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ABSTRACT Fresh Fruit Bunch (FFB) is the main ingredient in palm oil production. Harvesting FFB from
oil palm trees at its peak ripeness stage is crucial to maximise the oil extraction rate (OER) and quality.
In current harvesting practices, misclassification of FFB ripeness can occur due to human error, resulting
in OER loss. Therefore, a vision-based ripe FFB detection system is proposed as the first step in a robotic
FFB harvesting system. In this work, live camera input is fed into a Convolutional Neural Network (CNN)
model known as YOLOV4 to detect the presence of ripe FFBs on the oil palm trees in real-time. Once a ripe
FFB is detected on the tree, a signal is transmitted via ROS to the robotic harvesting mechanism. To train the
YOLOV4 model, a large number of ripe FFB images were collected using an Intel Realsense Camera D435
with a resolution of 1920 x 1080. During data acquisition, a subject matter expert assisted in classifying the
FFBs in terms of ripe or unripe. During the testing phase, the result of the mean Average Precision (mAP) and
recall are 87.9 % and 82 % as the detection fulfilled the Intersect over Union (IoU) with more than 0.5 after

2000 iterations and the system operated at the real-time speed of roughly 21 Frame Per Second (FPS).

INDEX TERMS Object detection, oil palm, fresh fruit bunch, fruit maturity, YOLO.

I. INTRODUCTION

Malaysia is one of the biggest palm oil-producing countries
in the world. The palm oil industry is a significant contributor
to the country’s Gross Domestic Product (GDP). Palm oil
companies have more than a million hectares of plantation
land to produce Fresh Fruit Bunches (FFBs) which will
be harvested when it is ripe to extract their valuable oil.
Therefore, several rules and guidelines were developed to
achieve the maximum oil extraction rate (OER) according
to the guideline of the Malaysian Palm Oil Board (MPOB).
In the oil palm estate, the FFBs can only be harvested once
the trees reach maturity at three years old. The field workers
will harvest the FFBs on the 10th-14th days of the harvesting
interval. The harvesters will search for oil palm trees with
a certain number of detached fruitlets that have dropped to
the ground. According to the current guideline, this indicates
that there are FFBs on the trees that have ripened and should
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be harvested. The ripe FFBs are usually identified by their
colour which is a bright red and yellow, in contrast to the
brown and black of unripe FFBs. The harvested FFBs will
then be collected and transported to the palm oil mill for oil
extraction [1]. The general rule is that the FFBs are to be
delivered to the mill within 24 hours after harvesting to ensure
the quality of the fruit is at the highest level. However, this
implementation is not guaranteed due to factors such as rain
during the harvesting process and other unforeseen logistical
issues.

The problem of labour shortage has had a tremendous
impact on the economic growth of the oil palm industry which
is traditionally very labour intensive [2]. Oil palm estates
have reported labour shortages of approximately 20-30 %,
which affected the potential yield to decrease by around 15
% due to post-harvest losses [3]. Therefore, the plantation
industry should resolve this problem by implementing the
latest technology in the FFB harvesting process.

Since the last decade, numerous methods of identifying
the maturity of FFBs have been proposed by researchers to
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help ensure that the FFBs harvested have reached the proper
maturity stage. Generally, there are two types of techniques to
analyse the ripeness of FFBs which are destructive methods
and non-destructive methods. Destructive testing methods
require physical contact in such a way that affects the integrity
of the FFB and severely reduces the amount of oil that can
be extracted from the tested FFB such as fruit battery [4].
This technique uses a copper and zinc electrode to prick the
oil palm fruitlet for measurement. These metal electrodes
prick through the surface of the oil palm fruitlet and an
ionization occurred. The electrolyte reaction indicates the
element contents in the fruitlet and that varies according to
the different maturity stages. The characteristic of moisture
and lipid content become an indicator to justify the maturity
stages.

Non-destructive techniques can involve non-contact fea-
tures that are either visual or non-visual. Visually, the most
popular technique was to use colour-based image analy-
sis [5], [7], [8]. Others have also explored using near-infrared
(NIR) spectroscopy [9], [10], multispectral analysis [11],
[12], LIDAR [13], [14], fluorescence sensing[15], and laser
light backscattering [16]. In terms of non-visual features,
previous work has been done on using microwave sensors
[17], inductive sensors [18], and the fruit battery method [19].

Although several methods are proposed to identify the
maturity of FFB, most of these are still in the experimental
stage and more studies are needed to determine their effec-
tiveness for FFB ripeness detection. Most methods have only
been tested in a laboratory environment. Among these are
the fluorescence technique[15], near-infrared spectroscopy
[10], laser backscattering imaging [16], and fruit battery
method [20]. Those methods could potentially be suited for
detection applications in the mill after harvesting as a mech-
anism for quality control. From the literature, it is found that
the methods featuring colour images [21], LiDAR [22], and
inductive sensors [23] are being developed for the application
phase currently.

In the past, conventional methods were applied to clas-
sify the ripeness of FFBs, but the computational complex-
ity of these methods did not allow for real-time operation.
This has changed in the last decade due to three factors.
Firstly, advancements in deep learning algorithms have given
rise to a large variety of Convolutional Neural Networks
(CNN) models that are more powerful than ever. Secondly,
the existence of an established artificial intelligence (Al)
development environment that provides software tools and
guidance to use deep learning techniques to solve a multitude
of problems ranging from facial recognition to cancer cell
detection. Thirdly, the production of high-powered Graphical
Processing Units (GPUs) and GPU-enabled Single Board
Computers (SBC) that have become widely available make
deep learning accessible to more researchers and encourage
its development and implementation into real-world systems.

In this paper, we proposed using a deep learning model
to called YOLO (an acronym for ‘You Only Look Once’)
to detect the ripe FFBs [24]. The advantages of the YOLO
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model are that it is able to perform detection with high accu-
racy and in real-time due to its speedy processing technique.
In the past, the YOLO series model had been implemented
to detect agricultural fruits such as apples [25], tomatoes
[26], and pears [27]. In the oil palm sector, Junos et al. [28]
developed an automatic detection system that included the
YOLO model to detect FFBs. The authors compared the
performance between YOLOvV3 series models and the result
show the model is feasible for object detection in the oil palm
sector.

In this project, the objective is to develop a system to auto-
matically detect ripe, unharvested FFBs in real-time using
a combination of computer vision and artificial intelligence
(AI). Real-time operation is considered an important feature
of this system because it is meant for on-field application
as part of a robotic harvesting mechanism. Firstly, an RGB
camera (Intel Realsense D435) captures the view of the oil
palm tree and transmits the data to a Single Board Computer
(Nvidia Jetson NX) that is loaded with an inference model
based on YOLOV4. The trained algorithm would identify the
target object, record its coordinates, and send its positional
information to the robotic harvesting mechanism within the
Robot Operating System (ROS). Based on the coordinate
received from the detection module, the positional informa-
tion of the FFB was obtained by using a kinematic equa-
tion. Since it has been released for some time, YOLOv4
has become highly compatible with ROS which is a core
component of the robotic harvesting system that is being
developed separately. This was the main factor in the selec-
tion of YOLOV4 for this work. Also, although it was not the
latest iteration of the YOLO model, it is still able to perform
object detection with high accuracy and speed.

Il. MATERIALS AND METHOD

In order to develop an Al-based vision system to detect ripe
FFBs on the oil palm trees, the algorithm must be trained to
do so using visual data or samples of ripe FFBs on the trees.
In this section, the work done for data acquisition, preparation
and training will be explained in detail.

A. DATA ACQUISITION

The oil palm trees selected for data capture range from 8 to
13 years old because this is when the trees produce the
most FFBs. The sample data was recorded from November
to December 2021 at an oil palm plantation in the state of
Selangor, Malaysia. During data acquisition, a subject matter
expert assisted in identifying ripe and unripe FFBs on the
trees. Fig. 1 shows the hardware setup used for this work.
An Intel Realsense D435 Camera was used to capture the
FFB visual data. The camera was mounted onto an adjustable
platform to enable it to capture images at the same height or
level as the FFBs on the trees. The captured images have a
resolution of 1920 x 1080 pixels which are stored in a laptop
computer connected via a USB-C cable. The laptop computer
used for capturing and storing data is mounted with an Intel
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FIGURE 1. (a) Hardware setup and (b) mounted camera used for training
data collection and testing detection performance.

Core 17-8750H processor and GeForce DTX 1070 graphic
card.

In the beginning, the camera is lifted at the same elevation
and the distance is 3 meters away from the targeted FFB.
Next, the camera is moved toward the FFB and positioned
at different angles to ensure the video captures many varied
views of the FFB on oil palm trees. Then, image data was
extracted from a total of 49 oil palm trees at different time
intervals over the course of 3 days to allow for variation in
the environment and lighting in the training data. From the
49 oil palm trees sampled, 24 oil palm trees had at least one
ripe FFB on them whereas 25 oil palm trees did not have any
ripe FFBs.

B. DATA PREPARATION AND TRAINING

In the workflow for preparing the training data, the videos
captured of the oil palm trees are first extracted into images.
These images can be categorized into positive images and
negative images. Positive images are images of trees that
contain the desired object for detection, which is the ripe
FFB. In contrast, negative images are images of trees without
any ripe FFBs. There are a total of 240 positive images and
250 negative images. After that, 10 images were systemati-
cally chosen for each tree among a large number of images
after extraction. The reason only 10 images were taken is
that we wanted to avoid redundancy in the training images.
These 10 images chosen show the subject in a variety of
angles, backgrounds, positions, and lighting. This variation
is very important in the training process of the deep learning
algorithm as it requires this information for it to be able to
learn and detect patterns in the images.

Next, the positive images undergo a manual labelling pro-
cess using the labellmg software. The positive and negative
images are further separated into two datasets which are
the training set and validation set. The positive images are
divided into 210 and 30 images for the training set and
validation set. Meanwhile, the negative images are divided
into 220 and 30 images for the training set and validation set.
The images extracted from each tree are unique, which means
that the images from the same tree would not be included
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TABLE 1. Separation of images for training the YOLOv4 model.

Dataset Training set _ Validation set Number of images
Positive 210 30 240
Negative 220 30 250

Total 430 60 490

TABLE 2. The values of the parameter in the YOLOv4 model.

Parameter Value applied
Width 608
Height 608

Momentum 0.949
Decay 0.0005
Angle 0

Saturation 1.5

Exposure 1.5

Hue 0.1
Learning rate 0.001
Maximum batch 3000

in both the training set and validation set. Table 1 shows the
separation of the images for YOLOvV4 training.

In this study, the parameters applied in the YOLOv4 model
are the default values provided by Bochkovskiy et al.[29].
Table 2 shows the values of the parameters used in the train-
ing. The data augmentation includes the parameters exposure
and saturation with a factor of 1.5 to randomly change of
intensity and brightness of colour present in the image while
during training and the parameter hue is set as 0.1. In addition,
another method of data augmentation, Mosaic, was included
during training, which contributes to the overall improvement
in the YOLOvV4 model. The Mosaic method mixes 4 training
images to generate a new image that is contextually different
in context from the original. However, the size of the anchor
box, S is required to calculate according to the number of
object detection. The formula to calculate the size of the
anchor box is shown as:

S=(N+C)xA 1

where N represents the number of object detection, C rep-
resents the prediction of coordinates, and A represents the
number of anchor boxes per grid.

In this study, a few variations of the YOLOv4 model
are evaluated to compare their performance in the task of
FFB detection. The additional model applied in this study is
Scaled-YOLOv4 which was specially designed to suit vari-
ous GPUs during operation. For example, the YOLOv4-CSP
and YOLOv4-tiny architectures are both categorised under
Scaled-YOLOv4. The YOLOv4-CSP was designed with an
emphasis on balancing between the execution speed and
accuracy rather than the general YOLOv4 which is more
focused on fast operating speed and optimization for parallel
computation. On the other hand, YOLOv4-tiny was designed
for implementation in low-spec devices as the amount of
computational complexity and model size have reduced [30].
Thus, the performance of FFB detection using these three
types of models which are YOLOv4, YOLOv4-CSP, and
YOLOvV4-tiny will be examined. The result is analysed after
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TABLE 3. Analysis of the YOLOv4 model by every 1000 iteration.

Iteration 1000 2000 3000
Precision 86 % 100 % 100 %
Recall 80 % 97 % 100 %
Fl-score 83 % 98 % 100 %
Average IoU 64.24 % 77.93 % 79.75 %
mAP 87.88 % 99.89 % 100 %

2000 iterations of training by using 608 x 608 and 512 x
512 resizing input network images in every model.

Ill. RESULT AND DISCUSSION

A. TRAINING PERFORMANCE OF YOLOV4 MODEL

After the YOLOv4 model is trained, the performance of
the model is analysed every 1000 iterations. Table 3 shows
the performance analysis of the YOLOv4 model, where
it is observed that the detection performance is directly
proportional to the number of training iterations. The pre-
cision reaches 86 % when 1000 iterations are performed
and this increases to 100 % when the number of itera-
tions is 2000 and above. The result of the average IoU
on detecting the ripe FFBs, which represents the coverage
of the bounding box on the target object, also increases
in percentage every 1000 iterations. However, the excel-
lent performance of using the model with 3000 iterations is
actually due to overfitting. This model detects exactly the
particular data it was trained with and it may fail to predict
future observations reliably. Therefore, the trained algorithm
with 2000 iterations for the YOLOv4 model is suitable for
this proposed detection system under 490 images of the
dataset.

B. COMPARISON WITH DIFFERENT YOLOV4 MODELS

Fig. 2 shows the learning curve for the YOLOv4 models. The
blue and red lines represent the average loss and mean aver-
age precision to conduct the improvement trend when training
iteration increases. The comparison of the average loss is sim-
ilar between the same models. Also, 512 x 512 input network
sizes in the YOLOv4 and YOLOv4-CSP have maintained
consistent high mAPs compare with 608 x 608 input network
sizes. It shows that 512 x 512 input network size produces
sufficient accuracy at the early stages of training in YOLOv4
and YOLOv4-CSP. Besides, YOLOv4-CSP experienced slow
declines in average loss compared to other YOLOv4 models.
It may be due to the model scaling method corresponding
changes in the scaling size, depth, and width during train-
ing which increases the computation complexity. On the
other hand, the average loss of YOLOv4-tiny decreases mas-
sively at the beginning of the iteration. This is because a
higher learning rate was applied compared to other YOLOv4
models.

During the training process, the YOLO-tiny models spend
the least time completing the training among other models.
YOLOv4 and YOLOv4-CSP need approximately 6 to 7 hours
to train the dataset for 2000 iterations. The YOLOv4-tiny
models take less than 2 hours to end the entire process
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Average precision at different IoU thresholds
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FIGURE 3. The average precision of YOLOv4 models at 25 %, 50 %, and
75 % loU thresholds on validation set.

which is three times faster than YOLOv4 and YOLOv4-CSP.
This is due to the low number of convolutional layers in
the model architecture of YOLOv4-tiny, allowing it to be
trained with low computational cost. Table 4 shows the size of
the weight files in different models. The YOLO-tiny weight
file is remarkably small at 23.5 MB. It verifies that weight
size is correlated with computational speed. As the original
YOLOvV4 models have the largest weight files and also the
longest training time.

From the data, it can be classified into four types: true
positive (TP), false positive (FP), true negative (TN), and false
negative (FN), based on the combinations of the true class
and predicted class of the learner. The precision, recall, and
Fl-score are used to examine the reliability of the models.
Precision is the number of positive class predictions that are
genuinely positive class predictions. Recall is the number
of correct positive class predictions made out of all correct
positive cases in the dataset. The F1-score provides a single
score that addresses both precision and recall concerns in a
single number. The equation of precision (P), recall (R), and
the F1-score are stated below:

TP
P=—_ 2)
TP + FP
TP
= 3)
TP + FN
2xPxR
F=""""C e
P+ R

The confusion matrix of the detection performance for
several YOLOv4 models is shown in Table 5. The original
YOLOv4 models have the greatest performance regarding
different perspectives. The precision, recall, and F1-score
have a high percentage of 97 %. The average IoU and mAP
achieved above 75 % and 96 % in both 512 x 512 and 608 x
608 input network sizes. When analysing the YOLOv4-CSP
model, the mAP has similar accuracy to the original YOLOv4
models. However, even though YOLOv4-CSP models have
higher mAP than YOLOV4, it is less predictive and sensitive
as the result shows the precision, recall, F1-score, and average
IoU are slightly lower than YOLOv4. Next, the precision,
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(8)

FIGURE 4. Evaluation of detection system on FFB indifferent environments: (a) Bright sunlight, (b) Shady lighting, (c) Close up view, (d) Far distance
view, (e) Obstructed by frond, (f) Motion blur and (g) Unripe FFB.

recall, and Fl-score are much lower in the YOLOv4-tiny YOLOv4-tiny-512 and YOLOv4-tiny-608 models and they
models which were expected since these models were opti- scored 48.89 % and 55.60 % respectively, which are lower
mized for speed and not accuracy. It affects the mAP of the than other models.
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TABLE 4. Size of weight files in different models.

Model name Weight size (MB)
YOLOv4-512 256.0
YOLOv4-608 256.0

YOLOv4-CSP-512 210.2
YOLOv4-CSP-608 210.2
YOLOvV4-tiny-512 23.5
YOLOV4-tiny-608 23.5

TABLE 5. Analysis of different YOLOv4 models.

Model Precision Recall Fl-score  Average mAP
name IoU
YOLOv4 97 % 97 % 97 % 75.85%  96.00 %
-512
YOLOv4 97 % 97 % 97 % 7713 %  96.22%
-608
YOLOv4 90 % 87 % 88 % 67.48%  95.89 %
-CSP-512
YOLOv4 84 % 90 % 87 % 63.24%  96.43 %
-CSP-608
YOLOv4 57 % 57 % 57 % 38.74%  55.60 %
-tiny-512
YOLOv4 48 % 77 % 59 % 33.76 %  48.89 %
-tiny-608

TABLE 6. Evaluation of the YOLOv4 model in on-site testing dataset.

Evaluation Percentage
Precision 95 %
Recall 82 %
Fl-score 88 %
Average IoU 70.19 %
mAP 87.9 %

The effects of different IoU thresholds on the performance
of average precision in YOLOv4 models are analysed and
shown in FIGURE 3. Through the observation, YOLOv4 and
YOLOV4-CSP have outstanding results on 0.25 and 0.5 IoU
thresholds. However, YOLOv4-CSP models do not achieve
a better result than YOLOv4 when the IoU threshold is
increased to 0.75. This may be because the YOLOv4 models
include the Panet path-aggregation neck and SPP block over
the CSPDarknet53 which increases the receptive field to sep-
arate the most symbolic context features. For the YOLOv4-
tiny, it is unable to compete with the other models in terms
of average precision. Generally, the 608 x 608 input network
size has better overall performance compared to the 512 x
512 input network size. This shows that the resizing of the
input network images has diminished important features that
were present at the beginning of the training.

C. REAL-TIME ON-SITE TESTING OF YOLOV4 MODEL

The detection system was tested in the oil palm estate at Carey
Island but in a different area from where training data was
collected. The equipment used in the data acquisition was
also used in this testing stage. The goal of the testing was to
evaluate the performance of the ripe FFB detection system.
The model selected for this purpose was the YOLOv4 due
to our findings during training that it has the highest average
precision compared to YOLOv4-tiny and YOLOv4-CSP. The
weight file applied in the model is the 2000 iteration version.
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Testing was conducted at 9.00 am when the weather was
sunny, and the temperature is around 32 °C. In the field,
a total of 20 trees were selected for the testing where 10 trees
have unripe FFBs only and 10 trees have at least 1 ripe FFB.
The targeted trees are similar in age and height to the trees
that were used to train the model. Fig. 4 shows the output
of the detection system on ripe FFB during on-site testing.
In addition, the model operated at the real-time speed of an
average of 21 frames per second. Table 6 shows the evaluation
of the YOLOv4 model from the on-site testing. During the
testing phase, the YOLOv4 model recognises the ripe FFB
most of the time, with the mAP reaching 87.9 %. Moreover,
the average IoU achieved was 70.19 %. This study confirms
that this autonomous detection system can detect the ripe FFB
in real-time.

IV. CONCLUSION

The work presented in this paper is the first example of a
real-time ripe oil palm FFB detection system that is based
on the YOLOv4 model. Although no changes were made
to the architecture of the model, it is shown that with the
selected methodology and hyperparameters for training, the
detection output is very encouraging. Based on the analysis,
the trained YOLOv4 model obtained a mAP of 87.9 % in
detecting the ripe FFB. The results of the recall and F1-score
were 82 % and 88 % respectively as the detection fulfilled the
IoU with more than 0.5 after 2000 iterations. During testing
in the oil palm estate, the system operated at the real-time
speed of roughly 21 FPS and achieved a mAP of 87.9 %.
The performance can potentially be improved further with
improvements in the training data, model architecture, and
hyperparameter optimization. For future work, the system
will be expanded to assist in the harvesting process by iden-
tifying the palm fronds surrounding the FFB and the FFB
stalk that needs to be cut. This information is then relayed
to a robotic arm through ROS that will proceed to harvest the
FFB autonomously using a fitted cutting mechanism.
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