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ABSTRACT Human activities recognition (HAR) plays a vital role in fields like ambient assisted living and
health monitoring, in which cross-subject recognition is one of the main challenges coming from the diversity
of various users. Although recent studies have achieved satisfactory results in a non-cross-subject condition,
the recognition performance has significant degradation under the cross-subject criterion. In this paper,
we evaluate three traditional machine learning methods and five deep neural network architectures under the
same metrics on three popular HAR datasets: mHealth, PAMAP2, and UCIDSADS. The experimental results
show that traditional machine learning approaches are generally more robust to the new subject scenarios
under strict leave-one-subject-out cross-validation. Extra analysis indicates that hand-crafted features are
one major reason for the better performance of traditional machine learning on cross-subject HAR, while
deep learning is more prone to learning subject-dependent features under an end-to-end training process.
A novel training strategy for decision-tree-based methods is also proposed in this paper, resulting in an
improvement on the random forest model which achieves competitive performance at an average F1-score
(accuracy) of 94.49% (95.09%), 91.64% (92.21%), and 92.70% (93.29%) on the three datasets, compared
with state-of-the-art solutions for cross-subject HAR.

INDEX TERMS Cross-subject, deep learning, human activity recognition, leave one subject out, traditional
machine learning.

I. INTRODUCTION where the general process of the HAR algorithm includes

Human activities recognition (HAR) has been a popular
research topic and widely used in the field of ambient assisted
living [1], health monitoring [2], human-machine interac-
tion [3], etc. With the significant growth of commercially
available wearable devices, HAR using inertial measure-
ment unit (IMU) [4], [5], [6] with the accelerometer, gyro-
scope, and magnetometer equipped has gained more attention
recently on account of the ability to provide a portable, pri-
vate, continuous, non-invasive, and low-cost recognition ser-
vice, compared to the vision-based HAR [7] which has some
challenges in privacy protection, resource consumption, and
blind areas. A typical framework of HAR is shown in Fig. 1,
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four stages: sensor data acquisition, data pre-processing, off-
line feature extraction and model training, and online activity
classification. In the data acquisition stage, IMU sensors
can be found in glasses [8], phones [9], watches or wrist
bands [10], chest patches [11], shoes [12], etc., directly
reflecting the subject’s behavior tightly related to physical
locations throughout the body. Since measured signals suffer
from inherent sensor drift and subject’s unconscious move-
ments, median filter and low-pass filter are common methods
for data cleaning in the pre-processing stage to eliminate
noisy interference and redundant information [5], [13], [14].
Besides, continuous data segmentation is also necessary for
this stage by dividing the signal into sliding windows with or
without overlaps [15]. Feature extraction and model training
stage plays a vital role to detect significant low-dimension
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FIGURE 1. The overview of a typical HAR pipeline.

patterns from raw high-dimension sensor input. According
to different feature extraction methods, current HAR solu-
tions can be divided into two categories: hand-crafted feature
extraction with traditional machine learning like naive Bayes
(NB), decision tree (DT), k-nearest neighbor (KNN), support
vector machine (SVM), etc., and deep learning using unsu-
pervised features that automatically mined by the machine
using an end-to-end training process.

Cross-subject (or inter-subject) recognition is one of the
main challenges in HAR research [16], which comes from
the limited size of datasets, the diversity of human bodies
and habits, and in particular the diversity of devices’ wear-
ing modes. Thus, pre-trained models can be significantly
user-dependent on the training sets and hard to be promoted
to new users in practical applications. Although traditional
machine learning and deep learning have achieved satisfac-
tory results in a non-cross-subject (or intra-subject) testing
where different samples from the same user appear in both the
training set and testing set, the performance has significant
degradation in new user scenarios. Most of the current studies
on HAR, however, pay less attention to the robustness of
the model in cross-subject scenarios and only cover an non-
cross-subject test under a given dataset, lacking a standard
approach that enables models effectively generalize over het-
erogeneous datasets performed by different users [17]. They
either use data of all subjects indiscriminately for training and
testing [18], [19], [20], [21], [22], or only designate one or a
group of subjects as fixed testing set [23], [24], which is prone
to producing biased evaluation results.

In order to explore the actual cross-subject performance
on HAR, in this paper we evaluate three traditional machine
learning methods and five deep neural network architectures
under the same metrics on three popular HAR datasets:
mHealth [25], PAMAP2 [26], [27], and UCIDSADS [28],
considering the data size, the similarity and complexity of the
activities, and the number of subjects. Hand-crafted features
with KNN [4], SVM [5], and random forest [14] are selected
as traditional learning frameworks, while the deep learning
competitors are convolutional neural network (CNN) [18],
[19], long short-term memory (LSTM) [20], [29], and their
hybrid variants [21], [22]. These models are surveyed as most
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common used for HAR by [30], and are trained and tested in
this paper under strict Leave One Subject Out (LOSO) cross-
validation for a comprehensive examination of cross-subject
recognition ability. This paper has the following contributions
to the existing studies:

1. This paper has conducted a comprehensive strict
cross-subject evaluation of traditional machine learning mod-
els and common-used deep learning models in new subject
scenarios of HAR applications. We have performed experi-
ments using traditional machine learning and deep learning
models on three publicly available datasets, and the impact
of hand-crafted features is further analyzed and discussed.

2. A novel training criterion for decision-tree-based learn-
ing models is proposed, which tries to discriminate different
classes while ignoring the diversity of various subjects. This
improvement increases the recognition accuracy of random
forest and shows comparable performance with state-of-the-
art cross-subject HAR solutions.

The rest of this paper is organized as follows. The related
works of this paper are presented in Section II. Section III
explains the chosen datasets, evaluation criteria, and the set-
tings of traditional machine learning and deep learning mod-
els. Section IV presents the experimental results of different
models in cross-subject activity recognition with detailed
analysis and discussion. Finally, Section V concludes this

paper.

Il. RELATED WORK

A. HAR BASED ON TRADITIONAL MACHINE LEARNING
AND DEEP LEARNING

Simple time domain and frequency domain features are com-
monly used in HAR [31], [32], [33] like harmonic mean,
standard deviation, Pearson correlation coefficient, etc. These
hand-crafted features are trained to build a recognition model
like random forest, decision tree, SVM, and KNN as shown
in Fig. 1. Casale et al. [34] utilized a set of 20 computa-
tionally efficient features to recognize 5 basic daily activ-
ities. The use of random forest reached a 94% accuracy
for recognition, which outperformed the decision tree alone
and boosting of trees. With the aid of feature selection and
sensor data fusion techniques, Ayman et al. [35] were able
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to recognize activities on PAMAP2 with a 99.03% accuracy
using a random forest classifier. Mekruksavanich et al. [36]
proposed a framework for recognizing activity based on
accelerometer, gyroscope, and surface electromyography
data, achieving 99% accuracy using a decision tree model.
Arif et al. [4] extracted time-domain statistical features from
the accelerometer and achieved 97.9% average classification
accuracy on the PAMAP2 dataset using the KNN model.
Hsu et al. [5] proposed a wearable inertial sensor network
and an SVM-based behavior recognition algorithm, reaching
a recognition rate of 98.23% and 99.55% on 10 common
family activities (such as walking, running, up and down
stairs, etc.) and 11 sports activities (such as table tennis,
badminton, tennis, etc.) respectively. A fast feature dimen-
sion reduction method was proposed in [6], which used only
11% of the selected features in the UCIHAR dataset [14],
achieving a 98.72% accuracy by random forest classifier.
Helmi et al. [37] also showed that under properly optimized
feature selection methods, SVM classifier can achieved an
average accuracy of 98% on UCI-HAR dataset.

Recent advances in deep learning promote the development
of deep-feature-based methods, which significantly outper-
form the hand-crafted features on other learning tasks like
object tracking [38], image classification [39], speech recog-
nition [40], etc. One-dimensional [18] and two-dimensional
CNN [19] can automatically extract features from IMU for
behavior recognition. In 2D CNN cases multiple sequences
from multiple sensors are assembled into dynamic images,
thus the model will not only considers the dependence
within a single temporal signal, but also counts dependencies
between signals from different axis and sensors. In order
to achieve a significantly reduced execution time while the
model performance remained, Gholamrezaii et al. [41] pro-
posed a convolutional layer only architecture by removing
the pooling layer and adding strides. An ensemble of CNN
streams was proposed in [42], and the multi-modal and multi-
temporal approach outperformed some state-of-the-art stud-
ies. On the other hand, the recurrent neural network (RNN) is
another deep model that is often used for speech recognition,
natural language processing, and other sequential tasks with
various length sequences of inputs, of which the LSTM is
a unique structure variant that is suitable for processing and
predicting important events with long intervals and delays in
time series. Ullah et al. [29] proposed a stacked network con-
sisting of five LSTM layers for HAR from smartphone data,
with an accuracy of 93.13% achieved in UCIHAR dataset.
Hernandez et al. [20] improved the distinction between walk-
ing up and down stairs using a bi-directional LSTM (BLSTM)
network, which can cope with the past and future information
of signals.

CNN and RNN have their respective advantages in extract-
ing temporal and spatial features. Therefore many studies
have designed hybrid models based on CNN and RNN for
better performance on HAR. Ordonez et al. [21] proposed a
general network framework consisting of a four-layer CNN
and a two-layer LSTM for behavior recognition coined as
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DeepConvLSTM, which achieved a 7.4% and 3.2% perfor-
mance improvement over the original CNN baseline model
in the Skoda [43] and Opportunity dataset [44], respectively.
Huan et al. [22] proposed a hybrid CNN and BLSTM net-
work based on multi-feature fusion and a novel feature selec-
tion method. Experiments on PAMAP2 and UT-data [10]
obtained Fl-scores at 92.23% and 98.07%, respectively.
Lv et al. [45] introduced a margin mechanism to enhance the
discriminative ability for deep learning, which was proved
to be effective for different kinds of deep architectures and
their hybrid variants. In addition, Li er al. [46] found that
the features obtained by hybrid deep-learning architectures
involving CNN and LSTM, had advantages to discover both
short-term and long-term temporal relationship in the data.

B. CROSS-SUBIJECT STUDIES OF HAR

The heterogeneity introduced by different subjects can
significantly reduce the accuracy of activity recognition.
Ravi et al. [47] made an experiment on 2 subjects wearing an
accelerometer on the waist and recorded eight daily activities
on different dates. They found that over 99% accuracy was
achieved on cross-validation when two subjects’ data were
mixed for training and testing, while only 65% accuracy when
the subjects’ data were divided and used as either training or
testing set. Janidarmian ef al. [33] evaluated different tradi-
tional machine learning methods on HAR using accelerom-
eter data from 14 public datasets containing 8 independent
positions and 8 daily activities (walking, running, jogging,
biking, standing, sitting, lying, up and down the stairs). In the
non-cross-subject 10-fold evaluation, the average classifica-
tion accuracy of the 8 positions was 96.44%=+1.62%, how-
ever the number decreased to 79.92%=+9.68% in the LOSO
cross-subject evaluation.

Recent efforts on cross-subject HAR focus on transfer
learning, manifold learning [48], and data augmentation [49].
Transfer learning with domain adaptation and domain gener-
alization have been the most effective method to solve this
problem, in which training subject data can be regarded as
the source domain, while testing subject data are the target
domain. According to whether the target domain data are
labeled or not, the domain adaptation can be regarded as
supervised and unsupervised.

(1) Supervised domain adaptive method was adopted
in [50], [51] to update the pre-trained model with
labeled source domain data using few-shot fine-tuning.
Akbari et al. [52] achieved transfer learning using variational
autoencoder (VAE) to identify the vital unlabeled samples
and extract domain-invariant features. Since the labels from
testing set are leaked, this method is not suitable for ready-to-
use HAR solution that must immediately infer activity classes
for new subjects without fine-tuning.

(2) Unsupervised domain adaptation aligns the fea-
ture distributions between source and target domains by
means of distance minimization [53], [54], [55], [56] or
generative adversarial networks (GAN) [57], [58], [59],
[60]. Hosseini et al. [5S3] designed a BLSTM to extract
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representative features and minimize confusion between
source and target domains through maximum mean discrep-
ancy loss. Zhang et al. [54] proposed a cross-subject adaptive
method called gaussian-guided feature alignment as distance
minimization metrics. For soft label and coarse-grained prob-
lems in class-to-class and set-to-set distribution alignment,
a trade-off local domain adaptive method was proposed
in [55] as fine-grained cluster-to-cluster distribution align-
ment between source and target domains. On the other
hand, some researchers use GAN to automatically learn
the implicit metric function between source and target
domain. Soleimani et al. [57] took labeled and unlabeled data
from different subjects as GAN input. In the training pro-
cess, the feature extractor and domain discriminator were
trained against each other to learn the domain-invariant fea-
tures. Chakma et al. [58] proposed a multi-source adversarial
domain adaptive framework to select the most relevant feature
from multiple source domains and establish the mapping to
the target domain. In unsupervised domain adaptation cases,
the original or the summary of training data must be saved
in the system to perform a distribution alignment with new
targets, thus the occupation of memory increases as the data
from new subjects are continuously added to the system.

Meanwhile, the adversarial domain generalization method
was used in [17] and [60] for cross-subject recognition. Only
the labeled data of training subjects were used to extract
domain invariant features which were independent of sub-
jects through adversarial learning, thus the model had good
generalization performance on different but similar domains.
In this case, the labels from testing set have no leakage and
the distribution summary of training set will not be kept
in the system, however the model is fixed like traditional
machine learning methods and can not be fine-tuned. Once
the model needs updating, the system will be re-trained from
the beginning using the whole dataset.

C. COMPARISON STUDIES OF HAR

Sensors configuration, datasets selection, window length,
testing method, and other factors directly affect the perfor-
mance of the HAR model in the experiment, so there is
no standard comparison benchmark among different stud-
ies. Many researchers have conducted comparative studies
on existing methods under the same evaluation metric from
different perspectives. Wan et al. [61] compared the advan-
tages and disadvantages of CNN, LSTM, BLSTM, multilayer
perceptron (MLP), and SVM algorithms in HAR on UCIHAR
and PAMAP2 datasets under non-cross-subject evaluation.
Hou et al. [62] compared the performance of HAR among
traditional machine learning methods (SVM, KNN, and ran-
dom forest) and deep learning methods (CNN and LSTM),
and they found that when the size of HAR datasets is small,
traditional structures are more likely to obtain satisfactory
results, while deep learning methods are better choices when
the dataset has a large scale. Leonardis et al. [63] comprehen-
sively evaluated the effectiveness of five traditional machine
learning classifiers (SVM, DT, KNN, NB, and MLP) on
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self-labeled activity recognition datasets, and focused on
discussing the real-time performance of different classifiers
on wearable devices. Angerbauer ef al. [64] examined the
traditional machine learning model and two commonly used
deep learning models (CNN and LSTM) on HAR in terms
of accuracy, memory consumption, real-time performance,
etc. They found that random forest is the best model for
memory-limited applications, while the best model consid-
ering complexity and performance is linear kernel SVM. The
two deep neural networks are comparable in performance, but
their increasing complexity makes it hard for real use cases.
Gholamiangonabadi et al. [41] compared the cross-subject
HAR performance between the feed forward neural network
and CNN, and the results showed that CNN architecture with
two convolutions and one-dimensional filter had the best
generalization ability.

D. SUMMARY

With the growth of deep learning research, recent HAR stud-
ies focus on the improvement of recognition accuracy using
complex deep architectures or transfer learning [53], [54],
[55], [56] rather than traditional solutions [4], [5], [14]. How-
ever, some studies [64], [65] discovered the phenomenon that
the traditional solutions outperform deep methods under the
same metric on HAR, and the reason remained unclear. In this
paper, we conduct a comprehensive comparison between
traditional machine learning and deep learning methods on
HAR under strict LOSO validation, and make a further anal-
ysis to the result of the experiment. Different from studies
like [45], [46], the hyper-parameter settings of traditional
machine learning is clarified in detail in this paper, together
with the explicit definition of strict LOSO cross-validation.

IIl. MATERIALS AND METHODS

A. DATASETS

To comprehensively evaluate the cross-subject activity recog-
nition performance of traditional machine learning and deep
learning, we selected 3 datasets with different scales, con-
taining multiple subjects and covering simple, complex, and
similar activities.

The mHealth dataset contains body motion and vital
signs recordings from 10 subjects. Each subject performed
12 activities in an out-of-lab environment without any con-
straints. 3 IMU sensors were placed on the subject’s chest,
right wrist, and left ankle to measure the 3-axis acceleration
(m/s?), 3-axis angular velocity (deg/s), and 3-axis magnetic
field (G/s), respectively. Besides, the sensor placed on the
chest also provides 2-lead ECG measurements. The sampling
frequency of all sensors is 50 Hz.

The PAMAP?2 dataset is a benchmark for daily activity
recognition. It was recorded by 9 subjects (8 males and
1 female, aging from 24 to 32), wearing three IMUs placed on
the arm, chest, and ankle, respectively, consisting of 12 activ-
ities including simple activities (such as sitting, running, etc.)
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and complex activities (such as cleaning, ironing, etc.). The
sensor data were recorded at 100 Hz.

The UCIDSADS dataset was specially constructed for
daily and sports activities recognition. It comprises 19 activ-
ities, covering multiple groups of similar activities such as
walking on a treadmill with different inclination angles,
cycling in a vertical or horizontal position, etc. Each activity
was performed by 8 subjects for 5 minutes in their style
without any constraints. 5 IMU sensors on the torso and the
four limbs were calibrated to acquire data at the sampling
frequency of 25 Hz.

Only IMU data from the 3 datasets are used in the experi-
ment. The raw sensor data are cleaned according to the pro-
cedures specified in papers that described the datasets [25],
[26], [27], [28]. Linear interpolation is used to cope with
missing data, and 10 seconds from the beginning and the
end of each labeled activity is deleted to void dealing with
eventual transient activities, as mentioned in [26]. In detail,
a median filter and a fifth-order Butterworth low-pass filter
with the cut-off frequency at 11 Hz are applied to reduce
the noise. Before feature extraction, the sensor data are seg-
mented by a sliding window with an appropriate length.
A smaller window size may not accurately capture all the
features of the activity, while a larger window size may intro-
duce interference from other actions. In this paper, a fixed
length of one-second sliding window with 50% overlap is
used to perform segmentation on the 3 datasets. The label
distribution of the PAMAP2 dataset is uneven, especially for
subject 9 who lacks most of the samples after data cleaning,
and thus only the data from subjects 1 to 8 are used in the
experiment. Fig. 2 and Table 1 show the statistic details of
the 3 datasets, including the composition and proportion of
each activity.

B. EVALUATION CRITERIA
Strict cross-subject LOSO test: To simulate new subject
scenarios and evaluate the cross-subject recognition perfor-
mance of the model, we adopt a strict cross-subject LOSO
cross-validation as followed: First, all samples of subject i
are taken from N subjects from the dataset as the testing set,
and the remaining N — 1 subjects are used as the training
set, in which the optimal hyper-parameters are grid-searched
using LOSO cross-validation as well. After determining the
optimal hyper-parameters, the model is re-trained on the
entire training set, and the classification performance is tested
on the testing set consisting of subject i. The process above is
iterated N times until each subject has been taken as the test-
ing set once, and the cross-subject recognition performance
is obtained by averaging the results from N iterations.
Non-cross-subject 5-fold test: In HAR-related research, the
non-cross-subject test is usually used to verify the perfor-
mance of the model regardless of subject labels, in which
the training set and testing set may contain different samples
from the same subject, thus the classification models can
achieve fairly high recognition accuracy on the testing set.
To simplify the training process and maintain a unified com-
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FIGURE 2. Activity distribution of the 3 datasets: mHealth, PAMAP2, and
UCIDSADS.

parison benchmark, this paper directly uses the N groups of
hyper-parameters obtained through the cross-subject LOSO
cross-validation mentioned above as the model configuration
(i.e., the validation process is skipped), and performs a non-
cross-subject 5-Fold cross-testing (80% samples for the train-
ing set and the rest 20% samples for the testing set) on the
dataset. Finally, the average classification performance of N
groups of hyper-parameters is taken as the non-cross-subject
recognition result of the model.

C. METHODS

Model design and hyper-parameter selection need to avoid
overfitting to overcome the impact of new subject scenar-
ios. For traditional machine learning models, this paper
incorporates the parameters related to overfitting into the
hyper-parameter search space, such as the maximum tree
depth in the random forest, the regularization parameter
of SVM, etc. For deep learning models, effective general-
ization methods such as dropout, batch normalization, and
L2 regularization are fully utilized in the network structure
design. For HAR, a lightweight deep learning model is suffi-
cient to achieve a satisfactory recognition performance [66],
while too many trainable parameters often have the risk of

95183



IEEE Access

Z. Yang et al.: Comparing Cross-Subject Performance on Human Activities Recognition Using Learning Models

TABLE 1. Statistics of the 3 datasets: mHealth, PAMAP2, and UCIDSADS.

Dataset Number of Subjects | Number of Activities | Frequency | Window size | Number of IMUs | Number of Samples

mHealth 10 12 48 3 14285

PAMAP2 8 12 100 96 3 36041
UCIDSADS 8 19 24 5 94992

TABLE 2. Evaluated hyper-parameters for traditional machine learning
models in this paper.

TABLE 3. Hand-crafted features in the time and frequency domain used

in this paper.

Feature

Description

Mean

—_ 1 n .
B= 220
n

Harmonic mean

n 1
i=1 w,

Classifier Hyperparameter Candidate
Kernel RBF Linear
SVM v [Lp— ~
10 Nn-Var
C 0.01,0.1, I, 1.5, 10, 100
Splitting criterion Gini [ Entropy
Maximum splitting number logan, /1
Random Forest Number of trees 30, 50, 75, 100
Maximum tree depth 8,12,24,32
KNN Number of neighbors 5, 10, 20, 30, 50
Weights function Uniform, Distance

overfitting, so the network model is preferably designed with
fewer network layers.

1) TRADITIONAL MACHINE LEARNING

In this paper, the three most widely used traditional machine
learning models, SVM, random forest, and KNN, are selected
for recognition performance evaluation. According to the
criteria defined in section III-B, each of those models has
been tuned to extract the best possible cross-subject perfor-
mance for the given dataset using grid search over the defined
hyper-parameter space shown in Table 2. For example, the
number of neightbors in KNN has five choices, while the
weights function has two, then we have 5 x 2 hyper-parameter
sets for grid search. Note that ““\.”> means not applicable for
the candidate.

All parameter n in Table 2 are the number of the input
features. The RBF in SVM denotes the radial basis function
kernel; y is the kernel coefficient where var is the variance
of the features; C is the regularization parameter in SVM.
In KNN, the weights function “uniform’ means all points in
each neighborhood are weighted equally, while “distance”
means points are weighted by the inverse of their distance.
In the random forest, the splitting criterion is the function to
measure the quality of the feature split in tree nodes. The Gini
impurity is calculated as:

Gini=1-Y p} (1)
i
while the entropy (information gain) is obtained by:
Entropy = — Zpi log, pi 2)

l
where p; is the probability of class i from all data in current
node.

Traditional machine learning relies on good feature engi-
neering to express the original data. After pre-processing and
sliding window procedure, we performed dimension augmen-
tation on the input data. First, the amplitude value M was
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Standard Deviation

o= \/2 X (i - w?

Max max(z1,x2,...Tn)

Min min(z1,x2,...Tn)

Peak-to-Peak Amplitude max(z) — min(x)
Median w = median(z1,x2,...Tn)

Median absolute deviation

median(Jx — wl)

Interquartile range

quartile(x, 75) — quartile(x, 25)

Sum of area Z?:l |i]
Signal mean energy % 2?21 (xz)Q
T n 3
Skew 7?3 D (mi — )
. n 4
Kurtosis ok 2ai=1 (zs —p)
Pearson’s Correlation Coefficient cov(@,y)
a0y

calculated as:

M= /52 + 52+ 52 3)

to reduce the influence of orientation variation, where s, sy,
and s, are data from the 3-axis of each sensor in each time
window, respectively. Then, the original data and amplitude
data were converted to the frequency domain by applying the
short-time Fourier transform. Table 3 lists the hand-crafted
features in the time domain and frequency domain used in this
paper, where mean, harmonic mean, median, etc., measure
the central tendency of the data, while standard deviation,
absolute median deviation, and interquartile range describe
the distribution of data for each time window. Note that x =
{x1,x2,...,xi,...,x,} are sample points from one axis of
the sensor within a single time window, and » is the window
length. The Pearson correlation coefficient represents the cor-
relation between data from different axes of the sensor. If the
harmonic mean and Pearson correlation coefficient encounter
a zero division, they are both set to 0 directly. For each IMU
device, the accelerometer, gyroscope, and magnetometer all
have 3 axes, thus all the feature components mentioned in
Table 3 have 9 dimensions.

We extracted corresponding features mentioned in Table 3
from the data frame after dimension expansion (includ-
ing original time-domain data, amplitude time-domain data,
original frequency-domain data, and amplitude frequency-
domain data), which were further normalized into a normal
distribution with mean 0 and variance 1 according to (4),
where f,, and f; are the mean and standard deviation of the
input feature f. Before the normalization, we delete the fea-
tures that are not distinct enough with f;; <0.01. The extracted
and actually used numbers of features on the three datasets are
listed in Table 4. Finally, the concatenated features are used
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TABLE 4. Extracted and used feature number on the three datasets.

mHealth | PAMAP2 | UCIDSADS
Extracted feature number 805 1035 1725
Used number (fs > 0.01) 741 986 1549

as the input of traditional machine learning classifiers listed
in Table 2.

f I @

fo

2) DEEP LEARNING
In this paper, 5 commonly used deep neural network archi-
tectures in the field of HAR are chosen for experiments,
namely Conv1d-CNN, Conv2d-CNN, LSTM, BLSTM, and
CNN-LSTM. The overall architecture of the Conv1d-CNN
and Conv2d-CNN is shown in Fig. 3, consisting of 3 con-
volutional layers, 3 max-pooling layers, and a fully con-
nected layer. The batch normalization is used between each
convolutional layer to speed up convergence and improve
generalization, while the dropout is used to prevent over-
fitting before the fully connected layer. Convld-CNN and
Conv2d-CNN have the same network structure, but use dif-
ferent convolution kernels: Conv1d-CNN regards the original
data as a multi-channel continuous time series and uses a
one-dimensional convolution kernel; Conv2d-CNN regards
the original data as single-channel image data, using a 2D
convolution kernel.

The LSTM and BLSTM network architectures used in this
paper are shown in Fig. 4. The model consists of 3 stacked
LSTM/BLSTM layers and a fully connected layer, with
dropouts added between each layer to avoid overfitting.

The CNN-LSTM structure used in this paper is shown in
Fig. 5. The feature extraction network consists of 4 Conv1d-
CNN layers with batch normalization between each layer and
2 stacked LSTM layers to extract temporal-spatial features of
human activities.

All the stacked CNN used the same number of kernel
and kernel filters, while the LSTM layers shared the same
number of hidden channels, and the number of neurons in
the final fully connected layer is determined according to the
feature dimension output from the feature extraction network.
We normalized the filtered data by (4) before feeding it into
the deep neural network models. To fine-tune the deep learn-
ing models depicted above, we evaluate the hyper-parameter
ranges in Table 5, where C denotes the number of axis, which
is 9 times the number of IMUs in Table 1. The parameter L
is the window size defined in Table 1. Note that “~\.”> means
not applicable for the candidate. Both training and testing are
performed according to the criteria defined in Section III-B.

IV. RESULTS AND DISCUSSION
A. PERFORMANCE COMPARISON
In the experimental result section, all the testing results are
evaluated by F1-score and accuracy, defined as:
TP

Precision = —— 5)
TP + FP
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TABLE 5. Evaluated hyper-parameters for deep learning models in this
paper.

Convld / 2d-CNN [ LSTM/BLSTM | CNN-LSTM
Optimizer algorithm Adam
Loss function CrossEntropyLoss
Batch size 100
Learning rate 0.001
Epoch 15
Dropout 0.1,0.3,0.5,0.7
Weight decay 10-2,10~3,10~1 10-%,107°,107° [ 102,105,107
. 1d: 100 % C * L
Input size 2d:100 % 15 L+ C 100 * L« C 100 C L
1d: 3, 5 (stride 1) .
Kernel 2d: 3% 3,5 # 5 (stride 1) ~ 3,5 (stride 1)
Kernel filters 12,24, 36, 48, 64 N 24,36, 48, 64
. 1d: 2 (stride 2)
Max pool 2d: 2 * 2 (stride 2) > >
Hidden size ~ 16,32, 64,128 24,36, 48, 64, 128
TP
Recall = ———— (©6)
TP + FN
TP + TN
Accuracy = 7)
TP+ TN + FP + FN
2
Fl-score = ®)

Precision=! + Recall !

where TP, TN, FP, and FN denote the number of true positive,
true negative, false positive, and false negative classification,
respectively. For a multi-class problem as HAR, the precision
and recall are calculated for each class independently, and the
total value are weighted average according to the number of
true instances for each class i as:

N
. 1
Precisionyeighted = N Z Precision; * N; )
i

N
1
Recallyyeighted = N Xi:Recalli * N; (10)

where N = ), N; are the total number of all labels.

Fig. 6 and 7 show the box plot of Fl-score and accuracy
of the traditional machine learning and deep learning models
on 3 datasets, where the box extends from the first quartile
to the third quartile of the data, with a line at the median.
Note that the blue boxes are non-cross-subject results, while
the orange boxes are for cross-subject tests. Table 6 and 7
demonstrate the average of accuracy and Fl-score of the
traditional machine learning and deep learning models on
3 datasets, together with the 95% confidence limits. Since
the number of cross-validation is small in LOSO, we use
t-distribution for an unbiased 95% confidence interval as:

95% confidence interval

S S
= [M—t(n—l)%,u—l—t(n—l)ﬁ] (11)
2 1 N
S = Z(xt j73) (12)
n—1 p

where n denotes the number of users in different datasets,
and w is the average of samples xi, ..., x;. The following
insights can be obtained: (1) Under the non-cross-subject
test, all models except LSTM achieved nearly perfect per-
formance, and traditional machine learning models got the
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FIGURE 5. The architecture of CNN-LSTM model in this paper.

highest F1-score and accuracy on all datasets. On the smaller
mHealth dataset, the traditional machine learning models
generally outperform the deep learning models on F1-score
and accuracy, while on the larger dataset like UCIDSADS,
the deep learning models become comparable. (2) Compared
with the non-cross-subject tests, all models have different
degrees of performance loss in cross-subject conditions, and
the traditional machine learning models, especially SVM
and random forest, show better generalization ability on the
three datasets. In detail, the average Fl-scores loss of the
traditional machine learning models are 5.45%, 8.20%, and
7.88% on mHealth, PAMAP2, and UCIDSADS, respectively,
while the numbers for the deep learning models are 15.23%,
13.77%, and 15.52%. (3) The deviation of Fl-score and
accuracy are quite small in non-cross-subject test, while the
numbers increase significantly in LOSO test, indicating the
unstable performance over different subjects. On the smaller
mHealth dataset, the traditional machine learning models
share hardly any overlap in deviation with deep learning.
However, in PAMAP2 and UCIDSADS the overlap becomes
noticeable, which means the deep learning models have better
performance on some subjects. Random forest has the small-
est deviation among all the datasets, which is the robustest
solution for cross-subject HAR.

Fig. 8 shows the average confusion matrix of deep learning
(DL) models (except for LSTM) and traditional machine
learning (TML) models under the cross-subject LOSO testing
condition. It is worth noting that two simple static activ-
ities, standing and sitting, are easily confused with other
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CNN Layers

LSTM Layers

activities in deep learning models over three datasets, which
is however much improved in traditional machine learning
models. In addition, for most periodic activities, such as walk-
ing (A4), running (AS5), cycling (A6), nordic walking (A7),
rope jumping (A12) in PAMAP2; exercising on a stepper
(A13), exercising on a cross-trainer (A14), jumping (A18)
in UCIDSADS, etc., traditional machine learning models
have better classification performance. Nevertheless, for the
confusion between similar activities, such as jogging (A10)
and running (A11) in mHealth; standing and moving in an
elevator (A7, AS8), walking on different planes (A9, A10,
All) in UCIDSADS, traditional machine learning methods
do not take more advantages.

In addition, by analyzing the confusion matrix of each
subject, we found that in cross-subject activity recognition,
deep learning models are more likely to misclassify some
activities almost entirely, resulting in a significant drop in
overall recognition accuracy. For instance, the static activity,
Al: standing still of subject 1, are all wrongly classified as
AS8: knees bending in the mHealth dataset using deep learning
models, as shown in Fig. 9(a), (c), and (e). While in traditional
machine learning cases, the classification remains accurate,
which can be seen in Fig. 9(b), (d), and (f).

Nevertheless, some traditional machine learning models
can also make a totally wrong recognition. For example, the
A7: standing in an elevator in UCIDSADS is incorrectly
classified as A8: moving in an elevator for subject 4 using
SVM, as shown in Fig. 10(d), which is similar to the behavior
of BLSTM and CNN-LSTM in Fig. 10(c) and (e), while the
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TABLE 6. The average accuracy and 95% confidence limits of different learning models on the three datasets using non-cross- and cross-subject

evaluation criterion. The best accuracy among all the methods is highlighted.

mHealth PAMAP2 UCIDSADS

Non-cross Cross Non-cross Cross Non-cross Cross
Convld 98.744+0.31 | 83.4246.78 | 97.41+£0.34 | 84.15£15.35 | 97.88+0.83 85.4+4.84
Conv2d 99.240.54 83.6£6.21 98.1610.34 90.0746.23 98.754+0.13 88.8+£3.06
LSTM 91.144+1.38 | 83.2644.12 | 86.95+£2.03 | 73.62+£16.26 | 97.49+0.41 | 82.97+4.85
BLSTM 95.164+0.97 | 84.04+5.67 | 93.98+0.75 | 78.87£17.81 | 97.98+0.58 | 82.14+5.44
CNN-LSTM | 98.314+0.13 | 83.314£5.88 | 95.34+1.11 | 80.08£12.86 97.54+0.79 84.484+2.5
KNN 99.164+0.01 | 94.68+2.85 97.240.34 88.83+6.87 98.691+0.12 | 90.18+3.07
SVM 99.4340.14 | 94.41+3.82 98.861+0.0 91.724+7.85 99.34+0.16 | 93.05+3.93
RF 99.54+0.03 94.3343.1 98.5740.09 92.17+4.53 98.740.38 92.242.49

TABLE 7. The average F1-Score and 9
evaluation criterion. The best F1-score among all the methods is highlighted.

5% confidence limits of different learning models on the three datasets using non-cross- and cross-subject

mHealth PAMAP2 UCIDSADS
Non-cross Cross Non-cross Cross Non-cross Cross

Convld 98.7+0.36 80.99+7.82 97.4+0.36 83.16+16.68 97.7£1.23 83.01+5.66
Conv2d 99.09+0.79 | 80.76+7.34 | 98.134+0.39 89.73+6.82 98.744+0.14 | 87.31£3.47
LSTM 89.62+1.88 | 79.74+4.63 | 84.034+2.85 | 70.15£17.85 | 97.2940.55 | 79.95+6.34
BLSTM 94.66+1.17 | 81.44+6.63 | 93.8640.81 77.94+19.5 97.861+0.79 78.97+6.9
CNN-LSTM 98.3£0.13 81.2846.7 95.324+1.14 78.98+14.2 97.51+0.79 | 82.24+2.97
KNN 99.16+0.01 | 94.28+3.27 | 97.184+0.35 87.83£8.61 98.671+0.13 | 89.3343.52
SVM 99.4340.14 93.9+4.44 98.861+0.0 90.5949.65 99.341+0.16 | 92.27+4.72
RF 99.54+0.03 | 93.59+3.71 | 98.5740.09 91.61+5.42 98.691+0.39 | 91.4543.38

classification is relatively correct using Conv2d-CNN, KNN
and random forest as shown in Fig. 10(a), (b), and (f).

B. ANALYSIS AND VALIDATION

1) GENERALIZATION ABILITY OVER HAND-CRAFTED
FEATURES

The heterogeneity among subjects is the main reason for the
decline of cross-subject recognition performance. As shown
in Fig. 11 (a), the t-SNE (t-distributed stochastic neighbor
embedding) algorithm based on euclidean distance metric
is used to map the raw data of the mHealth dataset to a
two-dimensional space for visualization, where the perplexity
and the maximum number of optimizing iterations are set
to 30 and 1000, respectively. From Fig. 11 (a) most of the
subject data in one certain activity are clustered individually,
which means that the subject data has its unique input dis-
tribution. It is worth noting that the two-dimensional data
points corresponding to the Al (standing still) and A2 (sit-
ting and relaxing) activities of different subjects are quite
scattered and mixed with other activities, which is consistent
with the overall confusion results of deep learning models
in Fig. 8. On the other hand, the hand-crafted features used
by traditional machine learning models are designed based
on domain knowledge and do not depend on specific sub-
jects, thus these time-frequency domain statistical features
can reduce the data distribution differences between different
users, as shown in Fig. 11 (b). This is one of the major
reasons why traditional machine learning models generalize
better on cross-subject scenarios, since the end-to-end trained
deep learning models automatically extract features based on
training data, from which subject-related features are easy
to learn and the models are more susceptible to training
distribution. Moreover, HAR datasets often have a small
scale compared with tasks like computer vision and natural
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TABLE 8. The average accuracy and F1-score of MLP model with
hand-crafted features.

Dataset Accuracy (%) Fl1-score (%)
Non-cross-subject | Cross-Subject | Non-cross-subject | Cross-Subject
mHealth 99.24 93.40 99.21 92.33
PAMAP2 97.79 90.61 97.71 89.30
UCIDSADS 98.43 92.62 98.42 91.76

language processing, making the deep learning models with
a large amount of parameters hard to extract general features.

To compare the effect of traditional hand-crafted features
and features automatically extracted by the neural network
on cross-subject recognition, the feature extraction part is
removed in deep learning models and only retained the fully
connected layers to form an MLP classifier. According to
the criteria defined in section III-B, the activity recognition
performance of MLP using hand-crafted features as input
under both non-cross-subject and cross-subject conditions is
evaluated. The experimental results are shown in Table 8§,
where MLP using hand-crafted features has achieved better
cross-subject recognition results than the five deep learn-
ing models on all three datasets, and the average F1-score
and accuracy is comparable with SVM and random forest,
proving the superiority of traditional hand-crafted features in
cross-subject recognition.

2) TRAINING STRATEGY FOR DECISION-TREE-BASED
LEARNING METHODS
One of the key solutions for the cross-subject recognition
problem is to maximize the discrimination among different
classes and ignore the various distribution of subjects, which
is performed by transfer learning in deep neural networks as
mentioned in Section II. In this paper, we propose a novel
training strategy for the decision-tree-based learning methods
under this principle to cope with cross-subject scenarios.
Recall that the Gini impurity, when making decision trees
in the random forest, indicates the label diversity of data in the
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FIGURE 6. The box plot of F1-score of different learning models on the
three datasets using non-cross- and cross-subject evaluation criterion.

current node, as shown in (1) where p; actually means the data
proportion of class i. In the traditional training phase, each
decision tree is established by greedily selecting the features
and corresponding thresholds to minimize the weighted sum
of Gini impurity of every left and right child nodes recur-
sively, formulated as:

. np n
min | = (1=0p0 )+ o (1= 200 )] (3)
i i

where n = n; + n, is the total number of samples from
left and right child nodes. The process of node division is
actually feature selection, thus ideally features unrelated to
subjects characteristic but strongly related to distinguishing
activities should be selected to achieve better cross-subject
generalization.

On the other hand, it is necessary to reduce the gini impu-
rity on labels of different activity classes, while keeping the
gini impurity on labels of different subjects as much as pos-
sible. In this case, the samples are split into nodes regardless
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FIGURE 7. The box plot of accuracy of different learning models on the
three datasets using non-cross- and cross-subject evaluation criterion.

of distinguishing the subjects, which can be formulated as a
new object as:

ny n
max | — 1=>"p +;’ 1=>"p;, (14)
j j

where p; ; and p; , are the sample proportion of subject jin left
and right child nodes, respectively. A parameter « € [0, 1) is
set to represent the importance of gini impurity for subject
labels, then the original criterion of finding the best split can
be rewritten as maximizing the following formula:

ny n
2 bl Rl Rl R B
J J

n
1= "p2 + 1=>"pi |] a9
i i

, which degenerates to the original object function (13) when
o = 0. Similarly, the entropy criterion in (2) can be modified
to a subject-independent form as well.

ny
—(1-a)—=
n
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FIGURE 8. Average confusion matrix of deep learning and traditional machine learning models on the three dataset under strict LOSO

cross-validation.

By varying « from 0.1 to 0.9 with each step of 0.1 into
Table 2 as new hyper-parameter grid searching, the random
forest model is re-trained and tested under strict cross-subject
LOSO described in Section III-B. Table 9 shows the aver-
age accuracy and Fl-score of random forest with modified
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training strategy, where the cross-subject performance is bet-
ter than the all the method as shown in Fig. 6 and 7. The
paired t-tests is conducted between the original random forest
and the modified one on Fl-score to determine the degree
of significant difference in terms of the significance level
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FIGURE 9. Confusion matrix of subject 1 on mHealth using different learning models.

p—value (two tailed). Using a threshold of p = 0.05 for
the null hypothesis, the result reflects the effectiveness of
the proposed training strategy. Note that in PAMAP2 the
null hypothesis is nearly failed to reject due to the uneven
activities labels distribution as shown in Fig. 2, and the
sample numbers for different subjects are also significantly
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diverse [26], which is hard for the modified random forest to
make a balanced tree node splitting between subject labels
and activity labels.

We further explore the behavior of the modified object
function by varying the number of decision trees in the ran-
dom forest, using a set of fine-grained o with each step of
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FIGURE 10. Confusion matrix of subject 4 on UCIDSADS using different learning models.
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th a larger data scale and even

i

the average recognition accuracy using different numbers of
decision trees. According to the figure, the modified objective

distribution of labels, while in PAMAP2 we find a rapid
performance degradation, which further explains why the null

hypothesis is nearly failed to reject.

in accuracy with

function can achieve stable improvement

appropriate «, and the trends of improvement introduced by

different o are highly consistent in single dataset when the
number of trees increases in the random forest. Moreover, the

Fig. 13 illustrates the comparison of accuracy for each
individual subject using the original and modified random

forest, with the optimal « value and 50 decision trees. It is

optimal « is correlated with the characteristics of the dataset.
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FIGURE 11. The t-SNE projection for raw data and hand-crafted features
on mHealth dataset.

worth noting that in all the datasets, the modified strategy
can improve the worst recognition accuracy, as subject 6 in
mHealth, subject 1 in PAMAP2, and subject 8 in UCID-
SADS. This is because the modified object function tends
to assign labels of different individuals to different child leaf
nodes evenly, which reduces the accuracy deviation between
individuals and further strengthens the cross-subject general-
ization.

As mentioned in Section II, datasets selection, window
length, testing criterion, and other factors directly affect the
performance of the HAR model in the experiment, so there is
no standard comparison benchmark among different studies.
Nevertheless, Table 10 lists the result of state-of-the-art cross-
subject HAR studies that considered the same datasets as this
paper used, and the random forest with the proposed learning
method is also included. Note that “~.”> means no results are
provided on the dataset.

In Table 10, only [60] used the same strict LOSO crite-
rion with training, validation, and testing as mentioned in
Section III-B where the hyper-parameters are transparent to
the testing set, while in other LOSO-based studies the model
are determined by the best result on the testing set. It worth
noting that in the domain adaptation research [51], [52], [54],
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FIGURE 12. The behavior of the modified object function when changing
the number of decision trees in the random forest and the «.

[55], [58], the labeled and unlabeled target samples were used
when training the models, while the other studies had only
training data for constructing the classifiers.
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TABLE 9. The average accuracy and F1-score of random forest with modified training strategy. The p—value from paired t-tests on F1-score is also

presented.
Accuracy (%) F1-score (%)
Dataset Non-cross-subject T Cross-Subject | Non-cross-subject | Cross-Subject p-value
mHealth 99.42 95.09 99.42 94.49 0.024
PAMAP2 98.46 92.21 98.46 91.64 0.038
UCIDSADS 97.85 93.29 97.82 92.70 0.005
TABLE 10. Comparison of the accuracy (a) and F1-score (f) for cross-subject HAR on the three datasets.
Studies Criterion mHealth PAMAP2 UCIDSADS
Unsupervised Domain Adaptation [54] LOSO ~ ~ 96.9a
Unsupervised Domain Adaptation [55] ~ ~ 77.68£/79.79a | 75.72f/76.67a
Unsupervised Domain Adaptation [58] LOSO ~ 13a S5la
Data Augmentation [49] LOSO ~ 78.6f ~
Domain Generalization [60] Strict LOSO ~ 81.6f ~
Domain Generalization [17] LOSO 96.07£/96.07a | 82.13f/83.21a | 91.59£/92.14a
CNN [41] LOSO 88.2f/85.1a ~ ~
Supervised Domain Adaptation [52] LOSO ~ 89.6a ~
Supervised Domain Adaptation [51] LOSO ~ ~ 95.6a
Manifold Learning [48] LOSO ~ ~ 87.0a
Proposed Strict LOSO | 94.49£/95.09a | 91.64£/92.21a | 92.70£/93.29a

C. DISCUSSION

Except for LSTM, the deep neural network models used in
this paper have achieved comparable or better classification
accuracy than [22], [67], [68] under non-cross-subject tests.
The LSTM model is sensitive to the length of time series.
In the experiment, in order to obtain a unified comparison
benchmark, we adopt a fixed time window of one-second
length for sliding window segmentation on all three datasets
with different sampling frequencies, which makes the sam-
ples of the three datasets have a different number of sampling
points. As shown in Fig. 6 and 7, on the PAMAP2 and
mHealth datasets with higher sampling rates (more sampling
points), the non-cross-subject classification accuracy of the
LSTM model is much lower than that of other models. There-
fore, the effect of the number of sampling points on the LSTM
model is evaluated as shown in Fig. 14, where the dark-color
lines denote the non-cross-subject test while the correspond-
ing light-color lines are the results of the cross-subject test.
Overall, using fewer sampling points tends to yield higher
cross- and non-cross-subject recognition accuracy, but in
most cases the cross-subject test has a 15~20% drop in
F1-score relative to the non-cross-subject test, indicating that
the number of sampling points has no decisive influence on
the cross-subject recognition performance.

In cross-subject recognition, traditional machine learning
methods show higher generalization performance, among
which the instance-based KNN method does not require train-
ing. However, in practical applications the samples of the
training set need to be saved as the classification basis, thus
occupying a lot of memory. Compared with SVM, the random
forest not only achieves better recognition accuracy under
modified training strategy, but also has the advantages of a
smaller memory footprint, shorter prediction time, and faster
training speed [64]. In general, the random forest model is
the best choice for resource-constrained embedding wearable
devices.

In this paper, traditional machine learning methods based
on hand-crafted features are more suitable for the new subject
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TABLE 11. The improvement of average F1-score (%) for Conv2d-CNN
model on three datasets by leaking some testing samples.

baseline | 1-shot | 5-shot | 10-shot
mHealth 83.60 91.60 96.97 98.15
PAMAP2 90.07 90.20 94.36 95.93
UCIDSADS 88.80 93.52 96.63 96.48

TABLE 12. The improvement of F1-score (%) for random forest model on
three datasets by leaking some testing samples.

baseline | 1-shot | 5-shot | 10-shot
mHealth 94.49 96.63 98.18 98.62
PAMAP2 91.64 93.78 95.05 95.66
UCIDSADS 92.70 94.07 94.23 94.54

scenarios in terms of computational complexity and gen-
eralization, which however does not mean that deep learn-
ing methods are useless in cross-subject recognition. The
characteristics of end-to-end training and automatic feature
extraction make deep learning models flexible and easy to
expand. For example, fine-tuning the trained deep learning
models with a small number of labeled samples of the new
target subject can quickly reduce the differences in data
distribution and obtain a personalized classification model.
Table 11 shows the improved cross-subject recognition per-
formance of the Conv2d-CNN model after fine-tuning, where
n-shot means the number of samples from the testing subject.
The traditional machine learning method is limited by the
training method and can not perform fine-tuning on the pre-
trained model, thus we re-train the random forest model
under the condition of leaking a small number of target
samples. As shown in Table 12, on the mHealth dataset with a
small data scale, the random forest model with leaked testing
samples is slightly better than Conv2d-CNN, while on the
UCIDSADS dataset with a larger data scale, the fine-tuned
Conv2d-CNN performs better.

This paper has some limitations. First, the sizes of the
datasets we use are small and complete, and they have
relatively even distribution on activity labels. We have not
covered situations that have huge amount of missing data or
significant uneven labels like the last subject in PAMAP2,
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model on the three datasets.

which might be an advantage for deep learning case. Sec-
ond, the explanation for the reason that traditional machine
learning performs better than deep learning on cross-subject
HAR is limited. The decision boundaries for different meth-
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ods have not been explicitly examined in each LOSO test.
Third, the deep learning architectures are inspired by previous
studies, and we have not evaluated whether the structure has
implicit impact on the result (e.g. the number of convolutional
layers in CNN). Finally, although statistical significance, the
improvement of modified training process in random forest
is small, and we have not proved the methodology on other
tasks other than HAR to provide enough evidence for the
superiority.

V. CONCLUSION

In this paper, five deep neural network models and three
traditional machine learning models are trained and evalu-
ated on three classic HAR datasets: mHealth, PAMAP2, and
UCIDSADS. A strict cross-subject LOSO test is deployed
to simulate new subject scenarios and evaluate the general-
ization performance of deep neural networks and traditional
machine learning in cross-subject recognition, and the result
indicates that all models experience significant performance
degradation due to the heterogeneity among subjects, com-
pared to non-cross-subject recognition. In general, the tradi-
tional machine learning methods using hand-crafted features
achieve better cross-subject recognition than deep learning
models on the three datasets, and the analysis proves that
the automatic end-to-end feature extraction using deep neu-
ral networks is more susceptible to distribution difference
between users and prone to learning user-dependent features
from training sets. This paper also provides a novel decision-
tree-based training strategy, which makes the random forest
model achieve best cross-subject HAR performance over
all the using learning models, and the competitive results
are obtained compared with state-of-the-art cross-subject
HAR solutions. In detail, the average F1-score (accuracy) on
the three datasets are 94.49% (95.09%), 91.64% (92.21%),
and 92.70% (93.29%). Future work will make attempts on
other complex datasets and other learning frameworks like
AdaBoost, GAN, and VAE to find out the best solution for
cross-subject HAR application. The effectiveness of the pro-
posed learning strategy for decision-tree-based methods will
be further evaluated on other cross-subject applications like
handwriting classification and speech recognition.
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