3)
stad mm) = o — )2+ O =y ()

The reachable distance from sample point n to m is, at least,
the kth distance of sample point m. Then, the reachable
distance from k nearest to sample point m is dy (m). st. means
subject to certain conditions.

Definition 3: Let Ny (m) be the k distance neighborhood of
sample point m:

Ni (m) = {q € D\ {m}|d (m, q < distance; (m))} (5)

Definition 4. Let Irdy (m) be the local reachable density of
sample point m:
[Nk (m)]

Ird, = 6
rei (m) e, mydistancey (m, n) ©®

The local reachable density of sample point m represents the
average reachable distance from all sample points to m in the
k-neighborhood of m. If the distribution of the sample points
around sample point m is relatively sparse, the k-distance
neighborhood range of m is large. For sample point n of the k-
distance neighborhood of sample point m, the probability of
m in the k-distance field of n is small, and the probability of
distancey (m, n) = d(m, n) is large, and the local reachability
density of m is small. On the contrary, if the sample points
around sample point m are densely distributed, the local
reachability density of m is large. In short, the local reachable
density explains the density of the local region of the sample
points.
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Definition 5: Let LOF (m) be the local outlier factor:

Irdy (n)
LineNy (m) zrrdkk (Z)

[Nk (m)]

According to the local outlier factor algorithm, if the ratio of
the local reachable density of the k nearest neighbor sample
of sample point m to the local reachable density of m is close
to 1, point m is more similar to its neighborhood point. If the
ratio of the local reachable density of the k nearest neighbor
sample of sample point m to the local reachable density of
m is less than 1, the density of m is greater than that of its
neighborhood point; and if the ratio of the local reachable
density of the k nearest neighbor sample of sample point m to
the local reachable density of sample point m is greater than
1, the density of m is less than that of its neighborhood point
and it can be regarded as an isolated point, so the possibility
that sample point m is an outlier is greater.

LOF; (m) = @)

2) IFOREST

The IForest algorithm is an unsupervised fast outlier detection
method based on the ensemble method, which is mainly
suitable for the outlier detection of large data sets with con-
tinuous eigenvalues. The basic principle of the algorithm is to
locate outliers by randomly cutting data sets. The algorithm
is described as follows:

Assuming that there is a data set D, the size of the data set
is nn, the number of the base classifier iTrees is m, and the limit
height is A.

The iTree is built and the root node of x data is randomly
selected for inclusion in the iTree from the training dataset
as the sample dataset for this iTree. Then, a feature p of the
sample data is randomly selected to calculate the maximum
and minimum values of all data in the sample data set in this
feature dimension, and a data partition threshold ¢ is ran-
domly selected within this range. The data whose eigenvalues
are less than or equal to g are put into the left subtree, and the
data whose eigenvalues are greater than g are put into the right
subtree. Then, the previous step is repeated in the left and
right child nodes to continuously randomly divide the data
until one data point in the child node reaches the limit height,
so cutting is stopped and an iTree is constructed. Finally, after
repeating the above method to construct m iTrees, they are
merged into an [Forest. Because of the big difference between
normal values and outliers, outliers are more likely to be
isolated faster and are more likely to appear at the root of
an iTree.

When the IForest construction is completed, abnormal data
points in the test data can be identified. First, the path height
of the test data on each iTree is calculated as follows: The
initial height of the test data is set as 0, the test data are sent to
the iTree, and then look down based on the branch conditions
of each node. As each node passes by, 1 path height unit is
added, and the path height data are returned after finding the
test data. Secondly, the average path height of the measured
data in the whole IForest is calculated. Then, the anomaly
score is calculated using the average path height. Finally, the
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running state of the data to be measured is determined. The
coefficient where the abnormal score is greater than or equal
to the abnormal threshold is judged as an outlier, and the
coefficient that is less than the abnormal threshold is judged
as normal data.

3) KNN

The KNN algorithm is an unsupervised outlier detection
algorithm based on distance, which is mainly suitable for
outlier detection of low-dimensional data. The basic principle
of the algorithm is as follows: for a data set, there is a new
input sample, and k samples closest to the sample are found
in the training data set. The class that the k samples most
commonly belong to is the class of the new input sample. The
algorithm first calculates and sorts the distance between the
new input samples and the samples in the known category
dataset. Then, k samples with the smallest distance from the
new input sample are selected. Then, k samples that belong
to the most categories are identified. Finally, the new input
samples are determined as the k samples that belong to the
most categories.

4) LOKI

In this work, the LOKI outlier detection algorithm is
proposed. It was developed using the LOF, KNN, and
IForest algorithms with the goal of combining multiple algo-
rithms to increase the accuracy of outlier detection. Three
high-performance algorithms were selected to complement
each other by discarding the individual parts of the results
of two algorithms and selecting values that are judged to
be outliers by at least two algorithms. The data were first
identified using the LOF, KNN, and IForest algorithms, after
which the detection results from the three techniques were
combined and weighted. Finally, the weights were used to
determine whether the data were anomalous. The system can
successfully detect outliers in tea traceability data, according
to the results of the experiments.

The LOF, IForest, and KNN algorithms are the most
commonly used outlier detection algorithms. The LOF per-
forms consistently, is unaffected by the data structure, and
has a good overall outlier prediction accuracy. The bene-
fits of the IForest include its outstanding performance on
low-dimensional data and its parameter insensitivity. The
KNN has the benefit of having an outstanding and consis-
tent performance with low-dimensional data. Based on the
aforementioned algorithm characteristics, this work takes full
advantage of the advantages of all three algorithms by merg-
ing them and then uses a screening mechanism to identify
outliers. Figure 3 depicts a schematic representation of the
algorithm.

The idea of the proposed LOKI algorithm is to assign
weights to data in three result sets, L, I and K, from three
well-performing algorithms with different types of detection
results and to filter the optimal common subset P using
weights to improve the detection accuracy while also improv-
ing the robustness of the algorithm. The pseudo code used
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FIGURE 3. Schematic diagram of the LOKI algorithm.

TABLE 2. Algorithm pseudo code.

LOKI Algorithm

lL.input: X

2.output: R

3. L_label « LOF(X),1_label « IForest(X),K_lable «
KNN(X);

4. L «filter(L_label = 1),1 « filter(I_label = 1),K «
filter(K _label = 1);

5.M « unite(L, I, K);

6.foriin M

T.init(W (@), W) « W) + 1

BifW(i)==2o0orW(i) ==3

9.R « append(i)

10.endif

11.endfor

12.Return R

in the LOKI algorithm is shown in Table 2. The algorithm
inputs data set X and outputs the outliers R. First, the LOF
algorithm, IForest algorithm, and KNN algorithm are used to
detect the data, and the labels L_label, I label, and K _label
are obtained. The data points labelled O represent normal data,
and the data points labelled 1 represent suspicious data. The
suspicious data are extracted, and L, I, and K are obtained
and merged into set M. By traversing each data point in M,
the weight is calculated by the number of occurrences of each
suspicious data point. The initial weight of each data point
is 0, and the weights are added to 1 in set M. Finally, the
suspicious data with weights greater than 1 are added to the
result set R.

D. PARAMETER SELECTION

In this paper, a tuning method for an unsupervised outlier
detection algorithm based on DBSCAN is proposed, unsu-
pervised outlier detection algorithm. The algorithm’s tuning
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concept is depicted in Figure 4. First, the learning curve and
grid search [35] are employed to traverse the hyperparameters
using the outlier detection algorithm. Each traversal result
is subtracted from the initial data. The DBSCAN technique
is then used to determine the amount of noise left in the
data. Finally, the quantity of noise is utilized to determine
the parameters of the outlier detection algorithm, with the
parameters chosen when the amount of noise is the lowest.
The DBSCAN algorithm is capable of detecting noise in data
sets. Because noise represents a random error or deviation in
the data set that is similar to an outlier, the quantity of noise
discovered may be used to assess the effectiveness of outlier
detection algorithms.

The DBSCAN algorithm’s key parameters during param-
eter adjustment are eps and min_samples. The DBSCAN’s
basic principle is to choose a point in a circle with a certain
radius eps and the minimum number of nearest neighbors

94824

min_samples. If the point satisfies the domain circle of its
radius eps with at least min_samples nearest neighbors, the
center of the circle is shifted to the next sample point; if the
same point does not satisfy the above conditions, the sample
point is reselected and iteratively clustered according to the
set radius eps and min_samples. The k-dist diagram [36] is
utilized in this study to find the eps and min_samples that
produce optimal clustering, providing an uniform evaluation
standard for the performance of multiple outlier detection
techniques with various parameters.

E. ANOMALY ANALYSIS

There are three main types of outliers in tea traceability data:
outliers of sensor input data, outliers of semi-automatic input
data, and outliers of manual input data.

Equipment damage and aging are the most common causes
of outliers in sensor input data. To eliminate these anomalies,
the following steps should be taken: (1) equipment mainte-
nance and repair should be improved, and the equipment’s
key performance should be evaluated on a regular basis; and
(2) Managers should be familiar with the typical state of the
equipment and should debug it often in order to keep it in the
best condition.

An incorrect operation method is the most common cause
of outliers in semi-automatic input data. The following pro-
cedures should be taken to eliminate this type of anomaly:
(1) The enterprise should develop a reasonable operating
technique process based on the product’s manufacturing pro-
cesses; and (2) strict labor discipline should be implemented
with frequent checks and supervision to ensure that staff are
carrying out the manufacturing process in strict conformity
with the company’s operating procedures.

The major causes of outliers in manual input data include
having employees who are sloppy in their production oper-
ations, do not precisely follow the enterprise’s production
process, and simply repeat the same activity, resulting in
employee paralysis. To prevent this, (1) the staff’s product
quality awareness education should be strengthened and their
feeling of responsibility should be increased; (2) job technical
training by should strengthened by requiring each employee
to learn and closely adhere to the enterprise’s production
workflow; (3) production and inspection employees should
improve their manufacturing process control and conduct
thorough process inspections; and (4) enterprises should
establish an environment that allows employees to work in
peace and comfort.

IV. EXPERIMENTS

A. DATASET

Before detecting outlies in tea data, the features need to be
combined [37] in order to determine the type of anomaly
present. The correlation heat map obtained from the corre-
lation analysis is shown in Figure 5. The degree of linear
correlation between features can be visualized. The weed-
ing dates, digging terraces dates, planting dates, fertilizing
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FIGURE 5. Feature correlation heat map.

dates, pruning dates, and picking dates all have significant
connection coefficients. As a result, the aforementioned fea-
tures are combined. The tea grade, tea shape, and tea color
are all combined. The weeding area, digging terraces area,
planting quantity, fertilizing quantity, pruning area and pick-
ing quantity are combined. The longitudes and latitudes are
combined.

In this study, the outliers were oversampled using the
SMOTE [38] algorithm based on the original 50 outliers
and expanded it to a total data percentage of 50% with a
difference of 5% to test the robustness and efficacy of the
LOKI technique. Table 3 shows the proportions and volumes
of data added.
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B. EVALUATION INDICATORS

The Accuracy (ACC), True Negative Rate (TNR), and True
Positive Rate (TPR) are used to evaluate the outlier detection
performance. The specific formula is.

TP + TN
ACC = ®)
TP 4+ FP 4+ FN + TN
TN
INR = ——— &)
TN + FP
TP
TPR = (10
TP + FN

where ACC stands for the accuracy rate, which is defined as
the proportion of data successfully predicted by the algorithm
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TABLE 3. The amounts and proportions of outliers.

Percentage of

o 0 o o
abnormal data 5% 10% 15% 20%

25% 30% 35% 40% 45% 50%

Number of
abnormal data
Total number of
data

50 106 168 238

1000 1056 1118 1188

317 407 512 633 777 950

1267 1357 1462 1583 1727 1900

among the total data. TNR stands for the True Negative
Rate, which is the ratio of properly predicted outliers to
the total number of outliers predicted by the algorithm. The
True Positive Rate is the proportion of normal data properly
predicted by the algorithm of all normal data. The normal
data points projected to be normal data points are TPs. The
predicted outliers that are actually outliers are TNs; the
predicted normal data points that are actually outliers are
FPs; and the predicted outliers that are actually normal data
points are FNs. The larger the values of the above three
evaluation indicators are, the better the detection effect of the
algorithm is.

C. EXPERIMENTAL RESULTS AND ANALYSIS

1) EXPERIMENT TO PROVE THE VALIDITY OF THE TUNING
METHOD

In order to verify the effectiveness of the proposed tuning
method, the outlier detection results of different algo-
rithms with and without tuning are compared, namely, the
density-based LOF algorithm, ensemble-based [Forest algo-
rithm, distance-based KNN algorithm, linear model-based
One-Class SVM (OCSVM) algorithm [39], Cluster-Based
Local Outlier Factor (CBLOF) algorithm [40], linear
model-based Principal Component Analysis (PCA) algo-
rithm [41], and Angle-Based Outlier Detector (ABOD)
algorithm [42].

Each algorithm’s experimental results are the average of
each feature combination with the same outlier ratio. Fig-
ure 6 and Figure 8 illustrate the outcomes of the compari-
son. Without changing the parameters, Figure 6 shows the
ACC, TNR, and TPR of seven typical methods with different
outlier ratios. The ACC of each algorithm decreases as the
proportion of outliers increases, as shown in Figure 6-a, and
the algorithms perform erratically. The TNR of practically
every method decreases as the proportion of outliers grows,
as shown in Figure 6-b, and the TNR of the ABOD algorithm
is always 0%, indicating that the ABOD algorithm is unable
to identify outliers efficiently. Figure 6-c show the TPR trend
of the algorithms with the change in the proportion of outliers,
where the LOF algorithm show a decreasing trend with an
increase in outliers, the OCSVM and PCA algorithms remain
unchanged after increasing to a certain level, and the ABOD,
KNN, IForest, and CBLOF algorithms are at a high level,
indicating that they can detect normal data better but have
poor detection of outliers.

94826

1.0
» —e— LOF
= —— |Forest
091 —= —=— OCSVM
KNN
—— CBLOF
T 0.8 PCA
O ABOD
<o.7
0.6
0.5
5 10 15 20 25 30 35 40 45 50
Percentage of Outliers(%)
(a)
—e— LOF
0.8 —»— |Forest
—=— OCSVM
KNN
0.6 —— CBLOF
o —— PCA
= ABOD
~ 0.4
0.2
0.0
5 10 15 20 25 30 35 40 45 50
Percentage of Outliers(%)
(b)
1.00 ———
0.98
x 0.96
o
= |IForest
0.94 —=— OCSVM
KNN
—— CBLOF
0.92 PCA
ABOD

5 10 15 20 25 30 35 40 45 50
Percentage of Outliers(%)

(©

FIGURE 6. Comparison chart without tuning parameters. (a) ACC. (b) TNR.
(c) TPR.

Figure 7 shows the parameter adjustment process used
by the LOF algorithm for the combination of longitude
and latitude features with an outlier proportion of 50%.
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(d) n_neighbors = 400. (e) n_neighbors = 500. (f) n_neighbors = 600. (g) n_neighbors = 700. (h) n_neighbors = 800. (i) n_neighbors = 900.

The parameter adjustment process uses the grid search. The
important parameters of the LOF algorithm are n_neighbors
and contamination. The n_neighbors parameter denotes the
number of neighbors used for k-nearest neighbor queries,
and the contamination parameter denotes the proportion of
outliers in the dataset. Firstly, n_neighbors takes 10 points
100, 200, 300, 400, 500, 600, 700, 800, 900, and then under
the values of these n_neighbors, a learning curve of
contamination is drawn. The value range of contamination
is 0.05 to 0.5, and 10 points are included in the interval.
Figure 7-f shows that the minimum number of noise points is
detected when n_neighbors is taken as 500 and contamination
is taken as 0.5, so the optimal parameters finally obtained are
n_neighbors = 500 and contamination = 0.5.

Figure 8 depicts the performance of the seven most com-
monly used methods after using the tuning parameters. The
algorithm’s performance is much better after adjusting the
parameters, and the algorithm’s performance is more stable
when compared with the situation where the settings are not
tweaked. The LOF, IForest, KNN, and CBLOF algorithms
perform well. Outliers can be easily spotted because the ACC,
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TNR, and TPR are all at high levels. As a result, this tuning
method is viable.

2) COMPARISON EXPERIMENTS

The experimental results of each algorithm were averaged for
each combination of characteristics under the same outlier
ratio, and the LOKI algorithm was compared with the seven
typical algorithms described above. The experimental results
show that the LOKI algorithm is extremely reliable and better
than the others in every respect.

The detection ACC of the eight techniques with varying
outlier ratios is compared in Figure 9. The identification
results of the PCA and OCSVM algorithms are much worse.
The ACC of the IForest, ABOD, and CBLOF algorithms
is slightly lower than that of the LOKI algorithm when the
proportion of outliers is less, but as the proportion of outliers
increases, the detection effect of the LOKI algorithm remains
excellent, while the detection effects of the IForest, ABOD,
and CBLOF algorithms deteriorate. The ACC of the LOKI
algorithm is higher than that of the LOF and KNN algorithms,
which has a clear relative advantage. The KNN algorithm has
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FIGURE 8. Comparison chart of the results after using the tuning
parameters. (a) ACC. (b) TNR. (c) TPR.

a high ACC, with the biggest difference being 4.5% between
the KNN method and the LOKI algorithm with an outlier ratio
of 45%. In general, the accuracy of the KNN algorithm is
3.4% lower than that of the LOKI algorithm.

Figure 10 compares the TNR of the eight algorithms with
various outlier percentages. The TNR of the LOKI algo-
rithm is greater than that of the CBLOF algorithm, 6.9%
higher on average, which is a clear advantage, as shown in
the comparison diagram. The detection rates of the LOF,
IForest, and KNN algorithms are consistently lower than
those of the LOKI algorithm, with the value of the LOF
algorithm being 2.9% lower on average, that of the IForest
algorithm being 6.3% lower on average, and that of the KNN
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FIGURE 11. Comparison diagram of the algorithm TPR under different
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algorithm being 2% lower on average. The LOKI algorithm
remains stable when the fraction of outliers changes, but the
OCSVM, PCA, and ABOD algorithms vary more. The TNR
is the most crucial evaluation indication for businesses, since
they do not want to pass on any outliers to their customers.

The TPR of the eight algorithms is compared in
Figure 11 for different outlier proportions. With a percentage
of outlier points of 5% to 10%, the ABOD algorithm has the
largest difference in TPR with a 31.6% decrease. The KNN
algorithm is closest to the LOKI algorithm and is relatively
3.9% lower.
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Figure 12 depicts the AUC-ROC curves of 8 algorithms
under all outlier ratios. Each AUC-ROC curve is plotted using
10 points, and the horizontal and vertical coordinates of each
point are the FPR and TPR for each algorithm at each outlier
ratio. The AUC values of the LOKI, LOF, IForest, KNN,
and CBLOF algorithms are 0.96, 0.92, 0.91, 0.93, and 0.92,
respectively, according to Figure 12. These values are supe-
rior to those of the OCSVM, PCA, and ABOD algorithms.
The KNN algorithm’s AUC value is the closest to that of the
LOKI algorithm, but it is still 0.03 lower, indicating the LOKI
algorithm’s superior detection ability.

The LOKI algorithm has strong outlier detection and sta-
bility and can perform well under diverse outlier ratios,
according to the four assessment indices listed above.

3) FRAMEWORK FUNCTIONAL COMPARISON

Hendrickx et al. [43]. proposed an anomaly detection frame-
work for fleet-based condition monitoring, which is divided
into four parts, namely, machine comparison, fleet clus-
tering, anomaly detection, and visualization. The first part
compares the similarities between the behaviors of two
machines. The second part groups machines with similar
behaviors using the clustering algorithm and the chosen mea-
sure. The third part uses the discovered clusters to assign
an anomaly score to each machine. The fourth part helps
to guide domain experts in analyzing specific deviating
machines by visualizing the results of the other parts. How-
ever, the framework does not enable more granularity in
locating exceptions, high-performance outlier detection, and
feedback anomalies. Lee et al. [44]. developed a real-time
health monitoring framework for predicting possible flight
performance anomalies. The framework includes a training
phase and a monitoring phase. The initial extraction pre-
processing and Savitzky—Golay filtering of the flight data
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recorder are performed in the training phase to synchronize
the sampling frequency and reduce the random noise in
the sensor signal. The preprocessed flight features are then
reduced by feature subset selection to select features that
are highly correlated with the dynamic flight characteristics.
The selected features are then used to train model classes
to predict common patterns in flight performance during
the takeoff and ascent phases. The monitoring phase simu-
lates the flight data recorder dataset and introduces its real
time data into the trained model to validate the detection
capability of the proposed framework in real-time situations.
Anomalous flight performances are detected when the pre-
dicted feature values violate the safety boundaries. However,
the framework is incapable of achieving high-performance
anomaly detection and feedback. Enrico et al. [45]. proposed
an online remote fault detection system for underwater glid-
ers to identify undesirable behaviors on the horizon. The
system is tested using a deployment dataset of undesirable
vehicle behaviors. Once the effectiveness of the system is
determined, a trained anomaly detection scheme can be used
online from a remote-controlled center to notify the pilot of a
possible failure of the underwater glider after each surfacing
and maintenance connection. The system does not allow for
more granular detection of anomalies and does not provide
an analysis on anomalies. Wada et al. [46]. proposed an
adaptive-model-based anomaly detection system for daily life
activities that adapts to new data corresponding to changes in
human behavioral habits over time. A forgetting factor data-
driven filtering approach was proposed to help the system
adapt to the current behavioral habits of individuals while
discarding features that are not relevant to old habits. The
forgetting factor allows the system to identify outdated activ-
ity data that should be discarded while incorporating data
representing changes in human behavior routines for adapta-
tion. A total of two forgetting factor approaches are proposed
in the paper: the data aging-based forgetting factor and the
data difference-based forgetting factor. A set of anomaly
detection models is then used for behavior modeling. The
system cannot locate anomalous data at a fine-grained level
and also does not provide an analysis or feedback on the
anomalies. A comparison of the functions of each framework
is shown in Table 4.

The above analysis compares the functionality of existing
anomaly detection frameworks, each of which is lacking
in terms of completeness. The mechanism proposed in this
paper is functionally complete and is capable of locating out-
liers with fine granularity, achieving high performance outlier
detection, analyzing the anomalies, and providing feedback
on the detection and analysis results.

V. CONCLUSION

This work provides an unsupervised outlier detection mech-
anism for tea traceability to improve the quality of tea trace-
ability data in order to address the challenges caused by poor
data quality. The LOKI algorithm is proposed to improve
the accuracy of outlier detection. It is suggested that the
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TABLE 4. Framework function comparison.

fine-grained
localization of
abnormal data

outlier detection with
high performance

anomaly analysis ~ anomaly feedback

Kilian et al. X X v X
Hyunseong et al. X v V X
Enrico et al. X v X v
Salisu et al. X v X X
This paper v v v v

features of tea traceability data can be combined according
to their correlations in order to determine the reasons for
the occurrence of outliers with distinct characteristics so that
targeted improvement actions can be implemented. An unsu-
pervised anomaly detection algorithm based on DBSCAN
was proposed with a parameter modification mechanism to
optimize the algorithm parameters. The experimental results
reveal that the proposed outlier detection mechanism for tea
traceability data is well-functioning and can locate outliers
at a finer granularity. The LOKI algorithm’s is excellent and
reliable in regard to outlier detection. When the quantity of
outliers in the dataset is unknown, the suggested parameter
adjustment approach can assist the outlier detection algorithm
in selecting the best parameters.

The results of this study have the potential to encourage
knowledge sharing in the tea supply chain. The described
technology can assure the accuracy of tea traceability data
and allow tea enterprises to fully comprehend production
and operation issues and make timely, targeted adjustments.
The following are some of the future research goals: (1)
The proposed unsupervised outlier detection mechanism for
tea traceability data needs to be applied to specific tea pro-
duction in subsequent studies, and the mechanism needs
to be further improved; (2) because timely monitoring can
aid in the discovery of outliers, it is vital to investigate
online outlier detection mechanisms; (3) because the LOKI
algorithm has a high time cost, more research into how to
increase the method’s operating efficiency is required; and
(4) more research into how to increase the effectiveness of
the parameter modification approach and broaden its use in
the field of unsupervised outlier detection is required.
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