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ABSTRACT Global air passenger transport demand is expected to increase, and there is concern that the
current airport operation will not be able to cope with aircraft overcrowding. In this study, we developed
a cellular automaton (CA) simulator that can model the surface traffic of the entire Tokyo International
Airport in detail, including aircraft that are arriving, taxiing, parking, and departing, using actual track data.
The simulator can reproduce stop-and-go aircraft taxiing based on aircraft interactions and runway rules.
It can simulate the stochastic features of the surface traffic flow. To validate the developed CA simulation,
the taxiing speed distribution, local delays, and taxiing times for each route were compared with the actual
track data. They were in good agreement. The effects of stochastic surface traffic features, such as arrival
rate, runway occupancy time, and taxiing route, on airport operations were quantitatively analyzed. This tool
could lead to a better prediction of future air traffic and improve airport operations.

11 INDEX TERMS Air-traffic management, airport surface traffic flow, cellular automaton.

I. INTRODUCTION12

The COVID-19 pandemic significantly decreased global13

air passenger transport demand. However, the demand is14

expected to return to pre-COVID-19 levels by 2024 and15

increase further after that [1]. Consequently, there is concern16

that the current air traffic control system will not be able to17

cope with aircraft overcrowding. Traffic congestion causes18

significant delays and lowers operational efficiency. They19

are crucial problems in airport operations with physical con-20

straints, such as the number of runways and terminals. One21

solution to these problems is to expand facilities. At Tokyo22

International Airport in Japan, a fourth runway began oper-23

ation in 2010, increasing the annual number of departures24
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and arrivals by approximately 1.4 times [2]. However, runway 25

and terminal expansions take several years and are expen- 26

sive. Thus, they can only be applied to specific airports. 27

Second, research has been conducted to improve the opera- 28

tional efficiency and throughput of airports without changing 29

current facilities by optimizing the air traffic control system. 30

There are three targets for optimization of airport opera- 31

tions: arrival, surface, and departure traffic. Especially, most 32

aircraft behavior in surface traffic is entrusted to the pilot. 33

Uncertainties such as aircraft separation and taxiing speed 34

make surface traffic complex and unpredictable. In previous 35

studies, genetic algorithms [3], [4], [5] and mixed-integer 36

linear programming (MILP) [6] have been used to opti- 37

mize taxiing routes. Additionally, a sequential surface traffic 38

control system that advises pilots and air traffic controllers 39

on aircraft behavior and scheduling has been proposed. 40
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Schaper et al. [7] proposed the concept of time-based control41

of taxiing routes. It included a speed profile and coupled it42

with departure management. They also validated this concept43

through a human-in-the-loop simulation. Hayashi et al. [8]44

and Gupta et al. [9] proposed a spot and runway departure45

advisor tool. It provides guidance to air traffic controllers46

and airline ramp controllers for the sequencing and schedul-47

ing of push-back to improve efficiency, predictability, and48

throughput. Okuniek et al. [10] reviewed the aforementioned49

concepts related to air traffic optimization and clarified the50

contributions of the various operational parameters.51

This paper focuses on Tokyo International Airport,52

an important airport and the busiest one in Japan. Although53

various optimizations have been studied as described earlier,54

the characteristics of surface traffic flow strongly depend on55

the airport. Therefore, an analysis specific to the airport is56

required. For the surface traffic flow at Tokyo International57

Airport, Chen et al. [11] previously developed the MILP58

simulator for the airport to minimize taxiing routes and time.59

However, the analysis does not consider the stochastic fea-60

tures of air traffic, such as variations in taxiing speed due to61

interactions between aircrafts. Moreover, it does not consider62

seamless aircraft behavior from landing to takeoff. Using a63

queuing model, Itoh et al. [12] suggested that stochastic64

features of the traffic flow, such as departure rate, taxiing65

time, and runway occupancy time (ROT), affect the waiting66

time of departure aircraft. However, the modeling of the67

entire airport, i.e., the connection with arrival, parking, and68

departure aircraft, has not been done.69

In the past few decades, modeling of traffic flows using cel-70

lular automaton (CA) simulations has been conducted [13],71

[14], [15], [16], [17], [18]. For air traffic flow, CA simula-72

tions are widely used to optimize the alignment of arrival73

aircraft [19], [20]. Sekine et al. [21] conducted a step-back74

CA simulation for arrival traffic flow at Tokyo International75

Airport to minimize the total arrival delay and total fuel con-76

sumption. In recent years, it has been applied to surface traffic77

flow. Mori [22], [23] developed a CA model for Tokyo Inter-78

national Airport, in which the long-range interaction among79

aircraft is considered using a variable taxiing speed based on80

a floor field model. The analysis was performed for specific81

dates on airport layouts used before 2010. Yang et al. [24]82

analyzed surface traffic flow using a CA at Baiyun Interna-83

tional Airport. They proposed robust off-block control strate-84

gies to reduce surface congestion.Mazur et al. [25] simulated85

surface traffic flows at Dusseldorf Airport and investigated86

the impact of two scenarios: a single runway closure and new87

runway extension. Tsuzuki et al. [26] conducted CA sim-88

ulations for Fukuoka Airport with a junction of two taxiing89

routes, where particles have a volume exclusion rule to avoid90

collision. They revealed the relationship between throughput91

and route ratio. CA simulation can reproduce complex traffic92

flows using relatively simple rule settings. It is a useful tool93

that can be applied not only to ordinary operations, but also to94

various scenarios, such as runway closure due to an accident95

or expansion of airport facilities.96

Table 1 summarizes the previous studies on Tokyo Inter- 97

national Airport. To the best of our knowledge, this study 98

is the first to develop a cellular automaton (CA) simula- 99

tor that simulates the surface traffic flow over the entire 100

area of Tokyo International Airport, that is, arrival, taxi- 101

ing, parking, and departure aircraft. It can reproduce com- 102

prehensive and stochastic features of the surface traffic 103

from landing to takeoff that have not been captured ear- 104

lier. It could be used to simulate future air traffic and 105

improve airport operation. This study modeled the surface 106

traffic over the entire area of Tokyo International Airport 107

and compared it with actual track data to confirm the valid- 108

ity of the developed simulator. In addition, initial studies 109

were conducted to quantify the effects of arrival rate, ROT, 110

and routes on airport operations such as taxiing time and 111

delays. 112

II. DATA ANALYSIS OF AIRPORT SURFACE TRAFFIC 113

USING CARATS OPEN DATA 114

A. DATA DESCRIPTION 115

First, data analysis of airport surface traffic flow at Tokyo 116

International Airport was performed using Collaborative 117

Actions for Renovation of Air Traffic Systems (CARATS) 118

Open Data (COD). This is a track dataset provided by the 119

Ministry of Land, Infrastructure, and Transport (MLIT). 120

From the results, the features of traffic flow required for the 121

CA simulations were obtained and used to validate the CA 122

simulations. 123

The COD contains the timestamp, flight ID, latitude, lon- 124

gitude, altitude, and aircraft type for every second. At Tokyo 125

International Airport, the runway configuration is selected 126

according to the wind direction: northerly or southerly. In this 127

study, we consider the northerly wind operation, which is the 128

primary operation at this airport. Figure 1 shows an overview 129

of the runway and terminal layouts at Tokyo International 130

Airport considered here. Tokyo International Airport has four 131

runways and three terminals. In northerly wind operations, 132

the aircraft lands on runways 34L or 34R depending on the 133

departure location. It takes off from runways 05 or 34R 134

depending on the destination. Terminals 1 and 2 are for 135

domestic flights and Terminal 3 is for international flights. 136

Each terminal has parking spots. Each parking section of the 137

terminal is called an ‘‘Area.’’ For example, terminal 1 has 138

Areas 3, 4, and 5. Area 4 has 14 parking spots. In this 139

study, we randomly selected 20 days of northerly wind 140

operation from 2016 to 2018 and averaged them for the 141

data analysis. There were aircrafts parked in areas other 142

than the eight areas mentioned earlier. However, they were 143

excluded from this analysis because they are different from 144

typical passenger operations, e.g., cargo and maintenance. 145

As a result, 87.7% of all aircraft that took off and landed 146

at Tokyo International Airport on the sampling days were 147

included in this analysis. The arrival rate, that is, the num- 148

ber of arrivals per hour, was 32.78. It should be noted that 149

the maximum arrival rate was 40 when all aircrafts were 150

considered. 151
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TABLE 1. Comparison between previous studies and current study.

FIGURE 1. Runway and terminal layouts at Tokyo International Airport
considered in the present study [30].

B. SURFACE OPERATION AT TOKYO INTERNATIONAL152

AIRPORT153

Figure 2(a) shows the tracks visualized from COD. Aircrafts154

coming from the north direction land at runway 34R. Those155

coming from the south direction land at runway 34L. The156

arrived aircraft moves from the runway to the parking spot157

via taxiing (red lines). After parking for a certain period, the158

aircraft is moved from the spot to the departure runway as a159

departure aircraft (blue lines). It took off from runway 34R in160

the case of a north-bound aircraft or from 05 in the case of a161

south-bound aircraft.162

C. USAGE RATIO OF RUNWAYS AND AREAS163

Figures 3–5 show a histogram of the number of aircrafts using164

arrival/departure runways and parking areas for each period165

obtained from the COD. Here, each value is a daily average 166

value obtained for 20 days. On the arrival runway, as shown 167

in Fig. 3, the number of arrivals is higher from 8:00 a.m. 168

to 11:00 p.m., where domestic and Asian flights are active. 169

Runway 34L is primarily used because runway 34R is also 170

used as a departure runway. Conversely, only runway 34R 171

is used in the late-night period as it is used for European 172

and U.S. flights. For the departure runways (Fig. 4), runway 173

05 is primarily used for the departure runway. The number 174

of departures increased from 6:00 a.m. to 9:00 p.m. The area 175

usage ratios are shown in Fig. 5. The ratios of domestic areas, 176

especially in Areas 1 and 4 with many parking spots, are large 177

from 6:00 a.m. to 11:00 p.m. During this time, there are many 178

take-offs and landings, as mentioned above. Contrarily, only 179

Areas 6 and 7 for international flights were used during the 180

late night period. 181

D. TAXIING SPEED 182

Next, taxiing speeds were calculated from the time and loca- 183

tion information of each aircraft in the COD. Their distri- 184

bution is shown in Fig. 6. This is the average value during 185

the peak hours from 8:00 a.m. to 9:00 p.m. Figure 6(a) 186

shows the overall view, and (b) and (c) show the enlarged 187

views around the runways. From the distributions, the taxiing 188

speeds were 10∼20 kt on the normal taxiing routes, 20∼30 kt 189

on the high-speed sections (e.g., the straight ways from run- 190

way 34R to Terminal 3), less than 5 kt around the spots, 191

and more than 120 kt on the runways. There were localized 192

low-speed regions in front of departure runways 05 and 34R. 193

This is because aircrafts that cannot enter the runway due 194

to ROT form a departure queue. It is disadvantageous from 195

the viewpoint of fuel saving as they are waiting while idling. 196

Itoh et al. [12] reported a similar taxiing speed distribution 197

and queues around runways at Tokyo International Airport. 198
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FIGURE 2. Schematic of obtaining standard route from COD for CA
simulations: (a) track visualization from COD, (b) and (c) extracted
particular routes, and (d) computational domain for CA simulation and
examples of standard routes.

They developed a time-varying fluid queue model for the199

departure queue at runway 05 and evaluated the ecological200

and economic benefits of a reduction in the departure queue201

length.202

In addition, arrivals and departures using Terminal 3 need203

to cross 34L. However, they are not allowed to do so when204

runway 34L is in use or approached by arrivals. This also205

creates localized low-speed regions at the intersection with206

runway 34L. These local delays are important features that207

limit efficient operation and fuel savings.208

E. IDENTIFICATION OF AIRCRAFT ROUTES209

The COD assigns different flight IDs for arrival and depar-210

ture aircrafts. Thus, even if they are the same aircraft, it is211

FIGURE 3. Histogram of the number of aircrafts using arrival runways in a
day obtained from COD.

FIGURE 4. Histogram of the number of aircrafts using departure runways
in a day obtained from COD.

FIGURE 5. Histogram of the number of aircrafts using areas in a day
obtained from COD.

impossible to directly determine the route from landing to 212

takeoff. Two methods were used to obtain the features of 213

the aircraft routes. The first is a probabilistic method. The 214

usage ratio of each route can be calculated by multiplying the 215

arrival runway usage ratio, Parr, area usage ratio from each 216

arrival runway, Parr−area, and departure runway usage ratio 217

from each area, Parea−dep, using the following equation: 218

Proute = Parr × Parr−area × Parea−dep. (1) 219
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FIGURE 6. Taxiing speed distributions obtained in COD: (a) overall view
and (b)(c) enlarged views around runways.

TABLE 2. Usage ratio, Parr, of arrival runway.

These usage ratios were calculated from the COD during220

peak hours. Tables 1–3 show the values of Parr, Parr−area, and221

Parea−dep. Fig 7 shows a comparison of the usage ratios for222

each route obtained using (1). For example, the usage ratio of223

34L→ Area 1→05 can be calculated as224

P34L−Area1−05 = P34L × P34L−Area1 × PArea1−05225

= 0.7695× 0.2160× 0.6773226

= 0.1125. (2)227

For Terminal 2, 34L→Area 1→05 was the primary route.228

However, other routes were also used relatively frequently.229

For Terminal 1, the ratio 34L→Area 4→05 is used much230

more frequently than that for the other routes. For Terminal 3,231

the route landing at runway 34Lwas approximately five times232

more frequently used than the route landing at runway 34R.233

This might be due to the proximity of the runway to the234

terminal and to avoid crossing the runway 34L.235

In the second method, when the arrival and departure air-236

craft of the same aircraft type consecutively used the same237

parking spot, the two aircraft were considered to be the same238

aircraft. The standard routes from landing to takeoff and239

parking times were estimated using the track data of the two240

aircraft. Aircrafts that did not meet the aforementioned rules241

were excluded. 45.7% of the total aircrafts were used for route242

FIGURE 7. Usage ratios of respective routes calculated from (1).

TABLE 3. Usage ratio, Parr−area, of areas from respective arrival runways.

identification. In the northerly wind operation, two arrival 243

runways, eight areas, and two departure runways were con- 244

sidered. Thus, 32 standard routes were identified. Figure 2(b) 245

and (c) show a particular route, for example, 34R→Area 246

7→34R is a route along the outer edge of the airport. Parking 247

time was calculated from the difference between the spot-in 248

and spot-out times of the same aircraft. The mode frequencies 249

of parking time were calculated separately for domestic and 250

international terminals. The mode frequencies were 2700 and 251

5700 s, respectively. This result is in agreement with previous 252

studies [31]. 253

III. AIRPORT SURFACE TRAFFIC SIMULATION USING 254

CELLULAR AUTOMATON 255

In this study, CA simulation on a two-dimensional lattice 256

model proposed by Tsuzuki et al. [26] was used to reproduce 257

the airport surface traffic flow at Tokyo International Airport. 258

In this section, a basic description of the CA and the newly 259

implemented velocity-setting method and runway rules are 260

presented. 261

A. BASIC RULE OF CELLULAR AUTOMATON 262

Figure 2(d) shows the computational domain of the CA 263

simulations. This computational domain is an extension of 264

the one proposed in [32]. The two-dimensional domain was 265

divided into 1408 × 1126 cells in the x and y directions 266
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TABLE 4. Usage ratio, Parea−dep, of departure runways from respective
areas.

(1 cell= 4.73 m). As shown in the inset in Fig. 2(d), the black267

cells represent the runways and taxiways. The cells selected268

from the black cells are the white points in Fig. 2(d) called269

‘‘checkpoints’’ to construct aircraft routes. As mentioned270

in section II-E, 32 standard routes were obtained from the271

COD. Each route was defined in the computational domain272

using checkpoints, as shown in Fig. 2(d). Figure 8 shows the273

schematic of the proposed CA model. Particles modeling an274

aircraft travel along a route defined by checkpoints. Now,275

we consider a particle moving from checkpoints A to B276

(Fig. 8(a)–(c)). The particle travels with a velocity vector277

for each step. The position of the particle on the cell is278

then determined by integerizing the updated coordinates. The279

direction of the velocity vector was updated at every step in280

the direction from the particle’s current position to the next281

checkpoint. This allows the particle to travel discretely along282

an arbitrary route defined by the two checkpoints. In this283

simulation, the time step was set to 1 s.284

Particles have exclusion spaces, called ‘‘antennas,’’ for285

collision detection in the front and back (Fig. 8(d)). When286

the antennas contact each other in the same lane or cross287

each other at an intersection, one of the particles is instructed288

to stop. Thus, collision between particles is avoided. There289

is no strict rule for the distance between the aircraft on the290

ground. However, in this study, antennas with a length of291

24 cells (= 113.52 m) were installed at the front and rear.292

For this antenna length, the minimum separation between293

aircrafts is approximately one aircraft size when the antennas294

cross each other. See [26] for details on the priority and295

pattern of stop instructions.296

B. STOCHASTIC VELOCITY SETTING ON CA297

Typical CA models cannot use arbitrary velocities as the298

particle coordinates are defined in the cell. In other words,299

a taxiing speed of 2.4 cells/step was not possible. Therefore,300

in a typical CA simulation, the traveling speed is strongly301

dependent on the definition of cell size [23]. If the num-302

ber of cells representing the region is significant, fine-speed303

settings would be possible. However, this would be very304

time-consuming and computationally expensive. Therefore,305

in this study, we used a method that could reproduce arbitrary306

speeds stochastically in the CA model.307

For example, the taxiing speed vtx is set to308

22 kt (= 2.4 cells/s). We generate a uniform random number,309

a, at every step and stochastically round the setting speed310

using the fractional part of the setting speed, 0.4, as follows: 311

vtx =

{
2 if a > 0.4
3 if a < 0.4.

(3) 312

The taxiing speed in this step was vtx = 2 or 3. By repeating 313

this process, the taxiing speed becomes 2.4 cells/s, which is 314

an arbitrary particle speed. Figure 9 shows the results of the 315

verification of the aforementioned procedure on runway 34L. 316

The horizontal and vertical axes represent the setting speed 317

and actual particle speed calculated from the time required for 318

the move. The actual speed reproduced the setting speed well, 319

confirming the validity of the speed determination method. 320

In the present simulations, the taxiing speed vtx was set as 321

follows according to Fig. 6: 322

vtx =


5 kt in area
14 kt in normal taxiing way
20 kt in high speed section
140 kt in runway.

(4) 323

C. RUNWAY RULES 324

1) RUNWAY OCCUPANCY TIME (ROT) 325

ROT is an important factor in determining airport perfor- 326

mance. It is the buffer time for safe take-offs and landings. 327

Accurate prediction and optimization of the ROT can improve 328

take-off/landing throughput [12], [28], [33], [34]. In a previ- 329

ous study of Tokyo International Airport, the ROT was set at 330

95 s for consecutive takeoff and 115 s for consecutive landing 331

from the entry of the preceding aircraft onto the runway 332

[29]. In this CA simulation, it took approximately 40–50 s 333

from entry to exit on the runway. Therefore, an additional 334

buffer time of 80 s was set for the total ROT of approxi- 335

mately 120–130 s. This value is reasonable compared to the 336

actual data (approximately 130 s) at runway 05 [12]. For 337

simplicity, the same ROT was used for all takeoff and landing 338

combinations. 339

2) LANDING CLEARANCE 340

Once a landing clearance has been issued, no other aircraft 341

can take off, land, or cross on the runway. To model the run- 342

way constraints, this study assumes that the landing clearance 343

should be issued before reaching 1 NM from the runway 344

arrival threshold [29]. Assuming that the flight speed in the 345

final approach is the same as vtx on the runway, the time 346

required to fly 1 NM is 1 NM/140 kt ' 26 s. In the present 347

CA simulation, particles enter at the end of the runway and 348

remain there for 26 s. This represents the final approach of 349

an approaching aircraft that has received landing clearance. 350

During this time, no other aircraft can use or cross the runway. 351

D. SIMULATION PROCEDURE 352

Finally, the simulation procedure is described. A time table 353

containing arrival times, routes (arrival and departure run- 354

ways, and areas), and parking times for each aircraft was 355

determined based on the usage ratio in Section II-E. Here, 356
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FIGURE 8. Schematic of (a)–(c) particle movement and (d) antenna in the present CA model.

FIGURE 9. Comparison of taxiing speed determined using stochastic
rounding with setting values.

the scheduled arrival rate λarr was set to 33, according to357

the COD results. Thus, on runway 34L, which is used only358

for landing, an arrival aircraft is scheduled every 141 s (=359

3600/(λarr ·P34L)). On runway 34R, which is used for takeoff360

and landing, an arriving aircraft is scheduled at the same361

interval for runway 34L and only when a > P34R/P34L. Here,362

a is a random number. The resulting arrival rate at runway363

34R is λarr·P34R. Based on the time table, if the arrival runway364

is available, particles are injected into the arrival runway as365

an approaching aircraft 26 s before the arrival time. If it is not366

available due to takeoff of other aircraft or ROT, the arrival367

time is delayed by 1 s. The entered particles pass through the368

following four statuses:369

APP: Approaching aircraft. The aircraft enters the end370

of the arrival runway and remains there for 26 s.371

While it remains there, other aircrafts cannot take372

off, land, or cross this runway according to the373

landing clearance rule.374

ARR: Arrival aircraft. After a 26 s stay, the aircraft begins375

landing and taxiing to the spot. At a checkpoint376

immediately before the area, the aircraft randomly377

selects a parking spot from available spots in the378

area. If there is no available spot, the aircraft waits379

at this checkpoint until a spot opens.380

PRK: Parking aircraft. The aircraft are stopped for a spec- 381

ified parking time at the parking spot. The parking 382

times are 2700 and 5700 s for the domestic and 383

international terminals, respectively. 384

DEP: Departure aircraft. After the aircraft is parked, 385

it begins taxiing from the spot to the departure 386

runway and takes off. When the aircraft reaches the 387

checkpoint at the end of the runway, it is removed 388

from the simulation domain. The takeoff time is 389

recorded. 390

During one step, (a) collision detection by the antenna, 391

(b) application of the runway rules, (c) stop instruction, and 392

(d) updating of coordinates were performed in this order. 393

We set the physical time and total number of time steps to 394

be 1 s and 180,000, respectively. It corresponds to 50 h, 395

in which arrivals and departures are repeated to ensure suf- 396

ficient statistics. Each feature was sampled in a steady state, 397

i.e., in 40 h excluding the beginning and last five hours. 398

Three calculations were performed under the same operator 399

conditions with different time tables. The average value was 400

calculated. 401

IV. RESULTS AND DISCUSSION 402

A. VALIDATION OF CA SIMULATION 403

The first step was to verify the validity of the CA simulation 404

by comparing it with the COD. Figure 10 presents a snapshot 405

of the CA simulation. Note that multiple snapshots were 406

combined and illustrated for the reader’s clear understanding. 407

Each particle was colored according to its status. Queues of 408

several aircrafts were generated in front of departure runways 409

05 and 34R caused by the ROT. The departing aircraft could 410

not cross runway 34L and was stopped because the approach- 411

ing aircraft (APP) was standing on runway 34L. 412

Figure 11 shows the taxing speed distribution obtained 413

from the CA simulation. As described in Section III-B, four 414

taxiing speeds were set in the CA simulation. However, there 415

were several areas where interactions with other aircrafts 416

reduced the speed, causing delays. The first is the blue region 417

in front of the departure runway, which corresponds to the 418

queue before takeoff. The second is the blue region (shown 419
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FIGURE 10. Snapshot of the CA simulation.

enlarged) of taxiing ways intersecting runway 34L, which420

indicates that the delay is due to a stop instruction based on421

the rules of the landing clearance. These characteristics of the422

taxiing speed distribution are in good agreement with those423

in Fig. 6 obtained from the COD. The CA simulation repro-424

duces the localized delays caused by aircraft interactions and425

runway rules.426

Figure 12 compares the average taxiing times for each427

route obtained in the CA simulation with those obtained in428

the COD. Here, we discuss them separately for arrival and429

departure aircraft. The taxiing times of departures tend to be430

longer than those of arrivals, even though the actual lengths of431

the routes are approximately equal. This is due to the queue432

of departures before takeoff, as mentioned earlier. It delays433

all departure routes. The taxiing time in the CA simulation434

reproduces the taxiing time in the COD well, especially cap-435

turing the trend of each route and tendency of the taxiing time436

to increase for departures.437

Consequently, the present CA simulation reproduced the438

surface traffic flow of Tokyo International Airport well. It was439

a valid tool for investigating the optimal operation of the440

airport.441

B. ANALYSIS FOR VARIOUS OPERATIONAL PARAMETERS442

In this section, we quantitatively evaluate the effects of sur-443

face traffic features on airport operations using the CA simu-444

lations.445

1) ARRIVAL RATE446

The arrival rate is the number of landing aircrafts per hour447

and is the most fundamental operational parameter. Here,448

the scheduled arrival rate λarr was varied from 30 to 35,449

whereas the usage ratio remained the same. Figure 13 shows450

the relationship between the arrival and departure through-451

puts for each runway and scheduled arrival rate. Throughput452

indicates the actual number of take-offs and landings per453

FIGURE 11. Taxiing speed distribution in the CA simulations.

hour and is one of the indicators of airport performance. 454

The red and blue bars represent the arrival throughput using 455

runways 34L and 34R, respectively. The green and orange 456

bars represent the departure throughput using runways 05 and 457

34R, respectively. As λarr increases, the throughput increases 458

by the same amount, indicating that take-offs and landing at 459

the airport occur without problems as scheduled. As men- 460

tioned earlier, the actual max arrival rate was 40. Thus, this 461

result is reasonable because this analysis is within the actual 462

runway allowance. Figure 14 shows the delays in arrival and 463

departure taxiing as functions of λarr. Here, delay is defined 464

as the increment from the taxiing time, Ttx,min, when the 465

aircraft travels without interactions with other aircraft, that 466

is, without delay. The delays on arrival and departure taxiing 467

are denoted as Td,arr and Td,dep, respectively. These delays 468

include stops to avoid collisions with other aircraft, stops 469

before runways owing to ROT and queues, and stops prior to 470

runway crossings. In arrival taxiing, there is approximately 471

zero delay, regardless of the arrival rate. However, in the case 472

of departure taxiing, the delay increases as the scheduled 473

arrival rate increases. Figure 15 shows the taxiing speed dis- 474

tribution around runway 05 when the arrival rates are 30 and 475

35, respectively. The queue of departures is longer when the 476

arrival rate is 35. This queue causes a departure waiting time, 477

resulting in increased delays in departure taxiing. For optimal 478

airport operation, it is necessary to achieve a high throughput 479

and low delay. This result suggests that an increase in the 480

arrival rate increases the throughput and local delay. Thus, 481

the departure schedule such as off-block time needs to be 482

optimized to remove the queues. 483

2) ROT 484

The ROT limits the entry of a departure aircraft onto the 485

runway, creating queues for departure aircrafts. Optimizing 486

the ROTwithin the range of safe take-offs and landings is one 487

way to improve the airport performance. Here, we evaluated 488
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FIGURE 12. Comparison of taxiing time for each route obtained in the CA simulation with COD.

FIGURE 13. Throughput of arrival/departure runways for various
scheduled arrival rates λarr.

FIGURE 14. Delay times on arrival/departure taxiing as functions of
arrival rate λarr.

the delay when the additional buffer in the ROT was reduced489

to 80, 60, and 40 s. The arrival rate was 33, and the usage ratio490

was the same. Decreasing the additional buffer from 80 to 40 s491

significantly reduced the delay in departure from 243 to 69 s492

(Fig. 16). This is because the succeeding aircraft in the queue493

is redundantly affected by the delayed preceding aircraft494

owing to ROT. Consequently, the elimination or shortening of495

the queue reduces the departure waiting time bymore than the496

reduction in ROT (40 s). This suggests that ROT optimization497

is highly effective in improving airport performance.498

FIGURE 15. Taxiing speed distribution around runway 05 for arrival rates
of 30 and 35.

FIGURE 16. Delay times on arrival/departure taxiing as functions of
additional buffer time in ROT.

3) FLUCTUATION OF ARRIVAL INTERVAL 499

Itoh et al. [27] analyzed the traffic flow of aircraft arriving 500

at Tokyo International Airport using a queue-based model 501

to identify the optimal arrival strategy based on the distance 502

from the arrival airport. They showed that fluctuations in 503

flight time and arrival rate at each flight area are important 504

parameters in determining the delay. Therefore, in this study, 505

we evaluate the effect of fluctuations in the arrival interval 506
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FIGURE 17. Delay times of arrival/departure taxiing as functions of
standard deviation σarr of arrival interval.

time on surface traffic flow. The value of the fluctuations507

was randomly selected from a Gaussian distribution with a508

mean of 0 s and a standard deviation of σarr. The arrival509

time is updated by adding the fluctuation value. Therefore,510

the updated arrival intervals at runway 34L were based on a511

Gaussian distribution with a mean of 141 s and a standard512

deviation of σarr.513

Figure 17 shows taxiing delays as a function of the standard514

deviation of the arrival interval σarr. The arrival and departure515

taxiing delays change negligibly even as σarr increases. At the516

current arrival rate, the effect of the fluctuation of several tens517

of seconds is masked by the effects of the ROT and other fac-518

tors. However, under an overcrowded take-off/landing sched-519

ule with a high arrival rate, the effect of the fluctuation is520

expected to be significant.521

4) ROUTE RE-ASSIGNMENT522

Chen et al. [11] used MILP to optimize airport surface oper-523

ations at Tokyo International Airport and re-assign aircraft524

routes. Specifically, the domestic terminal was changed (Ter-525

minal 1→ 2 or Terminal 2→ 1) for aircrafts that choose a526

route where the runways were far from the terminal due to the527

terminal-airline restrictions. This is impractical because the528

aircrafts parked at a terminal are controlled by different air-529

lines. However, this reassignment decreased taxiing distance530

and time. This analysis did not consider arrival and departure531

aircraft connections or spot occupancy. Thus, it is mentioned532

that the effect might be overestimated. In the present study,533

the effect of route reassignment was examined based on the534

same strategy. In this CA simulation, the arrival, parking,535

and departure taxiing were analyzed in series using the same536

particles, allowing the effects to be verified more accurately.537

The terminals on the six long-distance routes were changed as538

shown in Table 5. For example, in route 34L→Area 1→05,539

Area 1 (Terminal 2) is far from runway 34L. Thus, the540

parking area is changed to Area 4 (Terminal 1), which is541

closer to runway 34L. This reduces Ttx,min for most of the542

routes. The CA simulation reproduced this route reassign-543

ment by changing the usage ratio of the routes. Denoting the544

ratio of terminal exchanges as α, the respective usage ratios545

TABLE 5. Route re-assignment and Ttx,min of each route.

FIGURE 18. Average total taxiing times and delay times on
arrival/departure taxiing as functions of terminal exchange ratio.

are given as follows: 546

P′34L−Area1−05 = P34L−Area1−05 − αP34L−Area1−05 (5) 547

P′34L−Area4−05 = P34L−Area4−05 + αP34L−Area1−05 (6) 548

Figure 18 shows the total taxiing times and delay times 549

as functions of terminal exchange ratio α. Here, Ttx,total is 550

the average of the sum of arrival/departure taxiing times 551

among all sampling aircrafts. T ∗tx,total is the value from which 552

delays are excluded, T ∗tx,total = Ttx,total − Td,arr − Td,dep. As 553

α increases, T ∗tx,total decreases. It indicates that the taxiing 554

time excluding delays decreases owing to route reassign- 555

ment. However, as T ∗tx,total decreases, the departure interval 556

becomes smaller. Thus, a queue before the departure runway 557

is more likely to form. Consequently, the departure taxiing 558

delay increases with α. Ttx,total changes negligibly regardless 559

of α. Similar to the results for the arrival rate mentioned 560

earlier, this problem could be solved by optimizing the depar- 561

ture schedule. Spot utilization beyond the terminal-airline 562

restriction could become an important factor in optimizing 563

airport operations. 564

V. CONCLUSION 565

In this study, CARATS Open Data (COD), which is actual 566

track data, was analyzed to reveal the surface traffic features 567

at the Tokyo International Airport. Using the features— 568

arrival rates, routes, taxiing speeds, and usage ratios— 569

obtained from the COD, a cellular automaton (CA) simula- 570

tion was developed to reproduce the complex surface traffic 571

flow over the entire area of Tokyo International Airport. 572

To validate the CA simulation, the taxiing speed distribution, 573

local delays before runways, and taxiing times for each route 574

were compared with the COD. They were in good agreement. 575
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In reality, it is difficult to evaluate the effects of vary-576

ing various operational parameters at an operational airport.577

As an initial study, the effects of surface traffic features—578

arrival rate, runway occupancy time (ROT), fluctuation of579

arrival interval, and route re-assignment—on airport oper-580

ations, such as the taxiing time and delays, were quanti-581

tatively evaluated. The developed CA simulation provides582

an important guide for developing optimization strategies583

for airport operations. Furthermore, CA simulations could584

predict the effects of layout changes, new routes, and new585

facility expansion, which are difficult to evaluate in reality.586

They can contribute not only to operational optimization but587

also to airport expansion planning.588
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