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ABSTRACT The presence of outliers in tea traceability data can mislead customers and have a significant
impact on the reputation and profits of tea companies. To solve this problem, an unsupervised outlier
detection mechanism for tea traceability data is proposed. Firstly, tea traceability data is uploaded to the
MySQL database, and then the data is preprocessed to aggregate features based on relevance, which makes
it easier to identify abnormal features. Secondly, the LOKI algorithm based on Local Outlier Factor (LOF),
Isolation Forest (IForest), and K-Nearest Neighbors (KNN) algorithms is used to achieve unsupervised
outlier detection of tea traceability data. In addition, a Density-Based Spatial Clustering of Applications
with Noise (DBSCAN-based) tuning method for unsupervised outlier detection algorithms is also provided.
Finally, the types of anomalies among the identified outliers are identified to investigate the causes of the
anomalies in order to develop remedial procedures to eliminate the anomalies, and the analysis results are
fed back to the tea companies. Experiments on real datasets show that the DBSCAN-based tuning method
can effectively help the unsupervised outlier detection algorithm optimize the parameters, and that the LOF-
KNN-IForest (LOKI) algorithm can effectively identify the outliers in tea traceability data. This proves that
the unsupervised outlier detection mechanism for tea traceability data can effectively guarantee the quality
of tea traceability data.
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INDEX TERMS Feature combination, LOKI algorithm, machine learning, outlier detection mechanism,
parameter tuning method, tea traceability.

I. INTRODUCTION18

Tea originated in China and has a lengthy history. Tea drinks19

are one of the world’s three most popular beverages. In China,20

there are six tea families: green tea, yellow tea, oolong tea,21

black tea, dark tea, and white tea. China was the world’s first22

country to discover and use tea as well as the first to trade tea23

commodities. Chinese tea has also played an essential role24

in economic growth, enhancing China’s international trade25

efficiency. Pesticide residues and heavy metals have harmed26

the quality and safety of tea in recent years and have had27

an influence on the tea industry’s development. As a result28

The associate editor coordinating the review of this manuscript and
approving it for publication was Liandong Zhu.

of globalization, more regulatory authorities have focused 29

on the traceability of tea safety and reliability, and customer 30

expectations for tea quality are increasing. The majority of 31

existing tea quality monitoring tools offer customers trace- 32

ability information, but there are few tools that can be used 33

by businesses to examine and manage this information. Tea 34

traceability data analysis can assist tea businesses in identify- 35

ing issues in the production management process and can be 36

used to control tea quality at the source. 37

Traceability data show how things have evolved and may 38

be used to investigate the root and source of things. The 39

gathering of traceability data may be classified into three 40

categories based on the input method used: manual, semi- 41

automatic, and sensor input. With the rapid growth of the 42
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internet and IoT technologies, more and more traceability43

data application scenarios, such as agricultural product trace-44

ability [1], [2], medication traceability [3], and food trace-45

ability [4], [5], are becoming available. Tea traceability data46

are information about a tea’s traceability frommanufacture to47

sale.48

Tea traceability data are the tracking information for all49

parts of tea production and sales and may offer customers50

information about all aspects of tea, from planting to sell-51

ing [6]. Consumers are particularly worried about the quality52

and safety of tea. It is difficult for businesses to acquire53

trustworthy tea traceability data, since the tea-producing envi-54

ronment is significantly influenced by uncontrollable external55

factors such as the soil and climate [7], and the data obtained56

become increasingly convoluted. As a result, anomalies in the57

tea traceability data gathering process are common, resulting58

in a low traceability data quality, customers being deceived by59

incorrect information, and the enterprise’s credibility being60

harmed. High-quality tea traceability information may add61

value to the product and raise the selling price of tea. It is62

easier to ensure the quality and safety of tea that can be63

traced back to its source. With the growth of the economy and64

the rising affluence, customers are prepared to spend more65

money on traceable tea for the benefit of their health. High-66

quality traceability data may also be used by tea enterprises67

to enhance production and operational issues. As a result,68

tea traceability data outlier detection techniques for tea enter-69

prises are required.70

Outlier detection methods aim to find unusual data that71

differ considerably from other data and are created by various72

mechanisms. Depending on whether there are labels, outlier73

detection methods may be classified as unsupervised [8], [9],74

[10], [11], semi-supervised [12], [13], and supervised [14],75

[15]. The original data set is generally partitioned into a76

disjoint training set and a test set for the supervised outlier77

detection approach, and the training data have accurate cate-78

gory labels. The training set is used to improve the model’s fit79

to the data so that the supervised algorithm can perform better80

on the experimental data. However, in the real-world case of81

outlier identification, the data are frequently unlabeled, and82

the disparities between outliers are considerable; thus, the83

supervised algorithm is ineffective. The normal data in the84

dataset have labels for the semi-supervised outlier detection85

method, but the outliers do not. The outlier detection algo-86

rithm splits normal data with labels into training and test sets,87

which are used for model training and performance verifica-88

tion, respectively, and then labels the unlabeled data using the89

trained model. There are no labels on the unsupervised outlier90

detection method’s training data. The anomaly score for each91

data point is calculated using the general features of the data,92

and the anomaly scores are correlated to the data’s anomaly93

degree. Finally, some of the data with the greatest anomaly94

scores are printed. Statistical-based methods, density-based95

methods, distance-based methods, clustering-based meth-96

ods, tree-based and subspace-based methods, angle-based97

methods, deep-learning-based methods [16], [17], [18], and98

linear-model-based methods are the most common unsuper- 99

vised outlier detection methods. 100

The credibility of tea enterprises would suffer greatly if 101

they gathered incorrect tea traceability information through- 102

out the manufacturing process, presented it to customers, 103

and consumers were misled by the incorrect tea traceability 104

information. This will then harm the profits of tea enterprises. 105

However, enhancing the quality of the traceability data can 106

contribute to the product’s value growth. High-quality tea 107

traceability data may also be utilized to help tea enterprises 108

resolve production and administrative problems. 109

In order to solve the problems caused by the poor quality 110

of tea traceability data and to obtain the benefits from high- 111

quality tea traceability data. The main contributions of this 112

paper are as follows. 113

(1) An unsupervised outlier detection mechanism is pro- 114

posed, with the goal of identifying outliers in the data, ana- 115

lyzing the results, and then returning the analysis results to 116

the tea enterprises. 117

(2) The LOKI algorithm is proposed with the aim of 118

combining different types of outlier detection algorithms to 119

improve the accuracy of outlier detection. 120

(3) A DBSCAN-based [19] tuning method for unsuper- 121

vised anomaly detection algorithms is proposed to help 122

the unsupervised outlier detection algorithm determine the 123

parameters. 124

The remainder of this work is arranged in the following 125

manner. The study on the use of outlier detection in many 126

domains is reviewed in Section 2. The unsupervised outlier 127

detection mechanism for tea traceability data is described in 128

Section 3. The experimental data and analyses are presented 129

in Section 4. Section 5 concludes the articles, examines the 130

limits, and proposes future research areas. 131

II. RELATED WORK 132

The use of unsupervised outlier detection is also very popular 133

in tea traceability data as well as in other areas. There has 134

been a significant amount of research conducted on how to 135

identify abnormalities in complicated systems using unla- 136

beled data. Liu et al. [20]. suggested the use of an incre- 137

mental unsupervised anomaly detection method to rapidly 138

analyze large-scale, real-time data from industrial control 139

systems. This technique generates a random binary tree set 140

from the data stream’s sampled data, combines fresh data 141

information into the current model on a continuous basis, 142

and provides a weighting mechanism to ensure that the set’s 143

findings are reasonably stable, even if some trees are elimi- 144

nated. Mikhailova [21]. employed deep learning approaches 145

to address civil infrastructure engineering challenges and cre- 146

ated an unsupervised system that can automatically identify 147

the ‘train event’ point. Yanjun et al. [22]. established an 148

anomaly detection framework and gathered more detailed 149

data on the time series’ shape and morphological charac- 150

teristics through data representation for anomaly detection 151

in order to better detect outliers in time series data. Time 152

series data outlier identification is also commonly employed 153
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FIGURE 1. Unsupervised outlier detection mechanism used for tea traceability data.

in other domains. Álvaro et al. [23], for example, looked154

at the use of unsupervised anomaly detection technology155

in wood moisture content data and technology to automat-156

ically monitor abnormalities in time series data recorded157

from wood structures. To discover areas of vulnerability in158

water distribution networks and decrease false positive rates,159

Ane et al. [24]. suggested the use of a leak detection system160

based on self-supervised categorization of flow time series.161

Peng et al. [25]. proposed an improved Bidirectional Gen-162

erative Adversarial Networks anomaly detection system to163

detect faults by tracking anomaly scores in order to lower the164

operating costs of autonomous systems operating in complex165

and dynamic marine environments and to achieve large-scale166

parallel deployment. In order to ensure successful and steady167

training of the generative confrontation model, the system168

is led by periodic supplemental prompts. Park et al. [26]169

proposed a machine anomaly detection system that com-170

bines unsupervised and non-parametric learning to detect171

abnormalities during machine operations using vibration data172

collected by the sensor.173

A literature search identified very few cases of outlier174

detection in the world of tea traceability data. Unlike pre-175

vious work, the unsupervised outlier detection mechanism176

proposed in this research for tea traceability data may be177

able to reliably discover several abnormal characteristics.178

To begin, the data are merged based on feature correlation179

to establish the types of abnormal feature combinations,180

and the reasons for the existence of abnormal features in 181

each group are analyzed, followed by the implementation 182

of appropriate improvement methods. Simultaneously, the 183

LOKI algorithm, which combines the LOF [27], IForest [28], 184

and KNN [29] algorithms, is proposed to increase the out- 185

lier detection accuracy by merging multiple types of outlier 186

detection algorithms. In addition, the parameter adjustment 187

method of an unsupervised outlier detection algorithm is 188

suggested to aid in the optimization of parameters in an 189

unlabeled data environment. The results of the experiments 190

suggest that the proposed mechanism is capable of detecting 191

outliers in tea traceability data. 192

III. METHOD 193

As illustrated in Figure 1, the tea traceability data outlier 194

detection mechanism consists of four parts: data collection, 195

data access, outlier detection, and anomaly analysis. Manual 196

input, sensor input, and semi-automatic input are all exam- 197

ples of data collection methods. The data are uploaded to 198

a MySQL database, which is accessible using JDBC, and 199

the various characteristics are then integrated via correlation 200

analysis [30]. The outlier detection part first detects outliers 201

using the LOF, IForest, and KNN algorithms, assigns weights 202

to the data in the detection results of the three algorithms, 203

and finally, filters the optimal common subset of the three 204

result sets using the weights to achieve more effective outlier 205

detection. The anomaly analysis identifies abnormal types 206
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FIGURE 2. Distribution of normal values and outliers.

based on the feature combination, investigates the reasons for207

the occurrence of abnormal types, and lastly, provides cor-208

rective measures and feedback to the tea enterprises. A plan-209

tation information table, planting information table, inputs210

information table, tea information table, picking information211

table, processing information table, operation record table,212

product information table, and packaging information table213

are all present in MySQL. The plantation information table,214

for example, has fields for the plantation name, plantation215

number, longitude, and latitude. The longitude and latitude216

fields in the plantation information table are extracted to217

detect outliers in the traceability data.218

This mechanism has three important functions: (1) It finds219

outliers at a finer level and identifies specific traits that220

appear to be outliers. In this work, the goal of the correlation221

analysis is to integrate characteristics with comparable causes222

of outlier occurrence to make the anomaly analysis easier.223

(2) A new algorithm combining different outlier detection224

algorithms is proposed to achievemore accurate outlier detec-225

tion. (3) A list of the different sorts of anomalies found in226

the tea traceability data is compiled and the reasons for each227

anomaly are identified so that appropriate steps may be taken228

to eradicate them at their sources.229

A. DATA DESCRIPTION230

Tea enterprises acquire tea traceability data by sensor input,231

manual input, and semi-automatic input during the produc-232

tion process. This experiment used data (1000 records) from233

a tea-producing enterprise in Anhui Province. The visualiza-234

tion of the data [31], [32] is shown in Figure 2.235

Table 1 shows the feature fields for each data set. There236

are 17 features and 1D labels. There are 950 normal data237

points and 50 outliers with outliers accounting for 5% of the238

total data. In the process of data collection, the longitudes239

and latitudes may be anomalies due to sensor failure. The240

tea grade, tea shape, tea color may cause anomalies in the241

data input due to the use of improper operation methods by242

employees; The weeding area, digging terraces area, planting243

quantity, fertilizing quantity, pruning area, picking quan-244

tity, weeding dates, digging terraces dates, planting dates,245

TABLE 1. Data feature field.

fertilizing dates, pruning dates, and picking datesmay contain 246

anomalies due to employee errors, such as repeated data entry, 247

data omissions, and data input errors. 248

B. DATA PREPROCESSING 249

1) NORMALIZATION 250

Normalization [33] involves compressing data between 0 and 251

1 to eliminate the order of magnitude difference between 252

samples, ensure each data point is of the same order of 253

magnitude, and to make the data points comparable. The 254

normalized data follow a normal distribution, and the formula 255

is as follows: 256

x∗ =
x − xmin

xmax − xmin
(1) 257

where xmax represents the maximum value in the data, and 258

xmin represents the minimum value in the data. 259

2) CORRELATION ANALYSIS 260

Correlation analysis is a method for analyzing the inherent 261

links between data features. It may be used to visually illus- 262

trate the direction and degree of an intrinsic association. The 263

linear relationship [34] between two features can be examined 264

using the Pearson correlation coefficient. The value ranges 265

from −1 to 1, and the closer it gets to −1, the higher the 266

negative linear correlation between the two characteristics 267

is. The linear correlation between two features becomes 268

higher the closer it is to 1; the linear correlation between 269

the two characteristics becomes smaller the closer it is to 0. 270

The formula used to determine the Pearson correlation 271

coefficient is 272

Cor (M ,N ) =
Cov (M ,N )

√
Var (M)Var (N )

(2) 273
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where Cov (M ,N ) represents the covariance of M and N ,274

Var (M) represents the variance ofM , and Var (N ) represents275

the variance of N .276

C. UNSUPERVISED OUTLIER DETECTION277

1) LOF278

The LOF algorithm is an unsupervised outlier detection algo-279

rithm based on density, which is mainly suitable for outlier280

detection in low-dimensional local area space. The idea of281

the algorithm is to calculate the discreteness of each sample282

and then calculate the discreteness ratio of each sample to283

the sample in the field. If the obtained value is greater than284

a given threshold, the sample is identified as an outlier.285

The description of the algorithm depends on the following286

definitions:287

Definition 1: Let dk (m) be the k distance of sample288

point m:289

In data set D, the distance between the two sample points290

m, n is denoted by d (m, n), if In set D, there are at least291

k points n′ ∈ S{x 6= m} that do not include m, satisfying292

d
(
m, n′

)
≤ d (m, n).293

In set D, there are, at most, k − 1 points n′ ∈ S {x 6= m}294

that do not include m, satisfying d
(
m, n′

)
< d (m, n).295

Then, dk (m) = d (m, n).296

Definition 2: Let dstancek (m, n) be the reachable distance297

from sample point n to m:298

distancek (m, n) = max {distancek (m) , d (m, n)} (3)299

st.d (m, n) =
√

(xm − xn)2 + (ym − yn)2 (4)300

The reachable distance from sample point n to m is, at least,301

the kth distance of sample point m. Then, the reachable302

distance from k nearest to sample pointm is dk (m). st.means303

subject to certain conditions.304

Definition 3: Let Nk (m) be the k distance neighborhood of305

sample point m:306

Nk (m) = {q ∈ D \ {m}| d (m, q ≤ distancek (m))} (5)307

Definition 4. Let lrdk (m) be the local reachable density of308

sample point m:309

lrdk (m) =
|Nk (m)|

6n∈Nk (m)distancek (m, n)
(6)310

The local reachable density of sample point m represents the311

average reachable distance from all sample points to m in the312

k-neighborhood of m. If the distribution of the sample points313

around sample point m is relatively sparse, the k-distance314

neighborhood range ofm is large. For sample point n of the k-315

distance neighborhood of sample point m, the probability of316

m in the k-distance field of n is small, and the probability of317

d istancek (m, n) = d(m, n) is large, and the local reachability318

density of m is small. On the contrary, if the sample points319

around sample point m are densely distributed, the local320

reachability density ofm is large. In short, the local reachable321

density explains the density of the local region of the sample322

points.323

Definition 5: Let LOFk (m) be the local outlier factor: 324

LOFk (m) =
6n∈Nk (m)

lrdk (n)
lrdk (m)

|Nk (m)|
(7) 325

According to the local outlier factor algorithm, if the ratio of 326

the local reachable density of the k nearest neighbor sample 327

of sample point m to the local reachable density of m is close 328

to 1, point m is more similar to its neighborhood point. If the 329

ratio of the local reachable density of the k nearest neighbor 330

sample of sample point m to the local reachable density of 331

m is less than 1, the density of m is greater than that of its 332

neighborhood point; and if the ratio of the local reachable 333

density of the k nearest neighbor sample of sample pointm to 334

the local reachable density of sample point m is greater than 335

1, the density of m is less than that of its neighborhood point 336

and it can be regarded as an isolated point, so the possibility 337

that sample point m is an outlier is greater. 338

2) IFOREST 339

The IForest algorithm is an unsupervised fast outlier detection 340

method based on the ensemble method, which is mainly 341

suitable for the outlier detection of large data sets with con- 342

tinuous eigenvalues. The basic principle of the algorithm is to 343

locate outliers by randomly cutting data sets. The algorithm 344

is described as follows: 345

Assuming that there is a data set D, the size of the data set 346

is n, the number of the base classifier iTrees ism, and the limit 347

height is h. 348

The iTree is built and the root node of x data is randomly 349

selected for inclusion in the iTree from the training dataset 350

as the sample dataset for this iTree. Then, a feature p of the 351

sample data is randomly selected to calculate the maximum 352

and minimum values of all data in the sample data set in this 353

feature dimension, and a data partition threshold q is ran- 354

domly selected within this range. The data whose eigenvalues 355

are less than or equal to q are put into the left subtree, and the 356

data whose eigenvalues are greater than q are put into the right 357

subtree. Then, the previous step is repeated in the left and 358

right child nodes to continuously randomly divide the data 359

until one data point in the child node reaches the limit height, 360

so cutting is stopped and an iTree is constructed. Finally, after 361

repeating the above method to construct m iTrees, they are 362

merged into an IForest. Because of the big difference between 363

normal values and outliers, outliers are more likely to be 364

isolated faster and are more likely to appear at the root of 365

an iTree. 366

When the IForest construction is completed, abnormal data 367

points in the test data can be identified. First, the path height 368

of the test data on each iTree is calculated as follows: The 369

initial height of the test data is set as 0, the test data are sent to 370

the iTree, and then look down based on the branch conditions 371

of each node. As each node passes by, 1 path height unit is 372

added, and the path height data are returned after finding the 373

test data. Secondly, the average path height of the measured 374

data in the whole IForest is calculated. Then, the anomaly 375

score is calculated using the average path height. Finally, the 376
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running state of the data to be measured is determined. The377

coefficient where the abnormal score is greater than or equal378

to the abnormal threshold is judged as an outlier, and the379

coefficient that is less than the abnormal threshold is judged380

as normal data.381

3) KNN382

The KNN algorithm is an unsupervised outlier detection383

algorithm based on distance, which is mainly suitable for384

outlier detection of low-dimensional data. The basic principle385

of the algorithm is as follows: for a data set, there is a new386

input sample, and k samples closest to the sample are found387

in the training data set. The class that the k samples most388

commonly belong to is the class of the new input sample. The389

algorithm first calculates and sorts the distance between the390

new input samples and the samples in the known category391

dataset. Then, k samples with the smallest distance from the392

new input sample are selected. Then, k samples that belong393

to the most categories are identified. Finally, the new input394

samples are determined as the k samples that belong to the395

most categories.396

4) LOKI397

In this work, the LOKI outlier detection algorithm is398

proposed. It was developed using the LOF, KNN, and399

IForest algorithms with the goal of combining multiple algo-400

rithms to increase the accuracy of outlier detection. Three401

high-performance algorithms were selected to complement402

each other by discarding the individual parts of the results403

of two algorithms and selecting values that are judged to404

be outliers by at least two algorithms. The data were first405

identified using the LOF, KNN, and IForest algorithms, after406

which the detection results from the three techniques were407

combined and weighted. Finally, the weights were used to408

determine whether the data were anomalous. The system can409

successfully detect outliers in tea traceability data, according410

to the results of the experiments.411

The LOF, IForest, and KNN algorithms are the most412

commonly used outlier detection algorithms. The LOF per-413

forms consistently, is unaffected by the data structure, and414

has a good overall outlier prediction accuracy. The bene-415

fits of the IForest include its outstanding performance on416

low-dimensional data and its parameter insensitivity. The417

KNN has the benefit of having an outstanding and consis-418

tent performance with low-dimensional data. Based on the419

aforementioned algorithm characteristics, this work takes full420

advantage of the advantages of all three algorithms by merg-421

ing them and then uses a screening mechanism to identify422

outliers. Figure 3 depicts a schematic representation of the423

algorithm.424

The idea of the proposed LOKI algorithm is to assign425

weights to data in three result sets, L, I and K , from three426

well-performing algorithms with different types of detection427

results and to filter the optimal common subset P using428

weights to improve the detection accuracy while also improv-429

ing the robustness of the algorithm. The pseudo code used430

FIGURE 3. Schematic diagram of the LOKI algorithm.

TABLE 2. Algorithm pseudo code.

in the LOKI algorithm is shown in Table 2. The algorithm 431

inputs data set X and outputs the outliers R. First, the LOF 432

algorithm, IForest algorithm, and KNN algorithm are used to 433

detect the data, and the labels L_label, I_label, and K_label 434

are obtained. The data points labelled 0 represent normal data, 435

and the data points labelled 1 represent suspicious data. The 436

suspicious data are extracted, and L, I , and K are obtained 437

and merged into set M . By traversing each data point in M , 438

the weight is calculated by the number of occurrences of each 439

suspicious data point. The initial weight of each data point 440

is 0, and the weights are added to 1 in set M . Finally, the 441

suspicious data with weights greater than 1 are added to the 442

result set R. 443

D. PARAMETER SELECTION 444

In this paper, a tuning method for an unsupervised outlier 445

detection algorithm based on DBSCAN is proposed, unsu- 446

pervised outlier detection algorithm. The algorithm’s tuning 447
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FIGURE 4. Algorithm tuning flowchart.

concept is depicted in Figure 4. First, the learning curve and448

grid search [35] are employed to traverse the hyperparameters449

using the outlier detection algorithm. Each traversal result450

is subtracted from the initial data. The DBSCAN technique451

is then used to determine the amount of noise left in the452

data. Finally, the quantity of noise is utilized to determine453

the parameters of the outlier detection algorithm, with the454

parameters chosen when the amount of noise is the lowest.455

The DBSCAN algorithm is capable of detecting noise in data456

sets. Because noise represents a random error or deviation in457

the data set that is similar to an outlier, the quantity of noise458

discovered may be used to assess the effectiveness of outlier459

detection algorithms.460

The DBSCAN algorithm’s key parameters during param-461

eter adjustment are eps and min_samples. The DBSCAN’s462

basic principle is to choose a point in a circle with a certain463

radius eps and the minimum number of nearest neighbors464

min_samples. If the point satisfies the domain circle of its 465

radius eps with at least min_samples nearest neighbors, the 466

center of the circle is shifted to the next sample point; if the 467

same point does not satisfy the above conditions, the sample 468

point is reselected and iteratively clustered according to the 469

set radius eps and min_samples. The k-dist diagram [36] is 470

utilized in this study to find the eps and min_samples that 471

produce optimal clustering, providing an uniform evaluation 472

standard for the performance of multiple outlier detection 473

techniques with various parameters. 474

E. ANOMALY ANALYSIS 475

There are three main types of outliers in tea traceability data: 476

outliers of sensor input data, outliers of semi-automatic input 477

data, and outliers of manual input data. 478

Equipment damage and aging are the most common causes 479

of outliers in sensor input data. To eliminate these anomalies, 480

the following steps should be taken: (1) equipment mainte- 481

nance and repair should be improved, and the equipment’s 482

key performance should be evaluated on a regular basis; and 483

(2) Managers should be familiar with the typical state of the 484

equipment and should debug it often in order to keep it in the 485

best condition. 486

An incorrect operation method is the most common cause 487

of outliers in semi-automatic input data. The following pro- 488

cedures should be taken to eliminate this type of anomaly: 489

(1) The enterprise should develop a reasonable operating 490

technique process based on the product’s manufacturing pro- 491

cesses; and (2) strict labor discipline should be implemented 492

with frequent checks and supervision to ensure that staff are 493

carrying out the manufacturing process in strict conformity 494

with the company’s operating procedures. 495

The major causes of outliers in manual input data include 496

having employees who are sloppy in their production oper- 497

ations, do not precisely follow the enterprise’s production 498

process, and simply repeat the same activity, resulting in 499

employee paralysis. To prevent this, (1) the staff’s product 500

quality awareness education should be strengthened and their 501

feeling of responsibility should be increased; (2) job technical 502

training by should strengthened by requiring each employee 503

to learn and closely adhere to the enterprise’s production 504

workflow; (3) production and inspection employees should 505

improve their manufacturing process control and conduct 506

thorough process inspections; and (4) enterprises should 507

establish an environment that allows employees to work in 508

peace and comfort. 509

IV. EXPERIMENTS 510

A. DATASET 511

Before detecting outlies in tea data, the features need to be 512

combined [37] in order to determine the type of anomaly 513

present. The correlation heat map obtained from the corre- 514

lation analysis is shown in Figure 5. The degree of linear 515

correlation between features can be visualized. The weed- 516

ing dates, digging terraces dates, planting dates, fertilizing 517
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FIGURE 5. Feature correlation heat map.

dates, pruning dates, and picking dates all have significant518

connection coefficients. As a result, the aforementioned fea-519

tures are combined. The tea grade, tea shape, and tea color520

are all combined. The weeding area, digging terraces area,521

planting quantity, fertilizing quantity, pruning area and pick-522

ing quantity are combined. The longitudes and latitudes are523

combined.524

In this study, the outliers were oversampled using the525

SMOTE [38] algorithm based on the original 50 outliers526

and expanded it to a total data percentage of 50% with a527

difference of 5% to test the robustness and efficacy of the528

LOKI technique. Table 3 shows the proportions and volumes529

of data added.530

B. EVALUATION INDICATORS 531

The Accuracy (ACC), True Negative Rate (TNR), and True 532

Positive Rate (TPR) are used to evaluate the outlier detection 533

performance. The specific formula is. 534

ACC =
TP+ TN

TP+ FP+ FN + TN
(8) 535

TNR =
TN

TN + FP
(9) 536

TPR =
TP

TP+ FN
(10) 537

where ACC stands for the accuracy rate, which is defined as 538

the proportion of data successfully predicted by the algorithm 539
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TABLE 3. The amounts and proportions of outliers.

among the total data. TNR stands for the True Negative540

Rate, which is the ratio of properly predicted outliers to541

the total number of outliers predicted by the algorithm. The542

True Positive Rate is the proportion of normal data properly543

predicted by the algorithm of all normal data. The normal544

data points projected to be normal data points are TPs. The545

predicted outliers that are actually outliers are TNs; the546

predicted normal data points that are actually outliers are547

FPs; and the predicted outliers that are actually normal data548

points are FNs. The larger the values of the above three549

evaluation indicators are, the better the detection effect of the550

algorithm is.551

C. EXPERIMENTAL RESULTS AND ANALYSIS552

1) EXPERIMENT TO PROVE THE VALIDITY OF THE TUNING553

METHOD554

In order to verify the effectiveness of the proposed tuning555

method, the outlier detection results of different algo-556

rithms with and without tuning are compared, namely, the557

density-based LOF algorithm, ensemble-based IForest algo-558

rithm, distance-based KNN algorithm, linear model-based559

One-Class SVM (OCSVM) algorithm [39], Cluster-Based560

Local Outlier Factor (CBLOF) algorithm [40], linear561

model-based Principal Component Analysis (PCA) algo-562

rithm [41], and Angle-Based Outlier Detector (ABOD)563

algorithm [42].564

Each algorithm’s experimental results are the average of565

each feature combination with the same outlier ratio. Fig-566

ure 6 and Figure 8 illustrate the outcomes of the compari-567

son. Without changing the parameters, Figure 6 shows the568

ACC, TNR, and TPR of seven typical methods with different569

outlier ratios. The ACC of each algorithm decreases as the570

proportion of outliers increases, as shown in Figure 6-a, and571

the algorithms perform erratically. The TNR of practically572

every method decreases as the proportion of outliers grows,573

as shown in Figure 6-b, and the TNR of the ABOD algorithm574

is always 0%, indicating that the ABOD algorithm is unable575

to identify outliers efficiently. Figure 6-c show the TPR trend576

of the algorithmswith the change in the proportion of outliers,577

where the LOF algorithm show a decreasing trend with an578

increase in outliers, the OCSVM and PCA algorithms remain579

unchanged after increasing to a certain level, and the ABOD,580

KNN, IForest, and CBLOF algorithms are at a high level,581

indicating that they can detect normal data better but have582

poor detection of outliers.583

FIGURE 6. Comparison chart without tuning parameters. (a) ACC. (b) TNR.
(c) TPR.

Figure 7 shows the parameter adjustment process used 584

by the LOF algorithm for the combination of longitude 585

and latitude features with an outlier proportion of 50%. 586
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FIGURE 7. Comparison chart without tuning parameters. (a) ACC. (b)TNR. (c)TPR. (a) n_neighbors = 100. (b) n_neighbors = 200. (c) n_neighbors = 300.
(d) n_neighbors = 400. (e) n_neighbors = 500. (f) n_neighbors = 600. (g) n_neighbors = 700. (h) n_neighbors = 800. (i) n_neighbors = 900.

The parameter adjustment process uses the grid search. The587

important parameters of the LOF algorithm are n_neighbors588

and contamination. The n_neighbors parameter denotes the589

number of neighbors used for k-nearest neighbor queries,590

and the contamination parameter denotes the proportion of591

outliers in the dataset. Firstly, n_neighbors takes 10 points592

100, 200, 300, 400, 500, 600, 700, 800, 900, and then under593

the values of these n_neighbors, a learning curve of594

contamination is drawn. The value range of contamination595

is 0.05 to 0.5, and 10 points are included in the interval.596

Figure 7-f shows that the minimum number of noise points is597

detectedwhen n_neighbors is taken as 500 and contamination598

is taken as 0.5, so the optimal parameters finally obtained are599

n_neighbors = 500 and contamination = 0.5.600

Figure 8 depicts the performance of the seven most com-601

monly used methods after using the tuning parameters. The602

algorithm’s performance is much better after adjusting the603

parameters, and the algorithm’s performance is more stable604

when compared with the situation where the settings are not605

tweaked. The LOF, IForest, KNN, and CBLOF algorithms606

performwell. Outliers can be easily spotted because the ACC,607

TNR, and TPR are all at high levels. As a result, this tuning 608

method is viable. 609

2) COMPARISON EXPERIMENTS 610

The experimental results of each algorithm were averaged for 611

each combination of characteristics under the same outlier 612

ratio, and the LOKI algorithm was compared with the seven 613

typical algorithms described above. The experimental results 614

show that the LOKI algorithm is extremely reliable and better 615

than the others in every respect. 616

The detection ACC of the eight techniques with varying 617

outlier ratios is compared in Figure 9. The identification 618

results of the PCA and OCSVM algorithms are much worse. 619

The ACC of the IForest, ABOD, and CBLOF algorithms 620

is slightly lower than that of the LOKI algorithm when the 621

proportion of outliers is less, but as the proportion of outliers 622

increases, the detection effect of the LOKI algorithm remains 623

excellent, while the detection effects of the IForest, ABOD, 624

and CBLOF algorithms deteriorate. The ACC of the LOKI 625

algorithm is higher than that of the LOF andKNN algorithms, 626

which has a clear relative advantage. The KNN algorithm has 627

VOLUME 10, 2022 94827



H. Yang et al.: Unsupervised Outlier Detection Mechanism for Tea Traceability Data

FIGURE 8. Comparison chart of the results after using the tuning
parameters. (a) ACC. (b) TNR. (c) TPR.

a high ACC, with the biggest difference being 4.5% between628

the KNNmethod and the LOKI algorithmwith an outlier ratio629

of 45%. In general, the accuracy of the KNN algorithm is630

3.4% lower than that of the LOKI algorithm.631

Figure 10 compares the TNR of the eight algorithms with632

various outlier percentages. The TNR of the LOKI algo-633

rithm is greater than that of the CBLOF algorithm, 6.9%634

higher on average, which is a clear advantage, as shown in635

the comparison diagram. The detection rates of the LOF,636

IForest, and KNN algorithms are consistently lower than637

those of the LOKI algorithm, with the value of the LOF638

algorithm being 2.9% lower on average, that of the IForest639

algorithm being 6.3% lower on average, and that of the KNN640

FIGURE 9. Comparison diagram of algorithm ACC with different outlier
ratios.

FIGURE 10. Comparison diagram showing the algorithm TNR under
different outlier ratios.

FIGURE 11. Comparison diagram of the algorithm TPR under different
outlier ratios.

algorithm being 2% lower on average. The LOKI algorithm 641

remains stable when the fraction of outliers changes, but the 642

OCSVM, PCA, and ABOD algorithms vary more. The TNR 643

is the most crucial evaluation indication for businesses, since 644

they do not want to pass on any outliers to their customers. 645

The TPR of the eight algorithms is compared in 646

Figure 11 for different outlier proportions. With a percentage 647

of outlier points of 5% to 10%, the ABOD algorithm has the 648

largest difference in TPR with a 31.6% decrease. The KNN 649

algorithm is closest to the LOKI algorithm and is relatively 650

3.9% lower. 651
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FIGURE 12. Comparison diagram of AUC-ROC curves for all outlier ratios.

Figure 12 depicts the AUC-ROC curves of 8 algorithms652

under all outlier ratios. Each AUC-ROC curve is plotted using653

10 points, and the horizontal and vertical coordinates of each654

point are the FPR and TPR for each algorithm at each outlier655

ratio. The AUC values of the LOKI, LOF, IForest, KNN,656

and CBLOF algorithms are 0.96, 0.92, 0.91, 0.93, and 0.92,657

respectively, according to Figure 12. These values are supe-658

rior to those of the OCSVM, PCA, and ABOD algorithms.659

The KNN algorithm’s AUC value is the closest to that of the660

LOKI algorithm, but it is still 0.03 lower, indicating the LOKI661

algorithm’s superior detection ability.662

The LOKI algorithm has strong outlier detection and sta-663

bility and can perform well under diverse outlier ratios,664

according to the four assessment indices listed above.665

3) FRAMEWORK FUNCTIONAL COMPARISON666

Hendrickx et al. [43]. proposed an anomaly detection frame-667

work for fleet-based condition monitoring, which is divided668

into four parts, namely, machine comparison, fleet clus-669

tering, anomaly detection, and visualization. The first part670

compares the similarities between the behaviors of two671

machines. The second part groups machines with similar672

behaviors using the clustering algorithm and the chosen mea-673

sure. The third part uses the discovered clusters to assign674

an anomaly score to each machine. The fourth part helps675

to guide domain experts in analyzing specific deviating676

machines by visualizing the results of the other parts. How-677

ever, the framework does not enable more granularity in678

locating exceptions, high-performance outlier detection, and679

feedback anomalies. Lee et al. [44]. developed a real-time680

health monitoring framework for predicting possible flight681

performance anomalies. The framework includes a training682

phase and a monitoring phase. The initial extraction pre-683

processing and Savitzky–Golay filtering of the flight data684

recorder are performed in the training phase to synchronize 685

the sampling frequency and reduce the random noise in 686

the sensor signal. The preprocessed flight features are then 687

reduced by feature subset selection to select features that 688

are highly correlated with the dynamic flight characteristics. 689

The selected features are then used to train model classes 690

to predict common patterns in flight performance during 691

the takeoff and ascent phases. The monitoring phase simu- 692

lates the flight data recorder dataset and introduces its real 693

time data into the trained model to validate the detection 694

capability of the proposed framework in real-time situations. 695

Anomalous flight performances are detected when the pre- 696

dicted feature values violate the safety boundaries. However, 697

the framework is incapable of achieving high-performance 698

anomaly detection and feedback. Enrico et al. [45]. proposed 699

an online remote fault detection system for underwater glid- 700

ers to identify undesirable behaviors on the horizon. The 701

system is tested using a deployment dataset of undesirable 702

vehicle behaviors. Once the effectiveness of the system is 703

determined, a trained anomaly detection scheme can be used 704

online from a remote-controlled center to notify the pilot of a 705

possible failure of the underwater glider after each surfacing 706

and maintenance connection. The system does not allow for 707

more granular detection of anomalies and does not provide 708

an analysis on anomalies. Wada et al. [46]. proposed an 709

adaptive-model-based anomaly detection system for daily life 710

activities that adapts to new data corresponding to changes in 711

human behavioral habits over time. A forgetting factor data- 712

driven filtering approach was proposed to help the system 713

adapt to the current behavioral habits of individuals while 714

discarding features that are not relevant to old habits. The 715

forgetting factor allows the system to identify outdated activ- 716

ity data that should be discarded while incorporating data 717

representing changes in human behavior routines for adapta- 718

tion. A total of two forgetting factor approaches are proposed 719

in the paper: the data aging-based forgetting factor and the 720

data difference-based forgetting factor. A set of anomaly 721

detection models is then used for behavior modeling. The 722

system cannot locate anomalous data at a fine-grained level 723

and also does not provide an analysis or feedback on the 724

anomalies. A comparison of the functions of each framework 725

is shown in Table 4. 726

The above analysis compares the functionality of existing 727

anomaly detection frameworks, each of which is lacking 728

in terms of completeness. The mechanism proposed in this 729

paper is functionally complete and is capable of locating out- 730

liers with fine granularity, achieving high performance outlier 731

detection, analyzing the anomalies, and providing feedback 732

on the detection and analysis results. 733

V. CONCLUSION 734

This work provides an unsupervised outlier detection mech- 735

anism for tea traceability to improve the quality of tea trace- 736

ability data in order to address the challenges caused by poor 737

data quality. The LOKI algorithm is proposed to improve 738

the accuracy of outlier detection. It is suggested that the 739
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TABLE 4. Framework function comparison.

features of tea traceability data can be combined according740

to their correlations in order to determine the reasons for741

the occurrence of outliers with distinct characteristics so that742

targeted improvement actions can be implemented. An unsu-743

pervised anomaly detection algorithm based on DBSCAN744

was proposed with a parameter modification mechanism to745

optimize the algorithm parameters. The experimental results746

reveal that the proposed outlier detection mechanism for tea747

traceability data is well-functioning and can locate outliers748

at a finer granularity. The LOKI algorithm’s is excellent and749

reliable in regard to outlier detection. When the quantity of750

outliers in the dataset is unknown, the suggested parameter751

adjustment approach can assist the outlier detection algorithm752

in selecting the best parameters.753

The results of this study have the potential to encourage754

knowledge sharing in the tea supply chain. The described755

technology can assure the accuracy of tea traceability data756

and allow tea enterprises to fully comprehend production757

and operation issues and make timely, targeted adjustments.758

The following are some of the future research goals: (1)759

The proposed unsupervised outlier detection mechanism for760

tea traceability data needs to be applied to specific tea pro-761

duction in subsequent studies, and the mechanism needs762

to be further improved; (2) because timely monitoring can763

aid in the discovery of outliers, it is vital to investigate764

online outlier detection mechanisms; (3) because the LOKI765

algorithm has a high time cost, more research into how to766

increase the method’s operating efficiency is required; and767

(4) more research into how to increase the effectiveness of768

the parameter modification approach and broaden its use in769

the field of unsupervised outlier detection is required.770
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