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ABSTRACT This paper presents a multi-source fusion smartphone localization solution using Wi-Fi
Fine Time Measurement (FTM) and Pedestrian Dead Reckoning (PDR), calibrated via multi-source and
unsupervised crowdsourcing. In crowdsourcing phase, user movement within the site utilizes PDR to infer
their location, and this location is used to calibrate the FTM data. The multi-layer perceptron (MLP) of the
ranging model is suitable for non-line-of-sight (NLOS) reception, and the ranging accuracy is improved by
more than 24%. In the positioning phase, the 90 percentile error of the ranging model trained using only
crowdsourced data is less than 1.37m, which is 32% smaller than the traditional weighted least squares
(WLS) localization error.
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INDEX TERMS Wi-Fi fine time measurement, pedestrian dead reckoning, crowdsourcing, particle filter,
unsupervised learning, fusion-based positioning.

I. INTRODUCTION11

In the past few decades, commercial and military demand12

for indoor positioning-based services (IPS) has increased13

so there has been rapid development of positioning14

technologies and systems. Outdoor positioning has been15

commercialized using satellite-based global navigation satel-16

lite system (GNSS) technology. However, satellite signals17

cannot be received indoors so radio frequency (RF) sig-18

nals such as the Bluetooth [1], Wi-Fi [2], [3], [4], ultra-19

wideband (UWB) [2], RFID [3] must be used for indoor20

positioning.21

The demand for indoor positioning is increasing rapidly so22

the IEEE proposed an improved Wi-Fi time of arrival (TOA)23

[4] protocol called Fine Timing Measurement (FTM) [5] for24

the 802.11mc standard in 2016. FTM frames are exchanged25

between the FTM initiator (FTMI) and the FTM responder26

(FTMR) so the round-trip time (RTT) between Wi-Fi devices27

can be measured. FTM achieves a time resolution of a few28

The associate editor coordinating the review of this manuscript and

approving it for publication was Kegen Yu .

nanoseconds, so sub-meter level ranging accuracy is possible. 29

However, Wi-Fi FTM encounters estimation challenges if 30

there is device offset or non-line-of-sight (NLOS) reception 31

[6]. All devices with a FTM infrastructure (presumably in 32

the FTMR mode) must be pre-calibrated and anchored at 33

stationary locations or ground truths, so they are affected by 34

environmental disturbances. A previous study [7] calibrated 35

FTM ranging but the position of the FTMRs’ positions must 36

be known in advance. FTMR devices are becoming more 37

common so frequent calibration and coordinate measurement 38

is a major impediment to the deployment of an FTM-based 39

indoor positioning system. 40

Crowdsourcing [8] allows accurate calibration and mea- 41

surement because it takes advantage of the wide availability 42

of mobile devices or smartphones as FTMI. Each smartphone 43

user contributes to the collection and analysis of perceived 44

signal information, particularly the FTM readings. Unlike 45

many recent crowdsourcing-based studies of fingerprinting 46

[9] or received signal strength indication (RSSI) ranging [10], 47

the proposed method reverse infers the approximate locations 48

of the stationary FTMR infrastructure using crowdsourced 49
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FTM readings, to give the FTM superior time resolution and50

ranging accuracy.51

To address calibration and measurement issues, this paper52

proposes a multi-source fusion positioning system that uses53

crowdsourced FTM readings and pedestrian dead reckoning54

(PDR). The main contributions of the proposed method are:55

• FTM data is collected without providing measurement56

coordinates: During the crowdsourcing phase, the sys-57

tem uses the readings from the inertial measurement58

unit (IMU) in the users’ smartphones, a floormap of the59

site in PDR and a particle filter (PF) [8] to reconstruct60

the users’ walking trajectory while gathering FTM61

data.62

• Learning-based ranging model with predicted mean63

and standard deviation: Using the data that is gathered64

in the crowdsourcing stage, the learning-based model65

from a previous study [11] is upgraded and used to cali-66

brate and reverse infer the approximate locations of the67

unknown FTMR infrastructure. The trained model of68

this neural network gives ranging characteristics based69

on crowdsourced FTM readings, including estimated70

distances and standard deviations. The predicted stan-71

dard deviation for the range represents the probability72

or the credibility of the ranging measurement and is73

used to update the importance of the particles during74

the positioning stage.75

• Robust online positioning using inferred FTMR coor-76

dinates: In the positioning phase, the smartphone user77

is located using the ranging model, PDR, and PF. If the78

ground truth for the un-calibrated FTMR infrastructure79

is not available, the positioning accuracy using the80

reverse inferred infrastructure location that is achieved81

using the crowdsourcing data remains the same.82

II. RELATED WORKS83

Previous studies involve FTM-based fusion localization sys-84

tems. Kalman filtering techniques are frequently used for85

indoor positioning system. Two studies [12], [13] used an86

extendedKalman filter (EKF) to fuse FTMand PDR informa-87

tion with asynchronous measurement frequencies. However,88

Kalman-based filters are not efficient if the measurement is89

non-linear and a large error is possible. Another study [14]90

used PF because it allows more accurate non-linear measure-91

ment. This method generally performs well, but methods that92

use the original FTM information can be affected by NLOS93

and the system requires manual calibration before operation.94

In recent studies [15], [16], the readings from a vari-95

ety of sensors and context information such as RSSI and96

location-based services can be fused with the RTT rang-97

ing results to get better positioning accuracy. However,98

these approaches still require a necessary number of FTMR99

coordinates to be known and fixed in advance (typically,100

3 for two-dimensional and 4 for three-dimensional position-101

ing, respectively). Moreover, in [17], only one single Wi-Fi102

access point is required; however, it also requires a 2 × 2103

MIMO antenna array tomeasure the azimuthal bearing angle- 104

associated to the Direction-of-Arrival (AoA). Another recent 105

study [7] proposed a calibration-free positioning system for 106

which the ranging characteristic is trained and predicted using 107

a neural network. However, FTMR coordinates are required 108

before the system is deployed. 109

In DeepNar [19] the positioning is estimated from Wi-Fi 110

FTM RTT fingerprint through a fully connected neural 111

network, yielding sub-meter (0.75m) localization precision. 112

In [20] a deep long short term memory (LSTM) neural net- 113

work is applied to encode temporal dependencies upon RSSI 114

fingerprint towards positioning, yielding meter-level (1.5m) 115

localization precision. In [21], an autoencoder is applied to 116

extract the representative features of RSSI fingerprints as 117

a sequence of latent code, which is then processed by an 118

LSTMnetwork for positioning. An extensive survey of indoor 119

positioning based on Wi-Fi and machine learning can be 120

found in [22]. 121

In view of most works are under supervised learning 122

scheme, Zou et al. [23] proposed WiGAN to synthesize the 123

Wi-Fi radio map ground truth, which is inevitably needed 124

for fingerprinting based indoor positioning system formu- 125

lated under supervised learning scheme. More elaborately, 126

WiGAN synthesizes the entire radio map in a constrained 127

space (e.g. personal offices) from RSSI measurements at 128

several locations, through a combination of Gaussian process 129

regression (GPR) and conditioned least-squares generative 130

adversarial networks (LSGAN). The GPR provides a coarse 131

estimate of the entire radio map from RSSI measurements 132

at several locations, and is learnt with RSSI measurements 133

and initiator location data collected with mobile robots and 134

LiDAR SLAM in free space (e.g. conference rooms). The 135

coarsely-estimated radio map is then adopted as the input 136

of LSGAN generator to synthesize more realistic radio map, 137

with the LSGAN trained with RSSI measurements collected 138

in free space. 139

Given the large number of indoor localization works for- 140

mulated under a supervised learning scheme, in this work, 141

FTM data are collected without providing measured coordi- 142

nates, where the distance between the smartphone and the 143

Wi-Fi FTMR, the coordinates of the Wi-Fi FTMRs, and 144

NLOS errors are all estimated using a multilayer percep- 145

tron (MLP) under an unsupervised learning formulation with 146

FTM measurements as input. 147

III. SYSTEM ARCHITECTURE 148

The proposed fusion-based localization system uses PDR 149

and FTM as data sources to locate the user’s smartphone. 150

The PDR information collected by the smartphone is used 151

to capture the characteristics of the user’s local behavior, and 152

the FTM data can be used as the ranging estimation of the 153

system ranging model to provide the user’s global location 154

information. Such a fusion positioning system can accurately 155

detect the user’s steps, while preventing the accumulated error 156

of the PDR position through the FTM ranging information, 157

thereby maintaining the overall positioning accuracy. 158
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FIGURE 1. System architecture of the proposed fusion-based
unsupervised smartphone positioning system using Wi-Fi FTM and IMU
sensor data.

As shown in Fig. 1, the system obtains the user’s motion159

information from the smartphone’s IMU (including gyro-160

scope, magnetometer, and accelerometer) and Wi-Fi module.161

Using the PDR algorithm, the user’s stride and direction162

information can be obtained from the data of the IMU sensor163

through the step detection and heading estimation algorithms.164

The calculated stride and heading information are used to165

maintain a particle filter to estimate the user’s position. The166

FTM data obtained from the Wi-Fi module will pass through167

the proposed MLP ranging model and provide an estimate of168

the distance and standard deviation between the user and the169

FTMR. The user’s location and FTM will be collected into170

a database to optimize the MLP ranging model. In order to171

realize a calibration-free positioning system using MLP, this172

method does not require manual measurement: only crowd-173

sourced data and floor maps are used as training data for the174

model. If floor maps are not available, a robotic system can175

be set up and use SLAM capabilities to build floor maps [18].176

The localization error of lidar on the robotic system is 1-5 cm,177

which is an order of magnitude smaller than the proposed178

method. Therefore, the rest of this article ignores floor plan179

errors.180

The proposed fusion and learning based smartphone local-181

ization system is constructed through the following steps:182

First, in the crowdsourcing phase, the smartphone collects183

information from the FTM and IMU, but only the IMU sensor184

is used to update the user’s PF status.Without the user’s actual185

measuring location, PF can obtain an approximate location186

from the user’s step behavior and use walls and inaccessi-187

ble areas to remove unreasonable particles. To obtain more188

accurate location estimates, we use step sequence data to189

further refine the user’s location history through the forward,190

backward and replay processes.191

Second, the collected crowdsourced data and inferred user192

locations are used to provide training data for the FTM rang-193

ing model. The update phase of the database also involves194

predicting the coordinates of the FTMR during optimization195

(if not provided) via the gradient descent learning process.196

After multiple trainings until the loss function saturates, the 197

rangingmodel can givemore reliable ranging results than raw 198

FTM packets in different environments, even in the presence 199

of NLOS paths. In addition, the ranging model also provides 200

the confidence of the distance information, presented in the 201

form of standard deviation. 202

Finally, in the positioning phase, PDR updates the user’s 203

position through the stepping behavior, and the FTM ranging 204

model gives the predicted ranging result and the correspond- 205

ing FTMR position, so the PF can update the particle weight 206

of each object according to the probability. PDR can quickly 207

determine the user’s location by detecting the steps to obtain 208

short-term local features such as turning or starting to walk. 209

And through the FTM ranging information, users can avoid 210

drift in the long-term positioning process and keep the posi- 211

tioning results accurate and stable. 212

IV. CROWDSOURCING PHASE 213

A. PEDESTRIAN DEAD RECKONING 214

The IMU has the advantages of good short-term accuracy, 215

unaffected by the external environment, and good stability. 216

Therefore, the device has been widely used in smartphones 217

for locating and tracking the user’s movement or operation 218

behavior. Pedestrian inertial navigation is usually based on 219

the PDR algorithm, which is independent of the integration 220

of acceleration values and can greatly reduce the cumula- 221

tive error caused by integration. Using the periodicity of 222

the acceleration waveform and features related to walking 223

speed, we can estimate the step size of pedestrian motion. 224

In addition, due to the randomness of the pedestrian’s holding 225

method, the real-time attitude angle of the smartphone is 226

obtained by the integration of gyroscope or the combination 227

of magnetometer and accelerometer. 228

In most mobile phones, the IMU uses a gyroscope for rela- 229

tive orientation and a magnetometer for absolute orientation. 230

But in an indoor environment, the presence of metal or other 231

magnetic materials near the mobile phone can interfere with 232

the phone’s ability to identify magnetic north, so the magne- 233

tometermeasurement output is unstable. Therefore, this study 234

only uses quaternions based on gyroscope measurements to 235

estimate heading. 236

The quaternion-based rigid body kinematic equations are: 237

Q̇ =


q̇0
q̇1
q̇2
q̇3

 = 1
2


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 = 1
2
�(ω)Q (1) 238

where the quaternion Q = q0 + q1i+ q2j+ q3k and ωx , ωy, 239

ωz is the attitude angular velocity from the gyroscope in the 240

sensor frame. The relationship between the attitude rotation 241

matrix and the quaternion means that the rotation matrix can 242

be calculated as: 243

T BN =

 1− 2q22 − 2q23 2 (q1q2+ q0q3) 2 (q1q3 − q0q2)
2 (q1q2 − q0q3) 1− 2q21 − 2q23 2 (q2q3 + q0q1)
2 (q1q3+ q0q2) 2 (q2q3 − q0q1) 1− 2q21 − 2q22

 244

(2) 245
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FIGURE 2. Peak detection algorithm with a moving average window of 30.

where T BN is the direction cosine matrix (DCM) that trans-246

forms vectors from the navigation frame to the sensor frame247

[14]. The relationship between the attitude rotation matrix248

and the quaternion allows the heading direction to be calcu-249

lated as:250

θyaw = tan−1
(
2 (q1q2 + q0q3)

1− 2q21 − 2q23

)
(3)251

Walking involves many complex processes, such as step-252

ping on the ground and raising legs. A sensor that is attached253

to the foot allows measurement of the step length using the254

swing of the foot [24]. For simplicity, this study uses the peak255

detection method to detect the step event and calculates the256

step length [25].257

The original data is normalized and gravity is isolated to258

obtain the pedestrian acceleration:259

at =
√
at2x + at

2
y + at

2
z − g0 (4)260

where ax , ay and az are the raw outputs from the smartphone’s261

accelerometer and g0 is the local gravitational acceleration.262

The built-in sensors of smartphones are usually inex-263

pensive and often generate unwanted noise so false peaks264

often occur. Normalized data passed through a low-pass fil-265

ter with a moving average filter to remove high frequency266

perturbations:267

atstep =
1
N

t∑
i=t−N+1

ai (5)268

where atstep is the filtered value and N is the length of the269

sliding window for the filter. For this study, N is 30. The step270

is recorded as the n-th peak in the atstep by t
n
step and the step271

frequency is defined as:272

SF =
1
1T
=

1

tn+1step − t
n
step

(6)273

To prevent false recognition of steps, the step is discarded274

only if SF is between 1 and 2.5 Hz. In Fig. 2, the detected275

valid steps are shown as red circles and false peaks success-276

fully filtered out and ignored.277

When a step is detected, the corresponding step length is 278

calculated as [26]: 279

SL =
[
0.7+ a(H − 1.75)+ b

(SF − 1.79)H
1.75

]
c (7) 280

where SL is the estimated step length in meters, H is the 281

pedestrian height, and a, b, and c are the model parameters, 282

which are a= 0.371, b= 0.227, and c = 1. 283

B. PARTICLE FILTER 284

A Bayesian approach is used to determine the posterior 285

probability function of the system state. If a sequence of 286

observations are available at timestamp k , then the updated 287

prior probability at current state Zk is calculated recursively 288

as: 289

p
(
Zk | Xi

k

)
=
p (Zk | Xk) p (Xk | Zk−1)

p (Zk | Zk−1)
(8) 290

where the normalizing constant p (Zk |Zk−1) is given by 291

p (Zk | Zk−1) =
∫
p (Zk | Xk) = p(Xk |Zk−1) dXk (9) 292

TheMonte Carlo (MC)method gives a sub-optimal estima- 293

tion through approximation of (9). The posterior probability 294

is expressed by determining a set of random MC samples in 295

the state space, which is approximated by [14]: 296

p (Xk | Zk) ≈
N∑
i=1

wikδ
(
Xk − Xi

k

)
(10) 297

where wik and Xi
k are the weight and the state of the i-th 298

sample, respectively; and δ (·) is the Dirac delta function. 299

According to the PDR mechanization, the state transition 300

model of the PF is derived as: 301[
x ik
yik

]
=

[
x ik−1
yik−1

]
+

[
(SLk + δSL) cos (θk + δθ )
(SLk + δSL) sin (θk + δθ )

]
(11) 302

where (x ik , y
i
k ) is the updated state vector, (x ik−1, y

i
k−1) is 303

the previous estimation, SLk and θk are the step length and 304

detected heading at state k and δSL and δθ are the respective 305

uncertainty. In practice, the user’s stride and heading change 306

measurements will have errors every time, and if we fully 307

trust the measurement results, we will mistakenly kill the 308

particles that represent the user’s likely position. Therefore, 309

we add a random uniform error in the range of ±10% to the 310

stride length and ±20 degrees of the heading as δSL and δθ 311

respectively to spread the particles over a wider range, giving 312

the true location a better chance of being included [14]. 313

After each update, particles are tested to determinewhether 314

they violate any wall constraints as: 315

wik =
{
wik in accessible region
0 in inaccessible region

(12) 316

Finally, after each step the filter normalizes the weight of 317

particles as: 318

w̃ik =
wik∑N
i−1 w

i
l

(13) 319
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The state transition model for PF has been constructed320

based on PDR rules.321

C. POSITION LABELING322

After data collection, PDR and PF are combined to generate323

positional pseudo-labels, which are used to calibrate FTMR324

measurements in an unsupervised manner. When the user325

completes a path, the system performs three processes to326

calculate the user’s position to get the pseudo-labels. The PF327

is only updated by the PDR in the crowdsourcing phase when328

making pseudo-labels, so this chapter uses ‘‘steps’’ instead of329

‘‘states’’ to avoid confusion.330

At a specific step k on a path with a total K steps, the331

position of the user is defined as the weighted average of332

particles:333

Xk =

N∑
i=1

w̃ikX
i
k (14)334

where Xk = (xk , yk ) and the weighted variance of particles335

is:336

s2k =
N∑
i=1

w̃ik
∥∥∥Xi

k − Xk

∥∥∥2 (15)337

In general, the positions of the particles in PF converge as338

the path proceeds along the trajectory. The whole accuracy339

can be improved if the PF is applied back and forth. Hence,340

there are three processes for position labeling, i.e., the for-341

ward process, the backward process, and the reply process.342

Both the backward and reply processes have improved accu-343

racy than the naïve forward process has. They are combined344

to give the mixture path which is in better agreement with345

the user’s trajectory. The details of the three processes are346

described in the following:347

1) FORWARD PROCESS348

Initially, when a user is walking on the site, the system349

does not give the user’s absolute location. Therefore, at the350

beginning, particles are uniformly distributed in all areas of351

the location. That is, wi0 = 1/N if particle i is in accessible352

region and 0 otherwise.353

When the user walks randomly on the site, the particles354

follow the update of the PDR and the screening of the map355

information. All impossible particles are eliminated and the356

remaining particles become concentrated in a small region357

where the user is. For at least one step, the variance in the358

particles must be lower than the threshold s2thresh to allow359

this path to be saved as valid data. In case that the particle360

degeneracy is detected, a mechanism is setup to reset the PF.361

If a set of steps Kf has the largest number of steps kf in K ,362

where K is a complete set of all steps of a crowdsourced data363

provider, such that the variance of the particles satisfies:364

s2kf < s2thresh (16)365

where kf ∈ Kf . Particles in the last step of Kf are inherited366

by the backward process, and the steps not included in Kf are367

discarded. If none of the steps in K satisfies (16), the path 368

record will be discarded and the subsequent process will not 369

be continued. 370

2) BACKWARD PROCESS 371

In the backward process, the PF update is performed again 372

using the converged particles inherited from step Kf of the 373

forward process, but the direction θ̃ ik is opposite to the forward 374

process, so θ̃ ik = θ ik + π . The backward process runs from 375

step kf to step 1 in the set of Kf , and obtains the smallest 376

step kb satisfying (16) in [1,kf ]. Particles in step set [1,kb) 377

are discarded, and only steps within [kb, kf ] are used for the 378

final replay process. 379

3) REPLAY PROCESS 380

After the backward process, the PF state of the confidence 381

step within a threshold can infer the user’s location. However, 382

since these inferred locations will be used to calibrate the 383

FTMR, we would like to have more precise crowdsourced 384

data provider locations to keep the FTMR calibration process 385

accurate. So the replay process inherits the particle at step kb 386

in the backward process, and then runs the stepwise process 387

again in the forwardmotion, from kb to kf . This gives position 388

information for two similar paths, from the backward pro- 389

cess and from the replay process, with the same step range 390

[kb, kf ] for both. Finally, the two paths are combined using 391

inverse variance weighting [27] to provide accurate location 392

information. 393

The path coordinates that are eventually used as coordinate 394

pseudo-labels are a mix of the backward path and the replay 395

path. The mean and variance for the path coordinates are 396

calculated as: 397

X̃k =
wk,bXk,b + wk,rXk,r

wk,b + wk,r
(17) 398

s̃2k =
wk,b

(
X2
k,b + s

2
k,b

)
+ wk,r

(
X2
k,r + s

2
k,r

)
wk,b + wk,r

(18) 399

where wk,b = 1
/
s2k,b and wk,r = 1

/
s2k,r . 400

V. FTMR REVERSE POSITIONING AND RANGING MODEL 401

TRAINING 402

A. OVERVIEW OF FTM PROTOCOL 403

IEEE 802.11mc supports RTTmeasurement ofWi-Fi devices 404

to estimate the distance between them using an FTMprotocol. 405

FTMI (such as amobile phone or laptop) initiates the protocol 406

by sending an FTM request to another FTM-enabled device. 407

A device (mostly aWi-Fi access point) that receives this FTM 408

packet is called an FTMR and returns an acknowledgement 409

(ACK) message. When FTM messages are exchanged mul- 410

tiple times, calculate the RTT and multiply this time by the 411

speed of light to get the RTT distance dFTM . In addition to 412

the average RTT distance, for an FTMmeasurement, the FTM 413

packet also contains range standard deviation sFTM and RSSI 414

rFTM information. 415
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If the FTMmeasurement only involves a clear line of sight,416

the error in the distance measurement is 1-2 m [11]. However,417

because FTM needs to exchange data packets, similar to most418

TOA protocols, the penetration or reflection of the signal419

on obstacles can affect the ranging quality. The relationship420

between themeasured FTMdistance and the true distance can421

be expressed as [28]:422

dFTM = ‖zI − zR‖ + derr (19)423

where zI and zR are the respective true position vectors of the424

FTMI and FTMR, and ‖zI − zR‖ is the true distance between425

the two devices. The error consists of three components:426

derr = dm + dofs + dpos (20)427

where dm is the measurement error, dofs is the offset error,428

and dpos is the position-dependent error.429

Here, dm is the measurement error caused by measurement430

noise mainly due to the uncertainty principle which is as low431

as 10-20 cm for 5GHz channel. dofs is the offset error due to432

device dependent error, which depends on the channel header,433

FTMI type and FTMR type. dpos is the distance error due to434

position dependent effects, referring to the device indepen-435

dent error due to the characteristics of the transmission path.436

Especially in the NLOS case, the contribution of dpos will437

cause inaccurate distance results and the corresponding RSSI438

will be much smaller.439

If there is NLOS between FTMI and FTMR, including440

multipath or penetrating building materials with dielectric441

constants, the position-dependent error dpos has a significant442

effect on the ranging result [29]. Differentmethods are used to443

minimize this error. A Gaussian mixture model [30] is used444

to determine the probability of distance measurement, or a445

probability model that uses ranging results and RSSI to dis-446

card NLOS measurement is used [31]. Reducing the effects447

of position-dependent errors requires extensive calibration.448

B. RANGING MODEL449

To ensure reliable ranging results, sources of error must be450

identified. In a previous study [11], the authors developed451

an MLP for FTM calibration, but the model is separate for452

different FTMRs. Although this method is feasible, if there453

are multiple FTMRs in the field, it is necessary to save454

multiple sets of similar and redundant model parameters, and455

the learning of environmental characteristics is not shared.456

This study uses data from all FTMRs in the training of the457

ranging model, allowing the model to simultaneously learn458

the error characteristics of different receivers and separate out459

device-independent (dpos) and device-dependent error (dofs)460

information. In this way, all FTMRs in a site canmake reliable461

distance predictions and can share device-independent model462

parameters.463

The ranging model produces estimates of distance d̂ and464

its standard deviation ŝ from the input data. The relationship465

between input and output is expressed as a parameterized466

function as follows:467

[d̂, ŝ] = R(x;2) (21)468

FIGURE 3. Proposed ranging model with offset compensation and NLOS
estimation modules.

where R is the MLP model, and x is a batch of FTM packets 469

{x1,x2, . . . ,xj . . . , xT } and xj =
[
dFTMj ; sFTMj ; rFTMj

]T
is the 470

combination of all data from FTM packets of the j-th FTMR 471

that represents distance, standard deviation and RSSI, respec- 472

tively; and 2 is the training parameters for the model [11]. 473

If the packet status fails or the request times out, all items of 474

its packet will be set to zero. 475

The input for this model is the time series data of T 476

consecutive FTM samples, which not only eliminates the 477

randomness in the measurement noise but also allows the 478

model to learn the time series relationship between the data. 479

As shown in Fig. 3, the ranging model is composed of two 480

modules: offset compensation and NLOS estimation. These 481

two modules are used to suppress offset errors and position- 482

dependent errors, respectively. The model uses samples from 483

all T FTM packets and outputs two numbers: the predicted 484

distance d̂ and the standard deviation ŝ. The details of the 485

model are given in [11] and briefly described as follows. 486

1) OFFSET COMPENSATION 487

As can be seen from the left side of Fig. 3, the model com- 488

pensates for the offset first. Only the set of FTM distances for 489

the j-th FTMR dFTMj = {d1,d2, . . . ,dT } is sent to the offset 490

compensation module. To compensate for the offset bias of 491

the FTM range, an offset variable is added to the measured 492

FTM distance as: 493

d̂oj = ReLU

(
dFTMj +

J∑
i=1

φ̂iδij

)
(22) 494

where d̂o is the offset-compensated distance, φ̂i is the offset 495

variable for the i-th FTMR of a site with J FTMRs, and its 496

multiplication with Kronecker delta δij means that only φ̂j 497

is added to dFTMj . The rectified linear unit (ReLU) function 498

ReLU (x) = max(0, x) ensures that the output is always 499

positive because the distance between two nodes is positive. 500

2) NLOS ESTIMATION 501

When a NLOS condition occurs, from a timing perspective, 502

the signal is only slowed down a bit as it penetrates the wall, 503

which corresponds to a slightly larger RTT distance; but from 504

VOLUME 10, 2022 96265



H.-W. Chan et al.: Fusion-Based Smartphone Positioning Using Unsupervised Calibration

an energy perspective, the signal is weakened a lot, i.e., the505

RSSI value dropped a lot. This allows the ratio of RTT range506

to RSSI to roughly see the presence of NLOS and to correct507

distance estimates. In [31], a normal probability distribution508

is used to estimate whether the measured distance is LOS,509

while in this study MLP is used to estimate the impact of510

NLOS and predict its correction.511

On the right side of Fig. 3, the NLOS estimation module is512

a MLP that predicts the distance at which the offset distance513

must be corrected and the standard deviation for this sample.514

The output of the previous offset module d̂oj is concatenated515

with the standard deviationsFTMj and RSSI rFTMj of the orig-516

inal FTM results as input to the model. Because the offset517

model removes the offset set by the FTMR, the input to the518

model sees the relationship between the device-independent519

distance and its standard deviation and RSSI. The two num-520

bers output by this module, the correction distance d̂cj and the521

standard deviation ŝj, are considered to be independent of the522

device and related to the relative position between the device523

and the user. The final estimated distance to the j-th FTMR524

can be expressed as:525

d̂j = d̂oj − d̂
c
j (23)526

The correction distance d̂cj is the output from the activation527

function leaky ReLU, which has output Leaky ReLU (x) =528

max (0.1x, x). Although this activation function can output529

negative values, it is more inclined to output positive values.530

This design matches the characteristic of NLOS paths that531

usually increase the measured distance. Finally, the distance532

overestimated by the NLOS path is subtracted as in (23).533

C. LOSS FUNCTIONS FOR UNSUPERVISED LEARNING OF534

RANGING MODEL535

The previous subsection describe the architecture of the536

ranging model so that it can predict accurate distances and537

standard deviations between the user and the FTMR. This538

subsection aims to illustrate the training process of this rang-539

ing model. In this study, we uses an optimization process that540

does not require the location of each FTMR to be determined541

in advance, but only refers to one or a small number of FTMR542

positions to train the ranging model and predict the positions543

of other FTMRs. The ranging model is optimized without544

knowing all of the FTMR positions, and the coordinates545

of the user’s collection of FTM packets are inferred from546

crowdsourced data, so the true distance between themeasured547

location and the FTMR is unknown. To sum up, since no548

distance data is accurately obtained by measurement, the549

training of this ranging model is an unsupervised learning550

process.551

Assume that after the crowdsourcing collection in552

Section IV, a training set has N valid data at a test point553

containing J FTMRs, and each data includes the inferred554

position z (n) and its corresponding FTM packet content. For555

the n-th packet result, the ranging model gives the predicted556

distance d̂j (n) and standard deviation ŝj for the j-th FTMR at 557

zj. 558

We optimize four objectives during the training process of 559

the ranging model: 560

1) DISTANCE LOSS 561

The distance loss is defined as the difference between the true 562

distance
∥∥z (n)− zj

∥∥ from the received location to the true 563

FTMR coordinates and the predicted distance d̂j (n) using the 564

ranging model: 565

Ldist =
J∑
j=1

N∑
n=1

w(n) · I (n)
∣∣∣∥∥z(n)− zj

∥∥− d̂j(n)∣∣∣ (24) 566

where the weight w (n) = 1/s̃2k and I (n) = 1 if the true 567

coordinates for j-th FTMR are known and 0 otherwise. The 568

weight w (n) is the reciprocal of the variance computed using 569

(18), since location labels with higher confidence need to 570

be given higher weights. By minimizing this loss term, the 571

ranging model can be updated to more accurately predict the 572

distance d̂j (n). 573

2) GEOMETRIC LOSS 574

For FTMR without measured coordinates, a similar loss term 575

called geometric loss is defined as: 576

Lgeo =
J∑
j=1

N∑
n=1

w(n) ·
∣∣∣∥∥z(n)− ẑj

∥∥− d̂j(n)∣∣∣ (25) 577

where ẑj is the inferred coordinates of the j-th FTMR. Its 578

initial value is set to (0, 0, 0) for all j, and is continuously 579

updated as the loss is minimized. When these two loss terms 580

are minimized simultaneously, the ranging model minimizes 581

the distance loss to obtain a more accurate predicted distance; 582

consequently, when the geometric loss is minimized, the 583

better ranging model is used to allow FTMR for unknown 584

coordinates to converge to more likely coordinates. 585

3) VARIANCE LOSS 586

The ranging model learns how to predict distances more 587

accurately, but the confidence level of such predictions is 588

unknown. Therefore, the corresponding standard deviation is 589

predicted through the distance model at the same time, and 590

the error between the expected distance and the real distance 591

is within the normal distribution range of the standard devi- 592

ation. The loss function associated with standard deviation 593

prediction is defined as: 594

Lvar =
J∑
j=1

N∑
n=1

w(n)
[
Lq1

(∥∥z(n)− ẑj
∥∥− d̂j(n)+ 2ŝj(n)

)
595

+Lq2
(∥∥z(n)− ẑj

∥∥− d̂j(n)− 2ŝj(n)
)]

(26) 596

where Lq1 and Lq2 represent the quantile losses for (q1, q2) = 597

(2.5%, 97.5%). The quantile loss Lq is defined as [33]: 598

Lq(x) =

{
qx if x ≥ 0
(q− 1)x otherwise

(27) 599
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where q is the quantile level to be predicted. Quantile loss600

contains an asymmetric feature that compensates for the601

imbalance of numbers separated by quantile values. There-602

fore, those predictions that deviate from the assumed distance603 ∥∥z (n)− ẑj
∥∥ by more than two standard deviations of predic-604

tions ŝj (n) will be penalized by a larger loss in terms of the605

variance loss Lvar . In this case, with a 95% confidence inter-606

val, the true distance will be within two predicted standard607

deviations of the predicted distance.608

4) REGULARIZATION OF CORRECTION DISTANCE609

The offset compensation and NLOS estimation modules of610

the ranging model simultaneously affect the distance pre-611

diction. However, the corrected distance predicted by the612

NLOS estimation module should not dominate the distance613

prediction, otherwise both the offset and the NLOS error will614

be overestimated. Therefore, a loss term is added to assign615

the length of the corrected distance d̂cj (n) as:616

Lcorr =

√√√√√ J∑
j=1

N∑
n=1

w(n)d̂cj (n)
2 (28)617

Finally, all loss terms are added up to produce a joint loss618

as:619

L = Ldist + Lgeo + Lvar + λLcorr ) (29)620

where λ = 0.1 are constants that can control the balance621

between all loss terms [11].622

To optimize the unknown FTMR coordinates ẑj and the623

ranging model parameters 2, the training process consists624

of iterations that minimize the joint loss L and update the625

variables using gradient descent:626

ẑj← ẑj − α1
∂L
∂ ẑj

627

2← 2− α2
∂L
∂2

(30)628

where (α1, α2) = (0.1, 0.001) are the learning rates and the629

gradient ∂L/∂ ẑj and ∂L/∂2 are calculated by back- propa-630

gation algorithm [34].631

VI. POSITIONING PHASE632

During the positioning phase, the ranging model will be used633

to predict the distance between the user and the FTMRs.634

At the same time, the IMUwill also update the user’s position635

through step detection. To fuse the positioning results from636

the two sources, the PF is again used as a non-linear filter to637

capture the user’s position. The PF fuses the IMU and FTM638

information to update particles weight, and uses weighted639

average to obtain the most likely position of the user.640

The detailed process is shown in Fig. 4. At the very641

beginning of the localization phase, the particles of the PF642

are dispersed uniformly throughout the accessible area with643

equal weights. The user’s smartphone then starts sending644

FIGURE 4. Particle filter update for positioning phase. (a) the particles
are initially distributed over the entire accessible area, and the user starts
collecting FTM packets from nearby FTMRs, (b) when multiple ranging
results are obtained, the particle weights are updated using the distance
and standard deviation predictions from the model, (c) When IMU data is
detected, the particles move one step, those in the inaccessible area are
removed.

FTM requests to nearby FTMRs. Whenever the smartphone 645

receives an FTM packet, the ranging model will start to pre- 646

dict the more likely distance and standard deviation between 647

the user and the FTMR. Note that although the FTM packet 648

window of the MLP model is T , the model can still provide 649

distance estimates when the number of packets is less than 650

T . The ranging model in (21) will predict a distance d̂ and 651

its standard deviation ŝ. Assuming that the mobile phone 652

receives J ranging information from FTMRs at the same time 653

step k , the system can update the weight of the i-th particle in 654

the PF according to the Gaussian distribution as [14]: 655

wik = wik−1 · exp

(
−

(
Zk − Z∗k

)2
2Rk

)
(31) 656

where 657

Zk =


d̂1
d̂2
...

d̂J

 ,Z∗k =

∥∥ẑik−z1∥∥∥∥ẑik−z2∥∥

...∥∥ẑik−zJ∥∥

 ,Rk =

ŝ21 0 . . . 0
0 ŝ22 . . . 0
...
...
. . .

...

0 0 . . . ŝ2J

 658

in which ẑik is the position of the i-th particle,
(
d̂1, d̂2, . . . ., d̂J

)
659

and
(
ŝ1, ŝ2, . . . ., ŝJ

)
are the distance and the standard devia- 660

tion estimates from the MLP model, (z1,z2,. . . ,zJ ) are the 661

positions of FTMRs. 662

At the same time, the IMU sensor is also detecting the 663

user’s stepping behavior. If a step is detected, the user’s 664

location will be updated as in (11). After the particle weights 665

are updated, the user’s location can be obtained using weight 666

averaging as in (14). The weight update process is callback- 667

driven, so whenever a step or a FTM packet is received, the 668

user’s position is refreshed immediately. 669

VII. EXPERIMENT RESULT 670

A. EXPERIMENTAL SETUP 671

The proposed method is tested in an indoor office environ- 672

ment with dimensions of 62.7× 24.5 m2. There are 7 FTMRs 673

at this test site. The installed FTMR is powered by a Qual- 674

comm IPQ8065 chipset, which is configured to support FTM. 675

FTMR can support both 2.4GHz and 5GHz frequency bands, 676

but for simplicity and accuracy, only the 5GHz frequency 677
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FIGURE 5. The crowdsourcing process of one path: (a) the variance of the
particles in the path, (b) the backward, replay and mixture path.

band is used in this experiment. The data is collected by678

an app developed in Android that runs on the Google Pixel679

4XL. The highest sampling rates of IMU data, FTM, and680

RSSI measurements are 150 Hz, 10-20 Hz, and 0.3-0.5 Hz,681

respectively. But while the tester is walking around the test682

site, the app collects IMU information at 100 Hz and FTM683

information at 5 Hz for more stable results. The tester held684

the mobile phone at a height of about 1.2 meters.685

B. CROWDSOURCING DATA COLLECTION686

During the crowdsourcing phase, users walk around the687

indoor site with their phones in hand, while their phones col-688

lect IMU and FTM data along the way. Since the FTMR has689

not been calibrated, the FTM result is not used as a ranging690

source but it is stored in the FTM database. After 20 minutes691

of collection, about 6000 FTM data samples were received,692

but none of them had labeled coordinates for model training.693

To provide labels for where these FTMs are collected, the694

methods in Section IV are used to infer their locations. The695

number of particles is set to 10000 to run the position labeling696

process.697

One of the many paths through the crowdsourcing phase is698

shown in Fig. 5. The reference trajectory starts in the upper699

left corner, travels through the hallway and two rooms, and700

then reaches the lower right corner. The forward path initially701

begins with the particle spreading to all possible areas in the702

site (white areas). As the user walks through the site, the703

PF is updated by the PDR, so particles that remain in walls704

(black areas) or inaccessible areas (grey areas) are replaced705

TABLE 1. List of ranging models and their description.

by particles with heavier weights. As the particles gradually 706

converge to a variance less than the threshold variance, the 707

path remains in the database, and the converged particles are 708

inherited by the backward process. 709

In the backward process, the particles converge in most 710

steps, but at some locations the variance increases. The 711

backward path in Fig. 5(b) shows some trajectories of 712

through-wall paths or strange turns, so the observed path 713

is unlikely to be the user’s actual path. While the playback 714

shows a different path than the reverse path, some of the 715

estimated positions are still unrealistic. Finally, two backward 716

and replay paths describing different directional information 717

are combined using (17) to give the mixture path. The results 718

fit the user’s trajectory better than the other two paths, thus 719

yielding better location labels to calibrate the FTM ranging 720

model. 721

C. TRAINING RANGING MODEL AND FTMR REVERSE 722

POSITIONING 723

After the crowdsourcing process, paths that do not converge 724

are discarded, and there are approximately 5000 samples 725

with location labels that are produced by the crowdsourcing 726

process. 727

Table 1 shows the mean distance error for different ranging 728

models that are trained using three different conditions: 729

• Offset: the estimation of the FTM distance only adds to 730

the offset compensation of the ranging model as in (21). 731

The positions of all FTMRs are provided. 732

• Inferred: only one FTMR position is provided, so the 733

rest of the FTMR positions are inferred in an unsuper- 734

vised manner when training the ranging model. 735

• True: all of FTMR positions are provided. The model is 736

minimizes (28) with activation of each loss term. 737

The distance error after training is shown in Fig. 6. The mean 738

distance error in the offset case is the largest, as it is signifi- 739

cantly affected by NLOS. The inferred case only uses the true 740

coordinates of FTMR 1, but training the model still provides 741

reliable distance predictions. For the inferred case and the 742

real case, NLOS has less influence on the ranging results, 743

indicating that the NLOS estimation module does suppress 744

the influence of NLOS. The inferred case and the true case 745

reduce the ranging error by 24% and 35%, respectively, which 746

is better than the offset case. 747
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FIGURE 6. Box plot of the range error of different FTMRs relative to
different ranging models. The overall distance error is also compared in
the last. Only the coordinates of FTMR 1 are provided for inferred ranging
model.

FIGURE 7. Histogram of distance error divided by standard deviation.

It is reasonable to assume that a person typically walks at a748

speed of 0.4 steps per second and 0.6m per step. Although the749

sampling rate of the RSSI measurement is only 2-3s, pedes-750

trians move a maximum of 3 to 4.5 m in 2-3 seconds. RSSI751

typically varies 1-5 dB within this distance difference, unless752

the signal crosses the LOS to NLOS boundary. Since RSSI753

typically receives values in the range of -40 to -100 dBm,754

this degree of variation still allows the model to be used as a755

reference, so a model that takes RSSI into account can make756

distance predictions more accurate.757

The ranging model will estimate both the distance and its758

standard deviation. If the prediction error is closer to a nor-759

mal distribution, the user’s location can be more accurately760

estimated from this distribution during the localization phase.761

Equation (25) is designed such that the standard deviation of762

the prediction gives a 95% confidence interval covering the763

true distance. The histogram in Fig. 7 shows a normalized764

plot of ranging error divided by the standard deviation of765

the three ranging models. Since the offset case did not use766

the results of the NLOS estimation module, the standard767

deviation originally provided by the FTM protocol was used.768

All three are close to the normal distribution, but the inferred769

case is slightly skewed to the left, while the peak of the770

offset case exceeds the normal distribution, indicating that771

the standard deviation is overestimated. From the probability772

distribution, the probability that the true distance is within773

twice the predicted standard deviation of the offset case, the774

inferred case, and the true case is 77.7%, 85.0%, and 93.3%,775

respectively. The closer the result is to 95%, the closer the776

estimated distance error is to a normal distribution, result-777

ing in a better probabilistic model for predicting distance.778

TABLE 2. True and predicted FTMR position and offset.

FIGURE 8. Relative 2D positions of the true and inferred FTMR.

In conclusion, the standard deviation prediction of the NLOS 779

estimation module can make subsequent PF updates more 780

normally distributed. 781

The proposed system not only trains the ranging model, 782

but also obtains the location of the unknown FTMR during 783

optimization. The true and inferred coordinate values are 784

shown in Table 2, and the relative 2D positions are shown 785

in Fig. 8. The coordinates of FTMR 1 are provided for the 786

inferred case, so positioning errors are ignored. 787

Using the labels of the user’s measurement location in 788

a 2D plane, the final inferred coordinates of the remaining 789

FTMR cannot deviate from this plane, as the offset provides 790

another degree of freedom that can be optimized. Therefore, 791

the inferred ranging model can only predict the projected 792

coordinates of the FTMR on the measurement plane. The loss 793

of height information is reflected in the offset, so the offset 794

of the inferred ranging model is smaller than that of the true 795

ranging model. 796

D. LOCALIZATION RESULT IN POSITIONING PHASE 797

For the positioning phase, the proposed Wi-Fi FTM position- 798

ing algorithm is compared with the traditional PDR and the 799

weighted least-square (WLS) [32] methods. To avoid delays 800
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FIGURE 9. Positioning results of different positioning algorithms in the
classroom. The blue squares represent the desks in the classroom.

to users, it is desired to keep the filter’s latency under 0.5 sec-801

onds during the targeting phase. In [15], the localization error802

and computation time of different numbers of particles are803

compared in detail. In this study, the number of particles is804

set to 2000 because the localization accuracy is acceptable805

while keeping the latency low. The positioning experiment806

used an office. The map that is seen by the PF only includes807

the walls of the laboratory and the desks are used as a visual808

relative positioning point but not to update of the filter.809

It is noted that the IMU is used to detect the number of810

steps and a lower rate of 5-10 Hz is enough for power saving811

consideration. In the meantime, FTMs are more reliable not812

at the highest sampling frequency. In terms of positioning813

frequency, one positioning source provides positioning infor-814

mation about every 0.1-0.2 seconds. Since the position is815

updated asynchronously, the PF’s particles are updated when-816

ever ameasurement from any positioning source (IMU, FTM,817

or even RSSI) comes in.818

The tester held the Pixel 4 XL and walked steadily around819

the desks 5 times to collect almost 900 samples. A tag was820

recorded at every corner and the timestamp for the tag event821

was recorded in the smartphone. The ground truth for the path822

is the interpolation of themarked position and the correspond-823

ing time. When the position algorithm obtains the position of824

the event, the positioning error is compared with the position825

of the interpolated label.826

Fig. 9 shows a comparison of the positioning results for827

different positioning algorithms. PF-True is a true ranging828

model in the PF. PDR has good local characteristics but829

deviates from the original trajectory over time. WLS is sig-830

nificantly affected by NLOS and demonstrates poor accuracy.831

TABLE 3. Localization error for different methods.

PF-True shows good local and global localization character- 832

istics. 833

Table 3 compares the positioning errors. The proposed 834

algorithm uses PF-True and PF-Inferred, while PF-Offset 835

denoted the results by the algorithm in a previous study [14]. 836

The positioning error for the PF for the proposed ranging 837

model is less than 1.4m, and the best PF-True algorithm has 838

a positioning error of 1.15m at the 90th percentile. PF-True 839

and PF-Inferred give a 43% and 32%, respectively, smaller 840

error thanWLS. Comparedwith the same PF-based algorithm 841

PF-Offset, PF-True and PF-Inferred are 24% and 9.2% more 842

accurate, respectively. 843

VIII. CONCLUSION 844

This study proposes a fusion-based smartphone localization 845

system using unsupervised calibration of crowdsourced wi-fi 846

FTM data. During the crowdsourcing phase, users collect 847

IMU and FTM data as they walk around the test site. PDR 848

and PF are used for position markers to later provide pseudo 849

markers for FTM ranging model calibration. During the 850

process of optimizing the Wi-Fi FTM ranging model, the 851

unknown FTMR coordinates can also converge to a near-true 852

position at the same time. Finally, the average error of the 853

trained ranging model is less than 1.88m, which is more than 854

24% better than the distance error provided by the original 855

FTM, and the two-dimensional average error of the predicted 856

FTMR coordinates is 1.37m. The ranging model also predicts 857

the error standard deviation of the distance. The model has a 858

probability of more than 85.0% to make the distance error fall 859

within two standard deviations (ideally 95%), indicating that 860

the overall error of the predicted distance is close to a normal 861

distribution. 862

Finally, in the positioning phase, the calibrated FTM rang- 863

ing model and PF are used for the multi-source fusion local- 864

ization method. Compared with the traditional WLS, the 865

90% localization error of PF-True is reduced by 43%, and 866

the PF-Inferred is reduced by 32%. Compared with general 867

PF-based methods, the localization errors are reduced by 868

24% and 9.2%, respectively. The proposed model gives more 869

accurate results if there is NLOS reception, so it is equally 870

applicable to other ranging based protocols (such as UWB) 871

as it stabilizes the ranging quality for NLOS scenarios 872
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