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ABSTRACT This paper presents a multi-source fusion smartphone localization solution using Wi-Fi
Fine Time Measurement (FTM) and Pedestrian Dead Reckoning (PDR), calibrated via multi-source and
unsupervised crowdsourcing. In crowdsourcing phase, user movement within the site utilizes PDR to infer
their location, and this location is used to calibrate the FTM data. The multi-layer perceptron (MLP) of the
ranging model is suitable for non-line-of-sight (NLOS) reception, and the ranging accuracy is improved by
more than 24%. In the positioning phase, the 90 percentile error of the ranging model trained using only
crowdsourced data is less than 1.37m, which is 32% smaller than the traditional weighted least squares

(WLS) localization error.

INDEX TERMS Wi-Fi fine time measurement, pedestrian dead reckoning, crowdsourcing, particle filter,

unsupervised learning, fusion-based positioning.

I. INTRODUCTION

In the past few decades, commercial and military demand
for indoor positioning-based services (IPS) has increased
so there has been rapid development of positioning
technologies and systems. Outdoor positioning has been
commercialized using satellite-based global navigation satel-
lite system (GNSS) technology. However, satellite signals
cannot be received indoors so radio frequency (RF) sig-
nals such as the Bluetooth [1], Wi-Fi [2], [3], [4], ultra-
wideband (UWB) [2], RFID [3] must be used for indoor
positioning.

The demand for indoor positioning is increasing rapidly so
the IEEE proposed an improved Wi-Fi time of arrival (TOA)
[4] protocol called Fine Timing Measurement (FTM) [5] for
the 802.11mc standard in 2016. FTM frames are exchanged
between the FTM initiator (FTMI) and the FTM responder
(FTMR) so the round-trip time (RTT) between Wi-Fi devices
can be measured. FTM achieves a time resolution of a few
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nanoseconds, so sub-meter level ranging accuracy is possible.
However, Wi-Fi FTM encounters estimation challenges if
there is device offset or non-line-of-sight (NLOS) reception
[6]. All devices with a FTM infrastructure (presumably in
the FTMR mode) must be pre-calibrated and anchored at
stationary locations or ground truths, so they are affected by
environmental disturbances. A previous study [7] calibrated
FTM ranging but the position of the FTMRs’ positions must
be known in advance. FTMR devices are becoming more
common so frequent calibration and coordinate measurement
is a major impediment to the deployment of an FTM-based
indoor positioning system.

Crowdsourcing [8] allows accurate calibration and mea-
surement because it takes advantage of the wide availability
of mobile devices or smartphones as FTMI. Each smartphone
user contributes to the collection and analysis of perceived
signal information, particularly the FTM readings. Unlike
many recent crowdsourcing-based studies of fingerprinting
[9] or received signal strength indication (RSSI) ranging [10],
the proposed method reverse infers the approximate locations
of the stationary FTMR infrastructure using crowdsourced
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FTM readings, to give the FTM superior time resolution and
ranging accuracy.

To address calibration and measurement issues, this paper
proposes a multi-source fusion positioning system that uses
crowdsourced FTM readings and pedestrian dead reckoning
(PDR). The main contributions of the proposed method are:

e FTM data is collected without providing measurement
coordinates: During the crowdsourcing phase, the sys-
tem uses the readings from the inertial measurement
unit (IMU) in the users’ smartphones, a floor map of the
site in PDR and a particle filter (PF) [8] to reconstruct
the users’ walking trajectory while gathering FTM
data.

e Learning-based ranging model with predicted mean
and standard deviation: Using the data that is gathered
in the crowdsourcing stage, the learning-based model
from a previous study [11] is upgraded and used to cali-
brate and reverse infer the approximate locations of the
unknown FTMR infrastructure. The trained model of
this neural network gives ranging characteristics based
on crowdsourced FTM readings, including estimated
distances and standard deviations. The predicted stan-
dard deviation for the range represents the probability
or the credibility of the ranging measurement and is
used to update the importance of the particles during
the positioning stage.

e Robust online positioning using inferred FTMR coor-
dinates: In the positioning phase, the smartphone user
is located using the ranging model, PDR, and PF. If the
ground truth for the un-calibrated FTMR infrastructure
is not available, the positioning accuracy using the
reverse inferred infrastructure location that is achieved
using the crowdsourcing data remains the same.

Il. RELATED WORKS
Previous studies involve FTM-based fusion localization sys-
tems. Kalman filtering techniques are frequently used for
indoor positioning system. Two studies [12], [13] used an
extended Kalman filter (EKF) to fuse FTM and PDR informa-
tion with asynchronous measurement frequencies. However,
Kalman-based filters are not efficient if the measurement is
non-linear and a large error is possible. Another study [14]
used PF because it allows more accurate non-linear measure-
ment. This method generally performs well, but methods that
use the original FTM information can be affected by NLOS
and the system requires manual calibration before operation.
In recent studies [15], [16], the readings from a vari-
ety of sensors and context information such as RSSI and
location-based services can be fused with the RTT rang-
ing results to get better positioning accuracy. However,
these approaches still require a necessary number of FTMR
coordinates to be known and fixed in advance (typically,
3 for two-dimensional and 4 for three-dimensional position-
ing, respectively). Moreover, in [17], only one single Wi-Fi
access point is required; however, it also requires a 2 x 2
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MIMO antenna array to measure the azimuthal bearing angle-
associated to the Direction-of-Arrival (AoA). Another recent
study [7] proposed a calibration-free positioning system for
which the ranging characteristic is trained and predicted using
a neural network. However, FTMR coordinates are required
before the system is deployed.

In DeepNar [19] the positioning is estimated from Wi-Fi
FTM RTT fingerprint through a fully connected neural
network, yielding sub-meter (0.75m) localization precision.
In [20] a deep long short term memory (LSTM) neural net-
work is applied to encode temporal dependencies upon RSSI
fingerprint towards positioning, yielding meter-level (1.5m)
localization precision. In [21], an autoencoder is applied to
extract the representative features of RSSI fingerprints as
a sequence of latent code, which is then processed by an
LSTM network for positioning. An extensive survey of indoor
positioning based on Wi-Fi and machine learning can be
found in [22].

In view of most works are under supervised learning
scheme, Zou et al. [23] proposed WiGAN to synthesize the
Wi-Fi radio map ground truth, which is inevitably needed
for fingerprinting based indoor positioning system formu-
lated under supervised learning scheme. More elaborately,
WiGAN synthesizes the entire radio map in a constrained
space (e.g. personal offices) from RSSI measurements at
several locations, through a combination of Gaussian process
regression (GPR) and conditioned least-squares generative
adversarial networks (LSGAN). The GPR provides a coarse
estimate of the entire radio map from RSSI measurements
at several locations, and is learnt with RSSI measurements
and initiator location data collected with mobile robots and
LiDAR SLAM in free space (e.g. conference rooms). The
coarsely-estimated radio map is then adopted as the input
of LSGAN generator to synthesize more realistic radio map,
with the LSGAN trained with RSSI measurements collected
in free space.

Given the large number of indoor localization works for-
mulated under a supervised learning scheme, in this work,
FTM data are collected without providing measured coordi-
nates, where the distance between the smartphone and the
Wi-Fi FTMR, the coordinates of the Wi-Fi FTMRs, and
NLOS errors are all estimated using a multilayer percep-
tron (MLP) under an unsupervised learning formulation with
FTM measurements as input.

Ill. SYSTEM ARCHITECTURE

The proposed fusion-based localization system uses PDR
and FTM as data sources to locate the user’s smartphone.
The PDR information collected by the smartphone is used
to capture the characteristics of the user’s local behavior, and
the FTM data can be used as the ranging estimation of the
system ranging model to provide the user’s global location
information. Such a fusion positioning system can accurately
detect the user’s steps, while preventing the accumulated error
of the PDR position through the FTM ranging information,
thereby maintaining the overall positioning accuracy.
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FIGURE 1. System architecture of the proposed fusion-based
unsupervised smartphone positioning system using Wi-Fi FTM and IMU
sensor data.

As shown in Fig. 1, the system obtains the user’s motion
information from the smartphone’s IMU (including gyro-
scope, magnetometer, and accelerometer) and Wi-Fi module.
Using the PDR algorithm, the user’s stride and direction
information can be obtained from the data of the IMU sensor
through the step detection and heading estimation algorithms.
The calculated stride and heading information are used to
maintain a particle filter to estimate the user’s position. The
FTM data obtained from the Wi-Fi module will pass through
the proposed MLP ranging model and provide an estimate of
the distance and standard deviation between the user and the
FTMR. The user’s location and FTM will be collected into
a database to optimize the MLP ranging model. In order to
realize a calibration-free positioning system using MLP, this
method does not require manual measurement: only crowd-
sourced data and floor maps are used as training data for the
model. If floor maps are not available, a robotic system can
be set up and use SLAM capabilities to build floor maps [18].
The localization error of lidar on the robotic system is 1-5 cm,
which is an order of magnitude smaller than the proposed
method. Therefore, the rest of this article ignores floor plan
errors.

The proposed fusion and learning based smartphone local-
ization system is constructed through the following steps:

First, in the crowdsourcing phase, the smartphone collects
information from the FTM and IMU, but only the IMU sensor
is used to update the user’s PF status. Without the user’s actual
measuring location, PF can obtain an approximate location
from the user’s step behavior and use walls and inaccessi-
ble areas to remove unreasonable particles. To obtain more
accurate location estimates, we use step sequence data to
further refine the user’s location history through the forward,
backward and replay processes.

Second, the collected crowdsourced data and inferred user
locations are used to provide training data for the FTM rang-
ing model. The update phase of the database also involves
predicting the coordinates of the FTMR during optimization
(if not provided) via the gradient descent learning process.
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After multiple trainings until the loss function saturates, the
ranging model can give more reliable ranging results than raw
FTM packets in different environments, even in the presence
of NLOS paths. In addition, the ranging model also provides
the confidence of the distance information, presented in the
form of standard deviation.

Finally, in the positioning phase, PDR updates the user’s
position through the stepping behavior, and the FTM ranging
model gives the predicted ranging result and the correspond-
ing FTMR position, so the PF can update the particle weight
of each object according to the probability. PDR can quickly
determine the user’s location by detecting the steps to obtain
short-term local features such as turning or starting to walk.
And through the FTM ranging information, users can avoid
drift in the long-term positioning process and keep the posi-
tioning results accurate and stable.

IV. CROWDSOURCING PHASE

A. PEDESTRIAN DEAD RECKONING

The IMU has the advantages of good short-term accuracy,
unaffected by the external environment, and good stability.
Therefore, the device has been widely used in smartphones
for locating and tracking the user’s movement or operation
behavior. Pedestrian inertial navigation is usually based on
the PDR algorithm, which is independent of the integration
of acceleration values and can greatly reduce the cumula-
tive error caused by integration. Using the periodicity of
the acceleration waveform and features related to walking
speed, we can estimate the step size of pedestrian motion.
In addition, due to the randomness of the pedestrian’s holding
method, the real-time attitude angle of the smartphone is
obtained by the integration of gyroscope or the combination
of magnetometer and accelerometer.

In most mobile phones, the IMU uses a gyroscope for rela-
tive orientation and a magnetometer for absolute orientation.
But in an indoor environment, the presence of metal or other
magnetic materials near the mobile phone can interfere with
the phone’s ability to identify magnetic north, so the magne-
tometer measurement output is unstable. Therefore, this study
only uses quaternions based on gyroscope measurements to
estimate heading.

The quaternion-based rigid body kinematic equations are:

q0 0 —wy —wy —w,
; q I'law O w; —y 1
= N = — = —Q l
0 P 3wy~ 0w 3 (@@ ()
q3 w, wy —wy 0

where the quaternion Q = go + g1i + g2 + g3k and wy, wy,
w; is the attitude angular velocity from the gyroscope in the
sensor frame. The relationship between the attitude rotation
matrix and the quaternion means that the rotation matrix can
be calculated as:

. 1-2g5 — 243 2(q192+ q0q3) 2(q193 — 40q2)
TH=|2(q192 — q093) 1—24% —24% 2(q293 + q0q1)
2143+ 9092) 2(q2q3 — qoq1) 1 — 2% — 243

2)
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FIGURE 2. Peak detection algorithm with a moving average window of 30.

where TI{? is the direction cosine matrix (DCM) that trans-
forms vectors from the navigation frame to the sensor frame
[14]. The relationship between the attitude rotation matrix
and the quaternion allows the heading direction to be calcu-
lated as:

_1 [ 2(q192 + q093)
Oy = tan ™! (— 9
1 —2q7 — 245

Walking involves many complex processes, such as step-
ping on the ground and raising legs. A sensor that is attached
to the foot allows measurement of the step length using the
swing of the foot [24]. For simplicity, this study uses the peak
detection method to detect the step event and calculates the
step length [25].

The original data is normalized and gravity is isolated to
obtain the pedestrian acceleration:

d =./d +a +a — g “

where a,, ay and a; are the raw outputs from the smartphone’s
accelerometer and gy is the local gravitational acceleration.

The built-in sensors of smartphones are usually inex-
pensive and often generate unwanted noise so false peaks
often occur. Normalized data passed through a low-pass fil-
ter with a moving average filter to remove high frequency
perturbations:

1 )
Gp=75 D @ )

i=t—N+1

where aj,,, is the filtered value and N is the length of the
sliding window for the filter. For this study, N is 30. The step
is recorded as the n-th peak in the ag,,, by 1y, and the step
frequency is defined as:

1 1

SF=— = (6)

n+1 n
AT tstep - tstep

To prevent false recognition of steps, the step is discarded
only if SF is between 1 and 2.5 Hz. In Fig. 2, the detected
valid steps are shown as red circles and false peaks success-
fully filtered out and ignored.
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When a step is detected, the corresponding step length is
calculated as [26]:

)

SF — 1.719H
SL = [0.7 +a(H — 1.75) + b;]

1.75

where SL is the estimated step length in meters, H is the
pedestrian height, and a, b, and ¢ are the model parameters,
which are a= 0.371, b= 0.227, and ¢ = 1.

B. PARTICLE FILTER

A Bayesian approach is used to determine the posterior
probability function of the system state. If a sequence of
observations are available at timestamp k, then the updated
prior probability at current state Zj, is calculated recursively
as:

i\ P L | X)) p Xi | Zi—1)
P(20%) == s ®)

where the normalizing constant p (Zy | Zx—1) is given by

p(Zy | L) = /P(Zk | Xx) = pXk|Zi—1) dXi  (9)

The Monte Carlo (MC) method gives a sub-optimal estima-
tion through approximation of (9). The posterior probability
is expressed by determining a set of random MC samples in
the state space, which is approximated by [14]:

N
P Xk 121~ Y wis (Xi — X} ) (10)
i=1

where w}; and X;( are the weight and the state of the i-th
sample, respectively; and § (-) is the Dirac delta function.

According to the PDR mechanization, the state transition
model of the PF is derived as:

x,i _ x,éfl n (SLy + bs1.) cos (B + 89) (11
Vi Vi1 (SLk + 8s1) sin (6 + 89)

where (x,i, y;'c) is the updated state vector, (x,i_ 1’ y};_l) is
the previous estimation, SL; and 6 are the step length and
detected heading at state k and &g, and g are the respective
uncertainty. In practice, the user’s stride and heading change
measurements will have errors every time, and if we fully
trust the measurement results, we will mistakenly kill the
particles that represent the user’s likely position. Therefore,
we add a random uniform error in the range of £10% to the
stride length and 420 degrees of the heading as ds7 and g
respectively to spread the particles over a wider range, giving
the true location a better chance of being included [14].

After each update, particles are tested to determine whether
they violate any wall constraints as:

. l . . .
; { w; in accessible region (12)

wy, = o . .
k 0 in inaccessible region

Finally, after each step the filter normalizes the weight of
particles as:

13)
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The state transition model for PF has been constructed
based on PDR rules.

C. POSITION LABELING
After data collection, PDR and PF are combined to generate
positional pseudo-labels, which are used to calibrate FTMR
measurements in an unsupervised manner. When the user
completes a path, the system performs three processes to
calculate the user’s position to get the pseudo-labels. The PF
is only updated by the PDR in the crowdsourcing phase when
making pseudo-labels, so this chapter uses ““steps” instead of
““states” to avoid confusion.

At a specific step k on a path with a total K steps, the
position of the user is defined as the weighted average of
particles:

N
Xi =) WX (14)
i=1

where Xy = (xx, yx) and the weighted variance of particles
is:

X} — Xy H2 (15)

o
Il

~i

i=1

In general, the positions of the particles in PF converge as
the path proceeds along the trajectory. The whole accuracy
can be improved if the PF is applied back and forth. Hence,
there are three processes for position labeling, i.e., the for-
ward process, the backward process, and the reply process.
Both the backward and reply processes have improved accu-
racy than the naive forward process has. They are combined
to give the mixture path which is in better agreement with
the user’s trajectory. The details of the three processes are
described in the following:

1) FORWARD PROCESS
Initially, when a user is walking on the site, the system
does not give the user’s absolute location. Therefore, at the
beginning, particles are uniformly distributed in all areas of
the location. That is, wf) = 1/N if particle i is in accessible
region and O otherwise.

When the user walks randomly on the site, the particles
follow the update of the PDR and the screening of the map
information. All impossible particles are eliminated and the
remaining particles become concentrated in a small region
where the user is. For at least one step, the variance in the
particles must be lower than the threshold stzhmh to allow
this path to be saved as valid data. In case that the particle
degeneracy is detected, a mechanism is setup to reset the PF.

If a set of steps Ky has the largest number of steps k7 in K,
where K is a complete set of all steps of a crowdsourced data
provider, such that the variance of the particles satisfies:

2 2
skf < Sthresh (16)

where k; € K. Particles in the last step of K are inherited
by the backward process, and the steps not included in Ky are
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discarded. If none of the steps in K satisfies (16), the path
record will be discarded and the subsequent process will not
be continued.

2) BACKWARD PROCESS

In the backward process, the PF update is performed again
using the converged particles inherited from step Ky of the
forward process, but the direction é,i is opposite to the forward
process, SO é/i = Q,i + 7. The backward process runs from
step kr to step 1 in the set of Ky, and obtains the smallest
step kp satisfying (16) in [1,kf]. Particles in step set [1,kp)
are discarded, and only steps within [kp, k¢ ] are used for the
final replay process.

3) REPLAY PROCESS

After the backward process, the PF state of the confidence
step within a threshold can infer the user’s location. However,
since these inferred locations will be used to calibrate the
FTMR, we would like to have more precise crowdsourced
data provider locations to keep the FTMR calibration process
accurate. So the replay process inherits the particle at step &,
in the backward process, and then runs the stepwise process
again in the forward motion, from k;, to k¢. This gives position
information for two similar paths, from the backward pro-
cess and from the replay process, with the same step range
[kp, kr] for both. Finally, the two paths are combined using
inverse variance weighting [27] to provide accurate location
information.

The path coordinates that are eventually used as coordinate
pseudo-labels are a mix of the backward path and the replay
path. The mean and variance for the path coordinates are
calculated as:

~ Wi b Xk.b + Wi, r Xk, r

X = (17)
Wi b + Wk, r
- Wik.b (Xlz,b + S%,b) + Wi.r (Xl%,r + Sl%,r)
7= (18)
Wk, b + Wk, r

_ 2 _ 2
where wy , = 1/sk’b and wy , = l/skyr.

V. FTMR REVERSE POSITIONING AND RANGING MODEL
TRAINING

A. OVERVIEW OF FTM PROTOCOL

IEEE 802.1 1mc supports RTT measurement of Wi-Fi devices
to estimate the distance between them using an FTM protocol.
FTMI (such as a mobile phone or laptop) initiates the protocol
by sending an FTM request to another FTM-enabled device.
A device (mostly a Wi-Fi access point) that receives this FTM
packet is called an FTMR and returns an acknowledgement
(ACK) message. When FTM messages are exchanged mul-
tiple times, calculate the RTT and multiply this time by the
speed of light to get the RTT distance 4™ . In addition to
the average RTT distance, for an FTM measurement, the FTM
packet also contains range standard deviation s*”™ and RSSI
rFT™ information.
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If the FTM measurement only involves a clear line of sight,
the error in the distance measurement is 1-2 m [11]. However,
because FTM needs to exchange data packets, similar to most
TOA protocols, the penetration or reflection of the signal
on obstacles can affect the ranging quality. The relationship
between the measured FTM distance and the true distance can
be expressed as [28]:

df™ = |z — zg|l +d“" (19)

where z; and zg are the respective true position vectors of the
FTMI and FTMR, and ||z; — zg|| is the true distance between
the two devices. The error consists of three components:

derr — dm +d0fS +deS (20)

where d™ is the measurement error, d® is the offset error,
and dP? is the position-dependent error.

Here, d™ is the measurement error caused by measurement
noise mainly due to the uncertainty principle which is as low
as 10-20 cm for SGHz channel. d°7 is the offset error due to
device dependent error, which depends on the channel header,
FTMI type and FTMR type. d”® is the distance error due to
position dependent effects, referring to the device indepen-
dent error due to the characteristics of the transmission path.
Especially in the NLOS case, the contribution of dP*® will
cause inaccurate distance results and the corresponding RSSI
will be much smaller.

If there is NLOS between FTMI and FTMR, including
multipath or penetrating building materials with dielectric
constants, the position-dependent error d”°* has a significant
effect on the ranging result [29]. Different methods are used to
minimize this error. A Gaussian mixture model [30] is used
to determine the probability of distance measurement, or a
probability model that uses ranging results and RSSI to dis-
card NLOS measurement is used [31]. Reducing the effects
of position-dependent errors requires extensive calibration.

B. RANGING MODEL

To ensure reliable ranging results, sources of error must be
identified. In a previous study [11], the authors developed
an MLP for FTM calibration, but the model is separate for
different FTMRs. Although this method is feasible, if there
are multiple FTMRs in the field, it is necessary to save
multiple sets of similar and redundant model parameters, and
the learning of environmental characteristics is not shared.
This study uses data from all FTMRs in the training of the
ranging model, allowing the model to simultaneously learn
the error characteristics of different receivers and separate out
device-independent (d7°*) and device-dependent error (d ofs)
information. In this way, all FTMRs in a site can make reliable
distance predictions and can share device-independent model
parameters.

The ranging model produces estimates of distance d and
its standard deviation § from the input data. The relationship
between input and output is expressed as a parameterized
function as follows:

[d,3] = R(x; ®) Q21
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FIGURE 3. Proposed ranging model with offset compensation and NLOS
estimation modules.

where R is the MLP model, and x is a batch of FTM packets

T
{x1,x2,....Xj..., X7} and x; = [dfTM;szM; erTM is the

combination of all data from FTM packets of the j-th FTMR
that represents distance, standard deviation and RSSI, respec-
tively; and © is the training parameters for the model [11].
If the packet status fails or the request times out, all items of
its packet will be set to zero.

The input for this model is the time series data of T
consecutive FTM samples, which not only eliminates the
randomness in the measurement noise but also allows the
model to learn the time series relationship between the data.
As shown in Fig. 3, the ranging model is composed of two
modules: offset compensation and NLOS estimation. These
two modules are used to suppress offset errors and position-
dependent errors, respectively. The model uses samples from
all T FTM packets and outputs two numbers: the predicted
distance d and the standard deviation 5. The details of the
model are given in [11] and briefly described as follows.

1) OFFSET COMPENSATION

As can be seen from the left side of Fig. 3, the model com-
pensates for the offset first. Only the set of FTM distances for
the j-th FTMR dfTM ={d;,ds,...,dr} is sent to the offset
compensation module. To compensate for the offset bias of
the FTM range, an offset variable is added to the measured
FTM distance as:

J
d? = ReLU (d}’ ™My &5,-,-) (22)

i=1

where d° is the offset-compensated distance, qAS,- is the offset
variable for the i-th FTMR of a site with J FTMRs, and its
multiplication with Kronecker delta §;; means that only (ﬁj
is added to de T  The rectified linear unit (ReLU) function
ReLU(x) = max(0, x) ensures that the output is always
positive because the distance between two nodes is positive.

2) NLOS ESTIMATION

When a NLOS condition occurs, from a timing perspective,
the signal is only slowed down a bit as it penetrates the wall,
which corresponds to a slightly larger RTT distance; but from
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an energy perspective, the signal is weakened a lot, i.e., the
RSSI value dropped a lot. This allows the ratio of RTT range
to RSSI to roughly see the presence of NLOS and to correct
distance estimates. In [31], a normal probability distribution
is used to estimate whether the measured distance is LOS,
while in this study MLP is used to estimate the impact of
NLOS and predict its correction.

On the right side of Fig. 3, the NLOS estimation module is
a MLP that predicts the distance at which the offset distance
must be corrected and the standard deviation for this sample.
The output of the previous offset module d? is concatenated
with the standard deviations]}.p ™ and RSSI rf ™ of the orig-
inal FTM results as input to the model. Because the offset
model removes the offset set by the FTMR, the input to the
model sees the relationship between the device-independent
distance and its standard deviation and RSSI. The two num-
bers output by this module, the correction distance cAle and the
standard deviation §j, are considered to be independent of the
device and related to the relative position between the device
and the user. The final estimated distance to the j-th FTMR
can be expressed as:

dj=dy —df (23)

The correction distance d¢ is the output from the activation
function leaky ReLU, which has output Leaky ReLU (x) =
max (0.1x, x). Although this activation function can output
negative values, it is more inclined to output positive values.
This design matches the characteristic of NLOS paths that
usually increase the measured distance. Finally, the distance
overestimated by the NLOS path is subtracted as in (23).

C. LOSS FUNCTIONS FOR UNSUPERVISED LEARNING OF
RANGING MODEL

The previous subsection describe the architecture of the
ranging model so that it can predict accurate distances and
standard deviations between the user and the FTMR. This
subsection aims to illustrate the training process of this rang-
ing model. In this study, we uses an optimization process that
does not require the location of each FTMR to be determined
in advance, but only refers to one or a small number of FTMR
positions to train the ranging model and predict the positions
of other FTMRs. The ranging model is optimized without
knowing all of the FTMR positions, and the coordinates
of the user’s collection of FTM packets are inferred from
crowdsourced data, so the true distance between the measured
location and the FTMR is unknown. To sum up, since no
distance data is accurately obtained by measurement, the
training of this ranging model is an unsupervised learning
process.

Assume that after the crowdsourcing collection in
Section IV, a training set has N valid data at a test point
containing J FTMRs, and each data includes the inferred
position z (n) and its corresponding FTM packet content. For
the n-th packet result, the ranging model gives the predicted
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distance c?j (n) and standard deviation §; for the j-th FTMR at
Zj.

We optimize four objectives during the training process of
the ranging model:

1) DISTANCE LOSS

The distance loss is defined as the difference between the true
distance ”z (n) — zj” from the received location to the true
FTMR coordinates and the predicted distance 8, (n) using the
ranging model:

J N
LI =" "w(n) - 1(n) ] |2n) - 2] - &,(n)\ (24)
j=1 n=1

where the weight w (n) = 1/3% and I/ (n) = 1 if the true
coordinates for j-th FTMR are known and O otherwise. The
weight w (n) is the reciprocal of the variance computed using
(18), since location labels with higher confidence need to
be given higher weights. By minimizing this loss term, the
ranging model can be updated to more accurately predict the
distance cAij (n).

2) GEOMETRIC LOSS
For FTMR without measured coordinates, a similar loss term
called geometric loss is defined as:

J N
L5 =33 win) - )||z(n) — 3] - dj(n)‘ (25)

j=1 n=1
where Z; is the inferred coordinates of the j-th FTMR. Its
initial value is set to (0, 0, 0) for all j, and is continuously
updated as the loss is minimized. When these two loss terms
are minimized simultaneously, the ranging model minimizes
the distance loss to obtain a more accurate predicted distance;
consequently, when the geometric loss is minimized, the
better ranging model is used to allow FTMR for unknown

coordinates to converge to more likely coordinates.

3) VARIANCE LOSS

The ranging model learns how to predict distances more
accurately, but the confidence level of such predictions is
unknown. Therefore, the corresponding standard deviation is
predicted through the distance model at the same time, and
the error between the expected distance and the real distance
is within the normal distribution range of the standard devi-
ation. The loss function associated with standard deviation
prediction is defined as:

J N
2 = 33w Ly, (200 = 3] - diim) +25m)
j=1 n=1
+L,, (||z(n) — %] - diom - 2§j(n))] (26)
where L, and L, represent the quantile losses for (g1, g2) =
(2.5%, 97.5%). The quantile loss L is defined as [33]:
qx ifx>0

(g —Dx @n

otherwise

Ly(x) = {
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where ¢g is the quantile level to be predicted. Quantile loss
contains an asymmetric feature that compensates for the
imbalance of numbers separated by quantile values. There-
fore, those predictions that deviate from the assumed distance
||z (n) — 1z || by more than two standard deviations of predic-
tions §; (n) will be penalized by a larger loss in terms of the
variance loss LY. In this case, with a 95% confidence inter-
val, the true distance will be within two predicted standard
deviations of the predicted distance.

4) REGULARIZATION OF CORRECTION DISTANCE

The offset compensation and NLOS estimation modules of
the ranging model simultaneously affect the distance pre-
diction. However, the corrected distance predicted by the
NLOS estimation module should not dominate the distance
prediction, otherwise both the offset and the NLOS error will
be overestimated. Therefore, a loss term is added to assign
the length of the corrected distance 8; (n) as:

J N

3 w(n)ds (n)? (28)

j=1 n=1

LCU}"V _

Finally, all loss terms are added up to produce a joint loss
as:

L= Ldist 4 L8 Ly 4 )\Lcorr) (29)

where A = 0.1 are constants that can control the balance
between all loss terms [11].

To optimize the unknown FTMR coordinates z; and the
ranging model parameters ®, the training process consists
of iterations that minimize the joint loss L and update the
variables using gradient descent:

. L
Zj < Zj — o] —
j j 92,
L

O« 0—a— (30)
30

where (a1, @2) = (0.1, 0.001) are the learning rates and the
gradient dL/9%; and 9L /9O are calculated by back- propa-
gation algorithm [34].

V1. POSITIONING PHASE

During the positioning phase, the ranging model will be used
to predict the distance between the user and the FTMRs.
At the same time, the IMU will also update the user’s position
through step detection. To fuse the positioning results from
the two sources, the PF is again used as a non-linear filter to
capture the user’s position. The PF fuses the IMU and FTM
information to update particles weight, and uses weighted
average to obtain the most likely position of the user.

The detailed process is shown in Fig. 4. At the very
beginning of the localization phase, the particles of the PF
are dispersed uniformly throughout the accessible area with
equal weights. The user’s smartphone then starts sending
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FIGURE 4. Particle filter update for positioning phase. (a) the particles
are initially distributed over the entire accessible area, and the user starts
collecting FTM packets from nearby FTMRs, (b) when multiple ranging
results are obtained, the particle weights are updated using the distance
and standard deviation predictions from the model, (c) When IMU data is
detected, the particles move one step, those in the inaccessible area are
removed.

FTM requests to nearby FTMRs. Whenever the smartphone
receives an FTM packet, the ranging model will start to pre-
dict the more likely distance and standard deviation between
the user and the FTMR. Note that although the FTM packet
window of the MLP model is T, the model can still provide
distance estimates when the number of packets is less than
T. The ranging model in (21) will predict a distance d and
its standard deviation 5. Assuming that the mobile phone
receives J ranging information from FTMRs at the same time
step k, the system can update the weight of the i-th particle in
the PF according to the Gaussian distribution as [14]:

Wi = wh_ - exp <—%) 31)
where
d |22 £0...0
goo|®| oo |l | | 0B0
d e 00..8

in which Ej;is the position of the i-th particle, (31 , c]z, R 31)
and (31 ,8,....,8 J) are the distance and the standard devia-
tion estimates from the MLP model, (z;,2>,...,z;) are the
positions of FTMRs.

At the same time, the IMU sensor is also detecting the
user’s stepping behavior. If a step is detected, the user’s
location will be updated as in (11). After the particle weights
are updated, the user’s location can be obtained using weight
averaging as in (14). The weight update process is callback-
driven, so whenever a step or a FTM packet is received, the
user’s position is refreshed immediately.

VII. EXPERIMENT RESULT

A. EXPERIMENTAL SETUP

The proposed method is tested in an indoor office environ-
ment with dimensions of 62.7 x 24.5 m?. There are 7 FTMRs
at this test site. The installed FTMR is powered by a Qual-
comm IPQ8065 chipset, which is configured to support FTM.
FTMR can support both 2.4GHz and 5SGHz frequency bands,
but for simplicity and accuracy, only the SGHz frequency
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FIGURE 5. The crowdsourcing process of one path: (a) the variance of the
particles in the path, (b) the backward, replay and mixture path.

band is used in this experiment. The data is collected by
an app developed in Android that runs on the Google Pixel
4XL. The highest sampling rates of IMU data, FTM, and
RSSI measurements are 150 Hz, 10-20 Hz, and 0.3-0.5 Hz,
respectively. But while the tester is walking around the test
site, the app collects IMU information at 100 Hz and FTM
information at 5 Hz for more stable results. The tester held
the mobile phone at a height of about 1.2 meters.

B. CROWDSOURCING DATA COLLECTION

During the crowdsourcing phase, users walk around the
indoor site with their phones in hand, while their phones col-
lect IMU and FTM data along the way. Since the FTMR has
not been calibrated, the FTM result is not used as a ranging
source but it is stored in the FTM database. After 20 minutes
of collection, about 6000 FTM data samples were received,
but none of them had labeled coordinates for model training.
To provide labels for where these FTMs are collected, the
methods in Section IV are used to infer their locations. The
number of particles is set to 10000 to run the position labeling
process.

One of the many paths through the crowdsourcing phase is
shown in Fig. 5. The reference trajectory starts in the upper
left corner, travels through the hallway and two rooms, and
then reaches the lower right corner. The forward path initially
begins with the particle spreading to all possible areas in the
site (white areas). As the user walks through the site, the
PF is updated by the PDR, so particles that remain in walls
(black areas) or inaccessible areas (grey areas) are replaced
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TABLE 1. List of ranging models and their description.

Mean Distance

Case Description Error (m)
The ranging model is only trained under the
Inf d provided FTMR 1 true coordinates, and 1.88
NIErre€ ther FTMR coordinates are predicted ’
through the optimization process.
The ranging model is trained under all
True FTMR true coordinates. 1.60
Offset Only the offset compensation model is 246

trained under all FTMR real coordinates.

by particles with heavier weights. As the particles gradually
converge to a variance less than the threshold variance, the
path remains in the database, and the converged particles are
inherited by the backward process.

In the backward process, the particles converge in most
steps, but at some locations the variance increases. The
backward path in Fig. 5(b) shows some trajectories of
through-wall paths or strange turns, so the observed path
is unlikely to be the user’s actual path. While the playback
shows a different path than the reverse path, some of the
estimated positions are still unrealistic. Finally, two backward
and replay paths describing different directional information
are combined using (17) to give the mixture path. The results
fit the user’s trajectory better than the other two paths, thus
yielding better location labels to calibrate the FTM ranging
model.

C. TRAINING RANGING MODEL AND FTMR REVERSE
POSITIONING
After the crowdsourcing process, paths that do not converge
are discarded, and there are approximately 5000 samples
with location labels that are produced by the crowdsourcing
process.

Table 1 shows the mean distance error for different ranging
models that are trained using three different conditions:

o Offset: the estimation of the FTM distance only adds to
the offset compensation of the ranging model as in (21).
The positions of all FTMRs are provided.

o Inferred: only one FTMR position is provided, so the
rest of the FTMR positions are inferred in an unsuper-
vised manner when training the ranging model.

o True: all of FTMR positions are provided. The model is
minimizes (28) with activation of each loss term.

The distance error after training is shown in Fig. 6. The mean
distance error in the offset case is the largest, as it is signifi-
cantly affected by NLOS. The inferred case only uses the true
coordinates of FTMR 1, but training the model still provides
reliable distance predictions. For the inferred case and the
real case, NLOS has less influence on the ranging results,
indicating that the NLOS estimation module does suppress
the influence of NLOS. The inferred case and the true case
reduce the ranging error by 24% and 35%, respectively, which
is better than the offset case.
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FIGURE 6. Box plot of the range error of different FTMRs relative to
different ranging models. The overall distance error is also compared in
the last. Only the coordinates of FTMR 1 are provided for inferred ranging
model.
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FIGURE 7. Histogram of distance error divided by standard deviation.

It is reasonable to assume that a person typically walks at a
speed of 0.4 steps per second and 0.6 m per step. Although the
sampling rate of the RSSI measurement is only 2-3s, pedes-
trians move a maximum of 3 to 4.5 m in 2-3 seconds. RSSI
typically varies 1-5 dB within this distance difference, unless
the signal crosses the LOS to NLOS boundary. Since RSSI
typically receives values in the range of -40 to -100 dBm,
this degree of variation still allows the model to be used as a
reference, so a model that takes RSSI into account can make
distance predictions more accurate.

The ranging model will estimate both the distance and its
standard deviation. If the prediction error is closer to a nor-
mal distribution, the user’s location can be more accurately
estimated from this distribution during the localization phase.
Equation (25) is designed such that the standard deviation of
the prediction gives a 95% confidence interval covering the
true distance. The histogram in Fig. 7 shows a normalized
plot of ranging error divided by the standard deviation of
the three ranging models. Since the offset case did not use
the results of the NLOS estimation module, the standard
deviation originally provided by the FTM protocol was used.
All three are close to the normal distribution, but the inferred
case is slightly skewed to the left, while the peak of the
offset case exceeds the normal distribution, indicating that
the standard deviation is overestimated. From the probability
distribution, the probability that the true distance is within
twice the predicted standard deviation of the offset case, the
inferred case, and the true case is 77.7%, 85.0%, and 93.3%,
respectively. The closer the result is to 95%, the closer the
estimated distance error is to a normal distribution, result-
ing in a better probabilistic model for predicting distance.
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TABLE 2. True and predicted FTMR position and offset.

- @ -)0‘5, (20‘29.,8 -)0‘5, 047 oac ] ]
9 (18(-)%)1 7, (mfé)z.o, 944 848 161 201
3 (1052.6)2'3’ (9-f_’22)'7’ 943 852 053 183
4 14(.1275'2;0) 13(.145";1'.’2) 971 830 179 250
5 14(.140,'(()).’0) 12(13115 o) 808 512258 285
6 ('2-29.%;;)8’ ('2‘18.’2)1'1’ 1029 935 035 1.64
. ('2(2%)0‘3’ giof y, 841 893 273 321
Mean 137 2.00
Error

“For inferred case only the FTMR 1 provided the true position for the
ranging model optimization.
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FIGURE 8. Relative 2D positions of the true and inferred FTMR.

In conclusion, the standard deviation prediction of the NLOS
estimation module can make subsequent PF updates more
normally distributed.

The proposed system not only trains the ranging model,
but also obtains the location of the unknown FTMR during
optimization. The true and inferred coordinate values are
shown in Table 2, and the relative 2D positions are shown
in Fig. 8. The coordinates of FTMR 1 are provided for the
inferred case, so positioning errors are ignored.

Using the labels of the user’s measurement location in
a 2D plane, the final inferred coordinates of the remaining
FTMR cannot deviate from this plane, as the offset provides
another degree of freedom that can be optimized. Therefore,
the inferred ranging model can only predict the projected
coordinates of the FTMR on the measurement plane. The loss
of height information is reflected in the offset, so the offset
of the inferred ranging model is smaller than that of the true
ranging model.

D. LOCALIZATION RESULT IN POSITIONING PHASE

For the positioning phase, the proposed Wi-Fi FTM position-
ing algorithm is compared with the traditional PDR and the
weighted least-square (WLS) [32] methods. To avoid delays

96269



IEEE Access

H.-W. Chan et al.: Fusion-Based Smartphone Positioning Using Unsupervised Calibration

16 PF-True
-~ PDR
* Y% --- Reference
14 5
4 WLS

E
>- i
—
*
1
7 9 1 13 15 17 19 21

X [m]

FIGURE 9. Positioning results of different positioning algorithms in the
classroom. The blue squares represent the desks in the classroom.

to users, it is desired to keep the filter’s latency under 0.5 sec-
onds during the targeting phase. In [15], the localization error
and computation time of different numbers of particles are
compared in detail. In this study, the number of particles is
set to 2000 because the localization accuracy is acceptable
while keeping the latency low. The positioning experiment
used an office. The map that is seen by the PF only includes
the walls of the laboratory and the desks are used as a visual
relative positioning point but not to update of the filter.

It is noted that the IMU is used to detect the number of
steps and a lower rate of 5-10 Hz is enough for power saving
consideration. In the meantime, FTMs are more reliable not
at the highest sampling frequency. In terms of positioning
frequency, one positioning source provides positioning infor-
mation about every 0.1-0.2 seconds. Since the position is
updated asynchronously, the PF’s particles are updated when-
ever a measurement from any positioning source IMU, FTM,
or even RSSI) comes in.

The tester held the Pixel 4 XL and walked steadily around
the desks 5 times to collect almost 900 samples. A tag was
recorded at every corner and the timestamp for the tag event
was recorded in the smartphone. The ground truth for the path
is the interpolation of the marked position and the correspond-
ing time. When the position algorithm obtains the position of
the event, the positioning error is compared with the position
of the interpolated label.

Fig. 9 shows a comparison of the positioning results for
different positioning algorithms. PF-True is a true ranging
model in the PF. PDR has good local characteristics but
deviates from the original trajectory over time. WLS is sig-
nificantly affected by NLOS and demonstrates poor accuracy.
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TABLE 3. Localization error for different methods.

Case Mean (m) 90" percentile (m) (cjlﬁlg::::;n‘%lis)
PF-True 0.75 1.15 43%
PF-
Inferred 0.77 1.37 32%
PF-Offset 0.94 1.51 25%
PDR 1.09 1.91 -
WLS 1.23 2.02

PF-True shows good local and global localization character-
istics.

Table 3 compares the positioning errors. The proposed
algorithm uses PF-True and PF-Inferred, while PF-Offset
denoted the results by the algorithm in a previous study [14].
The positioning error for the PF for the proposed ranging
model is less than 1.4m, and the best PF-True algorithm has
a positioning error of 1.15m at the 90" percentile. PF-True
and PF-Inferred give a 43% and 32%, respectively, smaller
error than WLS. Compared with the same PF-based algorithm
PF-Offset, PF-True and PF-Inferred are 24% and 9.2% more
accurate, respectively.

VIIl. CONCLUSION

This study proposes a fusion-based smartphone localization
system using unsupervised calibration of crowdsourced wi-fi
FTM data. During the crowdsourcing phase, users collect
IMU and FTM data as they walk around the test site. PDR
and PF are used for position markers to later provide pseudo
markers for FTM ranging model calibration. During the
process of optimizing the Wi-Fi FTM ranging model, the
unknown FTMR coordinates can also converge to a near-true
position at the same time. Finally, the average error of the
trained ranging model is less than 1.88m, which is more than
24% better than the distance error provided by the original
FTM, and the two-dimensional average error of the predicted
FTMR coordinates is 1.37m. The ranging model also predicts
the error standard deviation of the distance. The model has a
probability of more than 85.0% to make the distance error fall
within two standard deviations (ideally 95%), indicating that
the overall error of the predicted distance is close to a normal
distribution.

Finally, in the positioning phase, the calibrated FTM rang-
ing model and PF are used for the multi-source fusion local-
ization method. Compared with the traditional WLS, the
90% localization error of PF-True is reduced by 43%, and
the PF-Inferred is reduced by 32%. Compared with general
PF-based methods, the localization errors are reduced by
24% and 9.2%, respectively. The proposed model gives more
accurate results if there is NLOS reception, so it is equally
applicable to other ranging based protocols (such as UWB)
as it stabilizes the ranging quality for NLOS scenarios
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