IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 12 August 2022, accepted 31 August 2022, date of publication 6 September 2022, date of current version 15 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3204752

== RESEARCH ARTICLE

An Optimized Continuous Dragonfly Algorithm
Using Hill Climbing Local Search to Tackle
the Low Exploitation Problem

BIBI AAMIRAH SHAFAA EMAMBOCUS ', MUHAMMED BASHEER JASSER ", (Member, IEEE),
AND ANGELA AMPHAWAN ", (Member, IEEE)

Department of Computing and Information Systems, School of Engineering and Technology, Sunway University, Petaling Jaya 47500, Malaysia

Corresponding author: Muhammed Basheer Jasser (basheerj@sunway.edu.my)

This work was supported by Sunway University Internal Grant Scheme 2022 under Grant GRTIN-IGS-DCIS[S]-11-2022.

ABSTRACT Optimization problems are usually solved using heuristic algorithms such as swarm intelligence
algorithms owing to their ability of providing near-optimal solutions in a feasible amount of time. An example
of an optimization problem is the training of artificial neural networks to obtain the most optimal connection
weights. Artificial Neural Network (ANN), being the most prominent machine learning algorithm, has a
multitude of applications in a myriad of areas. Recently, the use of ANNs has risen exponentially owing to
its effective ability of making conclusions based on certain inputs. This ability is primarily achieved during
the training phase of the ANN, which is a vital process prior to being able to use the ANN. Gradient descent-
based algorithms, which are usually used for the training process, often encounter the problem of local
optima, thus being unable to obtain the optimal connection weights of the ANN. Metaheuristic algorithms,
including swarm intelligence algorithms, have been found to be a better alternative to train ANNs. The
Dragonfly Algorithm (DA) is a swarm intelligence algorithm that has been found to be more effective than
multiple swarm intelligence algorithms. However, despite having a good performance, it still suffers from
low exploitation. In this paper, we propose to further improve the performance of DA by using hill climbing
as a local search technique so as to enhance its low exploitation. The optimized DA algorithm is then used for
training artificial neural networks which are employed for classification problems. Based on the experimental
results, the optimized DA algorithm has higher effectiveness than the original DA and some other swarm
intelligence algorithms as the ANNS trained by the optimized DA have a lower root mean squared error and
a higher classification accuracy.

INDEX TERMS Artificial neural networks, swarm intelligence, dragonfly algorithm, optimization.

I. INTRODUCTION

Optimization problems consist of finding the best solution
from a set of solutions such that a specified criterion is
either maximized or minimized. These problems can be
solved using either deterministic or heuristic algorithms.
Since deterministic algorithms consist of exact methods for
solving optimization problems, they are usually computa-
tionally expensive. Heuristic algorithms such as swarm intel-
ligence algorithms are therefore preferred algorithms for

The associate editor coordinating the review of this manuscript and

approving it for publication was Valentina E. Balas

95030

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

solving optimization problems by providing near-optimal
solutions in a feasible amount of time. For example, they
are employed in the signalized traffic problem [1], in index
tracking, [2] and for solving the traveling salesman problem
[3], [4]. Another example of an optimization problem is the
training of artificial neural networks in which the best values
for the connection weights need to be determined during the
training process.

Artificial Neural Networks (ANNs) are computational
models that aim at simulating the behaviour of the human
brain in order to draw conclusions based on some information
provided. Being a preponderant algorithm in the field of

VOLUME 10, 2022

https://orcid.org/0000-0002-5399-5916
https://orcid.org/0000-0001-5292-465X
https://orcid.org/0000-0003-2838-8679
https://orcid.org/0000-0003-0885-1283

B. A. S. Emambocus et al.: Optimized Continuous DA Using Hill Climbing Local Search to Tackle the Low Exploitation Problem

IEEE Access

machine learning, ANN has propelled advances in numer-
ous areas, for instance, natural language processing, speech
recognition, computer vision, computational biology, fraud
detection, unassisted control of vehicles, medical diagnosis
and recommendation systems [5]. Some recent applications
of neural networks include meteorological forecasting [6],
fault diagnosis and detection in engineering-related sys-
tems [7], prediction of laser-cut edges surface roughness [8],
analysis of individual’s perception of IoT-based smart health-
care monitoring devices [9], solar energy prediction [10],
and prediction of the emission characteristics of biodiesel-
based fuel engine [11]. Moreover, it has various industrial
applications [12], financial applications [13], engineering
design applications [14], geotechnical engineering applica-
tions [15], social sciences applications [16], and neuroscien-
tific applications [17].

ANNSs usually consist of an input layer, one or multiple
hidden layers and an output layer. Each layer consists of
nodes, called neurons, which are connected to neurons of the
previous and the following layers by weighted links. During
the training of an ANN, the connection weights are adjusted
so as to allow the ANN to generate the correct output based on
the inputs. For supervised learning, these weights are adjusted
such that the difference between the output value from the
ANN and the known value from the dataset is minimized [18].
Hence, a trained neural network consists of an optimized set
of connection weights, and this allows the neural network to
produce accurate outputs based on the information provided,
even if the inputs were not used during its training.

Feedforward neural networks are artificial neural networks
in which information is transferred in only one direction,
that is, from the input layer to the hidden layers and then
to the output layer. There are no feedback connections or
loops in a feedforward neural network. It consists of neurons,
also called processing units, in each layer and each neuron is
connected to neurons from the previous layer by connection
weights. The neurons have the capability of processing the
information received through the connection weights. The
structure of a feedforward neural network makes it ideal for
approximating any continuous function, thereby making it a
universal function approximator [19].

Conventional algorithms used for training neural networks
are gradient descent-based such as backpropagation, conju-
gate gradient, Quasi-Newton, Gauss-Newton, or Levenberg-
Marquardt [19]. However, since these algorithms are local
search algorithms which are beneficial for the exploitation of
the state space but not its exploration, they tend to be trapped
in local optima [19], and they are unable to get the most
optimal set of weights for the neural network. Hence meta-
heuristic algorithms such as swarm intelligence algorithms
which are endowed with both exploration and exploitation
capabilities are promising training algorithms for artificial
neural networks.

Swarm intelligence algorithms make use of the collective
behaviour of simple agents which interact in a decentralized

VOLUME 10, 2022

and self-organized manner for solving optimization prob-
lems [20]. These algorithms are inspired by the behaviour
of biological organisms such as insects and animals as they
interact among themselves and their environment. They make
use of a population of artificial search agents which aim
at obtaining the solution in a search space that corresponds
to the maximum or the minimum value of a certain objec-
tive function. Some popular swarm intelligence algorithms
include the Particle Swarm Optimization (PSO), Ant Colony
Optimization (ACO), and Bee Colony Optimization (BCO)
which are inspired by bird flocks or fish schools, ant colonies,
and bee colonies respectively. Some recent swarm intelli-
gence algorithms include Grey Wolf Optimizer (GWO) [21],
Owl Search Algorithm (OSA) [22], Sparrow Search Algo-
rithm (SSA) [23], Harris Hawks Optimization (HHO) [24],
Moth-Flame Optimization (MFO) [25] and Rat Swarm Opti-
mizer (RSO) [26].

The Dragonfly Algorithm (DA) [27] is a swarm intelli-
gence algorithm which is inspired by the behaviour of drag-
onflies, specifically their hunting and migrating behaviours.
These two behaviours of dragonflies aptly represent the two
crucial phases of optimization algorithms; exploration and
exploitation. Hence, DA makes use of these behaviours, and
a population of artificial dragonflies so as to get the optimal
solution in a search space. DA has been found to perform
better than multiple swarm intelligence algorithms in various
applications as we have seen from our work in [28]. How-
ever, it still has some limitations such as a low exploitation
phase [29]. This results in low accuracy of solutions, local
optima problem, and low convergence rate.

The Hill Climbing algorithm is a local search optimization
algorithm which has high exploitation. This is because it
always selects a solution which is better than the current
solution, that is, one which optimizes the cost of the objective
function, until the local optimal solution is achieved [30]. Hill
climbing has been successfully used to increase the effec-
tiveness of various swarm intelligence algorithms, in par-
ticular by enhancing their exploitation phase. It has also
been used to increase the convergence rate of some swarm
intelligence algorithms by accelerating the search process.
However, it has not been used in any existing hybrid of DA
to enhance the low exploitation of the original dragonfly
algorithm.

In [31], we have proposed the idea of improving the low
exploitation of the continuous DA by using the hill climbing
algorithm as a local search technique. The continuous version
of DA is used for solving continuous optimization problems
like the training of ANNs. A continuous optimization prob-
lem means that the state space consists of real values within
a specified range of values, that is, a potential solution can
be any real number within a specific range. However, the
algorithm was not implemented or applied to any optimiza-
tion problem in [31]. Since the original dragonfly algorithm
has been found to have a higher performance than other
swarm intelligence algorithms in various applications [28],

95031

IEEE Access

B. A. S. Emambocus et al.: Optimized Continuous DA Using Hill Climbing Local Search to Tackle the Low Exploitation Problem

it is worth improving its low exploitation phase and applying
it for solving optimization problems.

In this paper, we implement and propose an improved
continuous dragonfly algorithm with a better exploitation
phase. The exploitation of DA is improved by using the
stochastic hill climbing algorithm as a local search technique.
The stochastic hill climbing is one of the main types of
hill climbing algorithms in which a random neighbouring
position which is better than the current position is chosen
as the current position in each iteration of the algorithm. The
pseudocode of the proposed algorithm is provided along with
some explanations. The improved continuous DA algorithm
is applied as a training algorithm for feedforward neural
networks which are employed for benchmark classification
problems, namely, the classification of the iris dataset, the
balloon dataset, the glass dataset, and the breast cancer
dataset from the UCI Machine Learning Repository [32],
and the results are recorded. Based on the experimental
results, the proposed optimized DA algorithm provides better
solutions as compared to the original DA and other swarm
intelligence algorithms.

The remaining of the paper is structured as follows: In
Section II, some previous works which have used swarm
intelligence algorithms to train artificial neural networks are
presented. In Section III, a background on the dragonfly
algorithm is presented and in Section IV, a background on
the hill climbing algorithm is given. In Section V, a detailed
description of the proposed algorithm is provided and in
Section VI, a description of how the proposed algorithm is
used for training an artificial neural network is provided.
In Section VII, the experimental results are provided and
finally in Section VIII, the conclusions and future works are
provided.

Il. SWARM INTELLIGENCE ALGORITHMS USED FOR
TRAINING ANN

In this section, some previous works which have employed
swarm intelligence algorithms as the training algorithm for
artificial neural networks are presented. Table 1 shows a
comparison of these works in terms of the swarm intel-
ligence algorithm used for training the ANN, the type
and architecture of the ANN used, the application for
which the ANN is used, and its performance in terms of
effectiveness.

In [33], Particle Swarm Optimization (PSO), Ant Colony
Optimization (ACO), Artificial Bee Colony Optimiza-
tion (ABC) and firefly algorithm are used for the training
of an Artificial Neural Network (ANN) to get the optimal
weights for the ANN so as to increase its prediction accu-
racy. The neural network consists of one input layer with
20 neurons, one hidden layer with 50 neurons and one output
layer with one neuron and it is used for fault prediction in
object-oriented systems by using the NASA public dataset.
Specifically, the model is employed to identify and predict
whether the classes in the object-oriented system are faulty.

95032

To determine the performance of the ANNs trained using
the swarm intelligence algorithms, their prediction accuracy
and time taken per run are compared to an ANN trained
by gradient descent. The results show that all four neural
networks trained by the swarm intelligence algorithms have a
higher prediction accuracy than the ANN trained by gradient
descent. The ANNSs trained by the firefly algorithm, ACO,
ABC and PSO have an average improvement of 18.559%,
28.606%, 38.852% and 50.75% respectively in the fault
prediction over the ANN trained by gradient descent. The
average time taken by the ANN trained by gradient descent
is 21.038 seconds per run, and those trained by firefly,
ACO, ABC, and PSO are 22.796 seconds, 5.568 seconds,
56.339 seconds and 5.235 seconds respectively. Hence, it can
be seen that the ANNSs trained by ACO and PSO are more
efficient than that trained by gradient descent while those
trained by firefly and ABC are less efficient than the ANN
trained by gradient descent.

In [34], PSO is used for training an ANN which is then used
for the prediction of the load-slip behaviour of channel con-
nectors embedded in normal and high-strength concrete. The
ANN consists of an input layer with five neurons, one hidden
layer with 10 neurons, and an output layer with one neuron.
70% of the data is used for the training of the ANN, and the
other 30% is used for testing the ANN. To assess the perfor-
mance of the ANN trained by PSO, the root mean squared
error (RMSE), Pearson correlation coefficient (r), and deter-
mination coefficient (R2) of the resultant ANN are generated.
Its performance is also compared to another ANN of similar
architecture which is trained by the Levenberg—Marquardt
backpropagation algorithm. In both the training and testing
phases, the ANN trained by PSO has higher r and R2 val-
ues and lower RMSE as compared to the ANN trained by
backpropagation, which indicates that the ANN trained by
PSO has superior prediction accuracy. In the testing phase,
the RMSE value of the ANN trained by PSO is 2.069 while
the RMSE value of the ANN trained by backpropagation is
2.569. Hence, the RMSE value of the ANN trained by PSO
is 19.5% lower than the RMSE value of the ANN trained by
backpropagation.

In [35], Grasshopper Optimization Algorithm (GOA) and
Gray Wolf Optimization (GWO) are used for the training
of a neural network so as to increase its accuracy in the
estimation of the heating load of residential buildings. The
data which is obtained from the analysis of 768 residential
buildings is randomly split for the training and testing of the
ANNSs. 80% of the data is utilized for the training phase and
20% is used for the testing phase. Three artificial neural net-
works, one which is trained by backpropagation, one which
is trained by GOA (GOA-MLP), and one which is trained
by GWO (GWO-MLP) are tested using the same data. The
structure of the neural networks consists of one input layer
with eight nodes, one output layer with one node and nine
hidden layers with up to 15 neurons. The root mean-square
error (RMSE), mean absolute error (MAE), and coefficient

VOLUME 10, 2022

B. A. S. Emambocus et al.: Optimized Continuous DA Using Hill Climbing Local Search to Tackle the Low Exploitation Problem

IEEE Access

of determination (R?) are used to compare the performance
of the three models. During the training phase, the RMSE
of GOA-MLP, and GWO-MLP is 16.53% and 19.19% lower
than the RMSE of the MLP trained by backpropagation
respectively and the MAE is lower by 13.46% and 15.81%.
The R? of both the GOA-MLP and GWO-MLP is higher than
the R? of the MLP trained by backpropagation. During the
testing phase, the RMSE of GOA-MLP, and GWO-MLP is
18.08% and 23.31% lower than the RMSE of the MLP trained
by backpropagation respectively and the MAE is lower by
16.60% and 20.72%. The R*> of the GOA-MLP, which is
0.9486, and that of GWO-MLP, which is 0.9551, is higher
than the R? of the MLP trained by backpropagation, which is
found to be 0.9328. These values indicate that the accuracy of
both the GOA-MLP, and GWO-MLP are higher than the MLP
trained by backpropagation and hence they have a better per-
formance in the estimation of the heating load of residential
buildings.

In [36], the original DA and Harris Hawks Optimiza-
tion (HHO) algorithm are employed for optimization of the
connection weights and biases of an ANN which is used in
the analysis of the bearing capacity of footings over two-layer
foundation soils. The failure probability is predicted by con-
sidering seven factors as inputs, namely, unit weight, friction
angle, elastic modulus, dilation angle, Poisson’s ratio, applied
stress, and setback distance. 80% of the data is used for
training three Multi-Layer Perceptrons (MLP) and the rest
20% is used for testing the neural networks. One MLP is
trained using backpropagation, one is trained using DA (DA-
MLP), and one is trained using HHO (HHO-MLP). The
mean squared error, and the mean absolute error are used
to compare the performance of the three neural networks.
During the testing phase, the MSE obtained for the MLP
trained by backpropagation is 0.1416, that of HHO-MLP is
0.1350, which is a 4.66% decrease, and that of DA-MLP is
0.1171, which is a 17.30% decrease. The MAE for the MLP
trained by backpropagation is found to be 0.3230, that of the
HHO-MLP is found to be 0.3200, which is a 0.93% decrease,
and that of DA-MLP is found to be 0.2904, which is a 10.09%
decrease. Moreover, the accuracy of the MLP trained by
backpropagation is 89.0% while that of the HHO-MLP, and
DA-MLP are 91.5% and 94.2% respectively. Hence, it can be
seen that the DA-MLP outperforms the two other models.

In [37], a hybrid of an improved Nelder Mead ALgo-
rithm and dragonfly algorithm, called INMDA is used for
the training of an MLP by optimizing its weight and biases.
The MLP is then used for three benchmark classification
problems, namely the XOR problem, balloon classification
problem, and heart classification problem. The performance
of the MLP trained by INMDA is compared to that of
MLPs trained by PSO, Evolution Strategy (ES), Grey Wolf
Optimizer (GWO), Population-Based Incremental Learning
(PBIL), and Genetic Algorithm (GA). The MSE obtained
by the MLPs trained by INMDA, GWO, PSO, GA, ES, and
PBIL are 4.64¢-05, 0.009410, 0.084050, 0.000181, 0.118739,

VOLUME 10, 2022

and 0.030228 for the XOR problem, 5.48e-16, 9.38e-15,
0.000585, 5.08e-24, 0.019055, and 2.49e-05 for the balloon
classification problem, and 0.114351, 0.122600, 0.188568,
0.188568, 0.192473, and 0.154096 for the heart classification
problem respectively. Hence, it can be seen that the MLP
trained by INMDA achieves the lowest MSE for the XOR
problem, the second lowest MSE for the balloon classifica-
tion problem, and the lowest MSE for the heart classification
problem.

In [38], the original DA algorithm is used to train an
ANN which is used for the brain classification of Magnetic
Resonance Images (MRI). The DA algorithm is used to
avoid the local optimum problem usually faced by the back-
propagation algorithm while training ANN and to increase
the speed of the training process. The neural network con-
sists of seven inputs that represent seven feature vectors,
one output that can indicate either a normal or an abnor-
mal brain, and one hidden layer with four nodes. DA is
used to optimize the weights of the ANN and the sensi-
tivity, specificity, and accuracy of the resultant neural net-
work are calculated. The performance of the DA-based ANN
is compared to that of GA-based ANN, PSO-based ANN,
and backpropagation (BP)-based ANN. The sensitivity of
the DA-based ANN, PSO-based ANN, GA-based ANN,
and BP-based ANN is found to be 89%, 83%, 82%, and
77% respectively, the specificity is found to be 83%, 72%,
70%, and 68% respectively, and the accuracy is found to
be 85%, 80.5%, 80%, and 75% respectively. Since, the
values for the sensitivity, specificity, and accuracy of the
DA-based ANN are higher than those of the other mod-
els, this indicates that the DA-based ANN has a better
performance.

In [39], the original dragonfly algorithm is employed as
the training algorithm for an MLP which is applied for the
classification of sonar targets. DA is used to obtain the opti-
mal values for the connection weights and biases of the MLP.
The neural network used consists of one input layer with
two neurons, one hidden layer with three neurons, and one
output layer with one neuron. The classification accuracy
of the MLP trained by DA is compared to that of MLPs
trained by Grey Wolf Optimizer (GWO), Biogeography-
Based Optimization (BBO), Multi-Verse Optimizer (MVO),
Gravitational Search Algorithm (GSA), PSO, and ACO. The
classification accuracy of the MLP trained by DA is found
to be 92.1457%, 94.2154%, and 96.6523% for the three
different datasets used. For all the datasets used, the classi-
fication accuracy of the MLP trained by DA is higher than
that of the MLPs trained by GWO, BBO, MVO, GSA, PSO,
and ACO.

Ill. DRAGONFLY ALGORITHM

The dragonfly algorithm makes use of the static and dynamic
swarming behaviours of dragonflies during hunting and
migration respectively [27]. While hunting, the population
of dragonflies divide into small groups and they fly over a

95033

IEEE Access

B. A. S. Emambocus et al.: Optimized Continuous DA Using Hill Climbing Local Search to Tackle the Low Exploitation Problem

TABLE 1. Comparison of artificial neural networks trained by swarm intelligence algorithms.

Paper SI Algorithm Type of | ANN Architecture Application Effectiveness
ANN
[33] Particle Swarm Opti- | Multi Layer | One input layer with 20 neurons, one | Fault prediction in object | Average improvement
mization (PSO), Ant | Perceptron hidden layer with 50 neurons and one | oriented systems of 18.559% (firefly),
Colony Optimization | (MLP) output layer with one neuron 28.606% (ACO),
(ACO), Artificial Bee 38.852% (ABC) and
Colony Optimization 50.75% (PSO) over
(ABC) and firefly al- gradient descent
gorithm
[34] Particle Swarm Opti- | MLP One input layer with five neurons, one | Prediction of load-slip | 19.5% lower
mization hidden layer with 10 neurons and one | behaviour of channel | RMSE value than
output layer with one neurons connectors embedded | ANN trained by
in normal and high- | Levenberg—Marquardt
strength concrete backpropagation
[35] Grasshopper MLP One input layer with eight nodes, one | Estimation of heating | 18.08% and 23.31%
Optimization output layer with one node and nine | load of residential | lower = RMSE than
Algorithm and Gray hidden layers with up to 15 neurons buildings MLP trained by
‘Wolf Optimization backpropagation,
16.60% and 20.72%
lower MAE and
higher R? value
than MLP trained
by backpropagation
[36] Dragonfly Algorithm | MLP One input layer with seven neurons, | Prediction of the failure | 4.66 % and 17.30 %
and Harris Hawks Op- one hidden layer with six neurons, | probability of the bear- | lower MSE, and 0.93%
timization and one output layer with one neuron | ing capacity of footings | (HHO) and 10.09% (DA)
over two-layer founda- | lower MAE than MLP
tion soils trained by backpropaga-
tion
[37] Hybrid DA-Nelder | MLP One input layer with three neurons, | Benchmark 4.64e-05 (XOR
Mead (INMDA) one hidden layer with seven neurons, | classification problems | problem), 5.48e-16
and one output layer with one neuron | (XOR Problem, Balloon | (balloon classification
(XOR Problem), one input layer with | Classification Problem, | problem), and 0.114351
four neurons, one hidden layer with | Heart Classification | (Heart classification
nine neurons, and one output layer | Problem) problem) MSE
with one neuron (Balloon classifica-
tion problem), One input layer with
22 neurons, one hidden layer with 45
neurons, and one output layer with
one neuron (Heart classification prob-
lem)
[38] Original DA MLP One input layer with seven nodes, one | Classification of MRI | Higher sensitivity(89%),
hidden layer with four nodes, and one | brain images specificity(83%),
output layer with one node accuracy (85%) than
PSO-based ANN, GA-
based ANN, BP-based
ANN
[39] Original DA MLP One input layer with two nodes, one | Classification of sonar | Classification accuracy
hidden layer with three nodes, and | targets of 92.1457%, 94.2154%,
one output layer with one node and 96.6523% for three
datasets

small area by abruptly changing their flying path in order to
hunt other flying insects. This behaviour is congruent with the
exploration phase of optimization algorithms where search
agents try to find good regions of the state space. Conversely,
while migrating, the whole population of dragonflies come
together to form one big group and they fly together for a
long distance in one direction. This behaviour is congruent
with the exploitation phase of optimization algorithms where
search agents try to locate the global best solution after a

promising search area is found. Hence, the dragonfly algo-

rithm employs these two behaviours for solving optimization

FIGURE 1. Static and dynamic swarms of dragonflies [27].

problems. Fig. 1 shows a static and a dynamic swarm of
dragonflies.

During both the exploration and exploitation phases, five
factors are used to control the movement of the dragonflies

95034 VOLUME 10, 2022

B. A. S. Emambocus et al.: Optimized Continuous DA Using Hill Climbing Local Search to Tackle the Low Exploitation Problem

IEEE Access

in the search space, namely, separation, alignment, cohesion,
attraction to food and distraction from enemy. Each of these
factors has a corresponding weight.

Separation is used to avoid static collision of a dragonfly
and its neighbours, and is calculated as follows:

N
Si=—) Xi—X M
j=1

where S;, X;, X;, and N represent the separation of the
i—th dragonfly, the position of the i—th dragonfly, the posi-
tion of the j—th neighbour, and the number of neighbouring
dragonflies respectively.

Alignment is used to match the velocity of a dragonfly to
that of its neighbours, and is calculated as follows:

N
o 2imY
- N

where A; is the alignment of the i—th dragonfly, and V; is the
velocity of the j-th neighbour.

Cohesion is the tendency of one dragonfly towards the
center of mass of the neighborhood, and is calculated as
follows:

A @

N
Zj:l)(]
N

where C; is the cohesion of the i—th dragonfly, and X; is the
position of the j-th neighbour.

Attraction to food is used to attract a dragonfly towards the
food source which is taken as the best position obtained by
the population, and is calculated as follows:

C = - X 3)

Fi= X" - X; 4)

where X represent the position of the food source.

Distraction from enemy is used to distract a dragonfly away
from the enemy which is taken as the worst position obtained
by the population, and is calculated as follows:

E = X + X &)

where X~ represent the position of the enemy.

In order for the dragonflies to move in the search space by
making use of these factors, two vectors are used, namely,
step vector (AX), and position vector (X). The step vector
indicates the direction of movement, and is calculated as
follows:

AX!T! = (sS; + aA; + ¢C; + fFi + eEp) + wAX! (6)

where s, S;, a, Ai, ¢, Ci, f, F;, e, Ei, w, and t represent
the separation weight, the separation of the i-th dragonfly, the
alignment weight, the alignment of i-th dragonfly, the cohe-
sion weight, the cohesion of the i-th dragonfly, the weight
of the food factor, the food factor of the i-th dragonfly,
the weight of the enemy factor, the enemy factor of the
i-th dragonfly, the inertia weight, and the iteration counter
respectively.

VOLUME 10, 2022

The position vector allows the dragonflies to move in the
search space by updating their positions using:

Xt =x! 4+ ax{t! @)

In DA, the neighbourhood of the dragonflies is an impor-
tant aspect. This is considered by assuming a radius around
each dragonfly. The radius is incremented proportionally to
the iteration counter to enable the transition from the explo-
ration to the exploitation phase, thereby changing the static
swarms at the early iterations into dynamic swarms. During
the final iterations, the whole population forms one dynamic
swarm and converges to the global optimal solution. Another
way by which the algorithm transitions from exploration
to exploitation is by adaptively tuning the weights for the
different factors.

If a dragonfly has no neighbours at some point, its position
is updated using the Lévy flight mechanism. This is a random
walk that increases the randomness of the algorithm. The
position vector used is:

X = X! + Levy(d) x X! 8)

where ¢, and d represent the current iteration number and the
dimension of the position vectors respectively.
The Lévy flight mechanism is calculated using (9):

rLXo
;)

2| #

Levy(x) = 0.01 x

where 71, and r, are random numbers between O and 1. 8 is
a constant which is taken as 1.5 [27], and o is calculated
using (10):

I(1+ B) x sin("L)

1+) {10
(=) x g x2\2
where I'(x) = (x — 1)\

Algorithm 1: Dragonfly Algorithm

1 Initialize the population’s positions randomly;

2 Initialize the step vectors;

s while end condition do

a Calculate the objective values of all dragonflies;

5 Update the food source and enemy;

6 Update the weights;

7 Calculate the factors using (1)—(5);

8 Update radius of neighbourhoods;

9 if dragonfly has one or more neighbours then
10 Update step vector using (6);
11 Update position vector using (7);
12 else
13 | Update position vector using (8);
14 end
15 Check and correct new positions based on upper and lower bounds;
16 end

FIGURE 2. Dragonfly algorithm pseudocode.
The pseudocode of DA is given in Fig. 2.
95035

IEEE Access

B. A. S. Emambocus et al.: Optimized Continuous DA Using Hill Climbing Local Search to Tackle the Low Exploitation Problem

IV. HILL CLIMBING ALGORITHM

The Hill Climbing algorithm is a heuristic local search algo-
rithm usually employed to solve optimization problems. Hill
climbing works by optimizing a specified objective function.
It starts at a random solution and then selects other neigh-
bouring solutions which improve the value of the objective
function. It is terminated when the value of the objective
function can no longer be improved, that is when the local
optimum is reached [30]. Hence, hill climbing is an effec-
tive method to quickly locate the local optimum of a search
region.

The stochastic hill climbing algorithm is one of the main
types of hill climbing algorithms. It works by starting at an
initial position, called the current position. Then it chooses
a random neighbour of the current position which is better
than the current position as the current position. This pro-
cess is repeated until the current position can no longer be
optimized.

The pseudocode of the stochastic hill climbing algorithm
is given in Fig. 3.

Algorithm 2: Stochastic Hill Climbing Algorithm

1 current position = initial solution;

2 repeat

3 for All neighbours of current position do

a Obtain a random neighbour;

5 if cost of neighbour < cost of current position then
6 current position = neighbour position;

T break;

8 end

9 end
10 until cost of current position < cost of all its neighbours;

FIGURE 3. Stochastic hill climbing pseudocode.

Hill climbing has been employed as a local search tech-
nique for multiple swarm intelligence algorithms to improve
their performance, especially by improving their exploitation.
For example, it has been used to improve the exploitation
phase of Ant Colony Optimization (ACO) [40], salp swarm
algorithm [41], Artificial Bee Colony (ABC) [42], moth-
flame optimization [43], and cuckoo search [44]. Moreover,
it has also been used to increase the convergence rate of
ABC [45], cuckoo search [44], moth-flame optimization [43],
and PSO [46].

V. PROPOSED OPTIMIZED CONTINUOUS DA ALGORITHM
In this section, a description of the proposed algorithm is
presented. The proposed algorithm enhances the exploitation
of the original dragonfly algorithm. This is done by using the
stochastic hill climbing algorithm as a local search technique.
In every iteration of the algorithm, after the position of the
dragonflies is updated using the step and position vectors of
DA, the stochastic hill climbing algorithm is applied to further
improve the position by further exploiting the search area.
Specifically, lines one to ten from Algorithm 2 are integrated

95036

after line 11 in Algorithm 1 so as to further update the position
which has been found by equation 7. The position found by
equation 7 is taken as the initial solution for the hill climbing
algorithm, that is, it is taken as ‘current position’ from line
one in Algorithm 2. The final ‘current position’ obtained
from Algorithm 2 is then taken as the new position of the
dragonfly for the optimized DA algorithm.

Hill climbing is not applied after the position of the drag-
onflies is updated using equation 8 since this equation is used
for exploration of the search space and not its exploitation.
Moreover, equation 8 makes use of the levy flight mechanism
to update the position of dragonflies which have no neigh-
bours. This is a random walk which updates the position of
the dragonfly in a stochastic manner. Hence, this may mean
that the dragonfly is not in a good region of the search space
and hence there is no need to exploit the region using the hill
climbing algorithm.

Algorithm 3: Optimized Continuous Dragonfly Algorithm

1 Initialize the population’s positions randomly;
2 Initialize the step vectors;

3 Initialize step size for hill climbing;

4 while end condition do

5 Calculate the objective values of all dragonflies;
6 Update the food source and enemy;
7 Update the weights;
8 Calculate the factors using (1)—(5);
9 Update radius of neighbourhoods;
10 if dragonfly has one or more neighbours then
11 Update step vector using (6);
12 Update position vector using (7);
13 Initialize current position as initial position for hill climbing;
14 repeat
15 for All neighbours of current position do
16 Generate a random neighbour using step size;
17 if cost of neighbour < cost of current position then
18 current position = neighbour position;
19 break;
20 end
21 end
22 until cost of current position < cost of all its neighbours;
23 else
24 ‘ Update position vector using (8);
25 end
26 Check and correct new positions based on upper and lower bounds;
27 end

FIGURE 4. Optimized continuous DA pseudocode.

This method of employing the hill climbing algorithm as
a local search technique after updating the position of the
dragonflies using equation 7, allows the dragonflies to update
their position to a better one in the area that has been obtained
by DA. This is because the hill climbing algorithm starts at the
position obtained by DA and then only updates it to a better
one until it can no longer be updated to a better position.
Hence, the exploitation phase of DA is improved, and this
increases the effectiveness of the dragonfly algorithm, that is,
better solutions are obtained as compared to the original drag-
onfly algorithm. The pseudocode of the proposed algorithm
is given in Figure 4.

VOLUME 10, 2022

B. A. S. Emambocus et al.: Optimized Continuous DA Using Hill Climbing Local Search to Tackle the Low Exploitation Problem

IEEE Access

In the initialization phase of the proposed algorithm,
the population of artificial dragonflies is first initialized
with random positions and step vectors. Then the step size
which is used to generate neighbours for the hill climbing
algorithm is initialized. In this paper, the step size used
is 0.05.

In the main loop of optimization, the objective values of
all the dragonflies are first calculated based on their posi-
tions. The food source and the enemy are then updated by
taking the positions of the dragonflies which correspond
to the best, and the worst objective values respectively.
The weights, s,a,c,f, and e are then updated and the
separation, alignment, cohesion, attraction to food, and
distraction from enemy factors of each search agent are
calculated using equations (1)—(5). The radius of neighbour-
hoods is then updated by increasing it based on the iteration
number.

The step and position vectors are then used for updating the
position of the dragonflies. For dragonflies having at least one
neighbour, the step vector is first updated using equation 6
and then the position vector is updated using equation 7. The
position obtained is then further updated using hill climbing
as follows: firstly, the position obtained by DA is initialized
as the initial position of the hill climbing algorithm. A ran-
dom neighbouring solution is generated by using a step size
of 0.05. This step size is either added or subtracted from
a dimension of the current position to get a neighbouring
position. If the objective value of the neighbouring solution
is less than that of the current position, the neighbouring
solution is taken as the current position. Then a random
neighbour of the new current position is generated, and the
process of generating neighbours, and updating the current
position is repeated. If the objective value of a neighbour
solution is not less than that of the current position, then other
random neighbours are generated until one which is better
than the current position is found or until all the neighbours
are checked.

For dragonflies having no neighbours, the position is
updated using equation 8. This equation makes use of the
Lévy flight mechanism which is a random walk for updating
the position of the dragonflies. This is because if a dragonfly
has no neighbours, it may mean that it is in a bad region of the
search space and hence its position is updated in a stochastic
and random way to allow it to explore other regions of the
search space. Hill climbing is not employed after this equa-
tion since the dragonflies having no neighbours are required
to further explore the search space. Moreover, since it may
mean that this region of the search space is not a promising
one, there is no need to exploit this region.

After updating the positions of the dragonflies, the new
positions are checked and corrected based on the upper and
lower bounds, that is, if the new position is greater than the
upper bound, it is given the value of the upper bound and
similarly, if it is lower than the lower bound, it is given the
value of the lower bound.

VOLUME 10, 2022

The loop of optimization is repeated until the end criteria
is met, that is when the maximum number of iterations is
reached.

VI. TRAINING OF ANN USING OPTIMIZED

CONTINUOUS DA

In this section, we provide a description of how the optimized
DA algorithm is used for the training of feedforward neural
networks which are applied to classification problems by
using the iris, balloon, glass, and breast cancer datasets from
the UCI Machine Learning Repository [32].

Firstly, the data consisting of the inputs and the targets is
loaded and it is split. 70% of the data is used for the training
of the ANN and 30% is used for testing the ANN.

Secondly, the feedforward neural network is constructed.
The architecture of the ANNSs used for the different datasets
is described in Section VII-A. An example of the architecture
used for the iris dataset is shown in Fig. 5.

Inputs
Output

Ouput Layer

Input Layer indden Layer

FIGURE 5. Architecture of feedforward neural network used.

After constructing the network, the total number of param-
eters, that is, the total number of weights and biases to be
optimized during the training process is determined using the
formula 11. This number is used as the dimension of the
optimized DA algorithm since the set of all the connection
weights and the biases need to be optimized. One set of
weights and biases represents the position of one dragonfly
in optimized DA.

ixn+n+@xn+o (11

where i, n, and o represent the input size, the number of
hidden neurons, and the output size respectively.

The optimized DA algorithm is then employed to obtain the
optimal set of connection weights and biases for the neural
network. This step is the training stage of the ANN. Random
sets of connection weights and biases are first generated
and are used as the initial positions of the dragonflies. The
positions are updated using the step and position vectors of
the optimized DA as described in Section V. The Root Mean
Squared Error (RMSE) of the ANN is used as the objective
function. To calculate the objective value of a position, the
set of connection weights and biases representing that posi-
tion is assigned to the ANN. The RMSE of the ANN with

95037

IEEE Access

B. A. S. Emambocus et al.: Optimized Continuous DA Using Hill Climbing Local Search to Tackle the Low Exploitation Problem

that set of weights and biases is calculated using 12. The
upper and lower bound values are taken as 2 and -2 respec-
tively. These values are determined based on experimental
analysis.

n AV
RMSE = |3 Qim0 (12)
n

i=1

where y;, t;, and n represent the predicted value, the target
value, and the total number of data samples respectively.

When the optimized DA algorithm converges to the
global optimal solution, the most optimal set of connec-
tion weights and biases of the ANN, which results in the
least RMSE for the testing data, is obtained. These con-
nection weights and biases are then assigned to the neural
network and the ANN is now considered a trained neural
network.

After training the ANN, it is tested using the testing dataset.
The RMSE of the resultant neural network is calculated
using 12 and its accuracy is calculated using 13.

TP + TN
Accuracy = (13)
TP+ TN + FP + FN
where TP, TN, FP, and FN represent the number of true
positives, the number of true negatives, the number of false
positives, and the number of false negatives respectively.

VII. EXPERIMENTAL RESULTS

In this section, a description of the experimental dataset,
experimental setup, and the results with some discussions are
provided.

A. EXPERIMENTAL DATASET

Four classification datasets from the UCI Machine Learning
Repository are used for conducting the experiments; the iris
dataset, the balloon dataset, the glass dataset, and the breast
cancer dataset. The iris dataset is a balanced dataset while
the balloon, glass, and breast cancer datasets are unbalanced
datasets.

The iris dataset consists of 150 instances and three classes.
Each class represent a type of iris plant. Each instance has the
following attributes: sepal length, sepal width, petal length,
petal width, and class. The sepal length, sepal width, petal
length, and petal width can be any real number while the class
can be either ‘Iris Setosa’, ‘Iris Versicolor’ or ‘Iris Virginica’.
The aim of this problem is to correctly identify the class of
the plant based on the other attributes, that is, the sepal length,
sepal width, petal length, and petal width.

The balloon dataset consists of 16 instances and two
classes. Four attributes, namely, color, size, act, and age are
used to classify each instance into either one of the two
classes, namely, ‘inflated’, or ‘not inflated’. The aim is to
correctly classify whether a balloon is inflated or not based
on the mentioned attributes.

The glass dataset consists of 214 instances and two main
classes. Nine different attributes representing the composition

95038

of the glass are used to identify the type of glass, specifically
whether the glass is float processed or not.

The breast cancer dataset consists of 569 instances,
10 attributes, and two classes. The attributes consist of fea-
tures of a cell nucleus and the aim is to classify whether it is
malignant, or benign.

B. EXPERIMENTAL SETUP

The optimized DA algorithm is employed for the training of
feedforward neural networks as described in section VI by
using the iris dataset, the balloon dataset, the glass dataset,
and the breast cancer dataset.

For all four datasets, 70% of the data is used for the training
of the ANN and 30% is used for testing the ANN.

For the iris dataset, the architecture of the neural network
used is one input layer with four neurons, one hidden layer
with three neurons, and one output layer with three neurons.

To determine the number of neurons in the hidden layer,
different ANNSs are trained using the gradient-descent algo-
rithm by changing the number of neurons in the hidden layer
from one to five. The number of neurons which results in the
least average RMSE and the highest average accuracy is then
chosen. The average RMSE and accuracy obtained when the
different ANNS are trained using gradient-descent are shown
in Table 2. Since the least average RMSE and highest average
accuracy are obtained when the number of neurons in the
hidden layer is three, this architecture is chosen for the ANN.

TABLE 2. Comparison of different ANNs trained by gradient-descent.

Number of neu- | Average RMSE Average Accuracy
rons in hidden (%)

layer

1 0.5908 22.0

2 0.5184 333

3 0.4950 36.4

4 0.6102 33.1

5 0.6285 23.97

For the balloon dataset, the architecture of the neural net-
work used is one input layer with four neurons, one hidden
layer with three neurons, and one output layer with one
neuron. For the glass dataset, the architecture is one input
layer with nine neurons, one hidden layer with three neurons,
and one output layer with one neuron, and for the breast
cancer dataset, the architecture is one input layer with nine
neurons, one hidden layer with three neurons, and one output
layer with one neuron.

For all four datasets, the performance of the optimized
DA algorithm in training an ANN is compared to that of
the original DA algorithm. This is done by training similar
ANNs with the same number of layers and neurons using
the original DA algorithm. Then the two neural networks
trained by the optimized DA and the original DA are com-
pared in terms of the final RMSE of the neural network
during the training phase, the RMSE of the resultant neural
network during the testing phase, the accuracy of the resul-
tant neural network, and the time taken for the algorithms

VOLUME 10, 2022

B. A. S. Emambocus et al.: Optimized Continuous DA Using Hill Climbing Local Search to Tackle the Low Exploitation Problem

IEEE Access

TABLE 3. Performance comparison of optimized DA and original DA in training ANN with 3 neurons in hidden layer using iris dataset.

Number Max Original DA Optimized DA

of num Training | Testing Training Testing

Search of RMSE RMSE Accuracy | Time RMSE RMSE Accuracy | Time

Agents iterations (%) Taken To (%) Taken To
Converge Converge
®))

5 10 0.39094 | 0.38897 66.7 1.586 0.13035 0.1041 100.0 968.9189

10 10 0.50835 0.49418 57.8 3.055 0.13563 0.11344 100.0 37.9407

10 20 0.34219 | 0.36114 | 80.0 5.6102 0.13059 0.099124 | 100.0 3886.9033

TABLE 4. Performance comparison of optimized DA and original DA in training ANN with 3 neurons in hidden layer using balloon dataset.

Number | Max Original DA Optimized DA

of num Training | Testing Training Testing

Search of RMSE RMSE Accuracy Time RMSE RMSE Accuracy | Time

Agents iterations (%) Taken To (%) Taken To
Converge Converge
(s) (s)

5 10 0.56337 0.44302 100.0 1.7518 0.0042219 | 0.78259 100.0 1051.3094

10 10 0.3821 0.29864 100.0 1.859 0.025127 0.49063 100.0 316.1989

10 20 0.31102 0.38359 100.0 6.305 0.0093682 | 0.45733 100.0 2431.062

to converge to the optimal solution. Moreover, the conver-
gence curve for both the optimized DA and the original DA
in minimising the RMSE of the ANNs is drawn to com-
pare the rate of convergence of the optimized DA and the
original DA.

Different experiments are conducted by changing the num-
ber of search agents and the maximum number of iterations
for both the optimized DA and the original DA by using
the four different classification datasets. Specifically, 5, and
10 search agents are used for 10, and 20 iterations.

Both the optimized DA and the original DA were imple-
mented in MATLAB and all experiments were conducted on
a macOS Big Sur operating system, 2.9 GHz Dual-Core Intel
Core 15 CPU, and 8 GB RAM.

To further analyse the performance of the Optimized DA
algorithm, its performance in training ANNs using the iris,
balloon, glass, and breast cancer datasets is compared to that
of other swarm intelligence algorithms. The results obtained
when several other swarm intelligence algorithms are used
for training ANNs using the iris, balloon, glass, and breast
cancer datasets are taken from [37], [47], and [48]. Specifi-
cally, the results obtained when ANNs are trained using Ant
Colony Optimization (ACO), Ant Lion Optimization (ALO),
Bat Algorithm (BAT), Biogeography-based Optimization
(BBO), Cuckoo Search (CS), Differential Evolution (DE),
Elephant Herding Optimization (EHO), Evolution Strategy
(ES), Genetic Algorithm (GA), Gravitational Search Algo-
rithm (GSA), Grey Wolf Optimization (GWO), Harmony
Search (HS), Moth-Flame Optimization (MFO), Multiple
Sequence Alignment (MSA), Particle Swarm Optimization
(PSO), Sine Cosine Algorithm (SCA), Whale Optimization
Algorithm (WOA), and Hybrid ABC-DA (HAD) algorithms
are taken from [47], those trained by Hybrid Nelder-Mead
and DA (INMDA) and Population-Based Incremental Learn-
ing (PBIL) algorithms are taken from [37], and those

VOLUME 10, 2022

trained by Multiple Leader Salp Swarm Algorithm (MLSSA)
and Salp Swarm Algorithm (SSA) algorithms are taken
from [48].

In order to have a fair comparison, the optimized DA is
used to train ANNs with the same architecture as in [37], [47],
and [48]. Hence, the number of neurons in the hidden layer is
changed to nine for the iris dataset and balloon dataset, and to
19 for the glass and breast cancer datasets. More experiments
are then conducted by using the optimized DA to train ANNs
with the mentioned architectures and the results are recorded
and compared to that obtained by other swarm intelligence
algorithms.

C. RESULTS AND DISCUSSIONS

1) PERFORMANCE COMPARISON OF OPTIMIZED DA AND
ORIGINAL DA IN TRAINING ANN

Tables 3, 4, 5, and 6 show the results obtained when the
optimized DA and the original DA are used for training ANNs
using the iris dataset, the balloon dataset, the glass dataset,
and the breast cancer dataset.

For the iris dataset, the following architecture is used for
the neural network: one input layer with four neurons, one
hidden layer with three neurons, and one output layer with
three neurons. For the balloon dataset, the architecture used
for the neural network is: one input layer with four neu-
rons, one hidden layer with three neurons, and one output
layer with one neuron. For the glass dataset, the follow-
ing architecture is used: one input layer with nine neurons,
one hidden layer with three neurons, and one output layer
with one neuron. For the breast cancer dataset, the architec-
ture used is: one input layer with nine neurons, one hidden
layer with three neurons, and one output layer with one
neuron.

The number of search agents used is five and 10 and the
maximum number of iterations used is 10, and 20. The results

95039

IEEE Access

B. A. S. Emambocus et al.: Optimized Continuous DA Using Hill Climbing Local Search to Tackle the Low Exploitation Problem

TABLE 5. Performance comparison of optimized DA and original DA in training ANN with 3 neurons in hidden layer using glass dataset.

Number Max Original DA Optimized DA
of num Training | Testing Training Testing
Search of RMSE RMSE Accuracy | Time RMSE RMSE Accuracy | Time
Agents iterations (%) Taken To (%) Taken To
Converge Converge
®))
5 10 1.9915 1.4487 96.9 1.4611 0.89462 1.2524 100.0 3683.5255
10 10 2.1809 2.8743 96.9 2.7182 0.87841 1.2398 100.0 2858.5367
10 20 1.4505 2.2303 95.3 5.5139 0.84181 1.2694 100.0 11596.3256]
TABLE 6. Performance comparison of optimized DA and original DA in training ANN with 3 neurons in hidden layer using breast cancer dataset.
Number | Max Original DA Optimized DA
of num Training | Testing Training Testing
Search of RMSE RMSE Accuracy | Time RMSE RMSE Accuracy | Time
Agents iterations (%) Taken To (%) Taken To
Converge Converge
(s) ()
5 10 0.47874 | 0.50761 63.3 1.8333 0.15693 0.15877 | 96.7 4086.7443
10 10 0.4692 0.432 91.0 1.5417 0.15263 0.15594 | 97.1 4743.1829
10 20 0.23353 | 0.20903 | 94.3 5.8366 0.14695 0.14045 | 97.1 18828.3563
Convergence curve
0.6 T T T T
DA
0.55 \ DA_HC | |
05 ‘\‘ T\
0.45 \\‘ \ . |
0.4 ‘\‘ S N .
w ‘\‘ AN
Lo3s \ - 4
= \
0.3 ‘\‘ .
0.25 - “\‘ =
02 ““\
0.15 - “\‘
0.1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
lteration

FIGURE 6. Effectiveness and convergence of original DA and optimized DA for iris dataset.

are compared using the Root Mean Square Error (RMSE)
obtained in the training and testing phases, the accuracy
obtained in the testing phase, the time taken to converge to
the global optimal solution, and the total time taken. A larger
number of search agents and maximum number of iterations
is not used for conducting the experiments and comparing the
performance of the optimized DA and the original DA since
the optimized DA can provide very high accuracy with five
and 10 search agents for a maximum of 10, and 20 iterations.
Moreover, even if the number of search agents and maximum
iteration is increased, the optimized DA will still provide
better solutions than the original DA. This is because the
optimized DA makes use of the hill climbing algorithm to
improve the exploitation of the original DA, thereby consid-
ering other better solutions which might never be considered
using the original DA. Hence, the optimized DA algorithm

95040

considers more solutions in the search space and is able to
provide better solutions than the original DA.

Fig. 6, 7, 8, and 9 show the convergence curve of the
original DA and the optimized DA algorithms in train-
ing ANNs with one hidden layer consisting of three neu-
rons for the iris, balloon, glass, and breast cancer datasets
respectively.

From Tables 3, 4, 5, and 6, and from Fig. 6, 7, 8, and 9,
it can be deduced that the optimized DA algorithm has a
better performance as compared to the original DA in terms
of the effectiveness, that is, it is able to better optimize the

connection weights and biases of the neural networks during
the training phase, which leads to better accuracy of the
resultant neural network.

From Tables 3, 4, 5, and 6, it can be seen that the RMSE
obtained when the ANN is trained using the optimized DA

VOLUME 10, 2022

B. A. S. Emambocus et al.: Optimized Continuous DA Using Hill Climbing Local Search to Tackle the Low Exploitation Problem

IEEE Access

0.7 |

0.6 -

0.5 -

0.4 -

RMSE

0.3

0.2

0.1

Convergence curve
T

DA
DA _HC

lteration

FIGURE 7. Effectiveness and convergence of original DA and optimized DA for balloon dataset.

2.6 |

Convergence curve
T

221

0.8 1 1 1 1

DA
DA _HC

12 14 16 18 20

lteration

FIGURE 8. Effectiveness and convergence of original DA and optimized DA for glass dataset.

is lower than the RMSE obtained when it is trained by the
original DA for all the conducted experiments and for both
the training and the testing phases of the ANN. Moreover,
in all the experiments conducted, the resultant neural net-
work, which has been trained by the optimized DA algorithm,
achieves a higher accuracy as compared to the neural network
trained by the original DA. For the iris, balloon, and glass
datasets, the ANN trained by the optimized DA can achieve
100% accuracy, and for the breast cancer dataset, it can
achieve very high accuracy which is close to 100%. As for the
ANN trained by the original DA, it can only achieve 100%
accuracy for the balloon dataset which is a simple dataset
consisting of only 16 instances.

From Fig. 6, 7, 8, and 9, it can be seen that the conver-
gence rate of the optimized DA is higher as compared to
the original DA as the optimized DA converges to the global
optimal solution in fewer iterations than the original DA. For
example, for the iris dataset in Fig. 6, it can be seen that the

VOLUME 10, 2022

optimized DA algorithm converges to the optimal solution at
around iteration 15 while the original DA converges at around
iteration 18. Moreover, it can be seen that the optimized DA
converges to much better solutions than the original DA as
the value of the objective function, that is the RMSE of the
neural network is much lower.

2) PERFORMANCE COMPARISON OF OPTIMIZED DA AND
OTHER SWARM INTELLIGENCE ALGORITHMS
IN TRAINING ANN
Tables 7, 8, 9, and 10 show a comparison of the results
obtained when the optimized DA and the other swarm
intelligence algorithms are used for training the ANN
using the iris, balloon, glass, and breast cancer datasets
respectively.

In order to have a fair comparison, the optimized DA algo-
rithm is used for training ANNs with the same architecture as
the other works in [37], [47], and [48] for the four datasets.

95041

IEEE Access

B. A. S. Emambocus et al.: Optimized Continuous DA Using Hill Climbing Local Search to Tackle the Low Exploitation Problem

0.9

Convergence curve
T

0.8
0.7

0.6 |\

RMSE
o
2

04+ \

0.3 - \

0.2 \

DA
DA _HC

0.1 1 1 1 1

10 12 14 16

18 20
lteration

FIGURE 9. Effectiveness and convergence of original DA and optimized DA for breast cancer

dataset.

TABLE 7. Performance comparison of optimized DA and other swarm
intelligence algorithms in training ANN using iris dataset.

Algorithm

MSE Accuracy(%)
Optimized DA 1.14E-02 97.78
ACO 4.28E-01 26.33
ALO 1.67E-01 31.00
BAT 2.00E-01 36.00
BBO 3.19E-02 81.25
CS 9.50E-02 49.00
DE 2.25E-01 42.00
EHO 3.49E-01 8.00
ES 3.92E-01 41.00
GA 8.38E-02 59.10
GSA 4.71E-01 51.00
GWO 2.22E-02 87.67
HS 3.19E-01 29.00
MFO 5.76E-02 76.20
MSA 1.32E-01 5.00
PSO 3.12E-01 14.00
SCA 2.09E-01 37.00
WOA 1.94E-01 20.15
HAD 1.73E-02 91.67
MLSSA 4.17E-02 93.33
SSA 5.41E-02 90.67

For the iris dataset, the following architecture is used: one
input layer with four neurons, one hidden layer with nine
neurons, and one output layer with three neurons, for the
balloon dataset, the following architecture: one input layer
with four neurons, one hidden layer with nine neurons, and
one output layer with one neuron, for the glass dataset, the
architecture used is: one input layer with nine neurons, one
hidden layer with 19 neurons, and one output layer with
one neuron, and for the breast cancer dataset, the following
architecture is used: one input layer with nine neurons, one

hidden layer with 19 neurons, and one output layer with one
neuron.

95042

TABLE 8. Performance comparison of optimized DA and other swarm
intelligence algorithms in training ANN using balloon dataset.

Algorithm MSE Accuracy(%)
Optimized DA 1.55E-06 100.00
ACO 6.39E-02 80.75
ALO 1.95E-06 100.00
BAT 2.60E-06 100.00
BBO 2.19E-20 100.00
CS 4.21E-09 100.00
DE 1.91E-06 100.00
EHO 2.49E-02 35.00
ES 1.47E-02 91.00
GA 4.23E-17 100.00
GSA 2.51E-02 95.00
GWO 6.87E-24 100.00
HS 2.55E-03 91.00
MFO 1.58E-12 100.00
MSA 8.85E-08 100.00
PSO 3.49E-04 90.33
SCA 1.22E-03 95.15
WOA 2.52E-02 100.00
HAD 1.93E-18 100.00
INMDA 5.48E-16 100.00
PBIL 2.49E-05 100.00
MLSSA 5.67E-10 100.00
SSA 6.39E-05 100.00

The results are compared in terms of the Mean Square
Error (MSE) obtained during the training phase and the accu-
racy obtained during the testing phase.

From Tables 7, 8, 9, and 10 it can be deduced that the
proposed optimized DA algorithm has a higher effectiveness
as compared to multiple other swarm intelligence algorithms
in training artificial neural networks. For the iris, glass, and
breast cancer datasets, the ANN trained by the proposed opti-
mized DA achieves a higher accuracy than all other swarm

intelligence algorithms used to train ANNs in [37], [47],
and [48]. For the balloon dataset, the accuracy obtained by

VOLUME 10, 2022

B. A. S. Emambocus et al.: Optimized Continuous DA Using Hill Climbing Local Search to Tackle the Low Exploitation Problem

IEEE Access

TABLE 9. Performance comparison of optimized DA and other swarm
intelligence algorithms in training ANN using glass dataset.

Algorithm MSE Accuracy(%)
Optimized DA 5.74E-01 95.30
ACO 4.22E-01 3.00
ALO 1.65E-01 21.40
BAT 3.34E-01 12.00
BBO 8.27E-03 70.66
CS 6.17E-02 31.00
DE 8.58E-02 3.00
EHO 1.77E-01 0.00
ES 2.43E-01 20.00
GA 9.45E-02 34.20
GSA 2.45E-01 24.00
GWO 1.59E-02 73.25
HS 1.15E-01 32.50
MFO 3.61E-02 72.20
MSA 2.44E-02 0.00
PSO 1.67E-01 1.00
SCA 1.36E-01 23.33
WOA 7.53E-02 10.00
HAD 2.10E-04 77.15

TABLE 10. Performance comparison of optimized DA and other swarm
intelligence algorithms in training ANN using breast cancer dataset.

Algorithm MSE Accuracy(%)
Optimized DA 0.014799 98.57
ACO 4.45E-01 6.00
ALO 2.26E-01 63.00
BAT 1.08E-01 90.00
BBO 5.30E-02 94.00
CS 8.42E-02 82.25
DE 1.32E-01 7.00
EHO 2.14E-01 0.00
ES 2.44E-01 75.00
GA 6.94E-02 92.25
GSA 3.05E-01 73.00
GWO 4.02E-02 95.00
HS 2.21E-01 72.30
MFO 6.11E-02 94.00
MSA 5.79E-02 7.00
PSO 2.21E-01 7.00
SCA 1.72E-01 77.00
WOA 2.13E-01 74.75
HAD 3.46E-02 96.00
MLSSA 4.19E-03 96.67
SSA 6.32E-03 94.5

the ANN trained by the optimized DA is 100% which is the
same as the ANNS trained by several other algorithms.

VIIl. CONCLUSION AND FUTURE WORK

The dragonfly algorithm is a recent swarm intelligence algo-
rithm which is inspired by the static and dynamic swarming
behaviours of dragonflies. It has been found to have a higher
performance than various swarm intelligence algorithms in
multiple optimization problems such as in the training of
ANNSs. Despite having a good performance, DA suffers from
a low exploitation phase which affects its effectiveness, that
is, its ability to provide high-quality solutions. Hence, its
performance can be improved by overcoming its limitations
such as the low exploitation phase.

VOLUME 10, 2022

The training of artificial neural networks is a crucial pro-
cess as it is a requisite step in order to be able to use
neural networks. This process primarily allows the neural
network to learn how to generate the correct output based on
the inputs provided, thus enabling the neural network to be
used for various tasks such as classification and regression.
Conventional algorithms used for training ANNs such as the
Backpropagation algorithm have some limitations such as
being trapped in local optima and hence they are unable to
find the optimal connection weights for the neural network.
Recently, the use of swarm intelligence algorithms to train
ANN has been increasing owing to their high exploration and
exploitation capabilities.

In this paper, an optimized dragonfly algorithm is proposed
and used as a training algorithm for feedforward neural net-
works which are used for benchmark classification problems,
namely the iris, balloon, glass, and breast cancer classifica-
tion problems. The performance of the dragonfly algorithm
is improved by overcoming its low exploitation phase. This
is achieved by using the stochastic hill climbing algorithm as
a local search technique.

From the experimental results, it can be deduced that the
optimized DA algorithm has a better performance in training
ANN as compared to the original DA and multiple other
swarm intelligence algorithms. The RMSE of the ANNs
trained by the optimized DA is found to be lower than the
RMSE of the ANNs trained by the original DA for both the
training and testing phases. The classification accuracy for
the ANN trained by the optimized DA is also higher than
the ANN trained by the original DA. Moreover, the ANNs
trained by the proposed algorithm have higher accuracy as
compared to those trained by multiple other swarm intelli-
gence algorithms.

For future work, the ANN trained by the optimized DA
algorithm can be applied to more classification datasets and
also to regression datasets so as to use it for regression prob-
lems in addition to classification problems. Moreover, it can
be used for some real-world applications with real-world
datasets instead of benchmark datasets. For example, the
ANN trained by the optimized DA can be used as prediction
systems in smart cities, and for channel estimation in optical
systems [49].

REFERENCES

[1] M.-C. Yuen, S.-C. Ng, and M.-F. Leung, ‘A competitive mechanism multi-
objective particle swarm optimization algorithm and its application to
signalized traffic problem,” Cybern. Syst., vol. 52, no. 1, pp. 73-104,
Jan. 2021.

[2] M.-C. Yuen, S.-C. Ng, M.-F. Leung, and H. Che, “A metaheuristic-based
framework for index tracking with practical constraints,” Complex Intell.
Syst., pp. 1-16, Dec. 2021.

[3] B. A. S. Emambocus, M. B. Jasser, M. Hamzah, A. Mustapha,
and A. Amphawan, “An enhanced swap sequence-based particle
swarm optimization algorithm to solve TSP,” IEEE Access, vol. 9,
pp. 164820-164836, 2021.

[4] B.A.S.Emambocus, M. B. Jasser, and A. Amphawan, “A discrete adapted
dragonfly algorithm for solving the traveling salesman problem,” in Proc.
5th Int. Conf. Intell. Comput. Data Sci. (ICDS), Oct. 2021, pp. 1-6.

95043

IEEE Access

B. A. S. Emambocus et al.: Optimized Continuous DA Using Hill Climbing Local Search to Tackle the Low Exploitation Problem

[5]
[6]

[71

[8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning. Cambridge, MA, USA: MIT Press, 2018.

T. Chen, N. Kapron, and J. C.-Y. Chen, “Using evolving ANN-based
algorithm models for accurate meteorological forecasting applications in
Vietnam,” Math. Problems Eng., vol. 2020, pp. 1-8, Jun. 2020.

A.A. A.M. Amiruddin, H. Zabiri, S. A. A. Taqvi, and L. D. Tufa, “Neural
network applications in fault diagnosis and detection: An overview of
implementations in engineering-related systems,” Neural Comput. Appl.,
vol. 32, no. 2, pp. 447-472, Jan. 2020.

J. D. Kechagias, A. Tsiolikas, M. Petousis, K. Ninikas, N. Vidakis, and
L. Tzounis, “A robust methodology for optimizing the topology and the
learning parameters of an ANN for accurate predictions of laser-cut edges
surface roughness,” Simul. Model. Pract. Theory, vol. 114, Jan. 2022,
Art. no. 102414.

K. Ganji and S. Parimi, “ANN model for users’ perception on IoT based
smart healthcare monitoring devices and its impact with the effect of
COVID 19,” J. Sci. Technol. Policy Manage., vol. 13, no. 1, pp. 6-21,
Feb. 2022.

G. Perveen, P. Anand, and A. Kumar, “Short-term power prediction using
ANN,” in Proc. IEEE Int. Conf. Signal Image Process. Appl. (ICSIPA),
Sep. 2021, pp. 233-237.

A. T. Hoang, S. Nizeti¢, H. C. Ong, W. Tarelko, V. V. Pham, T. H. Le,
M. Q. Chau, and X. Phuong Nguyen, “A review on application of artificial
neural network (ANN) for performance and emission characteristics of
diesel engine fueled with biodiesel-based fuels,” Sustain. Energy Technol.
Assessments, vol. 47, Oct. 2021, Art. no. 101416.

B. Eren, M. A. Guvenc, and S. Mistikoglu, ““Artificial intelligence appli-
cations for friction stir welding: A review,” Met. Mater. Int., vol. 27, no. 2,
pp. 193-219, Feb. 2021.

A. M. Ozbayoglu, M. U. Gudelek, and O. B. Sezer, “Deep learning for
financial applications: A survey,” Appl. Soft Comput., vol. 93, Aug. 2020,
Art. no. 106384.

D. Wu and G. G. Wang, “Causal artificial neural network and its applica-
tions in engineering design,” Eng. Appl. Artif. Intell., vol. 97, Jan. 2021,
Art. no. 104089.

H. Moayedi, M. Mosallanezhad, A. S. A. Rashid, W. A. W. Jusoh, and
M. A. Muazu, “A systematic review and meta-analysis of artificial neural
network application in geotechnical engineering: Theory and applica-
tions,” Neural Comput. Appl., vol. 32, no. 2, pp. 495-518, Jan. 2020.

G. Di Franco and M. Santurro, “Machine learning, artificial neu-
ral networks and social research,” Quality Quantity, vol. 55, no. 3,
pp. 1007-1025, Jun. 2021.

G.R. Yang and X.-J. Wang, “Artificial neural networks for neuroscientists:
A primer,” Neuron, vol. 109, no. 4, p. 739, Feb. 2021.

A. El-Shahat, Advanced Applications for Artificial Neural Networks.
Rijeka, Croatia: InTech, 2018.

V. K. Ojha, A. Abraham, and V. Snésel, “Metaheuristic design of feedfor-
ward neural networks: A review of two decades of research,” Eng. Appl.
Artif. Intell., vol. 60, pp. 97-116, Apr. 2017.

S. Selvaraj and E. Choi, “Survey of swarm intelligence algorithms,” in
Proc. 3rd Int. Conf. Softw. Eng. Inf. Manage., Jan. 2020, pp. 69-73.

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Adv.
Eng. Softw., vol. 69, pp. 46-61, Mar. 2014.

M. Jain, S. Maurya, A. Rani, and V. Singh, “Owl search algorithm: A novel
nature-inspired heuristic paradigm for global optimization,” J. Intell. Fuzzy
Syst., vol. 34, no. 3, pp. 1573-1582, 2018.

J. Xue and B. Shen, ““A novel swarm intelligence optimization approach:
Sparrow search algorithm,” Syst. Sci. Control Eng., vol. 8, no. 1, pp. 22-34,
Jan. 2020.

A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen,
“Harris hawks optimization: Algorithm and applications,” Future Gener.
Comput. Syst., vol. 97, pp. 849-872, Aug. 2019.

S. Mirjalili, “Moth-flame optimization algorithm: A novel nature-inspired
heuristic paradigm,” Knowl.-Based Syst., vol. 89, pp. 228-249, Nov. 2015.
G. Dhiman, M. Garg, A. Nagar, V. Kumar, and M. Dehghani, “A novel
algorithm for global optimization: Rat swarm optimizer,” J. Ambient Intell.
Humanized Comput., vol. 12, pp. 8457-8482, Oct. 2020.

S. Mirjalili, “Dragonfly algorithm: A new meta-heuristic optimization
technique for solving single-objective, discrete, and multi-objective prob-
lems,” Neural Comput. Appl., vol. 27, no. 4, pp. 1053-1073, 2016.

B. A. S. Emambocus, M. B. Jasser, A. Mustapha, and A. Amphawan,
“Dragonfly algorithm and its hybrids: A survey on performance, objectives
and applications,” Sensors, vol. 21, no. 22, p. 7542, Nov. 2021. [Online].
Available: https://www.mdpi.com/1424-8220/21/22/7542

95044

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(391

(40]

(41]

(42]

(43]

(44]

[45]

(46]

(47]

(48]

(49]

C. M. Rahman and T. A. Rashid, ““Dragonfly algorithm and its applications
in applied science survey,” Comput. Intell. Neurosci., vol. 2019, pp. 1-21,
Dec. 2019.

B. Selman and C. P. Gomes, “Hill-climbing search,” in Encyclopedia of
Cognitive Science. Chichester, U.K.: Wiley, 2006.

B. A. S. Emambocus and M. B. Jasser, “Towards an optimized dragonfly
algorithm using Hill climbing local search to tackle the low exploitation
problem,” in Proc. Int. Conf. Softw. Eng. Comput. Syst. 4th Int. Conf.
Comput. Sci. Inf. Manage. (ICSECS-ICOCSIM), Aug. 2021, pp. 306-311.
D. Dua and C. Graff. (2017). UCI Machine Learning Repository. [Online].
Available: http://archive.ics.uci.edu/ml

N. Kayarvizhy, S. Kanmani, and V. Uthariaraj, “Ann models optimized
using swarm intelligence algorithms,” WSEAS Trans. Comput., vol. 13,
pp. 501-519, Jan. 2014.

M. Shariati, M. S. Mafipour, P. Mehrabi, A. Bahadori, Y. Zandi,
M. N. A. Salih, H. Nguyen, J. Dou, X. Song, and S. Poi-Ngian, “Appli-
cation of a hybrid artificial neural network-particle swarm optimization
(ANN-PSO) model in behavior prediction of channel shear connectors
embedded in normal and high-strength concrete,” Appl. Sci., vol. 9, no. 24,
p. 5534, Dec. 2019, doi: 10.3390/app9245534.

H. Moayedi, H. Nguyen, and L. K. Foong, “Nonlinear evolutionary swarm
intelligence of grasshopper optimization algorithm and gray wolf optimiza-
tion for weight adjustment of neural network,” Eng. Comput.,vol.37,no. 2,
pp. 1265-1275, Apr. 2021.

H. Moayedi, M. M. Abdullahi, H. Nguyen, and A. S. A. Rashid, “Com-
parison of dragonfly algorithm and Harris hawks optimization evolution-
ary data mining techniques for the assessment of bearing capacity of
footings over two-layer foundation soils,” Eng. Comput., vol. 37, no. 1,
pp. 437447, Jan. 2021.

J. Xu and F. Yan, “Hybrid Nelder—-Mead algorithm and dragonfly algo-
rithm for function optimization and the training of a multilayer percep-
tron,” Arabian J. Sci. Eng., vol. 44, no. 4, pp. 3473-3487, Apr. 2019, doi:
10.30526/31.1.1834.

A. T. Abdulameer, “An improvement of MRI brain images classification
using dragonfly algorithm as trainer of artificial neural network,” Ibn AL-
Haitham J. Pure Appl. Sci., vol. 31, no. 1, p. 268, May 2018. [Online].
Available: http://jihcoed.com/ihj/index.php/j/article/view/1834

M. Khishe and A. Safari, “Classification of sonar targets using an MLP
neural network trained by dragonfly algorithm,” Wireless Pers. Commun.,
vol. 108, pp. 1-20, May 2019.

A. Lim, J. Lin, B. Rodrigues, and F. Xiao, “Ant colony optimization
with Hill climbing for the bandwidth minimization problem,” Appl. Soft
Comput., vol. 6, no. 2, pp. 180-188, Jan. 2006.

L. Abualigah, M. Shehab, A. Diabat, and A. Abraham, ‘Selection
scheme sensitivity for a hybrid SALP swarm algorithm: Analysis and
applications,” Eng. Comput., vol. 38, pp. 1149-1175, Jul. 2020, doi:
10.1007/S00366-020-01067-Y.

A. L. Bolaji, A. T. Khader, M. A. Al-Betar, and M. A. Awadallah, “Uni-
versity course timetabling using hybridized artificial bee colony with Hill
climbing optimizer,” J. Comput. Sci., vol. 5, no. 5, pp. 809-818, Sep. 2014.
M. Shehab, H. Alshawabkah, L. Abualigah, and N. Al-Madi, “Enhanced
a hybrid moth-flame optimization algorithm using new selection
schemes,” Eng. Comput., vol. 37, no. 4, pp. 2931-2956, Feb. 2020, doi:
10.1007/S00366-020-00971-7.

M. Shehab, A. T. Khader, M. A. Al-Betar, and L. M. Abualigah,
“Hybridizing cuckoo search algorithm with Hill climbing for numer-
ical optimization problems,” in Proc. 8th Int. Conf. Inf. Technol.
(ICIT), May 2017, pp.36-43. [Online]. Available: http://ieeexplore.
ieee.org/document/8079912/

M. Alzagebah and S. Abdullah, “An adaptive artificial bee colony and
late-acceptance Hill-climbing algorithm for examination timetabling,”
J. Scheduling, vol. 17, no. 3, pp. 249-262, Jun. 2014.

A.Lim, J.Lin, and F. Xiao, “Particle swarm optimization and Hill climbing
for the bandwidth minimization problem,” Int. J. Speech Technol., vol. 26,
no. 3, pp. 175-182, Jun. 2007.

W. A. H. M. Ghanem and A. Jantan, “A cognitively inspired hybridization
of artificial bee colony and dragonfly algorithms for training multi-layer
perceptrons,” Cognit. Comput., vol. 10, no. 6, pp. 1096-1134, Dec. 2018.
D. Bairathi and D. Gopalani, “Numerical optimization and feed-forward
neural networks training using an improved optimization algorithm:
Multiple leader SALP swarm algorithm,” Evol. Intell., vol. 14, no. 3,
pp. 1233-1249, Sep. 2021.

B. A. S. Emambocus, M. B. Jasser, and A. Amphawan, “Towards an
optimized channel estimation in optical spatial multiplexing systems via
swarm intelligence algorithms,” in Proc. IEEE 13th Control Syst. Graduate
Res. Collog. (ICSGRC), Jul. 2022, pp. 77-82.

VOLUME 10, 2022

http://dx.doi.org/10.3390/app9245534
http://dx.doi.org/10.30526/31.1.1834
http://dx.doi.org/10.1007/S00366-020-01067-Y
http://dx.doi.org/10.1007/S00366-020-00971-7

B. A. S. Emambocus et al.: Optimized Continuous DA Using Hill Climbing Local Search to Tackle the Low Exploitation Problem

IEEE Access

BIBI AAMIRAH SHAFAA EMAMBOCUS
received the B.Sc. degree in computer science
from Sunway University, Malaysia, in 2020, where
she is currently pursuing the M.Sc. degree in
computer science. Her research interests include
swarm intelligence, evolutionary algorithms, arti-
ficial intelligence, and machine learning.

MUHAMMED BASHEER JASSER (Mem-
ber, IEEE) received the master’s and Ph.D.
degrees in software engineering from Univer-
sity Putra Malaysia (UPM). He was granted the
Malaysian Technical Cooperation Program Schol-
arship (MTCP) from the Ministry of Higher Edu-
cation (Malaysia) for his postgraduate studies.
He is currently a Program Leader and a Senior Lec-
turer at Sunway University. Prior to that, he was
a Research Assistant at UPM and a Lecturer at
Aleppo University. He is also working on several fundamental and industrial
research projects in the area of artificial intelligence and software engineer-
ing funded by companies and universities. His research interests include
optimization algorithms, evolutionary computation, model-driven software
engineering, formal specification, verification and theorem proving, artificial
intelligence, and machine learning. He is a member of several professional
academic bodies including the Institute of Electronics, Information and
Communication Engineers (IEICE), and Formal Methods Europe.

VOLUME 10, 2022

ANGELA AMPHAWAN (Member, IEEE) recei-
ved the Ph.D. degree in optical engineering
from the University of Oxford, U.K. She is
currently Leading the Photonics Research Labora-
tory, School of Engineering and Technology, Sun-
way University. Prior to this, she was the Deputy
Vice Chancellor at the University Malaysia of
Computer Science and Engineering. Her research
projects have been funded by the U.S. Department
of States, German Government, Malaysian Min-
istry of Education and Telekom Malaysia. Her research interests include opti-
cal communications and sensing, covering optical fibers, free-space optics,
radio-over free space optics, digital imaging, and the Internet-of-Things.
She was a recipient of the Fulbright Award at the Research Laboratory of
Electronics, Massachusetts Institute of Technology. She has also won several
best paper awards and exhibition medals. She was a Publicity Co-Chair for
the IEEE Wireless Communications and Networking Conference. She serves
on the Editorial Board for the APL Photonics Journal with the American
Institute of Physics and is on the National 5G Task Force. She was previously
on the Editorial Board of Wiley Transactions on Emerging Telecommunica-
tions Technologies. She has given keynote addresses at several Fulbright and
IEEE events.

95045

