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ABSTRACT Fresh Fruit Bunch (FFB) is the main ingredient in palm oil production. Harvesting FFB from
oil palm trees at its peak ripeness stage is crucial to maximise the oil extraction rate (OER) and quality.
In current harvesting practices, misclassification of FFB ripeness can occur due to human error, resulting
in OER loss. Therefore, a vision-based ripe FFB detection system is proposed as the first step in a robotic
FFB harvesting system. In this work, live camera input is fed into a Convolutional Neural Network (CNN)
model known as YOLOv4 to detect the presence of ripe FFBs on the oil palm trees in real-time. Once a ripe
FFB is detected on the tree, a signal is transmitted via ROS to the robotic harvesting mechanism. To train the
YOLOv4 model, a large number of ripe FFB images were collected using an Intel Realsense Camera D435
with a resolution of 1920× 1080. During data acquisition, a subject matter expert assisted in classifying the
FFBs in terms of ripe or unripe. During the testing phase, the result of the mean Average Precision (mAP) and
recall are 87.9 % and 82 % as the detection fulfilled the Intersect over Union (IoU) with more than 0.5 after
2000 iterations and the system operated at the real-time speed of roughly 21 Frame Per Second (FPS).

13 INDEX TERMS Object detection, oil palm, fresh fruit bunch, fruit maturity, YOLO.

I. INTRODUCTION14

Malaysia is one of the biggest palm oil-producing countries15

in the world. The palm oil industry is a significant contributor16

to the country’s Gross Domestic Product (GDP). Palm oil17

companies have more than a million hectares of plantation18

land to produce Fresh Fruit Bunches (FFBs) which will19

be harvested when it is ripe to extract their valuable oil.20

Therefore, several rules and guidelines were developed to21

achieve the maximum oil extraction rate (OER) according22

to the guideline of the Malaysian Palm Oil Board (MPOB).23

In the oil palm estate, the FFBs can only be harvested once24

the trees reach maturity at three years old. The field workers25

will harvest the FFBs on the 10th-14th days of the harvesting26

interval. The harvesters will search for oil palm trees with27

a certain number of detached fruitlets that have dropped to28

the ground. According to the current guideline, this indicates29

that there are FFBs on the trees that have ripened and should30
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approving it for publication was Utku Kose .

be harvested. The ripe FFBs are usually identified by their 31

colour which is a bright red and yellow, in contrast to the 32

brown and black of unripe FFBs. The harvested FFBs will 33

then be collected and transported to the palm oil mill for oil 34

extraction [1]. The general rule is that the FFBs are to be 35

delivered to themill within 24 hours after harvesting to ensure 36

the quality of the fruit is at the highest level. However, this 37

implementation is not guaranteed due to factors such as rain 38

during the harvesting process and other unforeseen logistical 39

issues. 40

The problem of labour shortage has had a tremendous 41

impact on the economic growth of the oil palm industry which 42

is traditionally very labour intensive [2]. Oil palm estates 43

have reported labour shortages of approximately 20-30 %, 44

which affected the potential yield to decrease by around 15 45

% due to post-harvest losses [3]. Therefore, the plantation 46

industry should resolve this problem by implementing the 47

latest technology in the FFB harvesting process. 48

Since the last decade, numerous methods of identifying 49

the maturity of FFBs have been proposed by researchers to 50
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help ensure that the FFBs harvested have reached the proper51

maturity stage. Generally, there are two types of techniques to52

analyse the ripeness of FFBs which are destructive methods53

and non-destructive methods. Destructive testing methods54

require physical contact in such away that affects the integrity55

of the FFB and severely reduces the amount of oil that can56

be extracted from the tested FFB such as fruit battery [4].57

This technique uses a copper and zinc electrode to prick the58

oil palm fruitlet for measurement. These metal electrodes59

prick through the surface of the oil palm fruitlet and an60

ionization occurred. The electrolyte reaction indicates the61

element contents in the fruitlet and that varies according to62

the different maturity stages. The characteristic of moisture63

and lipid content become an indicator to justify the maturity64

stages.65

Non-destructive techniques can involve non-contact fea-66

tures that are either visual or non-visual. Visually, the most67

popular technique was to use colour-based image analy-68

sis [5], [7], [8]. Others have also explored using near-infrared69

(NIR) spectroscopy [9], [10], multispectral analysis [11],70

[12], LIDAR [13], [14], fluorescence sensing[15], and laser71

light backscattering [16]. In terms of non-visual features,72

previous work has been done on using microwave sensors73

[17], inductive sensors [18], and the fruit battery method [19].74

Although several methods are proposed to identify the75

maturity of FFB, most of these are still in the experimental76

stage and more studies are needed to determine their effec-77

tiveness for FFB ripeness detection. Most methods have only78

been tested in a laboratory environment. Among these are79

the fluorescence technique[15], near-infrared spectroscopy80

[10], laser backscattering imaging [16], and fruit battery81

method [20]. Those methods could potentially be suited for82

detection applications in the mill after harvesting as a mech-83

anism for quality control. From the literature, it is found that84

the methods featuring colour images [21], LiDAR [22], and85

inductive sensors [23] are being developed for the application86

phase currently.87

In the past, conventional methods were applied to clas-88

sify the ripeness of FFBs, but the computational complex-89

ity of these methods did not allow for real-time operation.90

This has changed in the last decade due to three factors.91

Firstly, advancements in deep learning algorithms have given92

rise to a large variety of Convolutional Neural Networks93

(CNN) models that are more powerful than ever. Secondly,94

the existence of an established artificial intelligence (AI)95

development environment that provides software tools and96

guidance to use deep learning techniques to solve a multitude97

of problems ranging from facial recognition to cancer cell98

detection. Thirdly, the production of high-powered Graphical99

Processing Units (GPUs) and GPU-enabled Single Board100

Computers (SBC) that have become widely available make101

deep learning accessible to more researchers and encourage102

its development and implementation into real-world systems.103

In this paper, we proposed using a deep learning model104

to called YOLO (an acronym for ‘You Only Look Once’)105

to detect the ripe FFBs [24]. The advantages of the YOLO106

model are that it is able to perform detection with high accu- 107

racy and in real-time due to its speedy processing technique. 108

In the past, the YOLO series model had been implemented 109

to detect agricultural fruits such as apples [25], tomatoes 110

[26], and pears [27]. In the oil palm sector, Junos et al. [28] 111

developed an automatic detection system that included the 112

YOLO model to detect FFBs. The authors compared the 113

performance between YOLOv3 series models and the result 114

show the model is feasible for object detection in the oil palm 115

sector. 116

In this project, the objective is to develop a system to auto- 117

matically detect ripe, unharvested FFBs in real-time using 118

a combination of computer vision and artificial intelligence 119

(AI). Real-time operation is considered an important feature 120

of this system because it is meant for on-field application 121

as part of a robotic harvesting mechanism. Firstly, an RGB 122

camera (Intel Realsense D435) captures the view of the oil 123

palm tree and transmits the data to a Single Board Computer 124

(Nvidia Jetson NX) that is loaded with an inference model 125

based on YOLOv4. The trained algorithm would identify the 126

target object, record its coordinates, and send its positional 127

information to the robotic harvesting mechanism within the 128

Robot Operating System (ROS). Based on the coordinate 129

received from the detection module, the positional informa- 130

tion of the FFB was obtained by using a kinematic equa- 131

tion. Since it has been released for some time, YOLOv4 132

has become highly compatible with ROS which is a core 133

component of the robotic harvesting system that is being 134

developed separately. This was the main factor in the selec- 135

tion of YOLOv4 for this work. Also, although it was not the 136

latest iteration of the YOLO model, it is still able to perform 137

object detection with high accuracy and speed. 138

II. MATERIALS AND METHOD 139

In order to develop an AI-based vision system to detect ripe 140

FFBs on the oil palm trees, the algorithm must be trained to 141

do so using visual data or samples of ripe FFBs on the trees. 142

In this section, the work done for data acquisition, preparation 143

and training will be explained in detail. 144

A. DATA ACQUISITION 145

The oil palm trees selected for data capture range from 8 to 146

13 years old because this is when the trees produce the 147

most FFBs. The sample data was recorded from November 148

to December 2021 at an oil palm plantation in the state of 149

Selangor, Malaysia. During data acquisition, a subject matter 150

expert assisted in identifying ripe and unripe FFBs on the 151

trees. Fig. 1 shows the hardware setup used for this work. 152

An Intel Realsense D435 Camera was used to capture the 153

FFB visual data. The camera was mounted onto an adjustable 154

platform to enable it to capture images at the same height or 155

level as the FFBs on the trees. The captured images have a 156

resolution of 1920× 1080 pixels which are stored in a laptop 157

computer connected via a USB-C cable. The laptop computer 158

used for capturing and storing data is mounted with an Intel 159
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FIGURE 1. (a) Hardware setup and (b) mounted camera used for training
data collection and testing detection performance.

Core i7-8750H processor and GeForce DTX 1070 graphic160

card.161

In the beginning, the camera is lifted at the same elevation162

and the distance is 3 meters away from the targeted FFB.163

Next, the camera is moved toward the FFB and positioned164

at different angles to ensure the video captures many varied165

views of the FFB on oil palm trees. Then, image data was166

extracted from a total of 49 oil palm trees at different time167

intervals over the course of 3 days to allow for variation in168

the environment and lighting in the training data. From the169

49 oil palm trees sampled, 24 oil palm trees had at least one170

ripe FFB on them whereas 25 oil palm trees did not have any171

ripe FFBs.172

B. DATA PREPARATION AND TRAINING173

In the workflow for preparing the training data, the videos174

captured of the oil palm trees are first extracted into images.175

These images can be categorized into positive images and176

negative images. Positive images are images of trees that177

contain the desired object for detection, which is the ripe178

FFB. In contrast, negative images are images of trees without179

any ripe FFBs. There are a total of 240 positive images and180

250 negative images. After that, 10 images were systemati-181

cally chosen for each tree among a large number of images182

after extraction. The reason only 10 images were taken is183

that we wanted to avoid redundancy in the training images.184

These 10 images chosen show the subject in a variety of185

angles, backgrounds, positions, and lighting. This variation186

is very important in the training process of the deep learning187

algorithm as it requires this information for it to be able to188

learn and detect patterns in the images.189

Next, the positive images undergo a manual labelling pro-190

cess using the labelImg software. The positive and negative191

images are further separated into two datasets which are192

the training set and validation set. The positive images are193

divided into 210 and 30 images for the training set and194

validation set. Meanwhile, the negative images are divided195

into 220 and 30 images for the training set and validation set.196

The images extracted from each tree are unique, which means197

that the images from the same tree would not be included198

TABLE 1. Separation of images for training the YOLOv4 model.

TABLE 2. The values of the parameter in the YOLOv4 model.

in both the training set and validation set. Table 1 shows the 199

separation of the images for YOLOv4 training. 200

In this study, the parameters applied in the YOLOv4model 201

are the default values provided by Bochkovskiy et al.[29]. 202

Table 2 shows the values of the parameters used in the train- 203

ing. The data augmentation includes the parameters exposure 204

and saturation with a factor of 1.5 to randomly change of 205

intensity and brightness of colour present in the image while 206

during training and the parameter hue is set as 0.1. In addition, 207

another method of data augmentation, Mosaic, was included 208

during training, which contributes to the overall improvement 209

in the YOLOv4 model. The Mosaic method mixes 4 training 210

images to generate a new image that is contextually different 211

in context from the original. However, the size of the anchor 212

box, S is required to calculate according to the number of 213

object detection. The formula to calculate the size of the 214

anchor box is shown as: 215

S = (N + C)× A (1) 216

where N represents the number of object detection, C rep- 217

resents the prediction of coordinates, and A represents the 218

number of anchor boxes per grid. 219

In this study, a few variations of the YOLOv4 model 220

are evaluated to compare their performance in the task of 221

FFB detection. The additional model applied in this study is 222

Scaled-YOLOv4 which was specially designed to suit vari- 223

ous GPUs during operation. For example, the YOLOv4-CSP 224

and YOLOv4-tiny architectures are both categorised under 225

Scaled-YOLOv4. The YOLOv4-CSP was designed with an 226

emphasis on balancing between the execution speed and 227

accuracy rather than the general YOLOv4 which is more 228

focused on fast operating speed and optimization for parallel 229

computation. On the other hand, YOLOv4-tiny was designed 230

for implementation in low-spec devices as the amount of 231

computational complexity and model size have reduced [30]. 232

Thus, the performance of FFB detection using these three 233

types of models which are YOLOv4, YOLOv4-CSP, and 234

YOLOv4-tiny will be examined. The result is analysed after 235
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FIGURE 2. (a) YOLOv4-512, (b)YOLOv4-608, (c) YOLOv4-CSP-512, (d)YOLOv4-CSP-608, (e) YOLOv4-tiny-512, (f) YOLOv4-tiny-608.
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TABLE 3. Analysis of the YOLOv4 model by every 1000 iteration.

2000 iterations of training by using 608 × 608 and 512 ×236

512 resizing input network images in every model.237

III. RESULT AND DISCUSSION238

A. TRAINING PERFORMANCE OF YOLOV4 MODEL239

After the YOLOv4 model is trained, the performance of240

the model is analysed every 1000 iterations. Table 3 shows241

the performance analysis of the YOLOv4 model, where242

it is observed that the detection performance is directly243

proportional to the number of training iterations. The pre-244

cision reaches 86 % when 1000 iterations are performed245

and this increases to 100 % when the number of itera-246

tions is 2000 and above. The result of the average IoU247

on detecting the ripe FFBs, which represents the coverage248

of the bounding box on the target object, also increases249

in percentage every 1000 iterations. However, the excel-250

lent performance of using the model with 3000 iterations is251

actually due to overfitting. This model detects exactly the252

particular data it was trained with and it may fail to predict253

future observations reliably. Therefore, the trained algorithm254

with 2000 iterations for the YOLOv4 model is suitable for255

this proposed detection system under 490 images of the256

dataset.257

B. COMPARISON WITH DIFFERENT YOLOV4 MODELS258

Fig. 2 shows the learning curve for the YOLOv4 models. The259

blue and red lines represent the average loss and mean aver-260

age precision to conduct the improvement trendwhen training261

iteration increases. The comparison of the average loss is sim-262

ilar between the same models. Also, 512×512 input network263

sizes in the YOLOv4 and YOLOv4-CSP have maintained264

consistent high mAPs compare with 608×608 input network265

sizes. It shows that 512 × 512 input network size produces266

sufficient accuracy at the early stages of training in YOLOv4267

andYOLOv4-CSP. Besides, YOLOv4-CSP experienced slow268

declines in average loss compared to other YOLOv4 models.269

It may be due to the model scaling method corresponding270

changes in the scaling size, depth, and width during train-271

ing which increases the computation complexity. On the272

other hand, the average loss of YOLOv4-tiny decreases mas-273

sively at the beginning of the iteration. This is because a274

higher learning rate was applied compared to other YOLOv4275

models.276

During the training process, the YOLO-tiny models spend277

the least time completing the training among other models.278

YOLOv4 and YOLOv4-CSP need approximately 6 to 7 hours279

to train the dataset for 2000 iterations. The YOLOv4-tiny280

models take less than 2 hours to end the entire process281

FIGURE 3. The average precision of YOLOv4 models at 25 %, 50 %, and
75 % IoU thresholds on validation set.

which is three times faster than YOLOv4 and YOLOv4-CSP. 282

This is due to the low number of convolutional layers in 283

the model architecture of YOLOv4-tiny, allowing it to be 284

trained with low computational cost. Table 4 shows the size of 285

the weight files in different models. The YOLO-tiny weight 286

file is remarkably small at 23.5 MB. It verifies that weight 287

size is correlated with computational speed. As the original 288

YOLOv4 models have the largest weight files and also the 289

longest training time. 290

From the data, it can be classified into four types: true 291

positive (TP), false positive (FP), true negative (TN), and false 292

negative (FN), based on the combinations of the true class 293

and predicted class of the learner. The precision, recall, and 294

F1-score are used to examine the reliability of the models. 295

Precision is the number of positive class predictions that are 296

genuinely positive class predictions. Recall is the number 297

of correct positive class predictions made out of all correct 298

positive cases in the dataset. The F1-score provides a single 299

score that addresses both precision and recall concerns in a 300

single number. The equation of precision (P), recall (R), and 301

the F1-score are stated below: 302

P =
TP

TP+ FP
(2) 303

R =
TP

TP+ FN
(3) 304

F1 =
2× P× R
P+ R

(4) 305

The confusion matrix of the detection performance for 306

several YOLOv4 models is shown in Table 5. The original 307

YOLOv4 models have the greatest performance regarding 308

different perspectives. The precision, recall, and F1-score 309

have a high percentage of 97 %. The average IoU and mAP 310

achieved above 75 % and 96 % in both 512× 512 and 608× 311

608 input network sizes. When analysing the YOLOv4-CSP 312

model, the mAP has similar accuracy to the original YOLOv4 313

models. However, even though YOLOv4-CSP models have 314

higher mAP than YOLOv4, it is less predictive and sensitive 315

as the result shows the precision, recall, F1-score, and average 316

IoU are slightly lower than YOLOv4. Next, the precision, 317
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FIGURE 4. Evaluation of detection system on FFB indifferent environments: (a) Bright sunlight, (b) Shady lighting, (c) Close up view, (d) Far distance
view, (e) Obstructed by frond, (f) Motion blur and (g) Unripe FFB.

recall, and F1-score are much lower in the YOLOv4-tiny318

models which were expected since these models were opti-319

mized for speed and not accuracy. It affects the mAP of the320

YOLOv4-tiny-512 and YOLOv4-tiny-608 models and they 321

scored 48.89 % and 55.60 % respectively, which are lower 322

than other models. 323
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TABLE 4. Size of weight files in different models.

TABLE 5. Analysis of different YOLOv4 models.

TABLE 6. Evaluation of the YOLOv4 model in on-site testing dataset.

The effects of different IoU thresholds on the performance324

of average precision in YOLOv4 models are analysed and325

shown in FIGURE 3. Through the observation, YOLOv4 and326

YOLOv4-CSP have outstanding results on 0.25 and 0.5 IoU327

thresholds. However, YOLOv4-CSP models do not achieve328

a better result than YOLOv4 when the IoU threshold is329

increased to 0.75. This may be because the YOLOv4 models330

include the Panet path-aggregation neck and SPP block over331

the CSPDarknet53 which increases the receptive field to sep-332

arate the most symbolic context features. For the YOLOv4-333

tiny, it is unable to compete with the other models in terms334

of average precision. Generally, the 608× 608 input network335

size has better overall performance compared to the 512 ×336

512 input network size. This shows that the resizing of the337

input network images has diminished important features that338

were present at the beginning of the training.339

C. REAL-TIME ON-SITE TESTING OF YOLOV4 MODEL340

The detection systemwas tested in the oil palm estate at Carey341

Island but in a different area from where training data was342

collected. The equipment used in the data acquisition was343

also used in this testing stage. The goal of the testing was to344

evaluate the performance of the ripe FFB detection system.345

The model selected for this purpose was the YOLOv4 due346

to our findings during training that it has the highest average347

precision compared to YOLOv4-tiny and YOLOv4-CSP. The348

weight file applied in the model is the 2000 iteration version.349

Testing was conducted at 9.00 am when the weather was 350

sunny, and the temperature is around 32 ◦C. In the field, 351

a total of 20 trees were selected for the testing where 10 trees 352

have unripe FFBs only and 10 trees have at least 1 ripe FFB. 353

The targeted trees are similar in age and height to the trees 354

that were used to train the model. Fig. 4 shows the output 355

of the detection system on ripe FFB during on-site testing. 356

In addition, the model operated at the real-time speed of an 357

average of 21 frames per second. Table 6 shows the evaluation 358

of the YOLOv4 model from the on-site testing. During the 359

testing phase, the YOLOv4 model recognises the ripe FFB 360

most of the time, with the mAP reaching 87.9 %. Moreover, 361

the average IoU achieved was 70.19 %. This study confirms 362

that this autonomous detection system can detect the ripe FFB 363

in real-time. 364

IV. CONCLUSION 365

The work presented in this paper is the first example of a 366

real-time ripe oil palm FFB detection system that is based 367

on the YOLOv4 model. Although no changes were made 368

to the architecture of the model, it is shown that with the 369

selected methodology and hyperparameters for training, the 370

detection output is very encouraging. Based on the analysis, 371

the trained YOLOv4 model obtained a mAP of 87.9 % in 372

detecting the ripe FFB. The results of the recall and F1-score 373

were 82 % and 88 % respectively as the detection fulfilled the 374

IoU with more than 0.5 after 2000 iterations. During testing 375

in the oil palm estate, the system operated at the real-time 376

speed of roughly 21 FPS and achieved a mAP of 87.9 %. 377

The performance can potentially be improved further with 378

improvements in the training data, model architecture, and 379

hyperparameter optimization. For future work, the system 380

will be expanded to assist in the harvesting process by iden- 381

tifying the palm fronds surrounding the FFB and the FFB 382

stalk that needs to be cut. This information is then relayed 383

to a robotic arm through ROS that will proceed to harvest the 384

FFB autonomously using a fitted cutting mechanism. 385
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