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ABSTRACT Drones are unmanned aerial vehicles (UAV) utilized for a broad range of functions, including
delivery, aerial surveillance, traffic monitoring, architecture monitoring, and even War-field. Drones confront
significant obstacles while navigating independently in complex and highly dynamic environments. More-
over, the targeted objects within a dynamic environment have irregular morphology, occlusion, and minor
contrast variation with the background. In this regard, a novel deep Convolutional Neural Network(CNN)
based data-driven strategy is proposed for drone navigation in the complex and dynamic environment. The
proposed Drone Split-Transform-and-Merge Region-and-Edge (Drone-STM-RENet) CNN is comprised of
convolutional blocks where each block methodically implements region and edge operations to preserve a
diverse set of targeted properties at multi-levels, especially in the congested environment. In each block, the
systematic implementation of the average and max-pooling operations can deal with the region homogeneity
and edge properties. Additionally, these convolutional blocks are merged at a multi-level to learn texture
variation that efficiently discriminates the target from the background and helps obstacle avoidance. Finally,
the Drone-STM-RENet generates steering angle and collision probability for each input image to control
the drone moving while avoiding hindrances and allowing the UAV to spot risky situations and respond
quickly, respectively. The proposed Drone-STM-RENet has been validated on two urban cars and bicycles
datasets: udacity and collision-sequence, and achieved considerable performance in terms of explained
variance (0.99), recall (95.47%), accuracy (96.26%), and F-score (91.95%). The promising performance
of Drone-STM-RENet on urban road datasets suggests that the proposed model is generalizable and can be
deployed for real-time autonomous drones navigation and real-world flights.

INDEX TERMS Residual network, drone, convolutional neural network, perception and autonomy, drone
split transform merge.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and U.n'manne(.l A'er.lal V'ehldes (UAVs) are one 9f the most sig-
approving it for publication was Chuan Li. nificant disciplines in recent technology, with autonomous
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drones being a key study focus. Self-flying, also called
self-piloting, refers to a drone’s capacity to conduct aerial
movements without the assistance of a person. In this case,
autonomy is defined as the drone’s decision to run the afore-
mentioned self-flying activities without the need for human
intervention. UAVs operated manually face many functional
and operational challenges. As a result, it is planned to build
drones that a front and rear camera will control, from which
the drone would get real-time visual information and act inde-
pendently. A significant open challenge in robotics is the safe
and dependable outside navigation of autonomous systems,
such as unmanned aerial vehicles (UAVs). The autonomous
agent must not only operate while avoiding accidents, but also
interact with other agents in the environment, such as people
or automobiles, in a safe manner.

Significant advancements have been achieved in the field
of UAVs in the last decade, owing to the fast develop-
ment of low-cost off-the-shelf drones. But it is challenging
for autonomous systems [1], i.e. unmanned aerial vehicles
(UAVs), to navigate safely and reliably. The ability to travel
while avoiding obstacles is critical for applications such
as traffic monitoring, surveillance, and construction pur-
poses [2], [3] in urban areas. Due to the complexity of the
environment, it becomes quite a challenging task [4]. The
autonomous agent should interact with other agents and nav-
igate while avoiding obstacles in these scenarios.

Two steps process are used to solve such problems using
traditional approaches that includes (i) In a given map, auto-
mated localization is performed (using visual, GPS or/and
any other range sensor) (ii) controlling the drones manually
to avoid hindrances while accomplishing its goal [2], [5], [6].

Recently, new machine learning [7], [8] and deep learning
techniques [9], [10]have been producing excellent results in
various domains [11], [12], [13], [14], [15], [16]. It gives
significant results in cyber security [17], [18], [19], [20] as
well. Reinforcement learning (RL)-based techniques, in par-
ticular, suffer from a significant rise in sample complexity,
making them unsuitable for usage by UAVs in safety-critical
settings. Successful flying policies, on the other hand, may
be learned using supervised-learning approaches [10], [11],
[21], [22] Howeyver, it has not worked out how to collect
enough expert trajectories from replicating yet. In addition,
as mentioned by [21] drones must learn how to react in
dangerous circumstances just like human pilots.

Due to its usage and suitability on commercially feasi-
ble drones that are often implemented with a front-looking
camera and lack additional sensors that are power-hungry
or obese. At the same time, advances in machine learning
have improved visual navigation capabilities. Deep Neural
Networks (DNNs) have enabled the creation of tail-to-tail
learning methods [23]. Contrary to previous method, which
has limited generalisation capabilities, DNNs offer visual
navigation in real-world contexts where visual appearances
are inevitably diverse [24].

In this work, we propose a drone navigation method using
Region and Edge Exploitation-Based Deep CNN. Our main
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focus is to provide a CNN model through which drone navi-
gation can be done using 1 single mounted camera.

A UAV effectively flying in the streets must follow the road
and react to dangerous circumstances in the same manner that
any other manned ground vehicle would. As a result, we intro-
duce employing the information acquired from ground auto-
mobiles incorporated in the above-mentioned settings. The
Drone-STM-RENet architecture is compatible with the input
feature map dimensions and output multi-class challenge by
changing the initial and final layers (2 classes). Comprehen-
sively, contributions made by this work are as follows:

1) We propose a novel Drone Split Transform Merge
Region and Edged based convolutional neural network
(Drone-STM-RENet) that can undertake a safe UAV
flying in urban areas by predicting the probability of
collision and steering angle.

2) For training, an outside dataset collected from vehicles
and bicycles was used. To allow a UAV to detect poten-
tially harmful scenarios, an outside collision sequences
dataset is used.

3) In every block of the proposed Drone-STM-RENet,
STM-based CNN blocks concept is developed, which
leverages the concept of Region and Edge-based (RE)
feature extraction systematically. Effective usage of
RE-based operations at every branch of the Drone-
STM-RENet block captures a wide range of character-
istics on numerous levels, most notably those including
obstacles.

Despite our system’s impressive outcomes, we do not want
to change the standard “map-localize-plan” drone naviga-
tion approaches; instead, we want to explore if a likewise
task can be performed with a single shallow neural network.
Traditional and learning-based techniques, we believe, will
eventually complement one another.

II. LITERATURE REVIEW

In this section, a detailed review of the available literature
is given, which is not only the inspiration for this research
but provides insights on how Convolution Neural Network
emerged as one of the most researched areas in artificial
intelligence.

The obstacle identification and avoidance tasks [25] are
closely linked with those of autonomous navigation. Object
detection methods are based on either machine learning algo-
rithms or computer vision techniques to identify obstacles.

The GPS range and optical sensors of an unmanned aerial
vehicle (UAV) that operates outside are usually used to assess
the device status, detect the presence of obstacles, and deter-
mine the flight route [2], [S]. However, these kinds of work
are still likely to suffer in urban areas because of the building,
huge rushes, and dynamic states. This results in critical unob-
served errors in the estimation of system state. In such cases,
SLAM is a typical approach in which the robot develops
a map of the environment while also self-locating within
it [26]. Although it may be beneficial for global navigation
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FIGURE 1. Dataset distribution for Drone-STM-RENet.

and localization, it is uncertain how to extract control com-
mands for a secure and stable flight from an expressive 3D
reconstruction of the surroundings.

A self-supervised deep CNN-based indoor navigation sys-
tem was created by Alexandros Kouris [27]. Using a regres-
sion CNN to evaluate the agent’s distance to collision based
on raw visual input data from the inbuilt monocular camera
addresses the issue of real-time obstacle avoidance. Using an
external sensor placed on a drone, they trained the model
on their indoor-flight dataset, which they generated with
real-distance labels using an external sensor. CNN extracts
Spatio-temporal features that capture both static presence
and motion information by simultaneously processing the
consecutive input frames, including the current and previous
frames, to estimate the robot’s distance from the closest
hindrance in several directions, including the current and
previous. Using these predictions, the linear velocity and
yaw of the unmanned aerial vehicle (UAV) are adjusted to
ensure safe navigation. When applied to real-world indoor
flights, it produced state-of-the-art results, leaving behind
previously reported techniques from the literature. They uti-
lized a two-stream CNN architecture for Spatio-temporal
feature extraction to estimate the distance between robots and
the environment in various directions.

Using machine learning tools for object identification and
classification, the authors of [28] conducted a thorough eval-
uation of the literature that addressed the idea of drone detec-
tion. In essence, the use of machine learning makes it easier
to identify drones using a binary classification model such as
“drone” or “‘no drone.” However, some study in the literature
uses a multiclass classification to identify different types of
drones in addition to the conventional categorization. The
article’s first section outlines many goals including drone
detection, verification, classification, and characterisation as
well as a multi-drone detection method based on radar sig-
nals. The important study on drone detection is recognised as
using high-end 3-D holographic radar coupled with machine
learning of time-domain properties.

The D-CNN based-model developed by Karim Amer [29]
as it performs well in different computer vision [30] tasks
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such as detection [31], [32], localization [33] and segmen-
tation [29], [34]. A CNN in conjunction with a regressor
is utilized to generate the drone steering instructions. The
information was enhanced to create a ’navigation enve-
lope.” In applications such as surveillance, package delivery,
or humanitarian assistance distribution, the technique may
be used to automate drone navigation to reduce the number
of excursions or visits to the same location. A D-CNN was
built to produce drone steering instructions based on observed
images and to achieve autonomous drone navigation. The
suggested approach uses video acquired by a camera mounted
on drone. When a CNN and fully connected regression are
used together, it has been shown that it is possible to forecast
the steering angles required to fly the drone on its planned
path with high accuracy.

Wang et al. [35] utilized some generic CNN-based object
detectors for the computer vision challenge using Stanford
Drone Dataset. The employment of a focal loss dense detector
RetinaNet-based method for fast and efficient object iden-
tification from a drone has yielded results that are at the
cutting edge of the field. In their research, Saripalli et al. [36]
looked into vision-based autonomous control techniques
for UAV landings. Scaramuzza et al. [37] integrated vision
approaches into their Unmanned aerial Vehicle design
to improve navigation accuracy. PIXHAWK [38] is a
well-known flight control device that uses machine vision
algorithms to detect obstacles during UAV operations.
Kendoul et al. [39] used machine vision methods focused
on optical flow to incorporate self-manoeuvring operations
for aerial vehicles. He successfully investigated the use of
CNN-based object detectors, especially the recently reported
RetinaNet focal loss dense detector for Unmanned aerial
vehicles object detection.

Ashraf et al. [40] reported a two-staged network. Targets
drones’ irregular movement, tiny size, arbitrary form, sig-
nificant intensity fluctuations, and occlusion makes drone
identification a difficult task [28]. Drones’ low costs will
increase the number of unmanned aerial vehicles (UAVSs) in
the sky. Researchers for a variety of purposes have tackled
the issue of drone detection. The method described in this
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FIGURE 2. (a) Drone-STM-RENet is a branched CNN that anticipates the steering angle and collision probability from a single 150 x

150 grey-scale frame. A Drone-STM-RENet with two residual blocks (b) forms the common component of the architecture, which is
accompanied by 50% dropout and ReLU non-linearity. Following that, the architecture is divided into two different fully connected layers,
one for predicting steering angle and the other for inferring collision probability. In the figure above, we first give the kernel size, and
after that the number of filters, and finally, the stride if it's not 1. Residual blocks consist (c) a combination of Batch normalization, ReLU

activation function, and convolution layer.

article does not need precisely centered cuboids and instead
uses I3D to learn rich Spatio-temporal information. Rather
than relying on region-proposal-based techniques, this arti-
cle suggested a two-stage segmentation-based strategy using
Spatio-temporal attention cues. This article aims to identify
and locate drones in multiple video frames recorded by other
drones. It reported a two-stage segmentation-based detection
approach for drones in heavily populated areas. The first stage
is solely visual, while the second stage is spatialtemporal.

Xie et al. [41] leveraged agregated residual transforma-
tions for image classification. This article’s methodology is
based on three observations: (i) A bottom-up segmentation-
based technique for drone identification that classifies each
pixel is superior to a region proposal-based approach.

(ii) Optical flow data has been successfully used in a
number of research, including action recognition.

(iii) Because large motions of the target and source drones
may be insufficient, we must depend on optical flow data.

This starts with appearance-based pixel classification to
accurately find drones and then adapts ResNet50 [42] to
maintain local information as the network becomes more
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significant. It utilized pixel- and channel-level attentions to
concentrate feature maps on the foreground. This article
described a two-stage method for detecting flying drones
using Spatio-temporal cues. It utilized a segmentation-based
approach rather than depending on region-based techniques
for effective drone identification.

Ill. PROPOSED TECHNIQUE
A. CNN WITH DEEP CHANNEL BOOSTING FOR DRONE
AUTONOMY
Accurate analysis of real-time images [43] in a chang-
ing environment is complex due to the following factors:
(i) low contrast variation between foreground and background
boundaries, (ii) high texture variation (iii) significant vari-
ation in the size, shape, and position of the foreground in
images and (iv) low illumination. Additionally, these photos
are heavily deformed due to the shifting environment’s noise
level.

This work reported approach for automating drones based
on CB-CNN. The suggested approach is used to forecast the
steering angle and probability of collision. In this context,
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FIGURE 3. (a) Images from Udacity were utilized for learning the steering angles. (b) The images were gathered to evaluate the possibility of a
collision. Green box indicates no-collision frames, whereas red box indicates collision frames.

we develop a new CNN classifier based on innovative Drone-
STM-RENet blocked [44] that incorporates RE-based pro-
cedures for steering angle and collision probability learning.
The workflow for the drone navigation is illustrated in fig. 1.

1) PROPOSED DRONE-STM-RENet

D-CNNs have a lot of pattern mining capabilities, which is
why it’s so prevalent in image processing [45]. Because of
its automated feature extraction capability, CNN has outper-
formed traditional Machine Learning algorithms on visual
observation tasks. It uses a convolution technique to lever-
age the image’s structural information and extracts feature
hierarchies dynamically based on the intended application.
To investigate the background-foreground issue in Drone-
STM-RENet, unique convolution blocks based on split-
transform-merge (STM) techniques are devised and imple-
mented. It is the first time an individual block has been
developed that consistently performs region and edge-based
operations at each branch to capture a comprehensive collec-
tion of properties at many levels, particularly those related to
region homogeneity, textural changes, and backdrop borders.
Many advancements in CNN architecture have increased its
application in the robotics sector for robot vision. Before
this, the best of our knowledge practice was to squeeze and
excite using 1 x 1 dimension reduction or expansion, but this
is a novel squeeze and excitation technique idea that uses
squeezing (channel concatenation) and excitation (channel
concatenation). By squeezing and concatenating, we choose
salient feature maps.

In this work, a new CNN architecture based on the inno-
vative Drone-STM-RENet based feature extraction has been
developed. This new architecture for drones is referred to as
the Drone STM-based RENet (Drone-STM-RENet) architec-
ture shown in figure 2. Drone-STM-RENet creates unique
convolution blocks based on split-transform-merge (STM) to
investigate the background-foreground dilemma. This inno-
vative block systematically executes region and edge-based
operations at each branch to capture the broad range of char-
acteristics at many levels, particularly those related to region
homogeneity, textural changes, and background borders. The
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proposed block is made up of four sub-branches, as shown
in the diagram. The principle of Region and Edge-based
feature extraction is applied thoroughly at every branch, with
maximum and average-pooling along with convolution and
ReLU-activation to capture discriminating features in consid-
erable detail. To extract patterns from an image dataset, the
Drone-STM-RENet separates the input into four branches,
uses the RE-based operator to learn region-specific variations
and their distinct boundaries, and then uses the concatenation
operation to merge the output from numerous paths. Drone-
STM-RENet extracts a different set of abstract level features
by stacking two blocks of STM with the identical topology in
series. At the end of the process, Dropout is used, followed by
ReLU activation and two fully connected layers in parallel for
steering angle prediction and for calculating the probability of
colliding with another vehicle. Incorporating this concept into
the Drone-STM-RENet allows it to extract various variants
from the input feature maps.

2) PROPOSED DRONE-STM-RENet CHANNEL BOOSTING
(CDSTM-RENet-CB)

Vehicle data has a lot of variance in the images that’s why a
strong CNN is essential for excellent discrimination. Using
Channel Boosting [46], [47], the proposed Drone-STM-
RENet’s discriminating ability is improved. It proposed the
concept of Channel Boosting to solve complex problems.
Extraction of significant characteristics from distorted pic-
tures is made possible by average smoothing of the image
contents inside the distorted images recorded, and outliers are
also managed using the suggested approach. The region and
edge operation assists in managing region homogeneity and
smoothing and the systematic exploitation of resources inside
a given block. It helps delineate discriminating boundary or
edge characteristics.

B. IMPORTANCE OF USING AUXILIARY CHANNELS

CNNs with various architectural designs have varying capa-
bilities for feature learning. Multilevel information can be
seen in many channels learned from distinct deep CNNs.
These channels reflect different patterns that might help in
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TABLE 1. Quantitative data on problems involving regression and classification: When doing the steering regression task, EVA and RMSE are measured,
and when performing the collision prediction task, Average accuracy and F1-score are evaluated. Also we have calculated confidence interval for recall at
95%. In comparison to the baselines that were evaluated, our model performed wonderfully. Even though Drone-STM-RENet does not have many

parameters, it performs brilliantly on both tasks.

Model EVA RMSE Avg. Accuracy  F-1 Score Recall+-C.I. Num. Parameters = Num. Layers
Random Baseline -1+-0.022  -0.3+-0.001 50+-1% 0.3+-0.001 - - -
Constant Baseline - 0.34 75.6% - - - -

Resnet-50 [42] 0.795 0.097 96.6% 0.92 - 2.6 % 107 50
VGG-16 [50] 0.712 0.119 92.7% 0.85 - 7.5 % 106 16
Dronet [23] 0.737 0.109 95.4% 0.90 - 3.2%10° 8

R. Chew et al. [52] - - 86.0% 0.86 - - -
HD+LO Networks [53] - - 96.1% - - - 12
Drone-STM-RENet 0.99 0.48 96.26% 0.92 0.9547+-0.064 5.6 * 10° 8

the exact explanation of class-specific features. The local
and global representation of the image may be improved
by combining diverse-level abstractions learned from multi-
ple sources. The term “intelligent feature-space ensemble”
refers to the concatenation of auxiliary and primary chan-
nels [48] in which a single learner makes the ultimate choice
by assessing numerous image-specific patterns [49].

C. IMPLEMENTATION OF THE EXISTING CNNs

For the evaluation of proposed architecture, several known
deep CNNs (ResNet50 [42], VGG16 [50], Dronet [23]) have
been implemented. To provide a fair comparison with the
suggested technique, all models are first trained on the same
data set from scratch.

IV. EXPERIMENTAL SETUP
A. DATASET
The deep CNN models are trained and evaluated using a
holdout cross validation technique. The data set was split into
three parts: a training set, a validation set, and a testing set.
The testing set was used to evaluate the model, which was
maintained distinct from the training and validation datasets.
We utilize one of the freely accessible datasets from Udac-
ity’s project [51] to learn steering angles. Nearly 60,000
images of car driving are split across five experiments, 1 for
testing and 4 for training. Every experiment saves images
from three cameras (left, center, and right) and data from the
GPS, IMU, brake, steering angles, throttle, gear, and speed.
To learn the probability of collision from images, We uti-
lize a dataset that is freely available online from Dronet’s
project [23]. They collected the dataset by mounting the
GoPro camera on the bicycle’s handlebar. And drive the bicy-
cle in multiple city areas, attempting to mix up the barriers
(vehicles, people, plants, construction sites) and appearance
of surroundings. As a result, the drone can generalize in a
variety of settings. This dataset has 32000 images spread
across 137 sequences. In these sequences, frames are labeled
as 0 (no collision) if the distance from the obstacle is enough,
which means there is less chance of collision, and those
frames in which there are some obstacles are labeled as 1
(collision). Frames labeled as 1 (i.e. collision frames) are that
kind of data that is very difficult for a drone to gather yet
required for the development of a reliable as well as safe
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TABLE 2. Training hyper-parameters.

Sr. No. | Hyper-parameter | Value
1 Epochs 100
2 Batch size 16
3 Learning Rate 10-°
4 Optimizer Adam

technique. We divided the dataset into training validation and
testing. For training 51520 and for validation 12880 images
are used while for testing we uses 30% of the total data i.e.
27600 Dataset examples are shown in fig. 3.

B. DRONE CONTROL

The UAV is instructed to fly with a forward velocity of v and
a steering angle of 6y using the outputs. The network uses the
probability of collision to regulate the forward velocity: when
the collision probability is zero, vehicles are commanded to
move with the maximum velocity i.e. V;,4x, and it stops when
the probability of collision is close to 1. The forward velocity
is filtered using a low pass filter (1 > « > 0) as shown in (1).

vi = —a)ve—1 + ol — pr)Viax (D

Similarly, The predicted steering angle is also converted into
a yaw angle (rotation around the z-axis). We transform sy
from the [—1, 1] range to the required yaw angle 6 in the

-
[7, 5] range and low-pass-filter it as shown in (2).

O = (1 — Bt + ﬂ(%)sk @)

Lastly, a novice dynamic navigation strategy that will oper-
ate a drone accurately with only a single forward-looking
camera is developed. Our method has the advantage of cal-
culating a collision probability using one image, excluding
any prior knowing the platform’s velocity. We believe that
the proposed architecture will be making decisions based on
the range between noticed items in the sphere of vision [42].

C. HYPER-PARAMETER

Hyper-parameters that are used for training is illustrated in
the table 2.

VOLUME 10, 2022
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V. RESULTS

A. REGRESSION AND CLASSIFICATION RESULTS

We initially analyze our model’s regression performance
using the Udacity dataset’s testing sequence [54]. We utilize
two measures to measure steering prediction performance:
Root Mean Square Error (RSME) and Explained Variance
Ratio (EVA). We use F-score and average classification accu-
racy to evaluate collision prediction performance.
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Table 1 compares Drone-STM-RENet architecture with
several known architecture from the literature [10], [42], [50].
Weak baselines include a constant estimator that anticipates
0 for steering angle always and ‘““no collision,” as well as
a random estimator. Our method outperforms it in terms of
prediction accuracy. In Figure 5 comparison of various known
architectures can be seen alongwith the Drone-STM-RENet
and it can be seen that our architecture is performing very
well in comparison to other known architectures in literature
and also number of parameters and number of layers are less
as shown in 1. Additionally, a favorable contrast to the VGG-
16 network [50] demonstrates a utilization for the residual
learning scheme in terms of generalization. As demonstrated
in Table 1 and fig. 4 our design achieves a great performance
as compared to other models in the literature.

B. PERFORMANCE METRICS

Various common performance indicators are used to assess
the performance of the implemented models. Accuracy,
recall, and F-score is examples of these measures. (3) is
used to assess accuracy by counting the total number of
accurate assignments. Recall is a metric that measures the
fraction of accurate collision probability estimates (4). The
F-score is specified by (5). Explained Variance is a met-
ric that is used to measure the quality of a regressor (6).
The major goal of Equation (7) is to enhance the true pos-
itive rate while lowering False-Negative for foreground or
region of interest detection. As a result, the Standard Error
(S.E.) at 95 percent Confidence Interval (CI) is presented
for recall/sensitivity/detection rate to identify the uncertainty
of the proposed Drone-STM-RENet [46]. In this instance,
z = 1.96 for S.E. at the 95% CI. The mistake is expressed
as (100-98)/2, or 20%. Images or the size of the dataset are
both considered to be total samples. Figure 6 shows learning
plots for the proposed Drone-STM-RENet, which illustrate
loss values for the training set and the validation set.

TruePositive 4+ TrueNegative
Accuracy = 3)
Totalnumberofsamples

TruePositive
Recall = — - “
TruePositive + FalseNegative

precision x recall
*

F — Score =2

&)

precision + recall
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EVA — Var[Yiye — pred] 6)

Var[Yiye)

error(1 — error)
Cl =z% | ———— @)
TotalSamples

V1. DISCUSSION

Both traditional and learning-based methodologies have ben-
efits and drawbacks, and our system is no different. The
advantages include the ability for a drone to securely explore
previously uncharted places by applying our easy learning
and control approach. Unlike previous systems, no online
environment map or pre-defined collision-free locations is
required. Furthermore, we demonstrated remarkable gener-
alizability across a wide range of situations. It might be a
valuable adjunct to normal “map-localize-plan” navigation
procedures in tasks like search and rescue and aerial deliv-
eries. Furthermore, our method may be useful for platforms
with limited resources because of the relatively simple and
efficient network architecture. One disadvantage is that the
agile dynamics of drones aren’t fully used. As a result, unlike
prior CNN-based controllers [10], [55], [56], It is not fea-
sible to give the robot a specific aim to pursue. There are
several approaches to coping with the limits outlined above.
When there is a high probability of collision, 3D collision-
free pathways can be built to take use of the drone’s agility,
as demonstrated in [56]. The distance to the destination [57]
may be approximated using a 2D map and utilized [58]
to generalize goal-driven challenges. Furthermore, as stated
in [59], a measure of uncertainty might be introduced into
our system to improve its resilience. The system could then
switch back to a safety mode whenever it was required.

VII. CONCLUSION

Drones can confront various difficulties when navigating
unstable and highly dynamic environments. This paper pre-
sented a new architecture called Drone-STM-RENet that can
safely pilot a drone across city streets. This architecture is
based on the Split transform merge concept. As a result,
utilizing an unmanned aerial vehicle (UAV) to collect data in
an uncertain environment is both unsafe and time-consuming.
As a result, our proposed techniques learn to fly by imitating
automobiles and bikers, which already follow traffic regu-
lations. When compared to other well-known architectures
in the literature, this model gives promising results by pre-
dicting collision probability and steering angle with accuracy
(96.26%), recall (95.47%), F-score (91.95%) and explained
variance (0.99) by Drone-STM-RENet enabling a UAV to
respond swiftly to unforeseen occurrences and obstacles.
The reason behind the performance of Drone-STM-RENet
is that it captures the texture variations prominent features
are boosted. Apart from this, edge operations and region
homogeneity are dealt with through RENet block, which
helps the drone to differentiate between background and fore-
ground in challenging scenarios. In comparison to previous
strategies utilized in the literature, the proposed Drone-STM-
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RENet converges quite quickly. Extensive experimentation
has demonstrated that a drone can be trained for urban naviga-
tion by emulating manned autos. It might be beneficial to typ-
ical “‘map-localize-plan” procedures in navigation-related
operations like aerial deliveries.
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