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ABSTRACT Human activities recognition (HAR) plays a vital role in fields like ambient assisted living and
healthmonitoring, in which cross-subject recognition is one of themain challenges coming from the diversity
of various users. Although recent studies have achieved satisfactory results in a non-cross-subject condition,
the recognition performance has significant degradation under the cross-subject criterion. In this paper,
we evaluate three traditional machine learning methods and five deep neural network architectures under the
samemetrics on three popular HAR datasets: mHealth, PAMAP2, andUCIDSADS. The experimental results
show that traditional machine learning approaches are generally more robust to the new subject scenarios
under strict leave-one-subject-out cross-validation. Extra analysis indicates that hand-crafted features are
one major reason for the better performance of traditional machine learning on cross-subject HAR, while
deep learning is more prone to learning subject-dependent features under an end-to-end training process.
A novel training strategy for decision-tree-based methods is also proposed in this paper, resulting in an
improvement on the random forest model which achieves competitive performance at an average F1-score
(accuracy) of 94.49% (95.09%), 91.64% (92.21%), and 92.70% (93.29%) on the three datasets, compared
with state-of-the-art solutions for cross-subject HAR.
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INDEX TERMS Cross-subject, deep learning, human activity recognition, leave one subject out, traditional
machine learning.

I. INTRODUCTION17

Human activities recognition (HAR) has been a popular18

research topic and widely used in the field of ambient assisted19

living [1], health monitoring [2], human-machine interac-20

tion [3], etc. With the significant growth of commercially21

available wearable devices, HAR using inertial measure-22

ment unit (IMU) [4], [5], [6] with the accelerometer, gyro-23

scope, andmagnetometer equipped has gainedmore attention24

recently on account of the ability to provide a portable, pri-25

vate, continuous, non-invasive, and low-cost recognition ser-26

vice, compared to the vision-based HAR [7] which has some27

challenges in privacy protection, resource consumption, and28

blind areas. A typical framework of HAR is shown in Fig. 1,29
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where the general process of the HAR algorithm includes 30

four stages: sensor data acquisition, data pre-processing, off- 31

line feature extraction and model training, and online activity 32

classification. In the data acquisition stage, IMU sensors 33

can be found in glasses [8], phones [9], watches or wrist 34

bands [10], chest patches [11], shoes [12], etc., directly 35

reflecting the subject’s behavior tightly related to physical 36

locations throughout the body. Since measured signals suffer 37

from inherent sensor drift and subject’s unconscious move- 38

ments, median filter and low-pass filter are common methods 39

for data cleaning in the pre-processing stage to eliminate 40

noisy interference and redundant information [5], [13], [14]. 41

Besides, continuous data segmentation is also necessary for 42

this stage by dividing the signal into sliding windows with or 43

without overlaps [15]. Feature extraction and model training 44

stage plays a vital role to detect significant low-dimension 45
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FIGURE 1. The overview of a typical HAR pipeline.

patterns from raw high-dimension sensor input. According46

to different feature extraction methods, current HAR solu-47

tions can be divided into two categories: hand-crafted feature48

extraction with traditional machine learning like naive Bayes49

(NB), decision tree (DT), k-nearest neighbor (KNN), support50

vector machine (SVM), etc., and deep learning using unsu-51

pervised features that automatically mined by the machine52

using an end-to-end training process.53

Cross-subject (or inter-subject) recognition is one of the54

main challenges in HAR research [16], which comes from55

the limited size of datasets, the diversity of human bodies56

and habits, and in particular the diversity of devices’ wear-57

ing modes. Thus, pre-trained models can be significantly58

user-dependent on the training sets and hard to be promoted59

to new users in practical applications. Although traditional60

machine learning and deep learning have achieved satisfac-61

tory results in a non-cross-subject (or intra-subject) testing62

where different samples from the same user appear in both the63

training set and testing set, the performance has significant64

degradation in new user scenarios. Most of the current studies65

on HAR, however, pay less attention to the robustness of66

the model in cross-subject scenarios and only cover an non-67

cross-subject test under a given dataset, lacking a standard68

approach that enables models effectively generalize over het-69

erogeneous datasets performed by different users [17]. They70

either use data of all subjects indiscriminately for training and71

testing [18], [19], [20], [21], [22], or only designate one or a72

group of subjects as fixed testing set [23], [24], which is prone73

to producing biased evaluation results.74

In order to explore the actual cross-subject performance75

on HAR, in this paper we evaluate three traditional machine76

learning methods and five deep neural network architectures77

under the same metrics on three popular HAR datasets:78

mHealth [25], PAMAP2 [26], [27], and UCIDSADS [28],79

considering the data size, the similarity and complexity of the80

activities, and the number of subjects. Hand-crafted features81

with KNN [4], SVM [5], and random forest [14] are selected82

as traditional learning frameworks, while the deep learning83

competitors are convolutional neural network (CNN) [18],84

[19], long short-term memory (LSTM) [20], [29], and their85

hybrid variants [21], [22]. These models are surveyed as most86

common used for HAR by [30], and are trained and tested in 87

this paper under strict Leave One Subject Out (LOSO) cross- 88

validation for a comprehensive examination of cross-subject 89

recognition ability. This paper has the following contributions 90

to the existing studies: 91

1. This paper has conducted a comprehensive strict 92

cross-subject evaluation of traditional machine learning mod- 93

els and common-used deep learning models in new subject 94

scenarios of HAR applications. We have performed experi- 95

ments using traditional machine learning and deep learning 96

models on three publicly available datasets, and the impact 97

of hand-crafted features is further analyzed and discussed. 98

2. A novel training criterion for decision-tree-based learn- 99

ing models is proposed, which tries to discriminate different 100

classes while ignoring the diversity of various subjects. This 101

improvement increases the recognition accuracy of random 102

forest and shows comparable performance with state-of-the- 103

art cross-subject HAR solutions. 104

The rest of this paper is organized as follows. The related 105

works of this paper are presented in Section II. Section III 106

explains the chosen datasets, evaluation criteria, and the set- 107

tings of traditional machine learning and deep learning mod- 108

els. Section IV presents the experimental results of different 109

models in cross-subject activity recognition with detailed 110

analysis and discussion. Finally, Section V concludes this 111

paper. 112

II. RELATED WORK 113

A. HAR BASED ON TRADITIONAL MACHINE LEARNING 114

AND DEEP LEARNING 115

Simple time domain and frequency domain features are com- 116

monly used in HAR [31], [32], [33] like harmonic mean, 117

standard deviation, Pearson correlation coefficient, etc. These 118

hand-crafted features are trained to build a recognition model 119

like random forest, decision tree, SVM, and KNN as shown 120

in Fig. 1. Casale et al. [34] utilized a set of 20 computa- 121

tionally efficient features to recognize 5 basic daily activ- 122

ities. The use of random forest reached a 94% accuracy 123

for recognition, which outperformed the decision tree alone 124

and boosting of trees. With the aid of feature selection and 125

sensor data fusion techniques, Ayman et al. [35] were able 126
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to recognize activities on PAMAP2 with a 99.03% accuracy127

using a random forest classifier. Mekruksavanich et al. [36]128

proposed a framework for recognizing activity based on129

accelerometer, gyroscope, and surface electromyography130

data, achieving 99% accuracy using a decision tree model.131

Arif et al. [4] extracted time-domain statistical features from132

the accelerometer and achieved 97.9% average classification133

accuracy on the PAMAP2 dataset using the KNN model.134

Hsu et al. [5] proposed a wearable inertial sensor network135

and an SVM-based behavior recognition algorithm, reaching136

a recognition rate of 98.23% and 99.55% on 10 common137

family activities (such as walking, running, up and down138

stairs, etc.) and 11 sports activities (such as table tennis,139

badminton, tennis, etc.) respectively. A fast feature dimen-140

sion reduction method was proposed in [6], which used only141

11% of the selected features in the UCIHAR dataset [14],142

achieving a 98.72% accuracy by random forest classifier.143

Helmi et al. [37] also showed that under properly optimized144

feature selection methods, SVM classifier can achieved an145

average accuracy of 98% on UCI-HAR dataset.146

Recent advances in deep learning promote the development147

of deep-feature-based methods, which significantly outper-148

form the hand-crafted features on other learning tasks like149

object tracking [38], image classification [39], speech recog-150

nition [40], etc. One-dimensional [18] and two-dimensional151

CNN [19] can automatically extract features from IMU for152

behavior recognition. In 2D CNN cases multiple sequences153

from multiple sensors are assembled into dynamic images,154

thus the model will not only considers the dependence155

within a single temporal signal, but also counts dependencies156

between signals from different axis and sensors. In order157

to achieve a significantly reduced execution time while the158

model performance remained, Gholamrezaii et al. [41] pro-159

posed a convolutional layer only architecture by removing160

the pooling layer and adding strides. An ensemble of CNN161

streams was proposed in [42], and the multi-modal and multi-162

temporal approach outperformed some state-of-the-art stud-163

ies. On the other hand, the recurrent neural network (RNN) is164

another deep model that is often used for speech recognition,165

natural language processing, and other sequential tasks with166

various length sequences of inputs, of which the LSTM is167

a unique structure variant that is suitable for processing and168

predicting important events with long intervals and delays in169

time series. Ullah et al. [29] proposed a stacked network con-170

sisting of five LSTM layers for HAR from smartphone data,171

with an accuracy of 93.13% achieved in UCIHAR dataset.172

Hernandez et al. [20] improved the distinction betweenwalk-173

ing up and down stairs using a bi-directional LSTM (BLSTM)174

network, which can cope with the past and future information175

of signals.176

CNN and RNN have their respective advantages in extract-177

ing temporal and spatial features. Therefore many studies178

have designed hybrid models based on CNN and RNN for179

better performance on HAR. Ordonez et al. [21] proposed a180

general network framework consisting of a four-layer CNN181

and a two-layer LSTM for behavior recognition coined as182

DeepConvLSTM, which achieved a 7.4% and 3.2% perfor- 183

mance improvement over the original CNN baseline model 184

in the Skoda [43] and Opportunity dataset [44], respectively. 185

Huan et al. [22] proposed a hybrid CNN and BLSTM net- 186

work based on multi-feature fusion and a novel feature selec- 187

tion method. Experiments on PAMAP2 and UT-data [10] 188

obtained F1-scores at 92.23% and 98.07%, respectively. 189

Lv et al. [45] introduced a margin mechanism to enhance the 190

discriminative ability for deep learning, which was proved 191

to be effective for different kinds of deep architectures and 192

their hybrid variants. In addition, Li et al. [46] found that 193

the features obtained by hybrid deep-learning architectures 194

involving CNN and LSTM, had advantages to discover both 195

short-term and long-term temporal relationship in the data. 196

B. CROSS-SUBJECT STUDIES OF HAR 197

The heterogeneity introduced by different subjects can 198

significantly reduce the accuracy of activity recognition. 199

Ravi et al. [47] made an experiment on 2 subjects wearing an 200

accelerometer on the waist and recorded eight daily activities 201

on different dates. They found that over 99% accuracy was 202

achieved on cross-validation when two subjects’ data were 203

mixed for training and testing, while only 65% accuracywhen 204

the subjects’ data were divided and used as either training or 205

testing set. Janidarmian et al. [33] evaluated different tradi- 206

tional machine learning methods on HAR using accelerom- 207

eter data from 14 public datasets containing 8 independent 208

positions and 8 daily activities (walking, running, jogging, 209

biking, standing, sitting, lying, up and down the stairs). In the 210

non-cross-subject 10-fold evaluation, the average classifica- 211

tion accuracy of the 8 positions was 96.44%±1.62%, how- 212

ever the number decreased to 79.92%±9.68% in the LOSO 213

cross-subject evaluation. 214

Recent efforts on cross-subject HAR focus on transfer 215

learning, manifold learning [48], and data augmentation [49]. 216

Transfer learning with domain adaptation and domain gener- 217

alization have been the most effective method to solve this 218

problem, in which training subject data can be regarded as 219

the source domain, while testing subject data are the target 220

domain. According to whether the target domain data are 221

labeled or not, the domain adaptation can be regarded as 222

supervised and unsupervised. 223

(1) Supervised domain adaptive method was adopted 224

in [50], [51] to update the pre-trained model with 225

labeled source domain data using few-shot fine-tuning. 226

Akbari et al. [52] achieved transfer learning using variational 227

autoencoder (VAE) to identify the vital unlabeled samples 228

and extract domain-invariant features. Since the labels from 229

testing set are leaked, this method is not suitable for ready-to- 230

use HAR solution that must immediately infer activity classes 231

for new subjects without fine-tuning. 232

(2) Unsupervised domain adaptation aligns the fea- 233

ture distributions between source and target domains by 234

means of distance minimization [53], [54], [55], [56] or 235

generative adversarial networks (GAN) [57], [58], [59], 236

[60]. Hosseini et al. [53] designed a BLSTM to extract 237
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representative features and minimize confusion between238

source and target domains through maximum mean discrep-239

ancy loss. Zhang et al. [54] proposed a cross-subject adaptive240

method called gaussian-guided feature alignment as distance241

minimization metrics. For soft label and coarse-grained prob-242

lems in class-to-class and set-to-set distribution alignment,243

a trade-off local domain adaptive method was proposed244

in [55] as fine-grained cluster-to-cluster distribution align-245

ment between source and target domains. On the other246

hand, some researchers use GAN to automatically learn247

the implicit metric function between source and target248

domain. Soleimani et al. [57] took labeled and unlabeled data249

from different subjects as GAN input. In the training pro-250

cess, the feature extractor and domain discriminator were251

trained against each other to learn the domain-invariant fea-252

tures. Chakma et al. [58] proposed a multi-source adversarial253

domain adaptive framework to select themost relevant feature254

from multiple source domains and establish the mapping to255

the target domain. In unsupervised domain adaptation cases,256

the original or the summary of training data must be saved257

in the system to perform a distribution alignment with new258

targets, thus the occupation of memory increases as the data259

from new subjects are continuously added to the system.260

Meanwhile, the adversarial domain generalization method261

was used in [17] and [60] for cross-subject recognition. Only262

the labeled data of training subjects were used to extract263

domain invariant features which were independent of sub-264

jects through adversarial learning, thus the model had good265

generalization performance on different but similar domains.266

In this case, the labels from testing set have no leakage and267

the distribution summary of training set will not be kept268

in the system, however the model is fixed like traditional269

machine learning methods and can not be fine-tuned. Once270

the model needs updating, the system will be re-trained from271

the beginning using the whole dataset.272

C. COMPARISON STUDIES OF HAR273

Sensors configuration, datasets selection, window length,274

testing method, and other factors directly affect the perfor-275

mance of the HAR model in the experiment, so there is276

no standard comparison benchmark among different stud-277

ies. Many researchers have conducted comparative studies278

on existing methods under the same evaluation metric from279

different perspectives. Wan et al. [61] compared the advan-280

tages and disadvantages of CNN, LSTM, BLSTM,multilayer281

perceptron (MLP), and SVMalgorithms inHARonUCIHAR282

and PAMAP2 datasets under non-cross-subject evaluation.283

Hou et al. [62] compared the performance of HAR among284

traditional machine learning methods (SVM, KNN, and ran-285

dom forest) and deep learning methods (CNN and LSTM),286

and they found that when the size of HAR datasets is small,287

traditional structures are more likely to obtain satisfactory288

results, while deep learning methods are better choices when289

the dataset has a large scale. Leonardis et al. [63] comprehen-290

sively evaluated the effectiveness of five traditional machine291

learning classifiers (SVM, DT, KNN, NB, and MLP) on292

self-labeled activity recognition datasets, and focused on 293

discussing the real-time performance of different classifiers 294

on wearable devices. Angerbauer et al. [64] examined the 295

traditional machine learning model and two commonly used 296

deep learning models (CNN and LSTM) on HAR in terms 297

of accuracy, memory consumption, real-time performance, 298

etc. They found that random forest is the best model for 299

memory-limited applications, while the best model consid- 300

ering complexity and performance is linear kernel SVM. The 301

two deep neural networks are comparable in performance, but 302

their increasing complexity makes it hard for real use cases. 303

Gholamiangonabadi et al. [41] compared the cross-subject 304

HAR performance between the feed forward neural network 305

and CNN, and the results showed that CNN architecture with 306

two convolutions and one-dimensional filter had the best 307

generalization ability. 308

D. SUMMARY 309

With the growth of deep learning research, recent HAR stud- 310

ies focus on the improvement of recognition accuracy using 311

complex deep architectures or transfer learning [53], [54], 312

[55], [56] rather than traditional solutions [4], [5], [14]. How- 313

ever, some studies [64], [65] discovered the phenomenon that 314

the traditional solutions outperform deep methods under the 315

samemetric on HAR, and the reason remained unclear. In this 316

paper, we conduct a comprehensive comparison between 317

traditional machine learning and deep learning methods on 318

HAR under strict LOSO validation, and make a further anal- 319

ysis to the result of the experiment. Different from studies 320

like [45], [46], the hyper-parameter settings of traditional 321

machine learning is clarified in detail in this paper, together 322

with the explicit definition of strict LOSO cross-validation. 323

III. MATERIALS AND METHODS 324

A. DATASETS 325

To comprehensively evaluate the cross-subject activity recog- 326

nition performance of traditional machine learning and deep 327

learning, we selected 3 datasets with different scales, con- 328

taining multiple subjects and covering simple, complex, and 329

similar activities. 330

The mHealth dataset contains body motion and vital 331

signs recordings from 10 subjects. Each subject performed 332

12 activities in an out-of-lab environment without any con- 333

straints. 3 IMU sensors were placed on the subject’s chest, 334

right wrist, and left ankle to measure the 3-axis acceleration 335

(m/s2), 3-axis angular velocity (deg/s), and 3-axis magnetic 336

field (G/s), respectively. Besides, the sensor placed on the 337

chest also provides 2-lead ECGmeasurements. The sampling 338

frequency of all sensors is 50 Hz. 339

The PAMAP2 dataset is a benchmark for daily activity 340

recognition. It was recorded by 9 subjects (8 males and 341

1 female, aging from 24 to 32), wearing three IMUs placed on 342

the arm, chest, and ankle, respectively, consisting of 12 activ- 343

ities including simple activities (such as sitting, running, etc.) 344
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and complex activities (such as cleaning, ironing, etc.). The345

sensor data were recorded at 100 Hz.346

The UCIDSADS dataset was specially constructed for347

daily and sports activities recognition. It comprises 19 activ-348

ities, covering multiple groups of similar activities such as349

walking on a treadmill with different inclination angles,350

cycling in a vertical or horizontal position, etc. Each activity351

was performed by 8 subjects for 5 minutes in their style352

without any constraints. 5 IMU sensors on the torso and the353

four limbs were calibrated to acquire data at the sampling354

frequency of 25 Hz.355

Only IMU data from the 3 datasets are used in the experi-356

ment. The raw sensor data are cleaned according to the pro-357

cedures specified in papers that described the datasets [25],358

[26], [27], [28]. Linear interpolation is used to cope with359

missing data, and 10 seconds from the beginning and the360

end of each labeled activity is deleted to void dealing with361

eventual transient activities, as mentioned in [26]. In detail,362

a median filter and a fifth-order Butterworth low-pass filter363

with the cut-off frequency at 11 Hz are applied to reduce364

the noise. Before feature extraction, the sensor data are seg-365

mented by a sliding window with an appropriate length.366

A smaller window size may not accurately capture all the367

features of the activity, while a larger window size may intro-368

duce interference from other actions. In this paper, a fixed369

length of one-second sliding window with 50% overlap is370

used to perform segmentation on the 3 datasets. The label371

distribution of the PAMAP2 dataset is uneven, especially for372

subject 9 who lacks most of the samples after data cleaning,373

and thus only the data from subjects 1 to 8 are used in the374

experiment. Fig. 2 and Table 1 show the statistic details of375

the 3 datasets, including the composition and proportion of376

each activity.377

B. EVALUATION CRITERIA378

Strict cross-subject LOSO test: To simulate new subject379

scenarios and evaluate the cross-subject recognition perfor-380

mance of the model, we adopt a strict cross-subject LOSO381

cross-validation as followed: First, all samples of subject i382

are taken from N subjects from the dataset as the testing set,383

and the remaining N − 1 subjects are used as the training384

set, in which the optimal hyper-parameters are grid-searched385

using LOSO cross-validation as well. After determining the386

optimal hyper-parameters, the model is re-trained on the387

entire training set, and the classification performance is tested388

on the testing set consisting of subject i. The process above is389

iterated N times until each subject has been taken as the test-390

ing set once, and the cross-subject recognition performance391

is obtained by averaging the results from N iterations.392

Non-cross-subject 5-fold test: In HAR-related research, the393

non-cross-subject test is usually used to verify the perfor-394

mance of the model regardless of subject labels, in which395

the training set and testing set may contain different samples396

from the same subject, thus the classification models can397

achieve fairly high recognition accuracy on the testing set.398

To simplify the training process and maintain a unified com-399

FIGURE 2. Activity distribution of the 3 datasets: mHealth, PAMAP2, and
UCIDSADS.

parison benchmark, this paper directly uses the N groups of 400

hyper-parameters obtained through the cross-subject LOSO 401

cross-validation mentioned above as the model configuration 402

(i.e., the validation process is skipped), and performs a non- 403

cross-subject 5-Fold cross-testing (80% samples for the train- 404

ing set and the rest 20% samples for the testing set) on the 405

dataset. Finally, the average classification performance of N 406

groups of hyper-parameters is taken as the non-cross-subject 407

recognition result of the model. 408

C. METHODS 409

Model design and hyper-parameter selection need to avoid 410

overfitting to overcome the impact of new subject scenar- 411

ios. For traditional machine learning models, this paper 412

incorporates the parameters related to overfitting into the 413

hyper-parameter search space, such as the maximum tree 414

depth in the random forest, the regularization parameter 415

of SVM, etc. For deep learning models, effective general- 416

ization methods such as dropout, batch normalization, and 417

L2 regularization are fully utilized in the network structure 418

design. For HAR, a lightweight deep learning model is suffi- 419

cient to achieve a satisfactory recognition performance [66], 420

while too many trainable parameters often have the risk of 421
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TABLE 1. Statistics of the 3 datasets: mHealth, PAMAP2, and UCIDSADS.

TABLE 2. Evaluated hyper-parameters for traditional machine learning
models in this paper.

overfitting, so the network model is preferably designed with422

fewer network layers.423

1) TRADITIONAL MACHINE LEARNING424

In this paper, the three most widely used traditional machine425

learning models, SVM, random forest, and KNN, are selected426

for recognition performance evaluation. According to the427

criteria defined in section III-B, each of those models has428

been tuned to extract the best possible cross-subject perfor-429

mance for the given dataset using grid search over the defined430

hyper-parameter space shown in Table 2. For example, the431

number of neightbors in KNN has five choices, while the432

weights function has two, then we have 5×2 hyper-parameter433

sets for grid search. Note that ‘‘r’’ means not applicable for434

the candidate.435

All parameter n in Table 2 are the number of the input436

features. The RBF in SVM denotes the radial basis function437

kernel; γ is the kernel coefficient where var is the variance438

of the features; C is the regularization parameter in SVM.439

In KNN, the weights function ‘‘uniform’’ means all points in440

each neighborhood are weighted equally, while ‘‘distance’’441

means points are weighted by the inverse of their distance.442

In the random forest, the splitting criterion is the function to443

measure the quality of the feature split in tree nodes. The Gini444

impurity is calculated as:445

Gini = 1−
∑
i

p2i (1)446

while the entropy (information gain) is obtained by:447

Entropy = −
∑
i

pi log2 pi (2)448

where pi is the probability of class i from all data in current449

node.450

Traditional machine learning relies on good feature engi-451

neering to express the original data. After pre-processing and452

slidingwindow procedure, we performed dimension augmen-453

tation on the input data. First, the amplitude value M was454

TABLE 3. Hand-crafted features in the time and frequency domain used
in this paper.

calculated as: 455

M =
√
s2x + s2y + s2z (3) 456

to reduce the influence of orientation variation, where sx , sy, 457

and sz are data from the 3-axis of each sensor in each time 458

window, respectively. Then, the original data and amplitude 459

data were converted to the frequency domain by applying the 460

short-time Fourier transform. Table 3 lists the hand-crafted 461

features in the time domain and frequency domain used in this 462

paper, where mean, harmonic mean, median, etc., measure 463

the central tendency of the data, while standard deviation, 464

absolute median deviation, and interquartile range describe 465

the distribution of data for each time window. Note that x = 466

{x1, x2, . . . , xi, . . . , xn} are sample points from one axis of 467

the sensor within a single time window, and n is the window 468

length. The Pearson correlation coefficient represents the cor- 469

relation between data from different axes of the sensor. If the 470

harmonic mean and Pearson correlation coefficient encounter 471

a zero division, they are both set to 0 directly. For each IMU 472

device, the accelerometer, gyroscope, and magnetometer all 473

have 3 axes, thus all the feature components mentioned in 474

Table 3 have 9 dimensions. 475

We extracted corresponding features mentioned in Table 3 476

from the data frame after dimension expansion (includ- 477

ing original time-domain data, amplitude time-domain data, 478

original frequency-domain data, and amplitude frequency- 479

domain data), which were further normalized into a normal 480

distribution with mean 0 and variance 1 according to (4), 481

where fµ and fσ are the mean and standard deviation of the 482

input feature f . Before the normalization, we delete the fea- 483

tures that are not distinct enoughwith fσ < 0.01. The extracted 484

and actually used numbers of features on the three datasets are 485

listed in Table 4. Finally, the concatenated features are used 486
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TABLE 4. Extracted and used feature number on the three datasets.

as the input of traditional machine learning classifiers listed487

in Table 2.488

f − fµ
fσ

(4)489

2) DEEP LEARNING490

In this paper, 5 commonly used deep neural network archi-491

tectures in the field of HAR are chosen for experiments,492

namely Conv1d-CNN, Conv2d-CNN, LSTM, BLSTM, and493

CNN-LSTM. The overall architecture of the Conv1d-CNN494

and Conv2d-CNN is shown in Fig. 3, consisting of 3 con-495

volutional layers, 3 max-pooling layers, and a fully con-496

nected layer. The batch normalization is used between each497

convolutional layer to speed up convergence and improve498

generalization, while the dropout is used to prevent over-499

fitting before the fully connected layer. Conv1d-CNN and500

Conv2d-CNN have the same network structure, but use dif-501

ferent convolution kernels: Conv1d-CNN regards the original502

data as a multi-channel continuous time series and uses a503

one-dimensional convolution kernel; Conv2d-CNN regards504

the original data as single-channel image data, using a 2D505

convolution kernel.506

The LSTM and BLSTM network architectures used in this507

paper are shown in Fig. 4. The model consists of 3 stacked508

LSTM/BLSTM layers and a fully connected layer, with509

dropouts added between each layer to avoid overfitting.510

The CNN-LSTM structure used in this paper is shown in511

Fig. 5. The feature extraction network consists of 4 Conv1d-512

CNN layers with batch normalization between each layer and513

2 stacked LSTM layers to extract temporal-spatial features of514

human activities.515

All the stacked CNN used the same number of kernel516

and kernel filters, while the LSTM layers shared the same517

number of hidden channels, and the number of neurons in518

the final fully connected layer is determined according to the519

feature dimension output from the feature extraction network.520

We normalized the filtered data by (4) before feeding it into521

the deep neural network models. To fine-tune the deep learn-522

ing models depicted above, we evaluate the hyper-parameter523

ranges in Table 5, where C denotes the number of axis, which524

is 9 times the number of IMUs in Table 1. The parameter L525

is the window size defined in Table 1. Note that ‘‘r’’ means526

not applicable for the candidate. Both training and testing are527

performed according to the criteria defined in Section III-B.528

IV. RESULTS AND DISCUSSION529

A. PERFORMANCE COMPARISON530

In the experimental result section, all the testing results are531

evaluated by F1-score and accuracy, defined as:532

Precision =
TP

TP+ FP
(5)533

TABLE 5. Evaluated hyper-parameters for deep learning models in this
paper.

Recall =
TP

TP+ FN
(6) 534

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(7) 535

F1-score =
2

Precision−1 + Recall−1
(8) 536

where TP, TN, FP, and FN denote the number of true positive, 537

true negative, false positive, and false negative classification, 538

respectively. For a multi-class problem as HAR, the precision 539

and recall are calculated for each class independently, and the 540

total value are weighted average according to the number of 541

true instances for each class i as: 542

Precisionweighted =
1
N

N∑
i

Precisioni ∗ Ni (9) 543

Recallweighted =
1
N

N∑
i

Recalli ∗ Ni (10) 544

where N =
∑

i Ni are the total number of all labels. 545

Fig. 6 and 7 show the box plot of F1-score and accuracy 546

of the traditional machine learning and deep learning models 547

on 3 datasets, where the box extends from the first quartile 548

to the third quartile of the data, with a line at the median. 549

Note that the blue boxes are non-cross-subject results, while 550

the orange boxes are for cross-subject tests. Table 6 and 7 551

demonstrate the average of accuracy and F1-score of the 552

traditional machine learning and deep learning models on 553

3 datasets, together with the 95% confidence limits. Since 554

the number of cross-validation is small in LOSO, we use 555

t-distribution for an unbiased 95% confidence interval as: 556

95% confidence interval 557

=

[
µ− t(n− 1)

S
√
n
, µ+ t(n− 1)

S
√
n

]
(11) 558

S2 =
1

n− 1

∑
i

(xi − µ)2 (12) 559

where n denotes the number of users in different datasets, 560

and µ is the average of samples x1, . . . , xi. The following 561

insights can be obtained: (1) Under the non-cross-subject 562

test, all models except LSTM achieved nearly perfect per- 563

formance, and traditional machine learning models got the 564
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FIGURE 3. The architecture of CNN model in this paper.

FIGURE 4. The architecture of LSTM and BLSTM model in this paper.

FIGURE 5. The architecture of CNN-LSTM model in this paper.

highest F1-score and accuracy on all datasets. On the smaller565

mHealth dataset, the traditional machine learning models566

generally outperform the deep learning models on F1-score567

and accuracy, while on the larger dataset like UCIDSADS,568

the deep learning models become comparable. (2) Compared569

with the non-cross-subject tests, all models have different570

degrees of performance loss in cross-subject conditions, and571

the traditional machine learning models, especially SVM572

and random forest, show better generalization ability on the573

three datasets. In detail, the average F1-scores loss of the574

traditional machine learning models are 5.45%, 8.20%, and575

7.88% onmHealth, PAMAP2, and UCIDSADS, respectively,576

while the numbers for the deep learning models are 15.23%,577

13.77%, and 15.52%. (3) The deviation of F1-score and578

accuracy are quite small in non-cross-subject test, while the579

numbers increase significantly in LOSO test, indicating the580

unstable performance over different subjects. On the smaller581

mHealth dataset, the traditional machine learning models582

share hardly any overlap in deviation with deep learning.583

However, in PAMAP2 and UCIDSADS the overlap becomes584

noticeable, whichmeans the deep learningmodels have better585

performance on some subjects. Random forest has the small-586

est deviation among all the datasets, which is the robustest587

solution for cross-subject HAR.588

Fig. 8 shows the average confusion matrix of deep learning589

(DL) models (except for LSTM) and traditional machine590

learning (TML)models under the cross-subject LOSO testing591

condition. It is worth noting that two simple static activ-592

ities, standing and sitting, are easily confused with other593

activities in deep learning models over three datasets, which 594

is however much improved in traditional machine learning 595

models. In addition, formost periodic activities, such as walk- 596

ing (A4), running (A5), cycling (A6), nordic walking (A7), 597

rope jumping (A12) in PAMAP2; exercising on a stepper 598

(A13), exercising on a cross-trainer (A14), jumping (A18) 599

in UCIDSADS, etc., traditional machine learning models 600

have better classification performance. Nevertheless, for the 601

confusion between similar activities, such as jogging (A10) 602

and running (A11) in mHealth; standing and moving in an 603

elevator (A7, A8), walking on different planes (A9, A10, 604

A11) in UCIDSADS, traditional machine learning methods 605

do not take more advantages. 606

In addition, by analyzing the confusion matrix of each 607

subject, we found that in cross-subject activity recognition, 608

deep learning models are more likely to misclassify some 609

activities almost entirely, resulting in a significant drop in 610

overall recognition accuracy. For instance, the static activity, 611

A1: standing still of subject 1, are all wrongly classified as 612

A8: knees bending in the mHealth dataset using deep learning 613

models, as shown in Fig. 9(a), (c), and (e).While in traditional 614

machine learning cases, the classification remains accurate, 615

which can be seen in Fig. 9(b), (d), and (f). 616

Nevertheless, some traditional machine learning models 617

can also make a totally wrong recognition. For example, the 618

A7: standing in an elevator in UCIDSADS is incorrectly 619

classified as A8: moving in an elevator for subject 4 using 620

SVM, as shown in Fig. 10(d), which is similar to the behavior 621

of BLSTM and CNN-LSTM in Fig. 10(c) and (e), while the 622
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TABLE 6. The average accuracy and 95% confidence limits of different learning models on the three datasets using non-cross- and cross-subject
evaluation criterion. The best accuracy among all the methods is highlighted.

TABLE 7. The average F1-Score and 95% confidence limits of different learning models on the three datasets using non-cross- and cross-subject
evaluation criterion. The best F1-score among all the methods is highlighted.

classification is relatively correct using Conv2d-CNN, KNN623

and random forest as shown in Fig. 10(a), (b), and (f).624

B. ANALYSIS AND VALIDATION625

1) GENERALIZATION ABILITY OVER HAND-CRAFTED626

FEATURES627

The heterogeneity among subjects is the main reason for the628

decline of cross-subject recognition performance. As shown629

in Fig. 11 (a), the t-SNE (t-distributed stochastic neighbor630

embedding) algorithm based on euclidean distance metric631

is used to map the raw data of the mHealth dataset to a632

two-dimensional space for visualization, where the perplexity633

and the maximum number of optimizing iterations are set634

to 30 and 1000, respectively. From Fig. 11 (a) most of the635

subject data in one certain activity are clustered individually,636

which means that the subject data has its unique input dis-637

tribution. It is worth noting that the two-dimensional data638

points corresponding to the A1 (standing still) and A2 (sit-639

ting and relaxing) activities of different subjects are quite640

scattered and mixed with other activities, which is consistent641

with the overall confusion results of deep learning models642

in Fig. 8. On the other hand, the hand-crafted features used643

by traditional machine learning models are designed based644

on domain knowledge and do not depend on specific sub-645

jects, thus these time-frequency domain statistical features646

can reduce the data distribution differences between different647

users, as shown in Fig. 11 (b). This is one of the major648

reasons why traditional machine learning models generalize649

better on cross-subject scenarios, since the end-to-end trained650

deep learning models automatically extract features based on651

training data, from which subject-related features are easy652

to learn and the models are more susceptible to training653

distribution. Moreover, HAR datasets often have a small654

scale compared with tasks like computer vision and natural655

TABLE 8. The average accuracy and F1-score of MLP model with
hand-crafted features.

language processing, making the deep learning models with 656

a large amount of parameters hard to extract general features. 657

To compare the effect of traditional hand-crafted features 658

and features automatically extracted by the neural network 659

on cross-subject recognition, the feature extraction part is 660

removed in deep learning models and only retained the fully 661

connected layers to form an MLP classifier. According to 662

the criteria defined in section III-B, the activity recognition 663

performance of MLP using hand-crafted features as input 664

under both non-cross-subject and cross-subject conditions is 665

evaluated. The experimental results are shown in Table 8, 666

where MLP using hand-crafted features has achieved better 667

cross-subject recognition results than the five deep learn- 668

ing models on all three datasets, and the average F1-score 669

and accuracy is comparable with SVM and random forest, 670

proving the superiority of traditional hand-crafted features in 671

cross-subject recognition. 672

2) TRAINING STRATEGY FOR DECISION-TREE-BASED 673

LEARNING METHODS 674

One of the key solutions for the cross-subject recognition 675

problem is to maximize the discrimination among different 676

classes and ignore the various distribution of subjects, which 677

is performed by transfer learning in deep neural networks as 678

mentioned in Section II. In this paper, we propose a novel 679

training strategy for the decision-tree-based learningmethods 680

under this principle to cope with cross-subject scenarios. 681

Recall that the Gini impurity, when making decision trees 682

in the random forest, indicates the label diversity of data in the 683
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FIGURE 6. The box plot of F1-score of different learning models on the
three datasets using non-cross- and cross-subject evaluation criterion.

current node, as shown in (1) where pi actually means the data684

proportion of class i. In the traditional training phase, each685

decision tree is established by greedily selecting the features686

and corresponding thresholds to minimize the weighted sum687

of Gini impurity of every left and right child nodes recur-688

sively, formulated as:689

min

(
nl
n

(
1−

∑
i

p2i,l

)
+
nr
n

(
1−

∑
i

p2i,r

))
(13)690

where n = nl + nr is the total number of samples from691

left and right child nodes. The process of node division is692

actually feature selection, thus ideally features unrelated to693

subjects characteristic but strongly related to distinguishing694

activities should be selected to achieve better cross-subject695

generalization.696

On the other hand, it is necessary to reduce the gini impu-697

rity on labels of different activity classes, while keeping the698

gini impurity on labels of different subjects as much as pos-699

sible. In this case, the samples are split into nodes regardless700

FIGURE 7. The box plot of accuracy of different learning models on the
three datasets using non-cross- and cross-subject evaluation criterion.

of distinguishing the subjects, which can be formulated as a 701

new object as: 702

max

nl
n

1−
∑
j

p2j,l

+ nr
n

1−
∑
j

p2j,r

 (14) 703

where pj,l and pj,r are the sample proportion of subject j in left 704

and right child nodes, respectively. A parameter α ∈ [0, 1) is 705

set to represent the importance of gini impurity for subject 706

labels, then the original criterion of finding the best split can 707

be rewritten as maximizing the following formula: 708

α

nl
n

1−
∑
j

p2j,l

+ nr
n

1−
∑
j

p2j,r

 709

−(1− α)

(
nl
n

(
1−

∑
i

p2i,l

)
+
nr
n

(
1−

∑
i

p2i,r

))
(15) 710

, which degenerates to the original object function (13) when 711

α = 0. Similarly, the entropy criterion in (2) can be modified 712

to a subject-independent form as well. 713
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FIGURE 8. Average confusion matrix of deep learning and traditional machine learning models on the three dataset under strict LOSO
cross-validation.

By varying α from 0.1 to 0.9 with each step of 0.1 into714

Table 2 as new hyper-parameter grid searching, the random715

forest model is re-trained and tested under strict cross-subject716

LOSO described in Section III-B. Table 9 shows the aver-717

age accuracy and F1-score of random forest with modified718

training strategy, where the cross-subject performance is bet- 719

ter than the all the method as shown in Fig. 6 and 7. The 720

paired t-tests is conducted between the original random forest 721

and the modified one on F1-score to determine the degree 722

of significant difference in terms of the significance level 723
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FIGURE 9. Confusion matrix of subject 1 on mHealth using different learning models.

p−value (two tailed). Using a threshold of p = 0.05 for724

the null hypothesis, the result reflects the effectiveness of725

the proposed training strategy. Note that in PAMAP2 the726

null hypothesis is nearly failed to reject due to the uneven727

activities labels distribution as shown in Fig. 2, and the728

sample numbers for different subjects are also significantly729

diverse [26], which is hard for the modified random forest to 730

make a balanced tree node splitting between subject labels 731

and activity labels. 732

We further explore the behavior of the modified object 733

function by varying the number of decision trees in the ran- 734

dom forest, using a set of fine-grained α with each step of 735

95190 VOLUME 10, 2022



Z. Yang et al.: Comparing Cross-Subject Performance on Human Activities Recognition Using Learning Models

FIGURE 10. Confusion matrix of subject 4 on UCIDSADS using different learning models.

0.0375. Fig. 12 shows the influence of different α values on736

the average recognition accuracy using different numbers of737

decision trees. According to the figure, themodified objective738

function can achieve stable improvement in accuracy with739

appropriate α, and the trends of improvement introduced by740

different α are highly consistent in single dataset when the741

number of trees increases in the random forest. Moreover, the742

optimal α is correlated with the characteristics of the dataset.743

For instance, the modified objective function achieves better 744

results on the UCIDSADS with a larger data scale and even 745

distribution of labels, while in PAMAP2 we find a rapid 746

performance degradation, which further explains why the null 747

hypothesis is nearly failed to reject. 748

Fig. 13 illustrates the comparison of accuracy for each 749

individual subject using the original and modified random 750

forest, with the optimal α value and 50 decision trees. It is 751
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FIGURE 11. The t-SNE projection for raw data and hand-crafted features
on mHealth dataset.

worth noting that in all the datasets, the modified strategy752

can improve the worst recognition accuracy, as subject 6 in753

mHealth, subject 1 in PAMAP2, and subject 8 in UCID-754

SADS. This is because the modified object function tends755

to assign labels of different individuals to different child leaf756

nodes evenly, which reduces the accuracy deviation between757

individuals and further strengthens the cross-subject general-758

ization.759

As mentioned in Section II, datasets selection, window760

length, testing criterion, and other factors directly affect the761

performance of the HAR model in the experiment, so there is762

no standard comparison benchmark among different studies.763

Nevertheless, Table 10 lists the result of state-of-the-art cross-764

subject HAR studies that considered the same datasets as this765

paper used, and the random forest with the proposed learning766

method is also included. Note that ‘‘r’’ means no results are767

provided on the dataset.768

In Table 10, only [60] used the same strict LOSO crite-769

rion with training, validation, and testing as mentioned in770

Section III-B where the hyper-parameters are transparent to771

the testing set, while in other LOSO-based studies the model772

are determined by the best result on the testing set. It worth773

noting that in the domain adaptation research [51], [52], [54],774

FIGURE 12. The behavior of the modified object function when changing
the number of decision trees in the random forest and the α.

[55], [58], the labeled and unlabeled target samples were used 775

when training the models, while the other studies had only 776

training data for constructing the classifiers. 777
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TABLE 9. The average accuracy and F1-score of random forest with modified training strategy. The p−value from paired t-tests on F1-score is also
presented.

TABLE 10. Comparison of the accuracy (a) and F1-score (f) for cross-subject HAR on the three datasets.

C. DISCUSSION778

Except for LSTM, the deep neural network models used in779

this paper have achieved comparable or better classification780

accuracy than [22], [67], [68] under non-cross-subject tests.781

The LSTM model is sensitive to the length of time series.782

In the experiment, in order to obtain a unified comparison783

benchmark, we adopt a fixed time window of one-second784

length for sliding window segmentation on all three datasets785

with different sampling frequencies, which makes the sam-786

ples of the three datasets have a different number of sampling787

points. As shown in Fig. 6 and 7, on the PAMAP2 and788

mHealth datasets with higher sampling rates (more sampling789

points), the non-cross-subject classification accuracy of the790

LSTMmodel is much lower than that of other models. There-791

fore, the effect of the number of sampling points on the LSTM792

model is evaluated as shown in Fig. 14, where the dark-color793

lines denote the non-cross-subject test while the correspond-794

ing light-color lines are the results of the cross-subject test.795

Overall, using fewer sampling points tends to yield higher796

cross- and non-cross-subject recognition accuracy, but in797

most cases the cross-subject test has a 15∼20% drop in798

F1-score relative to the non-cross-subject test, indicating that799

the number of sampling points has no decisive influence on800

the cross-subject recognition performance.801

In cross-subject recognition, traditional machine learning802

methods show higher generalization performance, among803

which the instance-basedKNNmethod does not require train-804

ing. However, in practical applications the samples of the805

training set need to be saved as the classification basis, thus806

occupying a lot of memory. Comparedwith SVM, the random807

forest not only achieves better recognition accuracy under808

modified training strategy, but also has the advantages of a809

smaller memory footprint, shorter prediction time, and faster810

training speed [64]. In general, the random forest model is811

the best choice for resource-constrained embedding wearable812

devices.813

In this paper, traditional machine learning methods based814

on hand-crafted features are more suitable for the new subject815

TABLE 11. The improvement of average F1-score (%) for Conv2d-CNN
model on three datasets by leaking some testing samples.

TABLE 12. The improvement of F1-score (%) for random forest model on
three datasets by leaking some testing samples.

scenarios in terms of computational complexity and gen- 816

eralization, which however does not mean that deep learn- 817

ing methods are useless in cross-subject recognition. The 818

characteristics of end-to-end training and automatic feature 819

extraction make deep learning models flexible and easy to 820

expand. For example, fine-tuning the trained deep learning 821

models with a small number of labeled samples of the new 822

target subject can quickly reduce the differences in data 823

distribution and obtain a personalized classification model. 824

Table 11 shows the improved cross-subject recognition per- 825

formance of the Conv2d-CNNmodel after fine-tuning, where 826

n-shot means the number of samples from the testing subject. 827

The traditional machine learning method is limited by the 828

training method and can not perform fine-tuning on the pre- 829

trained model, thus we re-train the random forest model 830

under the condition of leaking a small number of target 831

samples. As shown in Table 12, on the mHealth dataset with a 832

small data scale, the random forest model with leaked testing 833

samples is slightly better than Conv2d-CNN, while on the 834

UCIDSADS dataset with a larger data scale, the fine-tuned 835

Conv2d-CNN performs better. 836

This paper has some limitations. First, the sizes of the 837

datasets we use are small and complete, and they have 838

relatively even distribution on activity labels. We have not 839

covered situations that have huge amount of missing data or 840

significant uneven labels like the last subject in PAMAP2, 841
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FIGURE 13. The comparison of accuracy for each individual subject using
the original and modified random forest on the three datasets. The x-axis
denotes the different subjects.

FIGURE 14. The impact of the number of input sampling points for LSTM
model on the three datasets.

which might be an advantage for deep learning case. Sec-842

ond, the explanation for the reason that traditional machine843

learning performs better than deep learning on cross-subject844

HAR is limited. The decision boundaries for different meth-845

ods have not been explicitly examined in each LOSO test. 846

Third, the deep learning architectures are inspired by previous 847

studies, and we have not evaluated whether the structure has 848

implicit impact on the result (e.g. the number of convolutional 849

layers in CNN). Finally, although statistical significance, the 850

improvement of modified training process in random forest 851

is small, and we have not proved the methodology on other 852

tasks other than HAR to provide enough evidence for the 853

superiority. 854

V. CONCLUSION 855

In this paper, five deep neural network models and three 856

traditional machine learning models are trained and evalu- 857

ated on three classic HAR datasets: mHealth, PAMAP2, and 858

UCIDSADS. A strict cross-subject LOSO test is deployed 859

to simulate new subject scenarios and evaluate the general- 860

ization performance of deep neural networks and traditional 861

machine learning in cross-subject recognition, and the result 862

indicates that all models experience significant performance 863

degradation due to the heterogeneity among subjects, com- 864

pared to non-cross-subject recognition. In general, the tradi- 865

tional machine learning methods using hand-crafted features 866

achieve better cross-subject recognition than deep learning 867

models on the three datasets, and the analysis proves that 868

the automatic end-to-end feature extraction using deep neu- 869

ral networks is more susceptible to distribution difference 870

between users and prone to learning user-dependent features 871

from training sets. This paper also provides a novel decision- 872

tree-based training strategy, which makes the random forest 873

model achieve best cross-subject HAR performance over 874

all the using learning models, and the competitive results 875

are obtained compared with state-of-the-art cross-subject 876

HAR solutions. In detail, the average F1-score (accuracy) on 877

the three datasets are 94.49% (95.09%), 91.64% (92.21%), 878

and 92.70% (93.29%). Future work will make attempts on 879

other complex datasets and other learning frameworks like 880

AdaBoost, GAN, and VAE to find out the best solution for 881

cross-subject HAR application. The effectiveness of the pro- 882

posed learning strategy for decision-tree-based methods will 883

be further evaluated on other cross-subject applications like 884

handwriting classification and speech recognition. 885
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