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ABSTRACT Herein, we propose a novel method for identifying power congestion and renewable energy
source (RES) power curtailment in power grids by using deep neural network (DNN)-based optimal power
flow (OPF) analysis. Synthetic data for load demand and RES power generation are used to obtain the OPF
solutions by using an OPF solver. RES locations are selected based on an analysis of the congestion cases,
and the DNN is trained by using the load demand and RES power as inputs and the OPF solution as the
output. Thereafter, post-processing is performed on the DNN-OPF output by using network information. The
final results show the accuracies of identified values on RES curtailment, line loading, generation dispatch
schedule, and total generation operating cost. The IEEE 39-bus systemwas adopted as a case study to validate
the proposed model. The results demonstrate that the proposed scheme is much faster and more suitable for
transmission systems than conventional OPFmethods. Furthermore, the normalized root-mean-squared error
was less than 1%, and the computational time was more than 30 times faster than conventional OPF analysis.
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INDEX TERMS Deep neural network, network congestion, optimal power flow, power curtailment,
renewable energy sources.

I. INTRODUCTION14

Nowadays, the integration of renewable energy sources15

(RESs) in an electric power system is inevitable owing to16

their environmental and economic benefits [1]. However, the17

intermittent nature of the RESs can cause various issues for18

power systems, including transmission-line congestion due19

to surplus power generation during particular weather con-20

ditions. The congestion in the electrical power network can21

lead to further significant problems, such as power equip-22

ment trips, line overloading, outages, and voltage instabil-23

ity [2]. The identification of network congestion is therefore a24
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fundamental step for achieving reliable and secure power- 25

system operation in the presence of the uncertainty caused 26

by variable RES generation. 27

Conventionally, to deal with network congestion identifi- 28

cation, system operators are required to run an optimal power 29

flow (OPF) analysis. This has become a key tool for many 30

system operators in terms of system planning and real-time 31

operation [3], [4]. OPF analysis is a nonlinear, non-convex, 32

and large-scale optimization problem involving both continu- 33

ous and discrete variables [5]. The results include the optimal 34

economic dispatch and power flows, which are obtained by 35

considering the system constraints and equipment operating 36

limits [6]. Indeed, system operators need to continually bal- 37

ance a system incorporating RESs [7]. With many constraints 38
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and variables in large-scale systems, the problem becomes39

more complex and often demands a large amount of compu-40

tational time to solve [3].41

In recent years, dealing with OPF analysis has become42

more cumbersome because of variable power generation from43

RESs. Because of abrupt changes that can occur during power44

generation from RESs widely scattered throughout the power45

network, prompt network congestion identification and man-46

agement within a short time period is required. This necessi-47

tates the analysis of a large number of scenarios and cases48

based on frequent and real-time OPF solutions. Regarding49

large and complex systems, OPF analysis, which itself is a50

nonlinear and non-convex problem, requires significant run-51

ning time that can lead to system failure and cascaded black-52

outs [8]. To deal with this problem, a fast and reliable solution53

is required. Recently, machine-learning- and deep-learning-54

based solutions have been mentioned in the literature [9].55

These approaches use machine-learning or deep-learning56

algorithms to predict OPF solutions for given load demands57

for a particular configuration. These create faster solutions58

with lower computational burdens that can replace the con-59

ventional optimization solvers for OPF analysis. Therefore,60

these methods are vital for congestion identification and RES61

curtailment. In this context, we propose a deep neural net-62

work (DNN)-based approach for congestion identification63

and RES power curtailment. A DNN was selected based on64

its proven significance for engineering problems [10].65

Several examples of using a machine-learning approach66

for OPF analysis mentioned in the literature are typically67

labeled as learning-based OPF or DNN-OPF analysis. A few68

examples of these are summarized in Table 1. According69

to the standard procedure, the machine-learning model is70

trained on the given input and output of a conventional71

OPF analysis. In this way, the output data are mapped onto72

the input data without performing optimization or running73

OPF analysis software. In [11], a DNN model was used74

to map the load demand of generators to their bus volt-75

age magnitudes and power dispatch. The authors employed76

MATPOWER to run the OPF analysis to construct an input77

and output dataset; the speed and accuracy of the proposed78

model were faster than an OPF solver with reasonable pre-79

cision. In [12], a neural network and random forest-based80

security-constrained OPF (SCOPF) model was proposed.81

This approch used multi-target regression and considered82

the input as local information, which it mapped to the out-83

put as the power generation was dispatched. Furthermore,84

the authors created a dataset from a grid optimization (GO)85

competition including load data, transmission-line data, and86

contingency scenarios as the input data, while the output87

comprised generator dispatch power. To obtain this detailed88

dataset, the authors ran PSS/E on the IEEE-14 bus system and89

an IEEE RTS 96 test power system.90

Similarly, [13] presented various artificial intelligence (AI)91

algorithms to map OPF solutions. Among them, gradient92

boosting regression exhibited the best performance with93

improved computational time and solution accuracy. Load94

TABLE 1. Summary of the learning-based opf examples in the literature.

demand was considered as the input, while dispatched real 95

and reactive power along with voltage level were the outputs. 96

The authors also used MATPOWER to perform OPF analysis 97

for the output variables. A case studywas also presented using 98

the IEEE-30 bus system, and more than 90% of predictions 99

were within 5% of the true solution. However, approximately 100

60% of the predictions violated one of the network con- 101

straints. 102

In [14], the stochastic gradient boosting tree (SGBT) algo- 103

rithm was used to map the optimal solution of nonlinear 104

programming considering community energy storage under 105

uncertainty. The objective of the SGBT learning model was 106

to predict the active and reactive power setpoints of energy 107

storage. The results show 98% optimality for even small data 108

samples. 109

In another study [15], the authors proposed a DNN 110

approach referred to as DeepOPF to solve the SCOPF prob- 111

lem. They considered load data as the input, while the out- 112

put provided the real power dispatch of the generators. The 113

authors ran PYPOWER to obtain the OPF solutions and then 114

mapped the input to the output using a DNN-based architec- 115

ture. The results showed that, compared with a state-of-the- 116

art solver, DeepOPF provided viable solutions with less than 117
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FIGURE 1. Proposed DNN-OPF architecture.

0.2% optimality loss, while reducing the computation time118

by up to two orders of magnitude. In [16], a multi-input–119

multi-output (MIMO) random forest model was applied to120

obtain network voltages and bus angles. Subsequently, net-121

work equations were used to calculate the current injection,122

as well as the real and reactive power injections at various123

buses. The GO competition repository provided access to a124

dataset of 500 bus transmission systems, and theOPF analysis125

was run onMATPOWER to obtain the solution. The load data126

were considered as input, while the voltage and angle were127

obtained as the output, both of which were mapped by using a128

machine-learning-basedmodel. Finally, the power generation129

plan was calculated by using the output from the machine-130

learning algorithm. The proposed technique was more com-131

putationally efficient than using MATPOWER, and all of the132

network constraints were satisfied.133

A warm-starting OPF with graph neural networks (GNNs)134

was presented in [17]. Synthetic data were created for two135

power systems in Illinois and Texas containing 200 and 2,000136

buses, respectively. Load data were used as the input data,137

while the real power scheduling was the output. Similarly,138

in [18], a GNN-based OPF analysis was presented for an139

interior-point solution. The authors used the Pandapower140

software to produce a dataset with the load data being created141

via a uniform distribution method. They concluded that the142

proposed method was significantly faster than conventional143

OPF solvers.144

In [19], the authors applied a novel approach to the prob-145

lem and used the predicted results for further analysis. First,146

a random forestmodel was trained to predict the solution of an147

OPF analysis when given the load demand as input. However,148

instead of using the predicted results of the model as an OPF149

solution as is, the results were used as the starting point for150

the solver. This system exhibited better results than a direct151

current warm and flat-start.152

There are a few studies in which a combination of AI153

algorithms was used. For instance, in [20], the authors used154

a neural network and reinforcement-learning techniques to155

performOPF. Theweights were initialized by imitation learn- 156

ing by the neural network in the deep reinforcement tech- 157

nique to lower the computational burden while training the 158

agents to solve the OPF problem. Similarly in [21], a neural 159

network with reinforcement learning was used to perform 160

real-time OPF to deal with the uncertainties from loads and 161

RESs. In [22], as well as integrating a neural network and 162

reinforcement learning, the authors also included transformer 163

tap changes and distribution grid congestion management in 164

their study. 165

For further reading on state-of-the-art AI-based OPF, 166

see [23], [24], [25], and [26]. Reference [27] presents a survey 167

related to AI-based OPF. The advantage of AI (machine- 168

learning and deep-learning)-based OPF is that the solutions 169

of non-convex, large systems can be obtained significantly 170

faster than those of conventional OPF solvers. Because of the 171

increasing integration of intermittent RESs, system operators 172

need to adjust the fixed points of the generators more fre- 173

quently, which is cumbersomewhen dealing with large power 174

systems. Therefore, AI-based OPF is worth considering for 175

grid operations. 176

It is worth noting that very few of the systems presented in 177

this literature review use RESs, so it is important to address 178

network congestion and RES power curtailment accordingly. 179

Herein, we present a DNN-based solution to identify the con- 180

gestion and determine curtailment of RES power. 181

The proposed model is applicable at the transmission sys- 182

tem operator and distribution system operator levels to iden- 183

tify congestion in a network and anticipate the potential cur- 184

tailment of RESs. Furthermore, the proposed scheme enables 185

system operators to avoid grid instability during blackouts. 186

The contributions of this paper are summarized as follows: 187

• ADNN-OPF approach is proposed for large-scale power 188

grids in the presence of RESs. 189

• A post-processing mechanism for OPF analysis is 190

defined to obtain network congestion identification, 191

RES power curtailment values, line loadings, and gen- 192

eration costs. 193
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The remainder of the paper is organized as follows.194

The proposed DNN-OPF scheme is detailed in Section II.195

Section III is dedicated to its implementation details along196

with a case study. The results are discussed in Section IV.197

Finally, conclusions are drawn in Section V.198

II. THE PROPOSED SCHEME199

Here, we propose the DNN-OPF methodology used to deal200

with the identification of congestion and the quantification201

of power curtailment in the presence of RESs.202

Fig. 1 shows the architecture of the proposed scheme.203

A database obtained from a conventional OPF tool such as204

MATPOWER can be used in this framework. In practice,205

historical operation data can be taken from the database of206

the system operator’s energy management system. Next, the207

data are moved to the pre-processing phase where tasks such208

as missing data handling, feature scaling, and data division209

are performed. The dataset is divided into training data, vali-210

dation data, and testing data.211

The model is then trained using the training data via map-212

ping of the inputs and outputs. In the training phase, the data213

are divided into targeted and input values. Following the stan-214

dard training procedure, the input data are sent to the DNN,215

and the results are compared with the targeted values by using216

the error/loss function.217

In the testing phase, the input data are fed to the trained218

network, and the output is obtained. The acquired outputs219

are used in the post-processing phase during which further220

desired parameters related to the transmission network are221

calculated.222

A. DATABASE CREATION AND PRE PROCESSING223

Fig. 2 shows the procedure for dataset creation. The data224

move to the pre-processing phase during which missing data225

handling, feature scaling, and data division tasks are per-226

formed. The data created are split into training and testing227

datasets. In this study, the OPF analysis is performed using228

synthetic data with N samples for power demand Pd and229

power generation from the RESs (i.e., Pg,RESs) taken as an230

input. The data on the power demand and generation from231

RESs are created by considering uniformly distributed ran-232

dom numbers in certain ranges of data given by the IEEE233

benchmark system. We used the IEEE 39-bus system to234

obtain the OPF analysis results.235

We used MATPOWER 7.1 [28] in the MATLAB 2021a236

environment to run the OPF. In this study, MATPOWER Inte-237

rior Point Solver (MIPS) is used to solve the OPF problem.238

MIPS can be used to solve nonlinear programming problems239

(NLPs) via the primal-dual interior-point method. The load240

demand and RES power generation are used as input, and the241

output is obtained in terms of the generation dispatch for all of242

the other parameters related to the OPF, such as the associated243

voltages and angles. However, for real systems, this input and244

output can be replaced by using historical datasets for the245

particular transmission system.246

FIGURE 2. Database creation procedure.

Conventionally, themodeling for OPF analysis is described 247

by using (1)–(9). Equation (1) presents the objective function 248

aimed at minimizing the overall operating cost that is subject 249

to the power flow and generation constraints for i = 1 . . . ng 250

generators and j = 1 . . . .nb buses. 251

1) OBJECTIVE FUNCTION 252

min f (Pg) =
∑ng

i=1
C i
p(P

i
g), (1) 253

where C i
p is the polynomial cost function of the active power 254

(Pig) of the generators. These are subject to the following 255

constraints. 256

Equations (2) and (3) present the power equality con- 257

straints for active and reactive power generation and con- 258

sumption in the network, respectively. 259

2) POWER EQUALITY CONSTRAINTS 260

(Pjg − P
j
d )− Re

{
Vj

( nb∑
k=1

YjkVk

)∗}
= 0, j = 1 . . . .nb, 261

(2) 262

(Qjg − Q
j
d )− Im

{
Vj

( nb∑
k=1

YjkVk

)∗}
= 0, j = 1 . . . .nb, 263

(3) 264

where Pjg and Qjg are the generated active and reactive 265

power and Pjd and Qjd are the active and reactive load power 266

at bus j, respectivily. Vj the voltage at bus j, Yjk is the 267

admittance between bus j and k and Vk is the voltage at 268

bus k . 269

Equations (4) and (5) are the constraints related to line flow 270

from and to the bus, respectively. 271
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3) MAXIMUM LINE CAPACITY CONSTRAINTS272 ∣∣Ff (θ,V )∣∣− Fmax ≤ 0, (4)273

|Ft (θ,V )| − Fmax ≤ 0, (5)274

where Ff and Ft are the line flows from and to the bus,275

respectively, and Fmax is the maximum capacity of the line.276

4) BUS VOLTAGE AND ANGLE LIMIT CONSTRAINTS277

θmin
j ≤ θj ≤ θ

max
j , j = 1 . . . nb, (6)278

Vmin
j ≤ Vj ≤ Vmax

j , j = 1 . . . nb, (7)279

where θmin
j and θmax

j are the minimum and maximum volt-280

age angle limits, and Vmin
j and Vmax

j are the minimum and281

maximum voltage limits at bus j, respectively.282

5) GENERATION LIMIT CONSTRAINTS283

Pi,min
g ≤ Pig ≤ P

i,max
g , i = 1 . . . ng, (8)284

Qi,min
g ≤ Qig ≤ Q

i,max
g , i = 1 . . . ng, (9)285

where Pi,min
g and Qi,min

g are the minimum active and reactive286

generation limits, and Pi,max
g and Qi,max

g are the maximum287

active and reactive generation limits of the ith generator,288

respectively.289

6) FUEL COST CURVE290

Generator curves are commonly expressed as cubic or291

quadratic functions or as piecewise linear functions. In this292

study, we applied a quadratic fuel cost function as follows:293

C i
p(P

i
p) = α + β(P

i
p)+ γ (P

i
p)

2, (10)294

where C i
p is the operating cost; P

i
g is the output power; and α,295

β, and γ are the cost coefficients of the ith generator.296

B. THE TRAINING PHASE297

In the training phase, the data are divided into target values298

and input values.299

The input data (e.g., the demand (Pd ) and RES generation300

(Pg,RESs)) are sent to the DNN, and the results are obtained301

and compared with the targeted values (generation dispatch302

(Pg,disp.), injected RES power (Pinj,RESs), voltage information303

(Vg), etc.) by using the error/loss function.304

The hyperparameters are tuned by considering error/loss305

minimization. The tuning procedure for the DNN is detailed306

in the implementation section.307

C. THE TESTING PHASE308

In the testing phase, the input data such as Pd and Pg,RESs309

are inputted into the trained network, after which the output310

is obtained and the error is measured by using performance311

parameters. If the error is within the desired range, the train-312

ing is considered to be complete and ready to use as a replace-313

ment for conventional OPF.314

The performance parameters used in this study are the315

root mean square error (RMSE) (11), normalized RMSE316

(NRMSE) (12), mean absolute error (MAE) (13), and nor- 317

malized MAE (NMAE) (14) (RMSE and MAE are normal- 318

ized based on the mean values): 319

RMSE =

√√√√ 1
N

N∑
i=1

(
xai − x

p
i

)2
, (11) 320

NRMSE =
RMSE

xa
∗ 100%, (12) 321

MAE =
1
N

N∑
i=1

∣∣xai − xpi ∣∣, (13) 322

NMAE =
MAE

xa
∗ 100%, (14) 323

where xai and xpi are the actual and predicted points, respec- 324

tively, xa is the average of the actual values, and N is the total 325

number of samples. 326

D. THE POST-PROCESSING PHASE 327

The output data obtained from the trained DNN-OPF and the 328

physical network information are used in the post-processing 329

phase for network congestion identification, RES power cur- 330

tailment, and network line-loading conditions updated gen- 331

erator dispatch schedule, RES power injection, and total 332

generation cost. The post-processing phase has the following 333

four steps. 334

Step 1: The power dispatch schedule generated by the 335

DNN model is evaluated for constraint violations. First, it is 336

checked to see whether it violates the minimum and maxi- 337

mum generating limits. If the generation points are violated, 338

the points are set within the generation limits by using (15) 339

and (16): 340

Pig,disp. = Pi,min
g , if Pig,disp. ≤ P

i,min
g for i = 1 . . . ng, 341

(15) 342

Pig,disp. = Pi,max
g , if Pig,disp. ≥ P

i,max
g for i = 1 . . . ng, 343

(16) 344

wherePig,disp.,P
i,max
g , andPi,min

g are the real power-generation 345

dispatch, and the minimum and maximum levels of the gen- 346

eration power of the ith generator. 347

Next, the power balance is maintained if the output gener- 348

ation plan violates the load balance. If the total generation is 349

less than the load demand, the power of RES is first increased 350

by considering a reduction in curtailment (this operation is 351

performed if the line is not predicted as congested). Subse- 352

quently, other generators are considered to have input power 353

based on cost prioritization (from the lowest generation cost 354

to the highest) until generation balance is achieved. 355

Similarly, if the total generation exceeds the demand, 356

the power starts to drop from the most costly generation 357

to the cheapest one until the power balance is maintained. The 358

power generations are kept within the limits while balancing 359

the load. 360

Step 2: Based on the DNN-OPF model, the power injected 361

from the RESs is observed at the RES generator bus. If the 362
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injected power from the RESs (Pinj,RESs) at the output of the363

OPF analysis is less than the available RES power (Pg,RESs) at364

the input, the output of the corresponding RESs was curtailed365

to meet the system constraints and avoid network congestion366

in the line. The amount of RES power curtailment at the367

associated bus can be calculated as368

Pcurtailed,RESs = Pg,RESs − Pinj,RESs, (17)369

where Pcurtailed,RESs is the curtailed power value, Pg,RESs is370

the injected power, and Pg,RESs is the available RES power.371

Step 3: Network congestion is identified via RESs cur-372

tailment scenarios and line loading information. If there is373

curtailment on the RES bus, then the line is considered con-374

gested. Otherwise, congestion is also verified by analyzing375

the line loadings of the network.376

Step 4: Finally, the cost of the generation dispatch is calcu-377

lated for the updated power-generation combination for each378

sample by applying (10) according to the power dispatched379

by each generator.380

In summary, post-processing by the DNN-OPF provides381

the network congestion scenarios caused by excessive RES382

generation, the expected amount of RES power curtailment,383

line loadings, updated generator dispatch schedule, RES384

power injection, and total generation cost.385

III. IMPLEMENTATION DETAILS386

Here, we discuss the implementation of the proposed387

DNN-OPF on the IEEE 39-bus system. In the case study,388

we have analyzed the network for RES location and then cre-389

ated a database for the test power system. The OPF problem390

is solved by assigning the RESs to different locations. The391

line-limit capacities are observed for various samples gener-392

ated from the RESs, and the locations of the RESs are set in393

such a way as to yield a large number of congestion cases.394

Thereby, we have created a dataset for DNN-OPF containing395

the largest possible number of cases. Details of the analysis396

are discussed in the subsequent subsections.397

A. A CASE STUDY398

The IEEE 39-bus system is a 10-machineNewEngland power399

grid [29]. The IEEE-39 bus system is a 345-kV transmission400

system with 10 generators that can generate a maximum of401

7,367 MW. It has 21 loads connected to the system with a402

peak of 6,254 MW.403

In the network, buses are connected to 46 branches includ-404

ing six tie lines that connect three areas, as illustrated using405

three different colors in Fig. 3. The network and cost data406

used in the study were obtained from [30]. Table 2 presents407

detailed information on the IEEE 39-bus system. The cost408

coefficients of generators ’α’ and ’γ ’ were set to zero in the409

provided case data file, whereas ’β’ was given a range of410

6.72 to 34.84 $/kWh.411

B. SELECTION OF THE RES LOCATIONS412

Because of the limited capacity of transmission lines and the413

minimum generation limits of conventional generators, the414

FIGURE 3. IEEE 39-bus system.

TABLE 2. Summary of the IEEE 39-bus system.

distribution of RESs is directly related to network congestion 415

problems. Accordingly, the distribution of RESs in a power 416

system greatly affects the long-term development plan for the 417

system, such as designs for new transmission lines and tie 418

lines, the integration of new generation technologies, and the 419

enhancement of system flexibility. 420

To analyze the impact of RES distribution, OPF analysis is 421

performed by considering different RES locations and differ- 422

ent levels of load demand andRES output power. In this study, 423

three buses (5, 16, and 18) are selected as RES locations 424

because each of them is particularly important for network 425

congestion problems in one of the three areas. Bus 18 has 426

the lowest thermal limit among the connected branches in 427

area 2 whereas bus 16 has the highest limit among the con- 428

nected branches in area 3. Bus 5 is selected in area 1 to 429

represent the medium-range capacity limits for connected 430

branches. 431

Two scenarios are considered and compared. In scenario 432

1, a RES plant is installed at one location while in sce- 433

nario 2, two RES plants are installed at two locations among 434

buses 5, 16, and 18. In each scenario, total RES-rated power 435

of 2,000 MW is considered. 436

To evaluate the impact of network congestion due to RES 437

integration, 10,000 operation cases with various RES gener- 438

ation power levels and different loading conditions are per- 439

formed. The load demand varied from 60% to 100% of the 440

system’s peak load. In addition, at each load level, the total 441

maximum RES power varies from 100 to 2,000 MW. 442
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For the OPF calculation, we input the generation costs of443

all of the generators while the generation cost of the RES is444

set to zero. After solving the OPF problem, if the scheduled445

power of RES is less than its available power, we are able446

to identify the amount of RES power curtailment required to447

meet the network constraints. In each scenario, the number of448

congestion cases is counted to make further comparisons.449

Fig. 4 presents the percentage of congestion cases in sce-450

nario 1. The results indicates that the percentage of cases451

depended on the RES location and output power level.452

Among the three considered locations for the RES, the case453

with a single RES plant installed at bus 16 has the lowest454

percentage of congestion. In contrast, the case with a single455

RES plant installed at bus 18 results in the highest percentage456

of congestion. This is due to the limited branch capacity457

of connections with bus 18. As shown in Fig. 3, there are458

only two transmission lines connected with bus 18 (from bus459

3 to bus 18 and bus 17 to bus 18) with a total transmission460

capacity of 1,100 MW. In contrast, five transmission lines are461

connected to bus 16.462

FIGURE 4. Percentage of congestion cases in scenario 1 (RES at one
location).

FIGURE 5. Percentage of congestion cases in scenario 2 (two RESs at two
locations).

Fig. 5 presents the percentage of congestion cases for sce-463

nario 2. To create the dataset, we select the RES locations464

as buses 5 and 18 because we require additional congestion465

cases to train the network for such scenarios.466

C. PDATABASE FORMATION467

We create a dataset for DNN-OPF after considering the analy-468

sis of the impact of the RES distribution. To create the dataset,469

the RES locations are set as buses 5 and 18. Overall, we have 470

created 10,000 samples for both the RESs and the load. For 471

the RESs, we have generated a random sample from 10% to 472

130% of 1,500 MW, yielding a maximum of approximately 473

2,000 MW (this is related to the analysis conducted in the 474

previous section). While considering the provided demand as 475

the peak load, we vary the load from 10% to 100% by using 476

the given data in the PGlib benchmark for the IEEE 39-bus 477

system [30]. 478

After generating the input data, the OPF analysis has 479

run using MATPOWER to obtain the output for 10,000 480

input samples. Based on the OPF output, we have selected 481

real power and line loadings as the targeted output for the 482

DNN-OPF analysis. 483

The dataset formation is shown in Fig. 6 in terms of input 484

and output arrays. For the input, 10,000 samples of a 1 × 2 485

array are used for the RESs at two locations (buses 5 and 18). 486

For the output data, we have the same number of samples with 487

a power-generation schedule in the form of a 1 × 12 array 488

(including two RESs injecting power to the network along 489

with 10 other conventional generators) and a 1× 46 array for 490

the line-loading information. 491

FIGURE 6. Database representation for DNN-OPF.

More output columns can be added according to specific 492

requirements for voltage, angle, and/or any other informa- 493

tion based on conventional OPF. For the DNN-OPF analysis, 494

we have used time-series data for a particular site to form the 495

input and output as we are able to forecast the RES and load 496

data by considering the historical data of the real network and 497

location. 498

The dataset are split into training, validation, and test 499

sets (70%, 15%, and 15% of the overall set, respectively), 500

as reported in Table 3. The validation set is used to tune 501

the parameters for the network and to avoid overfitting or 502

underfitting. 503

D. HYPERPARAMETER TUNING FOR THE DNN 504

As previously discussed, hyperparameter tuning is essential 505

when training a DNN. To train the network, hyperparameters 506

for the DNN are tuned by using a search space (Table 4). The 507

tuned network has three hidden layers (rendering it a deep 508

network), as well as input and output layers. The network 509

also has 23 inputs and 58 outputs, making it a MIMO model. 510
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TABLE 3. Dataset division.

To deal with the backpropagation, the Levenberg–Marquardt511

(LM) [31], gradient descent (GD) [32], and gradient descent512

with momentum (GDM) [33] algorithms has been tested. The513

LM algorithm exhibited the best overall performance with514

1,000 epochs and standard feature scaling. Full-batch training515

was then performed.516

TABLE 4. Hyperparameters for the DNN.

E. POST-PROCESSING517

The output of the DNN-OPF analysis include the line loading518

and the power-generation dispatch. We next have performed519

post-processing on the output. First, we have separated the520

power dispatch for the conventional generators, the RES521

injected power, and line loading from the output data. Next,522

line congestion and curtailment values are calculated from523

the separated data while considering the generation limits and524

load balance.525

The amount of RES curtailment for each dataset sample526

are calculated by using (17) for the buses containing the527

RESs. Congestion are detected via the line-loading conditions528

anticipated from the DNN-OPF analysis and the buses with529

curtailed RES power.530

Furthermore, the generation cost for each sample is calcu-531

lated by using (10). The RES generation cost is set to zero532

while other conventional generators has quadratic fuel cost533

curves. Finally, the accuracies of the RES curtailment, line534

loading, generation dispatch, and total generation operating535

cost values are calculated by comparing the results with the536

conventional OPF analysis results.537

IV. RESULTS AND DISCUSSION538

Here, the results of the proposed scheme are presented and539

discussed. The simulations were performed on a desktop540

computer using Windows 10 with an Intel i7 processor541

and 16 GB of RAM.542

A. THE DNN-OPF TRAINING PERFORMANCE543

In this study, We focus on a multivariate regression problem544

with multiple outputs. Table 5 summarizes the performance545

evaluation for the proposed DNN-OPF system. The test set546

and validation set errors are approximately the same. There-547

fore, we can conclude that no overfitting or underfitting issues548

occurred in the trained network. The NRMSE and NMAE 549

results also reveal an overall error of less than 1%. 550

TABLE 5. Performance evaluation of DNN-OPF.

Fig. 7 shows a scatter plot for the test set, which reveals the 551

accuracy of the DNN model as the predicted and measured 552

instances were linearly aligned. Fig. 8 shows a comparison 553

of the error between the validation set, the test set, and the 554

entire dataset. 555

FIGURE 7. Scatter plot of the performance results for the DNN-OPF with
the test dataset.

FIGURE 8. Error evaluation of the DNN-OPF.

In addition, we propose post-processing on the predicted 556

instances to acquire congestion information and RES power 557

curtailment values along with power dispatch and total gen- 558

eration cost. The results for post-processing are discussed in 559

the subsequent subsection. 560

B. POST-PROCESSING RESULTS 561

In post-processing, we have obtained the RES curtailment, 562

network congestion identification, generator power dispatch 563

scheduling, and total generation cost values. Next, we have 564

calculated the accuracy of the output results, including the 565

curtailment and the generation cost values along with the line 566
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loading of 46 branches and power scheduling of 12 genera-567

tors. We have used the entire dataset (RES power and load568

demand) as input to the trained network and obtained the569

results for the proposed scheme. Subsequently, results are570

compared with the standard OPF analysis and determined571

the accuracy in terms of RMSE and NRMSE. Table 6 sum-572

marizes the results for the accuracy of the proposed model,573

while Figs. 9–11 show curve-fitted graphs for the generation574

dispatch, line loading, and curtailment values.575

TABLE 6. DNN-OPF post-processing output accuracy.

FIGURE 9. Scatter plot of the generation scheduling values.

FIGURE 10. Scatter plot of the line loading values.

The results show that the error in the output accuracy576

using the proposed model is less than 1%, thereby indicating577

its suitability for many power-system applications that tend578

to have a margin for error of approximately 1%. Using a579

DNN-based solution to solve the curtailment and congestion580

problem in real-time proves to be vital, as it is able to solve581

the problem quickly. This is particularly beneficial for large582

networks in which conventional OPF takes a long time to583

run, especially since the OPF problem can be highly com-584

plex and/or non-convex. The proposed solution can also be585

implemented for the unit-commitment problem, for which586

many constraints exist. Overall, a DNN can learn complex587

FIGURE 11. Scatter plot of the RES curtailment values.

TABLE 7. Computational time comparison.

equations and perform the required tasks in a fast and efficient 588

manner. 589

C. RUN-TIME EVALUATION 590

The proposed method is significantly faster computationally 591

than conventional OPF. For example, the proposed DNN- 592

OPF approach requires 4.06 s for running 10,000 instances of 593

OPF. This means that the DNN-OPF analysis takes 0.406 ms 594

for 1 instance, making it 30 times faster than conventional 595

OPF that takes 132 s to solve the same 10,000 instances. 596

A comparison of the computational times for 2,500, 5,000, 597

7,500, and 10,000 instances with the associated accuracies 598

are provided in Table 7, while Fig. 12 shows a graphical 599

comparison of the computational times. 600

FIGURE 12. Computational time comparison.

D. PERFORMANCE EVALUATION WITH THE NEW 601

DATASETS 602

The proposed method is evaluated on various datasets to 603

assess its performance in unforeseen operating conditions. 604

A previously trained network on a prior dataset is used for 605
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this purpose. Datasets of 10,000 samples have been generated606

by using Latin hypercube sampling (LHS) [34], a normal607

distribution [35], and a Weibull distribution [36] for a range608

of 10% to 100% of the base case-load values. LHS generates609

values that are randomly distributed and permuted; the mean610

and standard deviation for the normal distribution are set to611

0.5 and 2, respectively; and the scale and shape factors for the612

Weibull distribution are set to 10 and 1, respectively. All of613

the datasets are created by using the MATLAB statistics and614

machine learning toolbox software [37].615

For each dataset, conventional OPF solutions and their616

accuracies are abtained by using the previously trained net-617

work. The results for the new datasets are given in Table 8.618

Similarly, post-processing accuracies for each dataset are pro-619

vided in Table 9. Notably, the NRMSEs for each dataset620

remained under 1%.621

TABLE 8. Performance evaluation of the DNN-OPF using the new
datasets.

TABLE 9. DNN-OPF post-processing output accuracy using the new
datasets.

Hence, the proposed DNN-OPF-based algorithm can pro-622

vide power-system scheduling, network congestion identifi-623

cation, RES curtailment evaluation, and so on, while having624

a faster computation time than conventional OPF.625

The proposed DNN-OPF-based solution has some predic-626

tion errors that occur normally because of stochastic behav-627

ior during the training process and the randomness of the628

datasets. These errors can be minimized by precise training629

with more datasets and/or advanced post-processing algo-630

rithms. In addition, we think that more sophisticated training631

algorithms with active constraints according to the system 632

conditions can also be helpful toward improving on predic- 633

tion errors. Thus, a comprehensive study of the constraints 634

along with error analysis is needed. 635

Furthermore, the proposed approach has a limitation in that 636

it only works for defined topologies. If the topology changes 637

or N-1 contingencies are considered, the network needs to 638

be retrained to achieve accurate performance. In future work, 639

the proposedmodel will be enhanced to copewith topological 640

changes and contingency events in addition to error analysis. 641

V. CONCLUSION 642

In this study, a DNN-OPF model was proposed to provide 643

fast and reliable OPF solutions that can efficiently predict 644

network congestion and apply RES power curtailment. The 645

results demonstrate that the accuracy of the output from the 646

proposed DNN-OPF model had an error level of less than 647

1%. Using a DNN-based solution to solve actual RES power 648

curtailment and congestion problems in real-time is vital as 649

such systems can solve them quickly. In particular, the pro- 650

posed system performed 30 times faster than conventional 651

OPF. Consequently, it is advantageous for optimizing large- 652

scale networks in which traditional OPF solvers take a long 653

period of time to obtain solutions. DNNs are capable of 654

learning complex equations and performing tasks quickly and 655

effectively. Therefore, the proposed method is adaptable to 656

larger-scale problems such as the unit-commitment problem 657

involving multiple constraints that can be complex and/or 658

non-convex. 659

In future work, error analysis will be performed on the pro- 660

posed approach and a hybrid approach will be developed to 661

deal with contingencies and topology changes. Accordingly, 662

operating reserves and other market solutions could be used 663

to deal with such issues. 664
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