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ABSTRACT Cloud service providers consistently leverage their computing infrastructures by adding
reconfigurable hardware platforms such as field-programmable gate arrays (FPGAs) to their existing
infrastructures. Adding FPGAs to a cloud environment involves non-trivial challenges. The first challenge
is virtualizing FPGAs as part of the cloud resources. As a standard virtualization framework is lacking,
there is a need for an efficient framework for virtualizing FPGAs. Furthermore, FPGA resources are used
in conjunction with central processing units (CPUs) and graphics processing units (GPUs) to accelerate
the execution of tasks. Therefore, to gain the benefits of these powerful accelerating platforms, the second
challenge is to optimize the allocation of tasks into the capable resources within a cloud data center. This
work proposes an FPGA virtualization framework that abstracts the physical FPGAs into virtual pools of
FPGA resources. The work further presents an integer linear programming (ILP) optimization model to
minimize the makespan of tasks where FPGA resources are part of the cloud data center. Given the complex
nature of the problem, a simulated annealing (SA) metaheuristic is developed to achieve gains in performance
compared to the exact method and to scale up and handle many tasks and resources while providing near-
optimal solutions. Experimental results show that SA has reduced the makespan of a large dataset with
1000 tasks and 100 resources by up to 30% when compared to first-come-first-served (FCFS) and shortest-
deadline-first (SDF) algorithms. Lastly, to quantify the performance of FPGA-enabled cloud datacenters,
the work extends the CloudSim simulator (an open-source cloud simulator) to enable FPGA as a resource
in its environment. The proposed virtualization framework and the SA scheduler are integrated into the
environment. Simulation results show that the execution time of tasks is reduced by up to 78% when FPGA
accelerators are used.

INDEX TERMS FPGA, cloud computing, virtualization, scheduling, CloudSim, simulated annealing.

I. INTRODUCTION
Cloud computing is one of the active research areas in

computing as a model for enabling abundant, convenient,
network access on user demand to a shared pool of config-

computing. Recently, hardware accelerators have been intro-
duced in cloud datacenters. Along with traditional resources,
accelerators must be integrated carefully, which involves
solving several non-trivial challenges. Such hardware plat-
forms speed up cloud services and applications tremendously
compared to conventional platforms. The National Institute
of Standards and Technology (NIST) [1], defined cloud
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urable computing resources. These resources mainly include
servers, storage devices, and networks, among other entities.
They can be provisioned rapidly, with minimal management
effort and human interaction. In addition, virtualization is
one of the main enabling technology in cloud computing.
Virtualization provides a logical abstraction of the physical
resource so that one single computer can run multiple oper-
ating systems [2].

This research focuses on enabling hardware acceler-
ation services in a cloud data center. The notion of
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Accelerator-as-a-Service (AaaS) is relatively new in cloud
computing, especially using FPGA devices. Clouds offering
AaaS allow users to request various acceleration services
without requiring any technical knowledge of the acceler-
ator hardware. All hardware management and configura-
tions carried out by the cloud provider are hidden from
users.

To enable AaaS, one must consider possible approaches
to FPGA virtualization. According to [3], there are four
types of virtualizations: Single FPGA Single Applica-
tion (SFSA), Single FPGA Multiple Applications (SFMA),
Multiple FPGAs Single Application (MFSA), and Multiple
FPGAs Multiple Applications (MFMA). A modern mecha-
nism called dynamic partial reconfiguration (DPR) is used for
multiple applications on a single device. The FPGA fabric is
logically partitioned into multiple regions, usually symmet-
ric, which can be used to configure application hardware. The
term ‘“dynamic” implies that an FPGA is already running
some configured tasks that can be reconfigured to accommo-
date additional tasks at runtime.

On the other hand, the term “‘partial” is used because
specific regions can be reconfigured for application hardware
while the rest of the regions in the FPGA are untouched.
Many modern FPGAs that support DPR and vendor-specific
tools are capable of being portioned where static logic or shell
is required. The static logic never changes once configured
in the FPGA. Furthermore, the static logic must define how
to handle the different data coming in and going out of the
FPGA. Moreover, static logic modules must manage appli-
cation or user data and establish well-defined communica-
tion protocols between themselves and accelerators (i.e., user
hardware). Application logic modules, which are accelerator
hardware designs, are configured in partially reconfigurable
regions (PRRs). The term ““partial” implies that only some
portion of the FPGA gets its resource elements reconfigured
for the new application logic to be implemented. A PRR is
also referred to as a role. Hence, a shell is never modified
once configured, but roles may be reconfigured as often as
required. It also allows multiple applications to run on FPGA,
enabling resource sharing and multitenancy where multiple
users can share the same physical resource. In the cloud
datacenter context, the Multiple FPGAs Multiple Applica-
tions (MFMA) virtualization type is the ideal choice of
virtualization.

The research work in this paper has the following
contributions:

e Proposes a virtualization framework for FPGA
resources in a cloud data center. The proposed frame-
work is modular and allows high resource utilization.
As a result, we obtain several partitions or regions
from each physical FPGA and aggregate them to form
resource pools.

« Develops an optimization scheduling model that mini-
mizes the makespan in the cloud to the virtualized pool
of FPGA resources.
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« Implements and evaluates the simulated annealing algo-
rithm that obtains a near-optimal solution for the
modeled scheduling problem.

« Extends the CloudSim simulation toolkit to include the
proposed FPGA virtualization framework and schedul-
ing algorithm to validate the proposed solution.

The rest of the paper is organized as follows: Section II dis-
cusses the research work in the literature. Section III proposes
the FPGA virtualization framework. Section IV discusses the
proposed model for FPGA resource scheduling. Section V
describes the proposed heuristic-based scheduling algorithm.
Section VI explains the various experiments conducted and
the obtained results. Lastly, Section VII concludes the paper.

Il. RELATED WORK

Multiple research approaches in the literature discuss virtu-
alization, partition styles, and resource allocation for FPGA
within different settings. This section reviews the related
work and discusses the research gap that this work aims to
solve.

A. FPGA VIRTUALIZATION APPROACHES

Chen et al. [4] proposed a virtualization framework for
enabling FPGAs in the cloud. The hardware layer of the
framework is divided into three logical sublayers — user sub-
layer, service sublayer, and platform sublayer. These layers
have static hardware modules implemented within the FPGA
fabric. The platform sublayer consists of static functional
components such as memory and network controllers that
handle data communication from and to the FPGA. The
service sublayer manages the configuration of application
hardware logic and data using modules such as a config-
uration controller, a job queue, and a job scheduler. This
is considered the most significant layer because it enables
partial reconfiguration of accelerators and provides interfaces
for users to access their FPGA accelerators. The user sublayer
comprises a static layout with four asymmetric partitions in
the topmost sublayer. The partitions, also known as empty
accelerator slots or partially reconfigurable regions (PRRs),
are marked with alphabets A, B, C, and D. When the con-
figuration controller receives the hardware application logic
in the form of bitstreams, it configures the hardware defined
by that logic into one of the four accelerator slots. Moreover,
the framework has a hypervisor layer which is responsible
for receiving user requests to create accelerators. Using the
Accelerator-as-a-Service (AaaS) model, when a user requests
for a specific accelerator, the hypervisor layer either selects an
idle accelerator slot to configure the requested accelerator or
finds an existing accelerator belonging to the user, or rejects
the request if there is no slot available.

In addition, the hypervisor tracks the usage and status of
each accelerator slot, whether the slot is idle or occupied.
Using this framework, each FPGA is divided into four on-
chip accelerator slots, and each slot is different in terms of the
number of resources constrained by the logical partitioning.
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Implementing this virtualization framework across several
FPGAs leads to obtaining four distinct pools of accelerator
slots. Each pool contains only one type of slot, i.e., either A,
B, C, or D. The partitioning as well as implementation details
of the framework are hidden from the cloud users. However,
there is a significant disadvantage in using a static layout
of asymmetric partitions because it renders the abstraction
scheme inefficiently. Despite multiple accelerators being con-
figured on a single FPGA chip (SFMA virtualization), using
this framework, a single accelerator cannot be configured
across multiple FPGAs (MFSA virtualization). Moreover,
suppose one type of accelerator is dominantly requested.
In that case, each FPGA has only the corresponding slot
utilized, leaving the rest of the slots idle, and as a result,
it would lead to poor resource utilization. Lastly, accelerator
migration, which is a core feature of clouds, is not supported.

Microsoft proposed a virtualization scheme in [5] and
[6] where they implemented the Bing search engine across
several FPGAs, obtaining a very high throughput. The work
virtualized the FPGA resources at the network, which con-
tains FPGAs and host machines. As a result, FPGAs cannot
run multiple applications on the chip, but a single application
hardware can be configured across multiple FPGAs (MFSA
type). The drawback is that small-scale applications that
might require only a portion of an FPGA would occupy an
entire chip, leading to poor resource utilization. Moreover,
accelerator migration is overly complex. Hence this frame-
work is not effective in a cloud infrastructure.

In [7], the authors proposed an operating system (OS) for
FPGAs called Feniks that uses the static logic of Microsoft’s
Catapult in [6]. The static regions, where hardware such as
memory and network controllers are configured, are known
as OS regions. Moreover, the PRRs, known as applica-
tion regions, are a result of partitioning the FPGA fabric.
In addition, the virtualization framework provides the logical
abstraction of the physical PCle (short for peripheral com-
ponent interconnect express) interface, which establishes an
efficient communication channel between server resources
such as storage and network devices and the FPGA chip.
As aresult, each application region can access local and cloud
resources through the PCle and Ethernet interfaces, respec-
tively. Moreover, Feniks supports both MFSA and MFMA
virtualization types; therefore, it is applicable in cloud infras-
tructures. In addition, a near-identical framework is proposed
in [8].

Al-Aghbari and Elrabaa [9] proposed a scheme that
supports MFMA virtualization. It performs resource-level
virtualization in FPGA’s I/O channels and uses network-
attached FPGAs. Moreover, it has static hardware modules
that perform specific logical functions, for example, a net-
work controller external to the FPGA fabric that manages
Ethernet-based communication. In addition, the framework
has a reconfiguration manager that safely configures accel-
erators in the PRRs, which are referred to as virtual FPGAs
or VFPGAs. A vFPGA uses a static interface to communicate
with the static hardware modules. This interface, called the
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wrapper, is automatically generated based on the user’s spec-
ifications. The wrapper virtualizes the physical I/O resources
in the FPGA and allows users to design accelerator hardware
without considering physical I/O constraints. Furthermore,
Al-Aghbari et al. implemented their framework in real-world
cloud infrastructure [10]. They explained the implementation
of the FPGA hypervisor and elaborated on how its frontend
functions are exposed to the cloud user as application pro-
gramming interfaces (APIs) while the backend functions are
implemented in the FPGA chip. Using the hypervisor, users
can create, manage, and destroy accelerators configured in
the vVFPGAs. Moreover, each accelerator in the vVFPGA is
assigned an IP address allowing any host machine or FPGA in
the network to communicate with the accelerator. Addition-
ally, the authors used Xilinx Virtex-6 XC6VLX550T FPGAs
as their hardware platform. They further implemented their
virtualization framework and used 58,123 look-up tables,
52,649 flip-flops, 422 random access memory (RAM) blocks,
and 560 digital signal processing (DSP) blocks in each FPGA.

B. FPGA PARTITIONING STYLES

DPR-supported FPGAs perform reconfigurations based on
a partitioning style. Partitioning refers to the way partially
reconfigurable regions (PRRs) are formed after logically
dividing the FPGA fabric. According to [11], there are three
partitioning styles — island style, slot style, and grid style.
The island-style partitioning is the least difficult to implement
where an FPGA has one or more PRRs. Each PRR can exclu-
sively configure one application hardware, and an application
cannot share more than one PRR, hence the name “‘island.”
However, the limitation to this partitioning style is when a sin-
gle island does not have sufficient resources to configure the
hardware. The slot style partitioning is where identical PRRs
called slots are created on the fabric, either column-wise or
row-wise. Hardware designs then occupy one or more slots
once they are configured. This partitioning is not straight-
forward to implement because each slot must have a static
interface to communicate between the configured application
hardware and the static hardware. However, it addresses the
limitation of the previous partitioning style. Hence, an appli-
cation can be provisioned for more than one slot if required.
Another challenge in this partitioning style is that an FPGA
has heterogeneous resources. Therefore obtaining identical
partitions or slots that are architecturally homogenous is chal-
lenging. Since some regions in the FPGA fabric are excluded
from being a part of any slot, the resources in these regions are
unutilized, leading to poor resource utilization. Finally, the
grid style partitioning is where an FPGA is segmented into
a grid, and the grid cells are either static regions or PRRs,
depending on the type of hardware configured. Hardware
designs occupy one or more cells to actualize accelerators.
Moreover, it improves resource utilization compared to the
slot style because fewer unpartitioned regions exist. In con-
trast, implementing this style and producing homogenous
grid cells is more challenging as an FPGA fabric contains
heterogeneous resources. In addition, each PRR cell must
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have a static communication interface that must be carefully
designed to occupy as few resources as possible and allow
more room for application hardware logic.

C. FPGA SCHEDULING APPROACHES IN CLOUD
Scheduling is the process of allocating resources to a set of
tasks at a specific time [12]. In cloud, resources are virtual
resource pools that are either homogenous, i.e., have only
one type of resource, or heterogeneous, depending on the
virtualization framework used. Moreover, examples of tasks
in a cloud include a user requesting a VM for general-
purpose processing, deploying a custom software application
to be hosted, and using hardware acceleration for image
processing. Additionally, scheduling is always carried out to
fulfill an objective: either a minimizing function, e.g., power
consumption of computer systems and makespan of tasks,
or amaximizing function, e.g., resource utilization of network
bandwidth during data transmission and memory utilization.
Note that makespan refers to the completion time for a set of
tasks. Furthermore, scheduling may be performed with task
constraints and/or resource constraints, and the inability to
achieve a constraint makes a candidate solution infeasible.

There are two classes of scheduling problems — static and
dynamic. In static scheduling, all information, such as the
resources capabilities and tasks requirements, are known to
the scheduler. On the other hand, dynamic scheduling refers
to changes within the environment that must be known to
the scheduler to provide a feasible solution. Such changes
are: resource failure, introducing a new resource, and new
task arrivals. Cloud infrastructures typically use dynamic
scheduling since tasks arrive in real-time, and the sched-
uler must allocate resources for these tasks without prior
knowledge. In addition, many scheduling algorithms exist
that can be categorized into either exact solution methods
or heuristic-based methods. Exact methods always guarantee
the best or the optimal solution for a scheduling problem.
However, they are unable to scale when tasks grow either
in quantity or complexity. Hence, scalable approaches such
as heuristic-based algorithms that provide a solution within
an acceptable time are needed. Heuristic approaches do not
guarantee optimality. However, heuristic algorithms can scale
to large size problems and provide a near-optimal solution
with better performance.

Some traditional task allocation approaches in cloud
infrastructures for resources are the First-Come-First-
Serve, Round-Robin, Priority- or Metric-Based, and
Approximation-Based. Others looked into heuristic-based
methods such as Swarm Intelligence, Genetic Algorithm,
and Simulated Annealing [12], [13], [14], [15], [16], [17],
[18]. After introducing FPGAs as cloud resources, many
implementations of these algorithms are being proposed in
the literature, making FPGA scheduling an active research
topic. For example, the proposed scheduling algorithm in [19]
is based on the virtualization framework of Chen et al. in
[4]. Accelerator slots (PRRs) of various sizes are obtained
because of the virtualization and the resources that the
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proposed scheduler provisions. In the scheduling algorithm,
an accelerator slot’s computing capacity is a parameter
defined as the number of virtual CPUs (vCPUs). Suppose
a task is executed using one of the accelerator slots and
accelerated n times faster than a single vCPU. In that case, the
slot’s computing capacity is said to be n vCPUs. Moreover,
it is a metric-based scheduling algorithm where the proposed
metric is called benefit. The benefit of an accelerator slot
is calculated by summing the speedup of all tasks on that
accelerator slot in terms of number of vCPUs. The objective
is to assign each task to the slot with the highest benefit value
for that task. Additionally, the authors make the scheduling
algorithm dynamic by allowing task preemption where new
incoming tasks yielding higher benefit on a particular slot
can replace the existing ones. However, there are two dis-
advantages in the algorithm. The first is that the resource
pools are based on the virtualization framework of [4] and
consist of heterogenous partitions or accelerator slots. This
leads to poor resource utilization as bigger accelerator slots
will always hold higher benefit value than the smaller ones,
and the scheduler always selects slots with the highest benefit
for every task. The second issue is that the scheduler must
calculate the benefit across the entire pool of accelerator slots
for each task before resource allocation. This is computation-
ally intensive and therefore, the algorithm is not scalable with
larger number of resources or tasks.

In [20], an FPGA resource scheduling algorithm is pro-
posed that minimizes the makespan of a batch of requests to
improve resource utilization at the node level. The requests
are acceleration tasks that are to be executed using FPGA
hardware. They are split into three categories — computation-
intensive, network-intensive, and a combination of both.
Three optimization models are presented to tackle each task
category independently. These models represent NP-hard
problems, and as a result, an approximation algorithm is
proposed that uses relaxation and rounding to find feasi-
ble solutions. The results of the algorithm are compared to
shortest-job-first and longest-job-first algorithms. However,
the proposed models work with a resource pool that consti-
tutes whole physical FPGA chips instead of PRRs. Therefore,
the algorithm only allocates one or more chips per task and
cannot allocate low-level FPGA resources, resulting in poor
resource utilization.

Most of the proposed scheduling algorithms in the liter-
ature consider the whole FPGA chips within the resource
pool. The authors in [21] proposed a metric-based multi-
objective scheduler that minimizes the energy consumption
by allocating computation-intensive tasks to compute nodes
with FPGAs. The scheduler decides whether to schedule a
task to a compute node with or without an FPGA based on
the tasks’ workload. Moreover, in [22], the proposed model
is a max-min joint optimization model which maximizes
cloud users’ satisfaction while minimizing loss of benefits
for the cloud providers. The proposed algorithm is a generic
MATLAB scheduler presented as a black box. Although the
authors claim that the resource pool was obtained because
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of MFMA virtualization, this is not indicated as the pool
contains whole FPGA chips instead of slots or PRRs.

It was observed from the reviewed scheduling algorithms
that most of the algorithms deal with resources from a
resource pool consisting of whole FPGA chips [19], [20],
[21], [22], [23], [24], [25], [26], [27], [28]. Some works do
not virtualize the FPGAs; instead, physical chips are allocated
to tasks. Such schedulers do not allow configuring more
than one application per FPGA chip and do not complement
MFMA virtualization frameworks. In Section IV, we formu-
late an ILP optimization model to schedule tasks using a
resource pool of PRRs. In Section VI, we propose a schedul-
ing algorithm based on the proposed model to perform task
scheduling.

lll. PROPOSED FPGA VIRTUALIZATION FRAMEWORK
This section presents our proposed approach that abstracts
the physical FPGA resources into logical virtual resources.
The characteristics of the FPGA resources are extracted and
analyzed to build the virtualization framework. As a result,
an FPGA resource pool is obtained that contains FPGA
resources in the form of PRRs. Moreover, our simulation
framework is based on the hardware platform developed
by [9] and [10].

A. FPGA CHARACTERISTICS OVERVIEW

Characterizing an FPGA chip yields the following relevant
attributes: configurable logic blocks (CLBs) within a cloud
environment, which are the essential building blocks of any
circuit on an FPGA, DSP slices for fast arithmetic process-
ing, blocked RAMs (BRAM) memory resources, clocks, I/O
blocks, and transceivers. Sophisticated modules such as net-
work manager, clock manager, configuration manager, and
ICAP (Internet Content Adaptation Protocol) interface are
also included.

The virtualization framework uses a dynamic partial recon-
figuration (DPR) mechanism. The framework focuses on
abstracting the physical connectivity to the FPGA resources
to enforce flexibility, standard protocols to reduce imple-
mentation complexity, and advanced partitioning to increase
resource utilization. For the logical abstraction of physical
connections, the PCle interface of the FPGA connects it
to a host server, while the Ethernet interface of the same
FPGA is used to connect to a network switch. This allows
the FPGA to be used as a local and remote accelerator. For
partitioning, grid-style partitioning is used to obtain archi-
tecturally homogenous regions. Since the considered FPGAs
in this work assumes DPR support, the dynamic regions are
reconfigured via the ICAP interface with user designs. Fur-
thermore, the configuration manager implements the desired
FPGA accelerators. However, the architecture of FPGA com-
prises heterogeneous resources. Therefore, it is impossible
to partition the fabric’s entirety into a set of homogenous
regions [31].

Fig. 1 shows an overview of the virtualization frame-
work. The key components of the framework are the network
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FIGURE 1. FPGA virtualization framework overview.

manager, the clock manager, the configuration manager, and
the VFPGA manager. The following sections elaborate on
each manager with respect to their operations and dependen-
cies with other components.

B. CLOCK MANAGER

One of the static modules is the clock management. It is
also known as the clock manager. It is possible to have
different modules run on different clock frequencies in the
same FPGA. For example, the network manager may be oper-
ating at a clock frequency different from the configuration
manager. Such modules are then said to be operating in dif-
ferent clock domains. The clock manager enables the correct
frequency clock signals to be routed to both synchronous
modules. Furthermore, the clock manager can utilize PLLs
(phase-locked loops) available in the FPGA to generate the
different clock frequencies needed. Although the primary
function of a PLL is to detect and fix time violations in the
circuit, it can also be used as a clock generator to drive clock
signals at the desired frequency to one or more modules of the
same clock domain. However, an extra piece of hardware is
required when communication between two clock domains
operates at different speeds. We use asynchronous first-in-
first-out (FIFO) buffers extensively for inter-clock domain
communication. When a module transfers data in a specific
frequency to another module, it writes the signal or the data
to a buffer. The recipient module can then read from the
asynchronous buffer at its operating frequency. Using buffers
eliminates the danger of metastability — a state in which
a digital system becomes unstable and gives an uncertain
output (i.e., neither logical ‘1’ nor ‘0’) for an unbounded
time [32].

C. NETWORK MANAGER

The network manager oversees all communication external
to the FPGA. Fig. 2 illustrates how the architecture of this
module allows it to receive and send packets via Ethernet and
PClIe ports. A packet arrives at the physical receiver through
either of the two ports. It is decapsulated to extract only useful
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information, such as the payload. If the packet comes through
the Ethernet port, it is then an Ethernet packet and contains
an IP header since an Ethernet connection uses TCP/IP pro-
tocol. However, if the packet arrives via PCle port, we still
implement the TCP/IP stack in the PCle communication and
ensure that the sender has put a destination IP address into
the packet. This is the major difference in the implementation
from [33], where authors used direct memory access (DMA),
which is typical in a PCle-attached FPGA infrastructure.
However, by eliminating DMA and instead using TCP/IP
protocol for data packets in PCle, we reduce the complexity
of establishing communication between the host and FPGA.
In addition, since Ethernet packets also use TCP/IP stack,
a single implementation for sending and receiving data from
both the ports in the network manager is applied.

As a packet is received and decapsulated, the payload
is sent to a data router, whereas the destination IP address
from the IP header is sent to the IP address table for cross-
checking. The IP address table contains 1-to-1 mapping of
each accelerator’s IP address and the VFPGA manager’s
physical address. This module manages and monitors all
accelerators in the FPGA. If a match is found corresponding
to one of the accelerators, the payload is intended for that
accelerator. Therefore, the router forwards the payload, ensur-
ing it reaches the right destination via the vVFPGA manager.
The vFPGA manager is discussed in detail in section G.

On the other hand, if the payload contains bit files and
is intended for the configuration manager, the destination IP
address will be the configuration manager. This entails that
the configuration manager module in the FPGA is assigned
a unique IP address for itself so that packets can be sent
accordingly. Once the router gets a match of the IP address
from the address table, it routes the payload to the configura-
tion manager. Any routing from the data router to either the
vFPGA manager or the configuration manager, the payload
data is initially written into dedicated asynchronous FIFO
buffers. The recipient module constantly polls its dedicated
read buffer to read data from it, if any. Using asynchronous
buffers allows for error-free inter-clock domain communica-
tion. The router drops the packet if no match is found in the
address table for a packet’s destination address. Lastly, any
new communication session is recorded in the ““session mem-
ory” so that only one user can establish a secure connection
with an accelerator at any given time. This specifies the way
data is received into an FPGA.

As for data transmission from the FPGA to the external net-
work, data from other modules are written into asynchronous
buffers. The network manager reads from these buffers and
encapsulates the payload with necessary header information
into a packet for communicating via TCP/IP protocol. For
example, if the payload contains accelerator results generated
in the FPGA, then the destination address in the IP header of
the packet is the one from the user who established the session
with the accelerator. Once the packet is ready, the physical
transmitter sends it out via the appropriate port.
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D. CONFIGURATION MANAGER

The configuration manager is a static hardware module
mainly responsible for creating the user’s accelerator design
in the FPGA. Accelerator designs come in the form of bit-
streams or bit files. Application hardware logic is sent as
partial bitstreams over the network from a host machine
using a toolchain provided by the FPGA vendor. The network
manager receives bitstreams within the payload content of
Ethernet packets, decapsulates the packets, extracts the bit-
streams, and writes to buffers from which the configuration
manager can read the bit files. Moreover, the configuration
manager uses volatile memory to hold bitstreams and a ded-
icated controller submodule to communicate with the ICAP
interface [9], [33]. DPR uses the ICAP controller to download
bitstream data into dynamic regions (PRRs) and reconfigures
the regions to create the accelerator hardware specified in
the partial bitstreams. Once an accelerator is configured, the
configuration manager informs the vVFPGA manager of the
new accelerator’s physical location. The network manager
receives an acknowledgment that an accelerator has been
successfully created. Next, the network manager assigns the
accelerator a unique IP address, and the address table stores
this information. Users can then establish TCP sessions with
their respective accelerators to send and receive data.

E. ADAPTER INTERFACE

Accelerators in the FPGA require a static interface to
exchange data with static logic modules such as the network
manager. Irrespective of the design of an accelerator, the
approach in which it will communicate with the network man-
ager does not change. Hence, the communication interface
must be static. According to [9], the interface is called a
wrapper. However, in this work, we refer to it as the adapter
interface or an adapter. As shown in Fig. 3, an adapter consists
of buffer memories, serializer, deserializer, bit packer, and bit
unpacker submodules. It has a read and a write buffers where
the accelerator can read-from and write-to, respectively. Data
are moved in chunks of bits called (data) words. Submodules
inside the adapter are used to change the size of data word
between modules. This is mainly to resolve any mismatch in
word length when static logic modules send data in specific
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FIGURE 3. Architecture overview of adapter interface.

sized words and user accelerators read words in a different
size, and vice-versa. Moreover, when the user’s accelerator
design code is converted into partial bitstreams, the adapter
module is automatically generated, converted into a partial
bitstream, and included within the same files. This way, the
user is not required to write the logic for the adapter. However,
the user must preset specific parameters of the adapter inter-
face, such as the number of input and output channels and the
width (i.e., the number of bits or size of the word allowed) of
each channel.

F. VIRTUAL FPGA (vFPGA)

An accelerator may require more than one homogenous
dynamic region, especially if it requires resources that cannot
be fulfilled by a single region alone. However, the num-
ber of resources required for a hardware design cannot be
determined ahead of bitstream reconfiguration. This means
that once the configuration manager configures the acceler-
ator in the FPGA fabric, we can only identify the number
of resources utilized. Therefore, we only configure a set
of predefined accelerators whose required number of CLBs
are already known and partial bitstreams generated. This is
typically done by cloud service providers that offer AaaS.
When the user selects the desired accelerator from a list of
options, corresponding partial bitstreams for that accelerator
are transmitted to an available FPGA in the network for
reconfiguration. A predefined schematic of each accelerator
is stored as a netlist in a database. Upon selecting an acceler-
ator, the corresponding netlist and the adapter interface logic
are converted into partial bitstreams.

An accelerator requires an adapter interface to commu-
nicate with the static logic modules and may require one
or more PRRs for configuration. We encapsulate the accel-
erator and its adapter module inside a single entity called
virtual FPGA (VFPGA). From the user’s perspective, they
get the illusion that their accelerator is operated by a single,
dedicated, physical FPGA. However, that is not the case
physically. Each accelerator runs by one vVFPGA only, and
there is secure logical isolation between different vVFPGAs.
Fig. 4 shows three vFPGAs configured in a physical FPGA
where each VFPGA contains an accelerator hardware and an
adapter interface. A vFPGA can be configured across one or
more PRRs and across more than a single physical FPGA.
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FIGURE 4. Encapsulation of accelerator & adapter modules into vFPGA.

This idea of encapsulating an accelerator and an adapter
module to create a VFPGA is different from the work done in
[9], in which a VFPGA represents a PRR and might be either
occupied with an accelerator hardware or empty.

G. VFPGA MANAGER

Each FPGA can contain one or more VFPGAs depending
on the number of resources the FPGA can provide and the
number of resources each VFPGA demands. Therefore, this
requires a VFPGA manager, as shown in Fig. 5. The vVFPGA
manager is a module that is responsible for monitoring
and maintaining VFPGAs. Each vFPGA, upon instantiation,
is given a unique ID by the vFPGA manager for internal
addressing. A VFPGA can be in one of the two states — idle
or busy. It is idle if its accelerator is not currently process-
ing a task and is otherwise busy. The manager constantly
monitors the status of each VFPGA instance, whether idle or
busy. Moreover, since each accelerator must be addressable to
enable communication with the user, assigning and retract-
ing IP addresses concerning VFPGAs are performed by the
vFPGA manager. This is done by maintaining two tables; one
table contains IP address-to-vFPGA ID mappings, and the
other contains vVFPGA ID-to-physical address of the vVFPGA.
Whenever the network manager routes data to this manager,
it looks up the destination IP address in the first table to find
the corresponding vVFPGA ID. Then, it looks up the second
table to find the physical address of the VFPGA. Therefore,
the vVFPGA manager forwards the application data from the
network manager to the intended accelerator. This is the core
element of the implemented virtualization framework in this
work, where physical address spaces are mapped to virtual
address spaces.

Similarly, when an accelerator attempts to send back data
to its user, the manager looks for the physical address of the
network manager and writes the data into appropriate buffers
for the network manager to read. In addition, all communica-
tion between the accelerator inside VFPGA and the vFPGA
manager happens via the adapter interface that was mentioned
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FIGURE 5. Architecture overview of the vFPGA manager.

earlier. The read and write buffers in the adapter allow the
VFPGA to read from and write to, respectively. For a vFPGA
to read user input data, the manager writes the data into the
read buffer of the adapter. For a vFPGA to send result data,
it writes into the write buffer of the adapter so that the vVFPGA
manager can read and route the data further to the network
manager.

H. FPGA HYPERVISOR

In Fig. 1, the vVFPGA manager and the configuration manager
are collectively labeled as “hypervisor™. Its role is discussed
in the literature as the software that enables virtualization.
The hypervisor has frontend and backend functions. The key
difference in our framework compared to other frameworks
in the literature is that the hypervisor is split into two sep-
arate modules — the VFPGA manager and the configuration
manager. The hypervisor backend includes the configuration
manager and parts of the VFPGA manager. Thus, the back-
end functions include initializing and partitioning the FPGA,
configuring vVFPGAs from partial bitstreams, and routing user
data to and from vVFPGAs.

On the other hand, frontend functions include processing
requests for new accelerator creation, getting the status of
created VFPGA:, initiating data transfers to and from user’s
accelerators, and requesting termination of accelerators. The
vFPGA manager provides all these functions in the frame-
work. Moreover, there is a distinction in the implementation
between the hypervisor frontend and the backend. The back-
end is usually coded in Verilog and resides on the FPGA
fabric, whereas the frontend resides in a host machine with
network capabilities to reach the FPGA. Both front and
back ends are connected via a TCP stream. Thus, when
a user from the host machine sends any command to the
hypervisor frontend, it triggers the corresponding function
in the backend and processes the user requested function.
In this approach, FPGA hypervisors establish a practical and
error-free communication between FPGAs and other cloud
entities such as host machines and are essential to the virtu-
alization framework.

I. FPGA RESOURCE POOL
Further to the hypervisor capabilities, this section discusses
the ability to pool FPGA resources in the cloud infrastructure.
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The result of virtualization is to obtain a pool of abstract
resources that can be quickly and efficiently provisioned
to tasks. To achieve this, one of the backend functions of
the FPGA hypervisor is to track the number of occupied
and unoccupied regions at any given time. With this, we
can obtain the total number of unutilized regions across all
FPGAs in the data center at any given time. Therefore, we can
generate a pool of available FPGA regions using the hyper-
visor of each FPGA that monitors and tracks the number of
regions. Upon provisioning any FPGA region for configuring
an accelerator, the hypervisor of that FPGA will notify a
centralized control module, i.e., a unified manager, that the
total number of resources in the pool has been reduced by one.
Thus, the resource pool is constantly updated owing to the
communication between FPGA hypervisors and the control
module.

IV. SCHEDULING PROBLEM MODEL
As a result of implementing the proposed virtualization

framework, we obtained a pool of FPGA resources from
which resources can be provisioned to cloud tasks. In this
context, a cloud task refers to a user request for configur-
ing an accelerator, whereas a resource refers to a PRR in
an FPGA chip that resulted from the partitioning process.
The FPGA resource allocation must effectively manage the
cloud resources and execute the consumers’ tasks. Hence,
this section presents an integer linear programming (ILP)
optimization model for the FPGA to minimize the competi-
tion time of tasks within the pool of FPGA resources. The
work assumes a cloud datacenter infrastructure with com-
puting servers, limited FPGA-based accelerators, and net-
working resources that interconnect compute-to-compute and
compute-to-FPGA resources. Moreover, the model assumes
the following in the cloud computing environment:

- FPGA fabrics are homogeneous with regard to their
architecture, and therefore, the model considers that
all FPGA devices within the cloud infrastructure are
from the same vendor family. The validity of the
assumption holds since the architecture of the con-
figurable logic block (CLB) in the fabric of an
FPGA differs from vendor to vendor. Cloud providers
such as Amazon Web Services (AWS) and Microsoft
Azure provide their consumers with accelerator ser-
vices by using only one FPGA family within their
datacenters [34], [35], [36], [37].

- Resource blocks or PRRs obtained within a single
FPGA, because of the partitioning process, are all
identical.

- The number of regions needed for each accelerator is
a priori knowledge. Every accelerator request from the
users’ tasks has a specific number of required regions.

- The execution time of each acceleration task is a known
parameter measured in time units. This is true in an
AaaS-enabled cloud infrastructure.

- The deadline of each task is a known parameter mea-
sured in time units. Assigning a deadline is crucial in the
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model to prioritize tasks. For instance, tasks with shorter
deadlines have higher priority.

- Tasks are independent. This assumption applies only
in scenarios where acceleration tasks are considered
independent of each other and an acceleration task’s
dependencies, which may exist within its subtask level,
are ignored [13], [38].

- No preemption of tasks. Once resource blocks are allo-
cated to a task, the task execution must finish without
interruption.

A. OPTIMIZATION MODEL

As discussed in section III, a pool of FPGA resource blocks
results from the partitioning process. Every FPGA is parti-
tioned as soon as an FPGA instance is initialized. Moreover,
a task is a request to create an accelerator using the FPGA
resource pool when a consumer selects an acceleration
service. This section formulates the minimization of the
completion time of all tasks as they are allocated to a pool
of FPGA resources. The objective function Z, presented in
Equation 1 of Model 1, minimizes the makespan (the max
completion time). It is a min-max function where it first finds
the maximum end time of tasks. The end time of task k is
calculated by adding the start time (t,f ) and execution time
(t,‘{E ). The subtraction by 1 in the equation accounts for the fact
that the simulation begins from t = 1, giving the correct end
time value. Moreover, since the last task to finish execution
will always yield the highest end time value, the objective
function thus considers the end time of the last task as the
maximum. The function minimizes the maximum, and as a
result, it minimizes the makespan. The objective function is
formulated as shown in Model 1.

_ S E _ 1
z mmkgﬁ)fx(tk +t;-1) ey
S.t.
YK i xpre <1, Vb €{1,..,B},Vt € {1,..., t™%} @
3
th+tE—1<t?, Vvke{l,., K} ®)
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25:1 xb,k,t = Ck' Vk € {1, ...,K},t = t,ﬁ ( )
Xpkt' = Xpkt' 3)
vb €{l,..,B}, vk €{1,.., K}t = t;,
"=t +tE -1
rYE L x 6
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t
k
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Xpkt' — thl (sign(xppe = Xppera + - D < 1, @)
vb e {1,...,B}, vke{l, .., K}Lt'=1
xb’k’t € {O, 1}, Vb € {1, ...,B}, (8)
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MODEL 1. ILP optimization model.
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Constraint (2) ensures that a block can be part of only one
task at a time. That is, a resource block may be allocated to at
most one task at any point in time. Two or more tasks cannot
share the same resource block simultaneously.

Constraint (3) ensures that any task’s execution must be
completed before its deadline. This is performed by checking
whether a task’s start time and execution time are less than or
equal to its deadline.

Constraint (4) ensures a task must have all the required
blocks ready at its start time. Therefore, it ensures that the
number of blocks allocated at a task’s start time equals the
number of blocks required.

Constraint (5) ensures that a task must have the same block
allocation at its start and end times. Blocks allocated at the
start time should remain allocated until the end time of a task.

Constraint (6) ensures that a task can be allocated to a
specific number of blocks for a fixed number of time units.
While constraint (4) checks for the correct number of blocks
allocated at the start time, constraint (6) ensures that the same
number of blocks remain consistently allocated from the start
to the end time of a task.

Constraint (7) ensures that blocks will continue executing
the task until it is completed without any interruption. Hence,
this Constraint safeguards the no-preemption assumption.

Constraint (8) is a binary variable that indicates whether a
task is allocated to a block at a point in time.

Constraint (9) limits the start time of a task to be between
1 and the maximum deadline of tasks #7%*,

Table 1 summarizes the notations and their respective
descriptions.

TABLE 1. Summary of notations.

Notation Description
b block resource in the FPGA pool. A single FPGA
b resource can be referred as a resource block,

partition, slot, partially reconfiguration region
(PRR), or dynamic region

B total number of blocks in the FPGA pool
k k' task
K

t

total number of tasks
t" time unit

S start time of task k

uE execution time of task k

1P deadline of task k

fmax maximum deadline of tasks

0, if block b is not allocated to a task, £ at time unit ¢
1, if block b is allocated to a task, k at time unit ¢
Ck number of required blocks by task k

B. MODEL VALIDATION

The proposed model is validated for small-scale problem
instances using IBM ILOG CPLEX Optimization engine
that implements the branch-and-cut exact solution method.
CPLEX ran on a Windows machine with 16 GB DDR4
DRAM at 3000 MHz and a 6-core processor at 3.6 GHz. Four
experiments with an increasing number of tasks and resources
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TABLE 2. Experiment 1 Task specifications.

Task Exe?ution Bloc.ks Deadline 'Blocks
ID Time Required in Pool
1 2 2 2 2
2 1 1 4 2
3 1 1 5 2
TABLE 3. Experiment 2 Task specifications.
Task Execution Blocks Deadline Blocks
ID Time Required in Pool
1 2 2 2 5
2 1 1 4 5
3 1 1 5 5
4 3 4 11 5
5 3 3 6 5
6 3 4 8 5
TABLE 4. Experiment 3 Task specifications.
Task | Execution Blocks Deadline Blocks in
ID Time Required Pool
1 2 2 3 5
2 4 1 6 5
3 1 3 8 5
4 1 2 8 5
5 2 5 11 5
6 5 1 12 5
7 5 2 13 5
8 2 3 14 5
9 2 4 18 5
10 4 1 18 5
11 3 2 20 5
12 3 2 20 5
13 4 3 24 5
14 3 3 27 5
15 1 1 30 5

TABLE 5. Experiments with varying tasks and resources.

Experiment Tasks Resource Blocks
1 3 2
2 6 5
3 15 5
4 1000 100

are conducted, and an exact solution for each problem is
sought. Tables 2, 3, and 4 show the different number of tasks
and resources for the first three experiments. A task is defined
by execution time, required resource blocks, and deadline.
The resource blocks refer to PRRs that are obtained because
of logically partitioning an FPGA. A summary of all four
experiments can be found in Table 5.
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FIGURE 7. Experiment 2 final solution using exact method.
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FIGURE 8. Experiment 3 final solution using exact method.

350000 320000

300000

250000

200000

150000

100000

50000 1 860
0

Elapsed Time (ms)

1 2 3

Test Case

FIGURE 9. Elapsed time for scheduling using exact method.

The created model was validated with the exact solution
method for the first three experiments and achieved the results
presented in Fig. 6, Fig. 7, and Fig. 8, respectively. The figures
show the discreet time units ¢, the FPGA blocks as b, and the
allocated task & into a block at a specific time slot.

Fig. 9 illustrates the elapsed time (y-axis) on CPLEX for
finding the exact solution in each experiment (x-axis). The
simulation times of these experiments are ~1 ms, 860 ms,
and 320,000 ms, and the makespans are 3, 11, and 19, respec-
tively. Although the reported solution for the third experiment
was after running CPLEX for around 5 minutes, we allowed
CPLEX to run for over 20 hours to find the optimal solu-
tion. The entire search space could not be exhausted, and an
improved solution was not found. For the fourth experiment,
CPLEX could not handle the dataset size.

In the exact solution approach used by CPLEX, the number
of permutations grows exponentially with an increase in the
number of tasks and resources, as shown in Fig. 9. Exploring
the entire search space is infeasible due to the exponen-
tial growth in time complexity. The presented scheduling
problem is NP-hard and requires a heuristic-based approach
that ensures a near-optimal solution. The following section
introduces the proposed heuristic approach.
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V. PROPOSED HEURISTIC SOLUTION
Given the modeled scheduling problem in section IV, this
section provides a detailed description of the implemented
heuristic algorithm. The inspiration for the algorithm comes
from the process of annealing. In this technique, the analogy
of a material is heated to a melting point and then cooled in a
controlled environment to increase or decrease the size of its
crystals. Simulations of such behavior are used to solve opti-
mization problems. The initial temperature and the cooling
rate are essential parameters in simulated annealing (SA).
SA accepts worse neighboring states based on an accep-
tance probability function. This function makes the SA
a metaheuristic and enables it to overcome the local
optima problem in heuristic-based approaches. Moreover,
the acceptance probability function considers the following
variables — current state energy, neighboring state energy,
and temperature. If the neighboring state energy appears to
be worse than the current state energy, then given the cur-
rent temperature, either accept or decline the move. Usually,
higher temperature values produce greater probabilities of
accepting a worse neighbor. As the temperature reaches zero,
the SA declines to accept worse neighbors and becomes
more inclined to move with better neighbors. On the one
hand, this indicates that the cooling rate controls how fast the
temperature reaches zero and stops accepting worse states.
On the other hand, the initial temperature is responsible for
determining how much worse off the energy of a neighbor-
ing state can be before the SA declines the move. Lastly,
a very high initial temperature with a very low cooling rate
would explore more of the search space, almost guaranteeing
the optimal solution but at the cost of execution time. The
system’s behavior at every fixed temperature in the cooling
profile can be investigated using the Metropolis algorithm —
a significant component of the SA.

A. SA IMPLEMENTATION

This section discusses our implementation of the customized
SA algorithm fused with the Metropolis algorithm to min-
imize the makespan specified in section IV as depicted by
the pseudocode shown in Algorithm 1. The initial solution
sorts out the list of tasks in the increasing order of their
deadlines. The order of the tasks is the current state in the SA,
and resources are immediately allocated to the tasks in their
respective order. Makespan of these tasks is the energy of the
current state. In the next iteration of the Metropolis algorithm,
we randomly select two tasks and swap their positions in
the list. This step is known as perturbation. Perturbation is
defined as a modification to the state of a system, and this
modification occurs from a source external to the system.
In our algorithm, the perturbation is a random swap of two
tasks in the dataset that is modifying the current state. This
changes the original order of the tasks and thus, creates a
new order or a neighboring state. Once all tasks have been
scheduled in the new order, the makespan becomes the energy
of the neighboring state. Based on the acceptance probability
function and the initial temperature, the perturbation is either
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accepted or rejected, and accordingly, the neighbor becomes
the current state and the starting point of the next perturba-
tion. This process continues iteratively, and the temperature
reduces in each iteration based on the predefined cooling
rate. The process terminates if the SA does not find a better
neighbor for a certain number of iterations or the temper-
ature reaches close to zero. Reaching the predefined itera-
tion threshold is known as the convergence of the solution.
We have chosen 16 to be the iteration threshold based on
several parameter-tuning experiments.

Algorithm 1 Implementation of Simulated Annealing

Input: Task list that consists of task execution time, required
blocks and deadline;
Initial configuration: Task list is sorted using earliest
deadline first X;,,;
Determine initial temperature T(0);
Determine freezing temperature Tg;
while (T(i) > Tr and not converged) do
repeat
Perturb (X;01,) by swapping two tasks randomly;
Find neighbor solution X;,¢,;
Compute AZ = cost (Xpnow — Xsoin);
if (AZ <0)then
Update X;,,; /*accept perturbation™®/
else if (random (0, 1) < e=2”"") then
Update Xoin;
else
Reject Xyen;
endif
endif
until thermal equilibrium
Save best-so-far Xz,;
Check convergence
TG + 1) = oT(@); /* cooling schedule */
endwhile

B. TASK LIST GENERATION
In section 1V, the model was validated using a very small
number of tasks and resources, given the limitation of the
exact solution method in CPLEX. Besides the gain in per-
formance in finding a solution in comparison with an exact
method, heuristics solutions must also be scalable to handle
large problem sizes. To test the scalability of the proposed
algorithm, we generated a long list of tasks with an adequate
pool of resources such that there exists a feasible solution.
Recall that each task needs to have a specific number of
required FPGA resource blocks or PRRs, execution time, and
deadline. We use Poisson distribution to randomly retrieve a
value for both the number of blocks and the execution time.
The Poisson distribution is a discrete random distribution that
gives the probability of several events occurring over a fixed
time interval. It assumes that events occur at a constant rate
and each event occurs independently of the time since the
last event. In contrast to a continuous normal distribution, the
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FIGURE 10. Various poisson distributions used in task generation.

Poisson distribution is based on discrete values and is more
applicable when dealing with integer counts. It has numerous
practical applications, such as a random number of tasks
arriving at a data center and the random delay between every
two tasks [39]. Furthermore, the main characteristic of this
distribution is the mean indicated by lambda (1) in Fig. 10.
A different value of mean signifies a different shape of the
distribution, and as we choose a higher mean, the distribution
becomes closer to a normal distribution. Real-world scenarios
tend to follow a Poisson distribution [39]. Therefore, we use
various Poisson distributions to determine two random vari-
ables during task generation: the required number of resource
blocks and execution time in a discrete-time unit. For the
number of resource blocks, the mean distribution is kept at
A =5, and for execution time units, the mean is kept at 1 =
10. To comprehend and apply the graphs in Fig. 10, let us
suppose that we are generating a new list of tasks to specify
the required resources for each task. The probability that a
task may require exactly 5 blocks is 0.175. On the other hand,
the probability that the required execution time would be a
value between 1 and 20 is ~1. Note that the first distribution
with a very low mean (A = 1) as no use as such but we
included to illustrate how the selection of mean can produce
a different distribution.

From this, the initial tendency is to think in the lines of
a 3D Boolean array, where the dimensions are task number,
block number, and time unit, and any cell in the array is either
1 to indicate occupied or 0 for empty. However, other possible
representations still exist, and we aim to represent the solution
in a way that incurs the minimum amount of constraint vio-
lations possible. Constraint violations may occur at the time
of swapping two tasks randomly in our algorithm and when
scheduling them to resources.

We propose a 1D representation of the 3D array mentioned
earlier such that the array cells will hold the unique ID of
a task based on whether the task is allocated to block b at
time 7. The index value i of the array cell in which this task
ID exists gives information on the block number and the
time unit. Fig. 11 shows a conceptual diagram of the solution
representation (X;,,), where b is the block number, ¢ is the
time unit, and every cell in the array holds the ID of the task
allocated to block b at time ¢. The array index i starts at 0,
and the total number of blocks is denoted by B, whereas total
time units are denoted by #%*.
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block(b) 1 2 1 2 1 2 1 2 1 2 B
index(i) 0 1 2 3 4 5 6 7 8 9 X B
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time (t) 1 2 3 4 5 1

FIGURE 11. Solution representation using 1D array.

Xsoln undergoes several perturbations during the anneal-
ing process until it reaches an equilibrium where the final
task allocation represents the best solution. The initial config-
uration is obtained by allocating the tasks using the earliest
deadline first algorithm, where the task with the earliest
deadline is scheduled first, followed by the next task until all
tasks have been allocated.

The 1D array representation is by far the best alternative
because the only Constraint that must be checked during the
perturbations is the deadline constraint. This contrasts with
a 3D Boolean array which was the initial alternative and too
many constraints must be validated to determine the feasibil-
ity of the solution. We also devised a linked list representation
where each time node is connected to the next time node
in a singly linked list. Each time node is also connected to
another singly linked list which consists of resource blocks
or resource nodes.

C. METROPOLIS STEP AND FEASIBILITY

There are three main components to the Metropolis step,
namely, the perturbation, the acceptance criteria, and the ther-
mal equilibrium criteria. We start by perturbing the existing
solution Xz, by randomly selecting two tasks in the task
list and swapping the order in which they appear on the task
list. After that, we attempt to schedule the task list by taking
them in the order of task deadline yielding X,,.,,. While doing
so, only the deadline constraint, i.e., Constraint (4), needs to
be rechecked to ensure that deadlines are not violated. Next,
the acceptance criterion outlined in Algorithm 1 checks the
change in the objective function, AZ = Z(Xpew) — Z(Xsoin)-
If the change due to perturbation reduces the objective func-
tion, the perturbation is accepted and Xj,;, becomes X,,,.
In other words, if the makespan of the X, schedule is
smaller than that of the X, schedule, which is the best-
so-far, X, is updated to Xpew. On the other hand, if the
perturbation causes an increase in the objective function,
it will only be accepted with a probability of e=2%/T@ The
acceptance criterion applies only to perturbations yielding a
feasible Xj,;,. Furthermore, the inner loop in the algorithm
deals with thermal equilibrium. As more neighboring solu-
tions are found for the same temperature value, it is said that
the algorithm is reaching thermal equilibrium. Hence, ther-
mal equilibrium is nothing more than a predefined number of
iterations for the inner loop. We set the thermal equilibrium
criterion to be one-third of the dataset size.

D. COOLING SCHEDULE

The initial temperature 7(0) yields a high acceptance proba-
bility of around 0.8 for moving to worse neighboring states.
On the other hand, the freezing temperature yields a very

VOLUME 10, 2022



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

IEEE Access

small acceptance probability of around 272, rendering worse
neighboring moves impossible, and hence only better neigh-
boring states are allowed. The cooling schedule used in our
work is T(i + 1) = «T(i), where « = 0.9. The symbol
o denotes the cooling rate of the temperature for the next
iteration.

E. CONVERGENCE

While searching the space for a task order that potentially
has a lower makespan, the SA algorithm saves the best-
so-far solution that yields the smallest Z. This ensures that
the returned solution is the best obtained regardless of the
terminating temperature of the SA algorithm. Convergence is
then achieved when the best-so-far solution does not change
for several iterations. Once 16 iterations have passed with no
change to the solution, the process stops and considers best-
so-far as the final solution.

F. HEURISTIC COMPLEXITY ANALYSIS

The initial configuration of the algorithm is obtained by
sorting the tasks based on the shortest deadline first. This has
a computational cost Klog(K), where K is the total number
of tasks. Once tasks are sorted, we obtain the initial solution
considering all but Constraint (3) and allocating each task to
a specific number of FPGA blocks at a specific time unit.
Thus, the complexity of the allocation process is given by
KB1™** where B is the total number of blocks in the resource
pool, and ™ is the maximum task deadline. Furthermore,
in Algorithm 1, it can be observed that the outer while loop
depends on two conditions, the current temperature value
and whether convergence is achieved. Our solution defines
convergence to be achieved when the best-so-far solution
does not change for 16 outer loop iterations. The iteration
count is defined through parameter tuning experiments.

This entails that the complexity can be denoted by M as
the number of iterations to occur until convergence is found.
Next, the inner loop repeats the block until thermal equilib-
rium is achieved. MK/3 gives the computational cost involved
because the inner loop runs as many times as one-third of
the task size. Then, within this loop, several steps are carried
out of which one is the feasibility check on the perturbed
Xsoin- Only the deadline constraint is rechecked to ensure a
feasible perturbed Xsoln. The computational cost, therefore,
as evident from Constraint (3) in Model 1, is some constant
denoted by C. Since we allocate once at the beginning after
task sort and then reallocate in the inner loop for each pertur-
bation, the algorithm complexity can be written as shown in
Equation 10. Equation 11 shows a further simplified version
of the previous equation. It can be noted that increasing the
total number of tasks (K) will have a greater impact on the
performance of the algorithm than increasing total resource
blocks (B) or maximum deadline (#™%).

MK
K log (K) + KBt"™ + 5 % KBtnax x C (10)

MKC
K log (K) + KBI"(1 + =) (11)

VOLUME 10, 2022

TABLE 6. Task specifications of datasets for parameter tuning.

Size Number of Exl\e/lcilatlilon Mean Number
Tasks . of Blocks
Time
Small 10 5 10
Medium 50 10 50
Large 200 15 100

G. PARAMETER TUNING

Algorithmic parameters can affect the simulation time heav-
ily. In the proposed SA, the simulation terminates when
the solution does not change for a set number of iterations.
Therefore, the iteration threshold becomes the algorithm’s
termination condition, and we must tune this parameter to
reduce the simulation time as much as possible. At the same
time, minimizing the simulation time must not compromise
the quality of the solution too much.

To conduct the parameter tuning experiments, we consider
3 datasets of different sizes in terms of the number of tasks,
the execution time for each task, and the number of blocks
each task requires. The problems were inputted through the
proposed algorithm, varying the maximum number of itera-
tions allowed from 2 to 128 as 2, 4, 8, 16, 32, 64, 128. The
solution behavior in terms of improvement in the objective
function and the degradation in the incurred simulation time
trying to converge. Table 6 shows the specifications of dif-
ferent dataset sizes. Note that through all parameter tuning
experiments, we keep the resource pool constant with 1000
FPGA blocks, ensuring sufficient resources for all tasks in
each dataset.

Fig. 12 and Fig. 13 show the objective value of the pro-
posed schedule and the simulation duration respectively for
the small dataset size against number of iterations. It is appar-
ent from Fig. 12 that the algorithm was able to obtain the best
solution of 6-time units within the first 2 iterations. Clearly,
increasing the number of iterations does not help reduce the
objective any further as it seems that 6-time units is the mini-
mum makespan for the tasks. Furthermore, Fig. 13 shows that
increasing the number of iterations degrades performance,
since the elapsed time of the simulation for a greater number
of iterations grows larger. Therefore, we conclude that for a
small problem, 2 iterations are sufficient to obtain a subopti-
mal schedule. Running the algorithm for 2 iterations on the
small dataset takes an average of 1 millisecond.

Fig, 14 and Fig. 15 show the objective of the proposed
schedule and the time for which the simulation elapsed,
respectively, for the medium dataset plotted against the num-
ber of iterations. Fig. 14 shows that as the number of iter-
ations increases, a better scheduling solution with a shorter
makespan is produced. This is because we allow the algorithm
to run for a larger number of iterations before termination,
increasing the possibility of finding a better schedule. More-
over, Fig. 15 further confirms our previous observation that
an increase in the number of iterations increases simula-
tion duration. We conclude from the two experiments that a
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FIGURE 12. Objective vs. the number of iterations for a small dataset.
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FIGURE 13. Elapsed time vs. the number of iterations for a small dataset.

reasonable schedule is obtained with an objective of around
31-time units using 16 iterations. The choice of 16 iterations
is because it provides a near-optimal solution while avoid-
ing longer simulations incurred by higher iteration counts.
Hence, 16 iterations on the medium dataset would take an
average of 690 milliseconds.

Fig. 16 and Fig. 17 show the objective of the proposed
schedule and the simulation duration respectively for the
large dataset against the number of iterations. Similar to the
medium dataset experiment, Fig. 16 shows that as the number
of iterations increase, we obtain a better schedule with a
shorter makespan. Hence, we conclude from the experiment
that we achieve a reasonable schedule with a makespan of
around 152-time units using 16 iterations. The 16 itera-
tions seem to be adequate for finding a suboptimal solution.
On the large dataset, the simulation takes on average 24000
milliseconds (24 seconds).

H. ADAPTIVE SIMULATED ANNEALING

The previous sections discussed the various aspects of the
proposed SA algorithm with static scheduling. With static
scheduling, a batch of tasks arrive at the data center, and the
SA schedules them to the available resources. However, cloud
computing is a dynamic environment. Hence, the SA must be
adaptive to support newer tasks dynamically arriving at the
task queue and obtain a schedule including both previously
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FIGURE 15. Elapsed time vs. the number of iterations for a medium
dataset.

unscheduled and newly queued tasks. Hence, Algorithm 2
shows the adaptive SA that differs from the SA in steps A-1 to
A-6. First, the algorithm deals with the initial batch of tasks in
the task list and evaluates as per the proposed model’s objec-
tive function (see Equation 1). After convergence is achieved,
it saves the best-so-far schedule and calls a delay function
until a new batch of tasks arrives. The delay function is based
on arandom value from a Poisson distribution. The task list is
updated with newly arrived tasks in ascending order of task
deadlines. Then, it starts over the process of finding a new
schedule with a minimum makespan that considers tasks from
both the previous batch and the new batch. However, previous
tasks whose execution had already started are excluded from
the rescheduling process (i.e., no preemption of tasks) and
only the tasks that did not start being executed are passed
forth. In this way, the adaptive SA enables dynamic schedul-
ing of tasks which is commonly used in cloud environments.

VI. EXPERIMENTATION AND RESULTS

This section presents the conducted experiments and the
achieved results to validate the proposed virtualization frame-
work and heuristic algorithm. Multiple experiments were
conducted to evaluate the exact solution and the proposed
heuristic solution. The quality and performance of the solu-
tions yielded by both methods are compared. We further
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compare the performance of the proposed heuristic solution
with two classical allocation algorithms — First Come First
Serve (FCFS) and Shortest Deadline First (SDF). Those algo-
rithms are commonly used in cloud data centers.

A. SIMULATION ENVIRONMENT FOR SA SCHEDULER

To experiment with the proposed heuristic method, we use
the same physical environment as the one used to validate
the exact method, i.e., a Windows machine equipped with
16 GB DDR4 DRAM at 3000 MHz and a 6-core proces-
sor at 3.6 GHz. Moreover, the SA is implemented using
Java, whereas the exact method is implemented using the
Optimization Programming Language (OPL) and the CPLEX
optimization engine. The implementation of the SA algorithm
is a standalone module integrated with the CloudSim toolkit
and validated in the next section B. The results show that the
proposed heuristic algorithm outperforms in comparison to
two known techniques: first come, first served (FCFS) and
shortest deadline first (SDF).

B. VALIDATION OF THE SA SCHEDULER

The three experiments that were used to validate the
exact solution method were applied to the SA algorithm.
Table 2, 3, and 4 provide task specifications of the first three
experiments. As discussed in section V, the SA first finds
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Algorithm 2 Implementation of Adaptive SA
Input: Task list that consists of task execution time, required
blocks and deadline;
Initial configuration: Task list is sorted using earliest
deadline first X,p,;
Determine initial temperature T(0);
Determine freezing temperature Tg;
A-1: Current schedule is empty;
A-2: repeat
while (T(i) > Tr and not converged) do
repeat
Perturb (X;01n) by swapping two tasks randomly;
Find neighbor solution X;¢,,;
Compute AZ = cost (Xpew — Xsoin);
if (AZ <0)then
Update X,,; /*accept perturbation™®/
else if (random(O, 1)< e‘AZ(i)) then
Update X0
else
Reject X
endif
until thermal equilibrium
Save best-so-far X,;
Check convergence;
TG + 1) = oT(@); /* cooling schedule */
Endwhile
A-3: Current schedule = best-so-far X,,;
A-4: Delay (based on Poisson distribution);
A-5: Update task list with new set of tasks;
A-6: until (true)

an initial solution that might be infeasible, and then it itera-
tively converges to suboptimal feasible solutions. Fig. 18 and
Fig. 19 show the initial and the final solutions, respectively,
that were obtained in less than a millisecond of the simulation
time. In these figures, b represents a single FPGA resource
block or PRR, k is a task, and ¢ is the unit time. As the
heuristic approach finds a schedule for the tasks, resources
are allocated to each task for a specific duration of time.
Moreover, both the exact and heuristic methods perform com-
parably in terms of speed, and both produce the same schedul-
ing solution for the first experiment. Therefore, solving this
scheduling problem validates that both the methods produce
optimal solutions.

In the second experiment, the SA obtained the final solu-
tion in one millisecond that has optimality. Fig. 20 shows the
initial solution from the SA which was infeasible because
the schedule violated the deadline constraint for task 4 (see
Table 3 for task specifications). Task 4 has a deadline of
t = 11, whereas its execution in the initial solution finished
at t = 12. The SA then iterates further and yields the final
solution within a millisecond, as shown in Fig. 21. The final
solution of the proposed SA produced the same objective
value as the exact method. The SA took 1 ms, whereas
the exact method took 860 ms to obtain the same solution.
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FIGURE 18. Experiment 1 initial solution using SA.
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FIGURE 19. Experiment 1 final solution using SA.

Therefore, the second experiment indicates that the heuristic
approach outperforms the exact method and finds the optimal
solution for scheduling problems of this size.

It was observed that the exact solutions did not scale
when the number of tasks increased from 6 to 15 in the
third experiment. Therefore, an optimal solution can not be
found. Moreover, when the same experiment was conducted
using the implemented SA, an initial solution was obtained,
as shown in Fig. 22. The SA takes 19 milliseconds to reach
the final solution. The objective value, which is 19-time units,
is comparable to the exact method solution as shown in see
Fig. 23. We further increased the number of tasks to 100 and
measured the time required by the SA to obtain the final
solution. For this experiment, the exact solution was unable
to acquire any feasible solution since the search space with
1000 tasks is exponentially larger.

C. COMPARISON OF QUALITY VS. PERFORMANCE

This section conducts a set of experiments that reflect on the
proposed heuristic’s quality and performance. Table 5 shows
the number of tasks and resources in each experiment for
comparing the proposed heuristic’s performance and quality
against the exact solution. The quality of the solution is
related to the makespan objective and is measured in sec-
onds. On the other hand, the performance is the elapsed
simulation time to obtain the final solution, measured in
milliseconds (ms).

From Fig. 24, we observe that the SA heuristic achieves
identical results as the exact method for the first two exper-
iments. This validates that the algorithm can obtain optimal
solutions for small-scale problems. The next two experiments
provide a suboptimal solution, whereas the exact method fails
to carry out the simulation for experiment 4 due to the large
search space.

From Fig. 25, we observe that the exact solution method
becomes infeasible in experiment 3 as it takes over five min-
utes to find a solution. Moreover, the method was operated
in a CPLEX simulation for more than 20 hours; however,
the simulation did not finish, indicating that optimality in
the obtained solution is not guaranteed. On the other hand,
SA found a near-optimal solution in 19 ms showing an
appreciable gain in performance. Moreover, it obtained a
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FIGURE 20. Experiment 2 initial solution using SA.
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FIGURE 21. Experiment 2 final solution using SA.
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FIGURE 22. Experiment 3 initial solution using SA.
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FIGURE 23. Experiment 3 final solution using SA.

near-optimal solution for experiment 4 with 100 resources
and 1000 tasks, whereas the exact method failed to run.

In the next set of experiments, we consider the traditional
FCFS and SDF algorithms and provide our implementation to
draw comparisons between them and the proposed adaptive
SA. Table 7 shows the number of tasks and resources used
in the three experiments. The incoming tasks were sent to
the schedulers in several batches to simulate a real-world
cloud environment. Therefore, all the schedulers under the
experiment are adaptive and perform dynamic scheduling.

In FCFS, tasks in the list are scheduled in the order they
arrive at the data center. The algorithm looks for available
resources from the pool of resources and allocates them to
each task. In case there are no free resources, it searches for
resources that can execute the task at hand before its deadline.
As the new set of tasks arrives, the scheduler tries to allocate
resources for the first task in the set. It performs a linear
search until it finds the required number of available blocks
for allocation. It also tracks the estimated time for the busy
blocks after which the execution ends. Suppose the sched-
uler fails to find any available resource in the pool. In that
case, it chooses among the occupied blocks that yielded the
minimum estimated finish time of execution and queues up
the task to these blocks. The estimated finish time of the
execution for any block includes the execution time of the
currently executed task and tasks previously queued to be
executed by the block. Moreover, in contrast to the adaptive
SA, if a new set of tasks arrives at the FCFS scheduler, tasks
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FIGURE 25. Performance (elapsed time) of exact solution vs. SA.

from the old set will not be rescheduled even if the tasks
did not start executing. This is to obey the principle of the
algorithm so that tasks that come first are always served
before others.

In SDF, as a batch of tasks arrives at the data center, the first
step in the algorithm is to sort the tasks based on the deadline
in ascending order, i.e., shortest first. Then, it follows a simi-
lar approach to FCFS when scheduling each task to available
resources. However, when SDF deals with a newly arrived list
of tasks, it reschedules the tasks from the previous set, unlike
FCFS. It considers both the new and previous tasks that did
not start execution, and sorts based on deadline before finding
a schedule.

To benchmark and compare the quality of solutions
achieved by FCFS, SDF and adaptive SA, we use the datasets
specified in Table 7. All the three algorithms are implemented
and executed against every problem size. Fig. 26 shows
for each experiment (x-axis) the makespan that is achieved
(y-axis) when all the tasks are scheduled. We can observe
that adaptive SA gives the minimum makespan followed by
FCFS and lastly SDF. From the graph, it can be concluded
that the adaptive SA minimizes the makespan 17% to 28%
further compared to FCFS and 17% to 30% further compared
to SDF.

Fig. 27 illustrates the time elapsed during each algo-
rithm’s simulation to find a schedule. The x-axis represents
the problem size, while the y-axis represents the simulation
time. FCFS and SDF perform equally or slightly faster than
the adaptive SA for the first experiment. For the next two
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TABLE 7. Experiments for benchmarking algorithm performance.

Experiment Tasks Resources
1 200 50
2 500 100
3 1000 100

experiments, the SA outperforms the other two. The under-
performance of FCFS and SDF is because whenever there is
a lack of available resources, these algorithms must perform
a linear search over all resources until resources that can
finish the execution of the selected task before its deadline are
found. Performing the search for each task increases in time
complexity. In the case of the SA, all the tasks in the list are
scheduled at once, validating the deadline constraint without
doing any linear search on the resource pool. Therefore, the
proposed heuristic technique takes a shorter time to find
a schedule. Moreover, SDF takes even longer compared to
FCFS because it performs sorting each time before schedul-
ing a new batch of tasks.

D. SENSITIVITY ANALYSIS

In this section, we conduct various experiments to exam-
ine the impact of different parameters in the scheduling
algorithm.

1) IMPACT OF A VARYING NUMBER OF RESOURCES

AND TASKS

The heuristic increases in time complexity when the number
of tasks is increased. The degradation in performance is not
as much when we increase other parameters, for example,
the number of resources in the pool, the average amount
of resources required by each task, or the execution dead-
lines. The impact on the scheduling performance is much
greater when the dataset size changes. To demonstrate this,
we carried out two series of experiments. In the first series,
we decrease the number of resource blocks in each exper-
iment while keeping the number of tasks constant. In the
second series, we increase the number of tasks in every
experiment while the number of resources remains constant.
Both experiments show an increase in the elapsed simulation
time. Table 8 and Table 9 show the task specifications of the
two experiments.

Fig. 28 plots the results achieved from the experiments
specified in Table 8. The x-axis presents the experiment num-
ber, and the y-axis presents the elapsed time in milliseconds.

We can observe from the figure that the increase in the
elapsed time is linear. Moreover, the increase in elapsed time
is because resources must carry out task execution for longer
periods of time as we decrease the number of resources in the
resource pool. Each resource block must execute a greater
number of tasks in series one after another, and a smaller
number of tasks are executed in parallel due to a lack of suf-
ficient resources. Therefore, decreasing resources increases
simulation time.
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FIGURE 26. Quality (makespan) of adaptive SA vs. FCFS vs. SDF.
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FIGURE 27. Performance (elapsed time) of adaptive SA vs. FCFS vs. SDF.

TABLE 8. Experiments to examine the impact of varying resources.

Experiment Tasks Resources I:Zlap sed
Time (ms)
1 500 500 30809
2 500 400 34223
3 500 300 37541
4 500 200 40501
5 500 100 44567

Fig. 29 shows the elapsed simulation time for the experi-
ments in Table 9. The figure shows an exponential increase
as we the number of tasks increases, keeping a fixed-size
resource pool. The impact of adding tasks to the scheduler
is greater than adding more resources. This is because the
performance of adaptive SA depends on the complexity equa-
tion where K is dominant, as stated in Equation 11.

2) IMPACT OF VARYING MEAN REQUIRED BLOCKS AND
EXECUTION TIME

Various cloud tasks require a specific number of resources
and execution time. We examine the effect of increasing these
two task parameters in the following experiments. On the
one hand, the mean required resource blocks are defined as
the number of FPGA resource blocks each task needs on
average to execute. On the other hand, the mean execution
time is defined as the time units a task needs on average to
finish execution. Since both are mean values, a Poisson dis-
tribution is used to acquire the absolute values for each task.
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TABLE 9. Experiments to examine the impact of varying tasks.

Experiment Tasks Resources ljllap sed
Time (ms)
1 100 500 257
2 200 500 1788
3 300 500 7484
4 400 500 16971
5 500 500 29299
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FIGURE 28. Impact of varying resources on elapsed time.
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FIGURE 29. Impact of varying tasks on elapsed time.

TABLE 10. Experiments to examine impact of varying mean required
resource blocks.

Mean Mean
Experiment Required Execution Elapsed Time
Resource Time (time (ms)
Blocks unit)
! ! 5 12241
2 2 5 14460
3 3 5 20735
4 4 5 20435
3 5 5 44477

Table 10 and Table 11 show the details of the experiments
conducted. We set the dataset size to be 500 tasks and the
resource pool size to be 500 blocks for all the experiments.
We observe that the increase in both the task parameters
shows a slight exponential increase in the elapsed simulation
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TABLE 11. Experiments to examine impact of varying mean execution
time.

Mean Mean
Experiment Required Execution Elapsed Time
P Resource Time (time (ms)
Blocks unit)
1 5 1 9434
2 5 2 15560
3 5 3 21814
4 5 4 29681
5 5 5 44477
50000
é 40000
£ 30000
= Table X
T 20000
a = Table XI
& 10000
0
1 2 3 4 5
Experiment

FIGURE 30. Impact of varying mean required resource blocks and
execution time on elapsed time.

time in Fig. 30. This observation is because an increase in the
mean number of required resources makes tasks in the dataset
demand more resources in the FPGA. Since the resource pool
has limited resources, more tasks must wait until currently
executed tasks are completed. This increases the makespan,
as well as the time it takes for the algorithm to schedule all the
tasks. Similarly, increasing the mean execution time implies
that tasks in the dataset need resources to be allocated for a
longer period. Therefore, this parameter has the same impact
as the mean required blocks on the elapsed time. In [10] the
authors created a test environment in which they processed
images using VFPGAs and VMs and compared their results.
In this work, we recreated the environment on CloudSim and
conducted several simulations. As a result, the execution time
for processing an image using a VFPGA is much lesser than
using a VM. For example, one of the images finished process-
ing in 0.02310 seconds using a VM. The same image was
processed with hardware acceleration in 0.00504 seconds.
We can observe that for this test case, by using a VFPGA,
the execution time was reduced by about 78%.

VIi. CONCLUSION AND FUTURE WORK

Cloud datacenters are rapidly adopting reconfigurable hard-
ware platforms to accelerate the execution of cloud tasks.
Moreover, reprogrammability in FPGAs is significant for
dynamic requirements in a cloud environment. However, this
is not straightforward because the integration of FPGAs in
clouds requires sophisticated approaches to provision them
as cloud resources. In addition, virtualization is a key feature
of the cloud computing paradigm and is essential for FPGA
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integration. Since FPGA architecture is different from tra-
ditional cloud resources, different virtualization mechanisms
are developed and proposed in the literature. Besides virtual-
ization schemes, scheduling techniques for FPGA resource
pools are also an active field of research. Furthermore,
validating virtualization and scheduling approaches using
hardware platforms in real-time is not simple. This is because
the hardware resources required to set up a cloud environ-
ment are expensive, and building the environment is time-
consuming. Hence, researchers are heavily dependent on
using cloud simulators for validation purposes.

This work explored several FPGA virtualization frame-
works and proposed an efficient virtualization approach to
DPR-enabled FPGAs in the cloud. Our framework abstracted
physical FPGA chips into a pool of PRRs using grid-style
partitioning and implemented the MFMA virtualization.
Consequently, this enabled multi-tenancy and improved
FPGA resource utilization. Moreover, this work used an
infrastructure where FPGAs in the hardware layer are con-
nected to host machines via PCle and network devices via
Ethernet. This is unlike most of the works reported in the
literature, where only one type of physical connection was
established with the FPGA. As a result of additional connec-
tivity, the FPGAs could be used as both local and global accel-
erators across the network. In addition, the framework used
an adapter interface which served as a static communication
interface between accelerators and the various framework
managers. By automatically generating the adapter, users
were allowed to be more productive and focus on application
development instead of designing communication interfaces.
Furthermore, the role of an FPGA hypervisor was significant
as it provided frontend functions to initialize, operate, and
terminate VFPGAs. The unified manager interfaces with these
functions to efficiently manage and maintain a pool of FPGA
resources. Moreover, the hypervisor implementation in this
work is novel because the frontend and backend functions
were implemented in separate modules as a VFPGA manager
and a configuration manager, respectively. This allowed for a
modular framework architecture and made implementing the
framework in CloudSim easier.

A typical cloud receives a bulk of user requests to use accel-
erator services, which are the cloud tasks that must be sched-
uled efficiently. We formulated an optimization model whose
objective was to minimize the makespan of cloud tasks.
Unlike the models presented in the literature, the proposed
model can be used to optimize resource allocation from a pool
of architecturally homogenous resources, irrespective of the
resource type. This means the model is suitable for resource
types such as PRRs in a grid, columnar slots, and even whole
FPGA fabrics in a multi-FPGA infrastructure. Moreover, the
proposed implementation of the SA algorithm, a metaheuris-
tic technique, yielded suboptimal solutions. We improved
the SA by incorporating steps of the Metropolis algorithm,
which explored neighboring solutions iteratively. In addition,
we developed the SA, making it adaptive to support dynamic
scheduling. This was crucial because tasks in a cloud arrive in
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real-time instead of in batches. Therefore, the proposed algo-
rithm must be able to dynamically schedule these incoming
tasks to FPGA resources. Furthermore, upon performing sen-
sitivity analysis, it was observed that the impact of changing
the number of tasks on the simulation time is much higher
than changing the number of resources. This was due to the
heuristic complexity, which depends on the dataset size as
defined by Equation 11. Thus, increasing the total number of
tasks leads to exponential growth in the simulation time.

In comparison to the exact method, the SA was validated
by experiments using different datasets, where it achieved
the same quality of solutions with better performance. It also
proved to be scalable even with large datasets, unlike the exact
method, which became infeasible when the number of tasks
increased from 6 to 15. Moreover, we compared the SA to
the FCFS and SDF algorithms using three experiments with
different datasets and resource pool sizes. Results showed
that the SA minimized the makespan 17% to 28% more than
FCEFS and 17% to 30% more than SDF.

In future work, we will develop a hardware implemen-
tation of the proposed virtualization framework to compare
with the software implementation in CloudSim. Moreover,
we will consider network constraints and delays in communi-
cation between the different CloudSim modules. In addition,
the simulator will be included with various FPGA resource
schedulers using algorithms such as swarm intelligence,
shortest job first, and round-robin. Lastly, we will improve
the optimization model to support heterogeneous resource
scheduling.
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