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ABSTRACT Herein, we propose a novel method for identifying power congestion and renewable energy
source (RES) power curtailment in power grids by using deep neural network (DNN)-based optimal power
flow (OPF) analysis. Synthetic data for load demand and RES power generation are used to obtain the OPF
solutions by using an OPF solver. RES locations are selected based on an analysis of the congestion cases,
and the DNN is trained by using the load demand and RES power as inputs and the OPF solution as the
output. Thereafter, post-processing is performed on the DNN-OPF output by using network information. The
final results show the accuracies of identified values on RES curtailment, line loading, generation dispatch
schedule, and total generation operating cost. The IEEE 39-bus system was adopted as a case study to validate
the proposed model. The results demonstrate that the proposed scheme is much faster and more suitable for
transmission systems than conventional OPF methods. Furthermore, the normalized root-mean-squared error
was less than 1%, and the computational time was more than 30 times faster than conventional OPF analysis.

INDEX TERMS Deep neural network, network congestion, optimal power flow, power curtailment,
renewable energy sources.

I. INTRODUCTION fundamental step for achieving reliable and secure power-

Nowadays, the integration of renewable energy sources
(RESs) in an electric power system is inevitable owing to
their environmental and economic benefits [1]. However, the
intermittent nature of the RESs can cause various issues for
power systems, including transmission-line congestion due
to surplus power generation during particular weather con-
ditions. The congestion in the electrical power network can
lead to further significant problems, such as power equip-
ment trips, line overloading, outages, and voltage instabil-
ity [2]. The identification of network congestion is therefore a
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system operation in the presence of the uncertainty caused
by variable RES generation.

Conventionally, to deal with network congestion identifi-
cation, system operators are required to run an optimal power
flow (OPF) analysis. This has become a key tool for many
system operators in terms of system planning and real-time
operation [3], [4]. OPF analysis is a nonlinear, non-convex,
and large-scale optimization problem involving both continu-
ous and discrete variables [5]. The results include the optimal
economic dispatch and power flows, which are obtained by
considering the system constraints and equipment operating
limits [6]. Indeed, system operators need to continually bal-
ance a system incorporating RESs [7]. With many constraints
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and variables in large-scale systems, the problem becomes
more complex and often demands a large amount of compu-
tational time to solve [3].

In recent years, dealing with OPF analysis has become
more cumbersome because of variable power generation from
RESs. Because of abrupt changes that can occur during power
generation from RESs widely scattered throughout the power
network, prompt network congestion identification and man-
agement within a short time period is required. This necessi-
tates the analysis of a large number of scenarios and cases
based on frequent and real-time OPF solutions. Regarding
large and complex systems, OPF analysis, which itself is a
nonlinear and non-convex problem, requires significant run-
ning time that can lead to system failure and cascaded black-
outs [8]. To deal with this problem, a fast and reliable solution
is required. Recently, machine-learning- and deep-learning-
based solutions have been mentioned in the literature [9].
These approaches use machine-learning or deep-learning
algorithms to predict OPF solutions for given load demands
for a particular configuration. These create faster solutions
with lower computational burdens that can replace the con-
ventional optimization solvers for OPF analysis. Therefore,
these methods are vital for congestion identification and RES
curtailment. In this context, we propose a deep neural net-
work (DNN)-based approach for congestion identification
and RES power curtailment. A DNN was selected based on
its proven significance for engineering problems [10].

Several examples of using a machine-learning approach
for OPF analysis mentioned in the literature are typically
labeled as learning-based OPF or DNN-OPF analysis. A few
examples of these are summarized in Table 1. According
to the standard procedure, the machine-learning model is
trained on the given input and output of a conventional
OPF analysis. In this way, the output data are mapped onto
the input data without performing optimization or running
OPF analysis software. In [11], a DNN model was used
to map the load demand of generators to their bus volt-
age magnitudes and power dispatch. The authors employed
MATPOWER to run the OPF analysis to construct an input
and output dataset; the speed and accuracy of the proposed
model were faster than an OPF solver with reasonable pre-
cision. In [12], a neural network and random forest-based
security-constrained OPF (SCOPF) model was proposed.
This approch used multi-target regression and considered
the input as local information, which it mapped to the out-
put as the power generation was dispatched. Furthermore,
the authors created a dataset from a grid optimization (GO)
competition including load data, transmission-line data, and
contingency scenarios as the input data, while the output
comprised generator dispatch power. To obtain this detailed
dataset, the authors ran PSS/E on the IEEE-14 bus system and
an IEEE RTS 96 test power system.

Similarly, [13] presented various artificial intelligence (AI)
algorithms to map OPF solutions. Among them, gradient
boosting regression exhibited the best performance with
improved computational time and solution accuracy. Load
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TABLE 1. Summary of the learning-based opf examples in the literature.

Ref. Al OPF Tool Input  Output
Algorithm
[11] Deep neural MATPOWER Load  Power
network data dispatch and
voltage
[12] Neural PSS/E Load  Power
network and data dispatch
a random
forest
[13] Gradient MATPOWER Load  Power
boosting data dispatch
regression
algorithm
[14] stochastic N/A Load  Power  set
gradient data points of
boosting tree RESs  energy
data storage
[16] Random MATPOWER Load  Voltages and
forest data angles
[17] Graph neural  N/A Load  Power
networks data dispatch
[18] Graph neural ~ Pandapower Load  Power
networks data dispatch
[21] Deep PYPOWER Load  Power
reinforcement data dispatch and
learning RES voltage
data
This  Deep neural MATPOWER Load  Power
study network data dispatch, line
RESs  loading,
data RESs
curtailment
and
congestion
identification

demand was considered as the input, while dispatched real
and reactive power along with voltage level were the outputs.
The authors also used MATPOWER to perform OPF analysis
for the output variables. A case study was also presented using
the IEEE-30 bus system, and more than 90% of predictions
were within 5% of the true solution. However, approximately
60% of the predictions violated one of the network con-
straints.

In [14], the stochastic gradient boosting tree (SGBT) algo-
rithm was used to map the optimal solution of nonlinear
programming considering community energy storage under
uncertainty. The objective of the SGBT learning model was
to predict the active and reactive power setpoints of energy
storage. The results show 98% optimality for even small data
samples.

In another study [15], the authors proposed a DNN
approach referred to as DeepOPF to solve the SCOPF prob-
lem. They considered load data as the input, while the out-
put provided the real power dispatch of the generators. The
authors ran PYPOWER to obtain the OPF solutions and then
mapped the input to the output using a DNN-based architec-
ture. The results showed that, compared with a state-of-the-
art solver, DeepOPF provided viable solutions with less than
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FIGURE 1. Proposed DNN-OPF architecture.

0.2% optimality loss, while reducing the computation time
by up to two orders of magnitude. In [16], a multi-input—
multi-output (MIMO) random forest model was applied to
obtain network voltages and bus angles. Subsequently, net-
work equations were used to calculate the current injection,
as well as the real and reactive power injections at various
buses. The GO competition repository provided access to a
dataset of 500 bus transmission systems, and the OPF analysis
was run on MATPOWER to obtain the solution. The load data
were considered as input, while the voltage and angle were
obtained as the output, both of which were mapped by using a
machine-learning-based model. Finally, the power generation
plan was calculated by using the output from the machine-
learning algorithm. The proposed technique was more com-
putationally efficient than using MATPOWER, and all of the
network constraints were satisfied.

A warm-starting OPF with graph neural networks (GNNs)
was presented in [17]. Synthetic data were created for two
power systems in Illinois and Texas containing 200 and 2,000
buses, respectively. Load data were used as the input data,
while the real power scheduling was the output. Similarly,
in [18], a GNN-based OPF analysis was presented for an
interior-point solution. The authors used the Pandapower
software to produce a dataset with the load data being created
via a uniform distribution method. They concluded that the
proposed method was significantly faster than conventional
OPF solvers.

In [19], the authors applied a novel approach to the prob-
lem and used the predicted results for further analysis. First,
arandom forest model was trained to predict the solution of an
OPF analysis when given the load demand as input. However,
instead of using the predicted results of the model as an OPF
solution as is, the results were used as the starting point for
the solver. This system exhibited better results than a direct
current warm and flat-start.

There are a few studies in which a combination of Al
algorithms was used. For instance, in [20], the authors used
a neural network and reinforcement-learning techniques to
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perform OPE. The weights were initialized by imitation learn-
ing by the neural network in the deep reinforcement tech-
nique to lower the computational burden while training the
agents to solve the OPF problem. Similarly in [21], a neural
network with reinforcement learning was used to perform
real-time OPF to deal with the uncertainties from loads and
RESs. In [22], as well as integrating a neural network and
reinforcement learning, the authors also included transformer
tap changes and distribution grid congestion management in
their study.

For further reading on state-of-the-art Al-based OPF,
see [23], [24], [25], and [26]. Reference [27] presents a survey
related to Al-based OPF. The advantage of Al (machine-
learning and deep-learning)-based OPF is that the solutions
of non-convex, large systems can be obtained significantly
faster than those of conventional OPF solvers. Because of the
increasing integration of intermittent RESs, system operators
need to adjust the fixed points of the generators more fre-
quently, which is cambersome when dealing with large power
systems. Therefore, Al-based OPF is worth considering for
grid operations.

It is worth noting that very few of the systems presented in
this literature review use RESs, so it is important to address
network congestion and RES power curtailment accordingly.
Herein, we present a DNN-based solution to identify the con-
gestion and determine curtailment of RES power.

The proposed model is applicable at the transmission sys-
tem operator and distribution system operator levels to iden-
tify congestion in a network and anticipate the potential cur-
tailment of RESs. Furthermore, the proposed scheme enables
system operators to avoid grid instability during blackouts.
The contributions of this paper are summarized as follows:

« A DNN-OPF approach is proposed for large-scale power

grids in the presence of RESs.

o A post-processing mechanism for OPF analysis is
defined to obtain network congestion identification,
RES power curtailment values, line loadings, and gen-
eration costs.
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The remainder of the paper is organized as follows.
The proposed DNN-OPF scheme is detailed in Section II.
Section III is dedicated to its implementation details along
with a case study. The results are discussed in Section IV.
Finally, conclusions are drawn in Section V.

Il. THE PROPOSED SCHEME

Here, we propose the DNN-OPF methodology used to deal
with the identification of congestion and the quantification
of power curtailment in the presence of RESs.

Fig. 1 shows the architecture of the proposed scheme.
A database obtained from a conventional OPF tool such as
MATPOWER can be used in this framework. In practice,
historical operation data can be taken from the database of
the system operator’s energy management system. Next, the
data are moved to the pre-processing phase where tasks such
as missing data handling, feature scaling, and data division
are performed. The dataset is divided into training data, vali-
dation data, and testing data.

The model is then trained using the training data via map-
ping of the inputs and outputs. In the training phase, the data
are divided into targeted and input values. Following the stan-
dard training procedure, the input data are sent to the DNN,
and the results are compared with the targeted values by using
the error/loss function.

In the testing phase, the input data are fed to the trained
network, and the output is obtained. The acquired outputs
are used in the post-processing phase during which further
desired parameters related to the transmission network are
calculated.

A. DATABASE CREATION AND PRE PROCESSING

Fig. 2 shows the procedure for dataset creation. The data
move to the pre-processing phase during which missing data
handling, feature scaling, and data division tasks are per-
formed. The data created are split into training and testing
datasets. In this study, the OPF analysis is performed using
synthetic data with N samples for power demand P; and
power generation from the RESs (i.e., Pg gress) taken as an
input. The data on the power demand and generation from
RESs are created by considering uniformly distributed ran-
dom numbers in certain ranges of data given by the IEEE
benchmark system. We used the IEEE 39-bus system to
obtain the OPF analysis results.

We used MATPOWER 7.1 [28] in the MATLAB 2021a
environment to run the OPF. In this study, MATPOWER Inte-
rior Point Solver (MIPS) is used to solve the OPF problem.
MIPS can be used to solve nonlinear programming problems
(NLPs) via the primal-dual interior-point method. The load
demand and RES power generation are used as input, and the
output is obtained in terms of the generation dispatch for all of
the other parameters related to the OPF, such as the associated
voltages and angles. However, for real systems, this input and
output can be replaced by using historical datasets for the
particular transmission system.
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FIGURE 2. Database creation procedure.

Conventionally, the modeling for OPF analysis is described
by using (1)—(9). Equation (1) presents the objective function
aimed at minimizing the overall operating cost that is subject
to the power flow and generation constraints fori = 1...n,
generators and j = 1. ...n;, buses.

1) OBJECTIVE FUNCTION

n o
minf(P) = )" Ch(Py). €))
where Czi is the polynomial cost function of the active power
(Pi,) of the generators. These are subject to the following
constraints.

Equations (2) and (3) present the power equality con-
straints for active and reactive power generation and con-
sumption in the network, respectively.

2) POWER EQUALITY CONSTRAINTS

. Tp *
k=1
2
. np *
(Qfg_Q]d)_Im Vj(ZijVk> =0,j=1....np,
k=1

3

where P, and Q, are the generated active and reactive
power and P]d and Q’d are the active and reactive load power
at bus j, respectivily. V; the voltage at bus j, Yy is the
admittance between bus j and k and Vi is the voltage at
bus k.

Equations (4) and (5) are the constraints related to line flow
from and to the bus, respectively.
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3) MAXIMUM LINE CAPACITY CONSTRAINTS
|Ff(0, V)| — Fmax <0, )

[F;(0, V)| = Fnax = 0, )
where Fy and F; are the line flows from and to the bus,
respectively, and Fiax is the maximum capacity of the line.

4) BUS VOLTAGE AND ANGLE LIMIT CONSTRAINTS
min
o

min
Vi

IA

0 < Gj.max,j =1...np, 6)
GV lm )

A

where Qjm“‘ and Gjma" are the minimum and maximum volt-

age angle limits, and V™" and V™ are the minimum and
maximum voltage limits at bus j, respectively.

5) GENERATION LIMIT CONSTRAINTS
P;;;min < P; < Pi;max, i=1...ng (8)
0™ = Q= Q™ i=1.ng, ©)

where Py min and Qi;mi“ are the minimum active and reactive
generation limits, and P;™* and Q;™* are the maximum
active and reactive generation limits of the ith generator,
respectively.

6) FUEL COST CURVE

Generator curves are commonly expressed as cubic or
quadratic functions or as piecewise linear functions. In this
study, we applied a quadratic fuel cost function as follows:

CpPy) =+ B(P,) + v (P, (10)

where C;; is the operating cost; Pi, is the output power; and «,
B, and y are the cost coefficients of the ith generator.

B. THE TRAINING PHASE
In the training phase, the data are divided into target values
and input values.

The input data (e.g., the demand (P;) and RES generation
(Pg REss)) are sent to the DNN, and the results are obtained
and compared with the targeted values (generation dispatch
(Pg.disp.), injected RES power (Pjyj ress), voltage information
(V,), etc.) by using the error/loss function.

The hyperparameters are tuned by considering error/loss
minimization. The tuning procedure for the DNN is detailed
in the implementation section.

C. THE TESTING PHASE
In the testing phase, the input data such as P, and Pg rgss
are inputted into the trained network, after which the output
is obtained and the error is measured by using performance
parameters. If the error is within the desired range, the train-
ing is considered to be complete and ready to use as a replace-
ment for conventional OPF.

The performance parameters used in this study are the
root mean square error (RMSE) (11), normalized RMSE
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(NRMSE) (12), mean absolute error (MAE) (13), and nor-
malized MAE (NMAE) (14) (RMSE and MAE are normal-
ized based on the mean values):

N
1 2
RMSE = | > (xf —xf)", (1D
i=1
RMSE
NRMSE = ——— % 100%, (12)
X
1 N
MAE = NZ |x8 —xP|, (13)
i=1
MAE
NMAE = —— % 100%, (14)
X

where x{ and xf are the actual and predicted points, respec-
tively, x4 is the average of the actual values, and N is the total
number of samples.

D. THE POST-PROCESSING PHASE

The output data obtained from the trained DNN-OPF and the
physical network information are used in the post-processing
phase for network congestion identification, RES power cur-
tailment, and network line-loading conditions updated gen-
erator dispatch schedule, RES power injection, and total
generation cost. The post-processing phase has the following
four steps.

Step 1: The power dispatch schedule generated by the
DNN model is evaluated for constraint violations. First, it is
checked to see whether it violates the minimum and maxi-
mum generating limits. If the generation points are violated,
the points are set within the generation limits by using (15)
and (16):
= P;'mi“, if P < P;minfor i=1...ng,

i
g.disp. g.disp. =

15)

i _ i,max - i [, max .
g.disp. _Pg s lng,djsp.EPg fOVl—l...ng,

(16)

where P;’ disp.” Pfg; max “and Pfé min are the real power-generation
dispatch, and the minimum and maximum levels of the gen-
eration power of the ith generator.

Next, the power balance is maintained if the output gener-
ation plan violates the load balance. If the total generation is
less than the load demand, the power of RES is first increased
by considering a reduction in curtailment (this operation is
performed if the line is not predicted as congested). Subse-
quently, other generators are considered to have input power
based on cost prioritization (from the lowest generation cost
to the highest) until generation balance is achieved.

Similarly, if the total generation exceeds the demand,
the power starts to drop from the most costly generation
to the cheapest one until the power balance is maintained. The
power generations are kept within the limits while balancing
the load.

Step 2: Based on the DNN-OPF model, the power injected
from the RESs is observed at the RES generator bus. If the
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injected power from the RESs (Pj,; ress) at the output of the
OPF analysis is less than the available RES power (P rgss) at
the input, the output of the corresponding RESs was curtailed
to meet the system constraints and avoid network congestion
in the line. The amount of RES power curtailment at the
associated bus can be calculated as

Pcurtailed,RESs = Pg,RESs - Pinj,RESSs a7

where Pcurrailed RESs 15 the curtailed power value, Py ggs; is
the injected power, and Py ggs; is the available RES power.

Step 3: Network congestion is identified via RESs cur-
tailment scenarios and line loading information. If there is
curtailment on the RES bus, then the line is considered con-
gested. Otherwise, congestion is also verified by analyzing
the line loadings of the network.

Step 4: Finally, the cost of the generation dispatch is calcu-
lated for the updated power-generation combination for each
sample by applying (10) according to the power dispatched
by each generator.

In summary, post-processing by the DNN-OPF provides
the network congestion scenarios caused by excessive RES
generation, the expected amount of RES power curtailment,
line loadings, updated generator dispatch schedule, RES
power injection, and total generation cost.

IIl. IMPLEMENTATION DETAILS

Here, we discuss the implementation of the proposed
DNN-OPF on the IEEE 39-bus system. In the case study,
we have analyzed the network for RES location and then cre-
ated a database for the test power system. The OPF problem
is solved by assigning the RESs to different locations. The
line-limit capacities are observed for various samples gener-
ated from the RESs, and the locations of the RESs are set in
such a way as to yield a large number of congestion cases.
Thereby, we have created a dataset for DNN-OPF containing
the largest possible number of cases. Details of the analysis
are discussed in the subsequent subsections.

A. A CASE STUDY
The IEEE 39-bus system is a 10-machine New England power
grid [29]. The IEEE-39 bus system is a 345-kV transmission
system with 10 generators that can generate a maximum of
7,367 MW. It has 21 loads connected to the system with a
peak of 6,254 MW.

In the network, buses are connected to 46 branches includ-
ing six tie lines that connect three areas, as illustrated using
three different colors in Fig. 3. The network and cost data
used in the study were obtained from [30]. Table 2 presents
detailed information on the IEEE 39-bus system. The cost
coefficients of generators ‘o’ and "y’ were set to zero in the
provided case data file, whereas ’8’ was given a range of
6.72 to 34.84 $/kWh.

B. SELECTION OF THE RES LOCATIONS
Because of the limited capacity of transmission lines and the
minimum generation limits of conventional generators, the
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TABLE 2. Summary of the IEEE 39-bus system.

Items Quantity
Generators 10
Loads 21
Branches 46
Tie lines 6
Areas 3

distribution of RESs is directly related to network congestion
problems. Accordingly, the distribution of RESs in a power
system greatly affects the long-term development plan for the
system, such as designs for new transmission lines and tie
lines, the integration of new generation technologies, and the
enhancement of system flexibility.

To analyze the impact of RES distribution, OPF analysis is
performed by considering different RES locations and differ-
ent levels of load demand and RES output power. In this study,
three buses (5, 16, and 18) are selected as RES locations
because each of them is particularly important for network
congestion problems in one of the three areas. Bus 18 has
the lowest thermal limit among the connected branches in
area 2 whereas bus 16 has the highest limit among the con-
nected branches in area 3. Bus 5 is selected in area 1 to
represent the medium-range capacity limits for connected
branches.

Two scenarios are considered and compared. In scenario
1, a RES plant is installed at one location while in sce-
nario 2, two RES plants are installed at two locations among
buses 5, 16, and 18. In each scenario, total RES-rated power
of 2,000 MW is considered.

To evaluate the impact of network congestion due to RES
integration, 10,000 operation cases with various RES gener-
ation power levels and different loading conditions are per-
formed. The load demand varied from 60% to 100% of the
system’s peak load. In addition, at each load level, the total
maximum RES power varies from 100 to 2,000 MW.
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For the OPF calculation, we input the generation costs of
all of the generators while the generation cost of the RES is
set to zero. After solving the OPF problem, if the scheduled
power of RES is less than its available power, we are able
to identify the amount of RES power curtailment required to
meet the network constraints. In each scenario, the number of
congestion cases is counted to make further comparisons.

Fig. 4 presents the percentage of congestion cases in sce-
nario 1. The results indicates that the percentage of cases
depended on the RES location and output power level.
Among the three considered locations for the RES, the case
with a single RES plant installed at bus 16 has the lowest
percentage of congestion. In contrast, the case with a single
RES plant installed at bus 18 results in the highest percentage
of congestion. This is due to the limited branch capacity
of connections with bus 18. As shown in Fig. 3, there are
only two transmission lines connected with bus 18 (from bus
3 to bus 18 and bus 17 to bus 18) with a total transmission
capacity of 1,100 MW. In contrast, five transmission lines are
connected to bus 16.

oy}
o

B
o

W
o

17.97%

[S]
o

i
o

Percentage of Congestion Cases

o

BUS 5 BUS 16

BUS 18

FIGURE 4. Percentage of congestion cases in scenario 1 (RES at one
location).
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FIGURE 5. Percentage of congestion cases in scenario 2 (two RESs at two
locations).

Fig. 5 presents the percentage of congestion cases for sce-
nario 2. To create the dataset, we select the RES locations
as buses 5 and 18 because we require additional congestion
cases to train the network for such scenarios.

C. PDATABASE FORMATION
We create a dataset for DNN-OPF after considering the analy-
sis of the impact of the RES distribution. To create the dataset,
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the RES locations are set as buses 5 and 18. Overall, we have
created 10,000 samples for both the RESs and the load. For
the RESs, we have generated a random sample from 10% to
130% of 1,500 MW, yielding a maximum of approximately
2,000 MW (this is related to the analysis conducted in the
previous section). While considering the provided demand as
the peak load, we vary the load from 10% to 100% by using
the given data in the PGlib benchmark for the IEEE 39-bus
system [30].

After generating the input data, the OPF analysis has
run using MATPOWER to obtain the output for 10,000
input samples. Based on the OPF output, we have selected
real power and line loadings as the targeted output for the
DNN-OPF analysis.

The dataset formation is shown in Fig. 6 in terms of input
and output arrays. For the input, 10,000 samples of a 1 x 2
array are used for the RESs at two locations (buses 5 and 18).
For the output data, we have the same number of samples with
a power-generation schedule in the form of a 1 x 12 array
(including two RESs injecting power to the network along
with 10 other conventional generators) and a 1 x 46 array for
the line-loading information.

Input(X) Output(Y)
No. of
samples Power schedule Line Loading
‘ 1 ‘ ‘ 1x2 array ‘ ‘ 1x21 array ‘ ‘ 1x12 array ‘ ‘ 1x46 array ‘
‘ 2 ‘ ‘ 1x2 array ‘ ‘ 1x21 array ‘ ‘ 1x12 array ‘ ‘ 1x46 array ‘
‘ 3 ‘ ‘ 1x2 array ‘ ‘ 1x21 array ‘ ‘ 1x12 array ‘ ‘ 1x46 array ‘
‘ 104 ‘ 1x2 array ‘ ‘ 1x21 array ‘ ‘ 1x12 array ‘ ‘ 1x46 array ‘

FIGURE 6. Database representation for DNN-OPF.

More output columns can be added according to specific
requirements for voltage, angle, and/or any other informa-
tion based on conventional OPF. For the DNN-OPF analysis,
we have used time-series data for a particular site to form the
input and output as we are able to forecast the RES and load
data by considering the historical data of the real network and
location.

The dataset are split into training, validation, and test
sets (70%, 15%, and 15% of the overall set, respectively),
as reported in Table 3. The validation set is used to tune
the parameters for the network and to avoid overfitting or
underfitting.

D. HYPERPARAMETER TUNING FOR THE DNN

As previously discussed, hyperparameter tuning is essential
when training a DNN. To train the network, hyperparameters
for the DNN are tuned by using a search space (Table 4). The
tuned network has three hidden layers (rendering it a deep
network), as well as input and output layers. The network
also has 23 inputs and 58 outputs, making it a MIMO model.
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TABLE 3. Dataset division.

Number of Samples
Training Set Validation Set Test Set
7,000 15,00 15,00

To deal with the backpropagation, the Levenberg—Marquardt
(LM) [31], gradient descent (GD) [32], and gradient descent
with momentum (GDM) [33] algorithms has been tested. The
LM algorithm exhibited the best overall performance with
1,000 epochs and standard feature scaling. Full-batch training
was then performed.

TABLE 4. Hyperparameters for the DNN.

Hyperparameter Tuned Value Search Space
Hidden Layers 3 2,3,4,5
Hidden Units 10 5,10,15,20
Algorithm LM LM,GD,GDM
Epochs 1000 500,1000,1500,2000

E. POST-PROCESSING

The output of the DNN-OPF analysis include the line loading
and the power-generation dispatch. We next have performed
post-processing on the output. First, we have separated the
power dispatch for the conventional generators, the RES
injected power, and line loading from the output data. Next,
line congestion and curtailment values are calculated from
the separated data while considering the generation limits and
load balance.

The amount of RES curtailment for each dataset sample
are calculated by using (17) for the buses containing the
RESs. Congestion are detected via the line-loading conditions
anticipated from the DNN-OPF analysis and the buses with
curtailed RES power.

Furthermore, the generation cost for each sample is calcu-
lated by using (10). The RES generation cost is set to zero
while other conventional generators has quadratic fuel cost
curves. Finally, the accuracies of the RES curtailment, line
loading, generation dispatch, and total generation operating
cost values are calculated by comparing the results with the
conventional OPF analysis results.

IV. RESULTS AND DISCUSSION
Here, the results of the proposed scheme are presented and
discussed. The simulations were performed on a desktop

computer using Windows 10 with an Intel i7 processor
and 16 GB of RAM.

A. THE DNN-OPF TRAINING PERFORMANCE

In this study, We focus on a multivariate regression problem
with multiple outputs. Table 5 summarizes the performance
evaluation for the proposed DNN-OPF system. The test set
and validation set errors are approximately the same. There-
fore, we can conclude that no overfitting or underfitting issues
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occurred in the trained network. The NRMSE and NMAE
results also reveal an overall error of less than 1%.

TABLE 5. Performance evaluation of DNN-OPF.

Performance Validation Test Set ‘Whole Dataset
Matrix Set
RMSE (MW) 14.59 14.40 14.11
NRMSE (%) 0.186 0.182 0.177
MAE (MW) 42.77 41.29 4221
NMAE (%) 0.00938 0.00898 0.00914

Fig. 7 shows a scatter plot for the test set, which reveals the
accuracy of the DNN model as the predicted and measured
instances were linearly aligned. Fig. 8 shows a comparison
of the error between the validation set, the test set, and the
entire dataset.

500
400
300

200

Predicted [MW)]

100

0 100 300 400 500

200
Measured [MW]

FIGURE 7. Scatter plot of the performance results for the DNN-OPF with
the test dataset.

0.2

0.16

NRMSE(%)
2 5

0.04

Validation set Test set Whole dataset

FIGURE 8. Error evaluation of the DNN-OPF.

In addition, we propose post-processing on the predicted
instances to acquire congestion information and RES power
curtailment values along with power dispatch and total gen-
eration cost. The results for post-processing are discussed in
the subsequent subsection.

B. POST-PROCESSING RESULTS

In post-processing, we have obtained the RES curtailment,
network congestion identification, generator power dispatch
scheduling, and total generation cost values. Next, we have
calculated the accuracy of the output results, including the
curtailment and the generation cost values along with the line
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loading of 46 branches and power scheduling of 12 genera-
tors. We have used the entire dataset (RES power and load
demand) as input to the trained network and obtained the
results for the proposed scheme. Subsequently, results are
compared with the standard OPF analysis and determined
the accuracy in terms of RMSE and NRMSE. Table 6 sum-
marizes the results for the accuracy of the proposed model,
while Figs. 9-11 show curve-fitted graphs for the generation
dispatch, line loading, and curtailment values.

TABLE 6. DNN-OPF post-processing output accuracy.

Output Field RMSE NRMSE
RES curtailment 3.761 MW 0.0105%
Line loading 6.272% 0.2450%
Generation scheduling 12.368 MW 0.0431%
Total generation cost $519.82 0.0166%
500
\
400
'E 300
3
g 200 '
& :
100 i
0
0 100 200 300 400 500
Measured [MW]

FIGURE 9. Scatter plot of the generation scheduling values.
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FIGURE 10. Scatter plot of the line loading values.

The results show that the error in the output accuracy
using the proposed model is less than 1%, thereby indicating
its suitability for many power-system applications that tend
to have a margin for error of approximately 1%. Using a
DNN-based solution to solve the curtailment and congestion
problem in real-time proves to be vital, as it is able to solve
the problem quickly. This is particularly beneficial for large
networks in which conventional OPF takes a long time to
run, especially since the OPF problem can be highly com-
plex and/or non-convex. The proposed solution can also be
implemented for the unit-commitment problem, for which
many constraints exist. Overall, a DNN can learn complex
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FIGURE 11. Scatter plot of the RES curtailment values.

TABLE 7. Computational time comparison.

No. of OPF Running DNN-OPF DNN-OPF
Samples Time (s) Running Time Accuracy
(s) [NRMSE (%)]
2.5k 36.33 1.015 0.3908
Sk 68.78 2.030 0.3881
7.5k 99.99 3.045 0.2271
10k 132.07 4.060 0.1771

equations and perform the required tasks in a fast and efficient
manner.

C. RUN-TIME EVALUATION

The proposed method is significantly faster computationally
than conventional OPF. For example, the proposed DNN-
OPF approach requires 4.06 s for running 10,000 instances of
OPF. This means that the DNN-OPF analysis takes 0.406 ms
for 1 instance, making it 30 times faster than conventional
OPF that takes 132 s to solve the same 10,000 instances.
A comparison of the computational times for 2,500, 5,000,
7,500, and 10,000 instances with the associated accuracies
are provided in Table 7, while Fig. 12 shows a graphical
comparison of the computational times.

140

I Conventional OPF
120 || Proposed DNN-OPF

100 |
80
60 r

Time [Sec]

40 +

201

2500 5

000 7500 10000
No.of samples

FIGURE 12. Computational time comparison.

D. PERFORMANCE EVALUATION WITH THE NEW
DATASETS

The proposed method is evaluated on various datasets to
assess its performance in unforeseen operating conditions.
A previously trained network on a prior dataset is used for
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this purpose. Datasets of 10,000 samples have been generated
by using Latin hypercube sampling (LHS) [34], a normal
distribution [35], and a Weibull distribution [36] for a range
of 10% to 100% of the base case-load values. LHS generates
values that are randomly distributed and permuted; the mean
and standard deviation for the normal distribution are set to
0.5 and 2, respectively; and the scale and shape factors for the
Weibull distribution are set to 10 and 1, respectively. All of
the datasets are created by using the MATLAB statistics and
machine learning toolbox software [37].

For each dataset, conventional OPF solutions and their
accuracies are abtained by using the previously trained net-
work. The results for the new datasets are given in Table 8.
Similarly, post-processing accuracies for each dataset are pro-
vided in Table 9. Notably, the NRMSEs for each dataset
remained under 1%.

TABLE 8. Performance evaluation of the DNN-OPF using the new
datasets.

Performance LHS Normal Weibull
Matrix Distribution Distribution
RMSE (MW) 17.92 20.32 70.4
NRMSE (%) 0.225 0.255 0.896
MAE (MW) 49.84 50.0824 124.981
NMAE (%) 0.01079 0.01084 0.0274

TABLE 9. DNN-OPF post-processing output accuracy using the new
datasets.

Dataset Output Field RMSE NRMSE
Distribution
RES curtailment 5.89 MW 0.0165%
Line loading 6.61% 0.2583%
LHS Generation 12.40MW 0.0572%
scheduling
Total generation $548.17 0.0175%
cost
RES Curtailment 8.14 MW 0.0228%
Line loading 6.72% 0.2643%
Normal Generation 18.65 MW 0.0651%
distribution scheduling
Total generation $541.29 0.0173%
cost
RES curtailment 25.12 MW 0.0694%
Line loading 13.384% 0.5263%
Weibull Generation 68.74 MW 0.2433%
distribution scheduling
Total generation $788.03 0.0257%
cost

Hence, the proposed DNN-OPF-based algorithm can pro-
vide power-system scheduling, network congestion identifi-
cation, RES curtailment evaluation, and so on, while having
a faster computation time than conventional OPF.

The proposed DNN-OPF-based solution has some predic-
tion errors that occur normally because of stochastic behav-
ior during the training process and the randomness of the
datasets. These errors can be minimized by precise training
with more datasets and/or advanced post-processing algo-
rithms. In addition, we think that more sophisticated training

95656

algorithms with active constraints according to the system
conditions can also be helpful toward improving on predic-
tion errors. Thus, a comprehensive study of the constraints
along with error analysis is needed.

Furthermore, the proposed approach has a limitation in that
it only works for defined topologies. If the topology changes
or N-1 contingencies are considered, the network needs to
be retrained to achieve accurate performance. In future work,
the proposed model will be enhanced to cope with topological
changes and contingency events in addition to error analysis.

V. CONCLUSION

In this study, a DNN-OPF model was proposed to provide
fast and reliable OPF solutions that can efficiently predict
network congestion and apply RES power curtailment. The
results demonstrate that the accuracy of the output from the
proposed DNN-OPF model had an error level of less than
1%. Using a DNN-based solution to solve actual RES power
curtailment and congestion problems in real-time is vital as
such systems can solve them quickly. In particular, the pro-
posed system performed 30 times faster than conventional
OPF. Consequently, it is advantageous for optimizing large-
scale networks in which traditional OPF solvers take a long
period of time to obtain solutions. DNNs are capable of
learning complex equations and performing tasks quickly and
effectively. Therefore, the proposed method is adaptable to
larger-scale problems such as the unit-commitment problem
involving multiple constraints that can be complex and/or
non-convex.

In future work, error analysis will be performed on the pro-
posed approach and a hybrid approach will be developed to
deal with contingencies and topology changes. Accordingly,
operating reserves and other market solutions could be used
to deal with such issues.
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