
Received 10 August 2022, accepted 21 August 2022, date of publication 6 September 2022, date of current version 19 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3204866

Virtualizing and Scheduling FPGA Resources in
Cloud Computing Datacenters
ABID FARHAN, RAAFAT ABURUKBA , ASSIM SAGAHYROON , (Senior Member, IEEE),
MOHAMMED ELNAWAWY , AND KHALED EL-FAKIH
Department of Computer Science and Engineering, American University of Sharjah, Sharjah, United Arab Emirates

Corresponding author: Raafat Aburukba (raburukba@aus.edu)

This work was supported in part by the Department of Computer Science and Engineering, American University of Sharjah; and in part by
the Open Access Program from the American University of Sharjah.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ABSTRACT Cloud service providers consistently leverage their computing infrastructures by adding
reconfigurable hardware platforms such as field-programmable gate arrays (FPGAs) to their existing
infrastructures. Adding FPGAs to a cloud environment involves non-trivial challenges. The first challenge
is virtualizing FPGAs as part of the cloud resources. As a standard virtualization framework is lacking,
there is a need for an efficient framework for virtualizing FPGAs. Furthermore, FPGA resources are used
in conjunction with central processing units (CPUs) and graphics processing units (GPUs) to accelerate
the execution of tasks. Therefore, to gain the benefits of these powerful accelerating platforms, the second
challenge is to optimize the allocation of tasks into the capable resources within a cloud data center. This
work proposes an FPGA virtualization framework that abstracts the physical FPGAs into virtual pools of
FPGA resources. The work further presents an integer linear programming (ILP) optimization model to
minimize the makespan of tasks where FPGA resources are part of the cloud data center. Given the complex
nature of the problem, a simulated annealing (SA)metaheuristic is developed to achieve gains in performance
compared to the exact method and to scale up and handle many tasks and resources while providing near-
optimal solutions. Experimental results show that SA has reduced the makespan of a large dataset with
1000 tasks and 100 resources by up to 30% when compared to first-come-first-served (FCFS) and shortest-
deadline-first (SDF) algorithms. Lastly, to quantify the performance of FPGA-enabled cloud datacenters,
the work extends the CloudSim simulator (an open-source cloud simulator) to enable FPGA as a resource
in its environment. The proposed virtualization framework and the SA scheduler are integrated into the
environment. Simulation results show that the execution time of tasks is reduced by up to 78% when FPGA
accelerators are used.

21 INDEX TERMS FPGA, cloud computing, virtualization, scheduling, CloudSim, simulated annealing.

I. INTRODUCTION22

Cloud computing is one of the active research areas in23

computing. Recently, hardware accelerators have been intro-24

duced in cloud datacenters. Along with traditional resources,25

accelerators must be integrated carefully, which involves26

solving several non-trivial challenges. Such hardware plat-27

forms speed up cloud services and applications tremendously28

compared to conventional platforms. The National Institute29

of Standards and Technology (NIST) [1], defined cloud30

The associate editor coordinating the review of this manuscript and

approving it for publication was Nitin Gupta .

computing as a model for enabling abundant, convenient, 31

network access on user demand to a shared pool of config- 32

urable computing resources. These resources mainly include 33

servers, storage devices, and networks, among other entities. 34

They can be provisioned rapidly, with minimal management 35

effort and human interaction. In addition, virtualization is 36

one of the main enabling technology in cloud computing. 37

Virtualization provides a logical abstraction of the physical 38

resource so that one single computer can run multiple oper- 39

ating systems [2]. 40

This research focuses on enabling hardware acceler- 41

ation services in a cloud data center. The notion of 42

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 96909

https://orcid.org/0000-0003-2695-5836
https://orcid.org/0000-0001-7189-3940
https://orcid.org/0000-0002-4367-8060
https://orcid.org/0000-0002-2343-2848
https://orcid.org/0000-0001-5067-858X


A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

Accelerator-as-a-Service (AaaS) is relatively new in cloud43

computing, especially using FPGA devices. Clouds offering44

AaaS allow users to request various acceleration services45

without requiring any technical knowledge of the acceler-46

ator hardware. All hardware management and configura-47

tions carried out by the cloud provider are hidden from48

users.49

To enable AaaS, one must consider possible approaches50

to FPGA virtualization. According to [3], there are four51

types of virtualizations: Single FPGA Single Applica-52

tion (SFSA), Single FPGA Multiple Applications (SFMA),53

Multiple FPGAs Single Application (MFSA), and Multiple54

FPGAs Multiple Applications (MFMA). A modern mecha-55

nism called dynamic partial reconfiguration (DPR) is used for56

multiple applications on a single device. The FPGA fabric is57

logically partitioned into multiple regions, usually symmet-58

ric, which can be used to configure application hardware. The59

term ‘‘dynamic’’ implies that an FPGA is already running60

some configured tasks that can be reconfigured to accommo-61

date additional tasks at runtime.62

On the other hand, the term ‘‘partial’’ is used because63

specific regions can be reconfigured for application hardware64

while the rest of the regions in the FPGA are untouched.65

Many modern FPGAs that support DPR and vendor-specific66

tools are capable of being portioned where static logic or shell67

is required. The static logic never changes once configured68

in the FPGA. Furthermore, the static logic must define how69

to handle the different data coming in and going out of the70

FPGA. Moreover, static logic modules must manage appli-71

cation or user data and establish well-defined communica-72

tion protocols between themselves and accelerators (i.e., user73

hardware). Application logic modules, which are accelerator74

hardware designs, are configured in partially reconfigurable75

regions (PRRs). The term ‘‘partial’’ implies that only some76

portion of the FPGA gets its resource elements reconfigured77

for the new application logic to be implemented. A PRR is78

also referred to as a role. Hence, a shell is never modified79

once configured, but roles may be reconfigured as often as80

required. It also allows multiple applications to run on FPGA,81

enabling resource sharing and multitenancy where multiple82

users can share the same physical resource. In the cloud83

datacenter context, the Multiple FPGAs Multiple Applica-84

tions (MFMA) virtualization type is the ideal choice of85

virtualization.86

The research work in this paper has the following87

contributions:88

• Proposes a virtualization framework for FPGA89

resources in a cloud data center. The proposed frame-90

work is modular and allows high resource utilization.91

As a result, we obtain several partitions or regions92

from each physical FPGA and aggregate them to form93

resource pools.94

• Develops an optimization scheduling model that mini-95

mizes the makespan in the cloud to the virtualized pool96

of FPGA resources.97

• Implements and evaluates the simulated annealing algo- 98

rithm that obtains a near-optimal solution for the 99

modeled scheduling problem. 100

• Extends the CloudSim simulation toolkit to include the 101

proposed FPGA virtualization framework and schedul- 102

ing algorithm to validate the proposed solution. 103

The rest of the paper is organized as follows: Section II dis- 104

cusses the researchwork in the literature. Section III proposes 105

the FPGA virtualization framework. Section IV discusses the 106

proposed model for FPGA resource scheduling. Section V 107

describes the proposed heuristic-based scheduling algorithm. 108

Section VI explains the various experiments conducted and 109

the obtained results. Lastly, Section VII concludes the paper. 110

II. RELATED WORK 111

Multiple research approaches in the literature discuss virtu- 112

alization, partition styles, and resource allocation for FPGA 113

within different settings. This section reviews the related 114

work and discusses the research gap that this work aims to 115

solve. 116

A. FPGA VIRTUALIZATION APPROACHES 117

Chen et al. [4] proposed a virtualization framework for 118

enabling FPGAs in the cloud. The hardware layer of the 119

framework is divided into three logical sublayers – user sub- 120

layer, service sublayer, and platform sublayer. These layers 121

have static hardware modules implemented within the FPGA 122

fabric. The platform sublayer consists of static functional 123

components such as memory and network controllers that 124

handle data communication from and to the FPGA. The 125

service sublayer manages the configuration of application 126

hardware logic and data using modules such as a config- 127

uration controller, a job queue, and a job scheduler. This 128

is considered the most significant layer because it enables 129

partial reconfiguration of accelerators and provides interfaces 130

for users to access their FPGA accelerators. The user sublayer 131

comprises a static layout with four asymmetric partitions in 132

the topmost sublayer. The partitions, also known as empty 133

accelerator slots or partially reconfigurable regions (PRRs), 134

are marked with alphabets A, B, C, and D. When the con- 135

figuration controller receives the hardware application logic 136

in the form of bitstreams, it configures the hardware defined 137

by that logic into one of the four accelerator slots. Moreover, 138

the framework has a hypervisor layer which is responsible 139

for receiving user requests to create accelerators. Using the 140

Accelerator-as-a-Service (AaaS) model, when a user requests 141

for a specific accelerator, the hypervisor layer either selects an 142

idle accelerator slot to configure the requested accelerator or 143

finds an existing accelerator belonging to the user, or rejects 144

the request if there is no slot available. 145

In addition, the hypervisor tracks the usage and status of 146

each accelerator slot, whether the slot is idle or occupied. 147

Using this framework, each FPGA is divided into four on- 148

chip accelerator slots, and each slot is different in terms of the 149

number of resources constrained by the logical partitioning. 150

96910 VOLUME 10, 2022



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

Implementing this virtualization framework across several151

FPGAs leads to obtaining four distinct pools of accelerator152

slots. Each pool contains only one type of slot, i.e., either A,153

B, C, or D. The partitioning as well as implementation details154

of the framework are hidden from the cloud users. However,155

there is a significant disadvantage in using a static layout156

of asymmetric partitions because it renders the abstraction157

scheme inefficiently. Despitemultiple accelerators being con-158

figured on a single FPGA chip (SFMA virtualization), using159

this framework, a single accelerator cannot be configured160

across multiple FPGAs (MFSA virtualization). Moreover,161

suppose one type of accelerator is dominantly requested.162

In that case, each FPGA has only the corresponding slot163

utilized, leaving the rest of the slots idle, and as a result,164

it would lead to poor resource utilization. Lastly, accelerator165

migration, which is a core feature of clouds, is not supported.166

Microsoft proposed a virtualization scheme in [5] and167

[6] where they implemented the Bing search engine across168

several FPGAs, obtaining a very high throughput. The work169

virtualized the FPGA resources at the network, which con-170

tains FPGAs and host machines. As a result, FPGAs cannot171

run multiple applications on the chip, but a single application172

hardware can be configured across multiple FPGAs (MFSA173

type). The drawback is that small-scale applications that174

might require only a portion of an FPGA would occupy an175

entire chip, leading to poor resource utilization. Moreover,176

accelerator migration is overly complex. Hence this frame-177

work is not effective in a cloud infrastructure.178

In [7], the authors proposed an operating system (OS) for179

FPGAs called Feniks that uses the static logic of Microsoft’s180

Catapult in [6]. The static regions, where hardware such as181

memory and network controllers are configured, are known182

as OS regions. Moreover, the PRRs, known as applica-183

tion regions, are a result of partitioning the FPGA fabric.184

In addition, the virtualization framework provides the logical185

abstraction of the physical PCIe (short for peripheral com-186

ponent interconnect express) interface, which establishes an187

efficient communication channel between server resources188

such as storage and network devices and the FPGA chip.189

As a result, each application region can access local and cloud190

resources through the PCIe and Ethernet interfaces, respec-191

tively. Moreover, Feniks supports both MFSA and MFMA192

virtualization types; therefore, it is applicable in cloud infras-193

tructures. In addition, a near-identical framework is proposed194

in [8].195

Al-Aghbari and Elrabaa [9] proposed a scheme that196

supports MFMA virtualization. It performs resource-level197

virtualization in FPGA’s I/O channels and uses network-198

attached FPGAs. Moreover, it has static hardware modules199

that perform specific logical functions, for example, a net-200

work controller external to the FPGA fabric that manages201

Ethernet-based communication. In addition, the framework202

has a reconfiguration manager that safely configures accel-203

erators in the PRRs, which are referred to as virtual FPGAs204

or vFPGAs. A vFPGA uses a static interface to communicate205

with the static hardware modules. This interface, called the206

wrapper, is automatically generated based on the user’s spec- 207

ifications. The wrapper virtualizes the physical I/O resources 208

in the FPGA and allows users to design accelerator hardware 209

without considering physical I/O constraints. Furthermore, 210

Al-Aghbari et al. implemented their framework in real-world 211

cloud infrastructure [10]. They explained the implementation 212

of the FPGA hypervisor and elaborated on how its frontend 213

functions are exposed to the cloud user as application pro- 214

gramming interfaces (APIs) while the backend functions are 215

implemented in the FPGA chip. Using the hypervisor, users 216

can create, manage, and destroy accelerators configured in 217

the vFPGAs. Moreover, each accelerator in the vFPGA is 218

assigned an IP address allowing any host machine or FPGA in 219

the network to communicate with the accelerator. Addition- 220

ally, the authors used Xilinx Virtex-6 XC6VLX550T FPGAs 221

as their hardware platform. They further implemented their 222

virtualization framework and used 58,123 look-up tables, 223

52,649 flip-flops, 422 random accessmemory (RAM) blocks, 224

and 560 digital signal processing (DSP) blocks in each FPGA. 225

B. FPGA PARTITIONING STYLES 226

DPR-supported FPGAs perform reconfigurations based on 227

a partitioning style. Partitioning refers to the way partially 228

reconfigurable regions (PRRs) are formed after logically 229

dividing the FPGA fabric. According to [11], there are three 230

partitioning styles – island style, slot style, and grid style. 231

The island-style partitioning is the least difficult to implement 232

where an FPGA has one or more PRRs. Each PRR can exclu- 233

sively configure one application hardware, and an application 234

cannot share more than one PRR, hence the name ‘‘island.’’ 235

However, the limitation to this partitioning style is when a sin- 236

gle island does not have sufficient resources to configure the 237

hardware. The slot style partitioning is where identical PRRs 238

called slots are created on the fabric, either column-wise or 239

row-wise. Hardware designs then occupy one or more slots 240

once they are configured. This partitioning is not straight- 241

forward to implement because each slot must have a static 242

interface to communicate between the configured application 243

hardware and the static hardware. However, it addresses the 244

limitation of the previous partitioning style. Hence, an appli- 245

cation can be provisioned for more than one slot if required. 246

Another challenge in this partitioning style is that an FPGA 247

has heterogeneous resources. Therefore obtaining identical 248

partitions or slots that are architecturally homogenous is chal- 249

lenging. Since some regions in the FPGA fabric are excluded 250

from being a part of any slot, the resources in these regions are 251

unutilized, leading to poor resource utilization. Finally, the 252

grid style partitioning is where an FPGA is segmented into 253

a grid, and the grid cells are either static regions or PRRs, 254

depending on the type of hardware configured. Hardware 255

designs occupy one or more cells to actualize accelerators. 256

Moreover, it improves resource utilization compared to the 257

slot style because fewer unpartitioned regions exist. In con- 258

trast, implementing this style and producing homogenous 259

grid cells is more challenging as an FPGA fabric contains 260

heterogeneous resources. In addition, each PRR cell must 261

VOLUME 10, 2022 96911



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

have a static communication interface that must be carefully262

designed to occupy as few resources as possible and allow263

more room for application hardware logic.264

C. FPGA SCHEDULING APPROACHES IN CLOUD265

Scheduling is the process of allocating resources to a set of266

tasks at a specific time [12]. In cloud, resources are virtual267

resource pools that are either homogenous, i.e., have only268

one type of resource, or heterogeneous, depending on the269

virtualization framework used. Moreover, examples of tasks270

in a cloud include a user requesting a VM for general-271

purpose processing, deploying a custom software application272

to be hosted, and using hardware acceleration for image273

processing. Additionally, scheduling is always carried out to274

fulfill an objective: either a minimizing function, e.g., power275

consumption of computer systems and makespan of tasks,276

or amaximizing function, e.g., resource utilization of network277

bandwidth during data transmission and memory utilization.278

Note that makespan refers to the completion time for a set of279

tasks. Furthermore, scheduling may be performed with task280

constraints and/or resource constraints, and the inability to281

achieve a constraint makes a candidate solution infeasible.282

There are two classes of scheduling problems – static and283

dynamic. In static scheduling, all information, such as the284

resources capabilities and tasks requirements, are known to285

the scheduler. On the other hand, dynamic scheduling refers286

to changes within the environment that must be known to287

the scheduler to provide a feasible solution. Such changes288

are: resource failure, introducing a new resource, and new289

task arrivals. Cloud infrastructures typically use dynamic290

scheduling since tasks arrive in real-time, and the sched-291

uler must allocate resources for these tasks without prior292

knowledge. In addition, many scheduling algorithms exist293

that can be categorized into either exact solution methods294

or heuristic-based methods. Exact methods always guarantee295

the best or the optimal solution for a scheduling problem.296

However, they are unable to scale when tasks grow either297

in quantity or complexity. Hence, scalable approaches such298

as heuristic-based algorithms that provide a solution within299

an acceptable time are needed. Heuristic approaches do not300

guarantee optimality. However, heuristic algorithms can scale301

to large size problems and provide a near-optimal solution302

with better performance.303

Some traditional task allocation approaches in cloud304

infrastructures for resources are the First-Come-First-305

Serve, Round-Robin, Priority- or Metric-Based, and306

Approximation-Based. Others looked into heuristic-based307

methods such as Swarm Intelligence, Genetic Algorithm,308

and Simulated Annealing [12], [13], [14], [15], [16], [17],309

[18]. After introducing FPGAs as cloud resources, many310

implementations of these algorithms are being proposed in311

the literature, making FPGA scheduling an active research312

topic. For example, the proposed scheduling algorithm in [19]313

is based on the virtualization framework of Chen et al. in314

[4]. Accelerator slots (PRRs) of various sizes are obtained315

because of the virtualization and the resources that the316

proposed scheduler provisions. In the scheduling algorithm, 317

an accelerator slot’s computing capacity is a parameter 318

defined as the number of virtual CPUs (vCPUs). Suppose 319

a task is executed using one of the accelerator slots and 320

accelerated n times faster than a single vCPU. In that case, the 321

slot’s computing capacity is said to be n vCPUs. Moreover, 322

it is a metric-based scheduling algorithm where the proposed 323

metric is called benefit. The benefit of an accelerator slot 324

is calculated by summing the speedup of all tasks on that 325

accelerator slot in terms of number of vCPUs. The objective 326

is to assign each task to the slot with the highest benefit value 327

for that task. Additionally, the authors make the scheduling 328

algorithm dynamic by allowing task preemption where new 329

incoming tasks yielding higher benefit on a particular slot 330

can replace the existing ones. However, there are two dis- 331

advantages in the algorithm. The first is that the resource 332

pools are based on the virtualization framework of [4] and 333

consist of heterogenous partitions or accelerator slots. This 334

leads to poor resource utilization as bigger accelerator slots 335

will always hold higher benefit value than the smaller ones, 336

and the scheduler always selects slots with the highest benefit 337

for every task. The second issue is that the scheduler must 338

calculate the benefit across the entire pool of accelerator slots 339

for each task before resource allocation. This is computation- 340

ally intensive and therefore, the algorithm is not scalable with 341

larger number of resources or tasks. 342

In [20], an FPGA resource scheduling algorithm is pro- 343

posed that minimizes the makespan of a batch of requests to 344

improve resource utilization at the node level. The requests 345

are acceleration tasks that are to be executed using FPGA 346

hardware. They are split into three categories – computation- 347

intensive, network-intensive, and a combination of both. 348

Three optimization models are presented to tackle each task 349

category independently. These models represent NP-hard 350

problems, and as a result, an approximation algorithm is 351

proposed that uses relaxation and rounding to find feasi- 352

ble solutions. The results of the algorithm are compared to 353

shortest-job-first and longest-job-first algorithms. However, 354

the proposed models work with a resource pool that consti- 355

tutes whole physical FPGA chips instead of PRRs. Therefore, 356

the algorithm only allocates one or more chips per task and 357

cannot allocate low-level FPGA resources, resulting in poor 358

resource utilization. 359

Most of the proposed scheduling algorithms in the liter- 360

ature consider the whole FPGA chips within the resource 361

pool. The authors in [21] proposed a metric-based multi- 362

objective scheduler that minimizes the energy consumption 363

by allocating computation-intensive tasks to compute nodes 364

with FPGAs. The scheduler decides whether to schedule a 365

task to a compute node with or without an FPGA based on 366

the tasks’ workload. Moreover, in [22], the proposed model 367

is a max-min joint optimization model which maximizes 368

cloud users’ satisfaction while minimizing loss of benefits 369

for the cloud providers. The proposed algorithm is a generic 370

MATLAB scheduler presented as a black box. Although the 371

authors claim that the resource pool was obtained because 372

96912 VOLUME 10, 2022



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

of MFMA virtualization, this is not indicated as the pool373

contains whole FPGA chips instead of slots or PRRs.374

It was observed from the reviewed scheduling algorithms375

that most of the algorithms deal with resources from a376

resource pool consisting of whole FPGA chips [19], [20],377

[21], [22], [23], [24], [25], [26], [27], [28]. Some works do378

not virtualize the FPGAs; instead, physical chips are allocated379

to tasks. Such schedulers do not allow configuring more380

than one application per FPGA chip and do not complement381

MFMA virtualization frameworks. In Section IV, we formu-382

late an ILP optimization model to schedule tasks using a383

resource pool of PRRs. In Section VI, we propose a schedul-384

ing algorithm based on the proposed model to perform task385

scheduling.386

III. PROPOSED FPGA VIRTUALIZATION FRAMEWORK387

This section presents our proposed approach that abstracts388

the physical FPGA resources into logical virtual resources.389

The characteristics of the FPGA resources are extracted and390

analyzed to build the virtualization framework. As a result,391

an FPGA resource pool is obtained that contains FPGA392

resources in the form of PRRs. Moreover, our simulation393

framework is based on the hardware platform developed394

by [9] and [10].395

A. FPGA CHARACTERISTICS OVERVIEW396

Characterizing an FPGA chip yields the following relevant397

attributes: configurable logic blocks (CLBs) within a cloud398

environment, which are the essential building blocks of any399

circuit on an FPGA, DSP slices for fast arithmetic process-400

ing, blocked RAMs (BRAM) memory resources, clocks, I/O401

blocks, and transceivers. Sophisticated modules such as net-402

work manager, clock manager, configuration manager, and403

ICAP (Internet Content Adaptation Protocol) interface are404

also included.405

The virtualization framework uses a dynamic partial recon-406

figuration (DPR) mechanism. The framework focuses on407

abstracting the physical connectivity to the FPGA resources408

to enforce flexibility, standard protocols to reduce imple-409

mentation complexity, and advanced partitioning to increase410

resource utilization. For the logical abstraction of physical411

connections, the PCIe interface of the FPGA connects it412

to a host server, while the Ethernet interface of the same413

FPGA is used to connect to a network switch. This allows414

the FPGA to be used as a local and remote accelerator. For415

partitioning, grid-style partitioning is used to obtain archi-416

tecturally homogenous regions. Since the considered FPGAs417

in this work assumes DPR support, the dynamic regions are418

reconfigured via the ICAP interface with user designs. Fur-419

thermore, the configuration manager implements the desired420

FPGA accelerators. However, the architecture of FPGA com-421

prises heterogeneous resources. Therefore, it is impossible422

to partition the fabric’s entirety into a set of homogenous423

regions [31].424

Fig. 1 shows an overview of the virtualization frame-425

work. The key components of the framework are the network426

FIGURE 1. FPGA virtualization framework overview.

manager, the clock manager, the configuration manager, and 427

the vFPGA manager. The following sections elaborate on 428

each manager with respect to their operations and dependen- 429

cies with other components. 430

B. CLOCK MANAGER 431

One of the static modules is the clock management. It is 432

also known as the clock manager. It is possible to have 433

different modules run on different clock frequencies in the 434

same FPGA. For example, the networkmanager may be oper- 435

ating at a clock frequency different from the configuration 436

manager. Such modules are then said to be operating in dif- 437

ferent clock domains. The clock manager enables the correct 438

frequency clock signals to be routed to both synchronous 439

modules. Furthermore, the clock manager can utilize PLLs 440

(phase-locked loops) available in the FPGA to generate the 441

different clock frequencies needed. Although the primary 442

function of a PLL is to detect and fix time violations in the 443

circuit, it can also be used as a clock generator to drive clock 444

signals at the desired frequency to one or more modules of the 445

same clock domain. However, an extra piece of hardware is 446

required when communication between two clock domains 447

operates at different speeds. We use asynchronous first-in- 448

first-out (FIFO) buffers extensively for inter-clock domain 449

communication. When a module transfers data in a specific 450

frequency to another module, it writes the signal or the data 451

to a buffer. The recipient module can then read from the 452

asynchronous buffer at its operating frequency. Using buffers 453

eliminates the danger of metastability – a state in which 454

a digital system becomes unstable and gives an uncertain 455

output (i.e., neither logical ‘1’ nor ‘0’) for an unbounded 456

time [32]. 457

C. NETWORK MANAGER 458

The network manager oversees all communication external 459

to the FPGA. Fig. 2 illustrates how the architecture of this 460

module allows it to receive and send packets via Ethernet and 461

PCIe ports. A packet arrives at the physical receiver through 462

either of the two ports. It is decapsulated to extract only useful 463

VOLUME 10, 2022 96913



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

information, such as the payload. If the packet comes through464

the Ethernet port, it is then an Ethernet packet and contains465

an IP header since an Ethernet connection uses TCP/IP pro-466

tocol. However, if the packet arrives via PCIe port, we still467

implement the TCP/IP stack in the PCIe communication and468

ensure that the sender has put a destination IP address into469

the packet. This is the major difference in the implementation470

from [33], where authors used direct memory access (DMA),471

which is typical in a PCIe-attached FPGA infrastructure.472

However, by eliminating DMA and instead using TCP/IP473

protocol for data packets in PCIe, we reduce the complexity474

of establishing communication between the host and FPGA.475

In addition, since Ethernet packets also use TCP/IP stack,476

a single implementation for sending and receiving data from477

both the ports in the network manager is applied.478

As a packet is received and decapsulated, the payload479

is sent to a data router, whereas the destination IP address480

from the IP header is sent to the IP address table for cross-481

checking. The IP address table contains 1-to-1 mapping of482

each accelerator’s IP address and the vFPGA manager’s483

physical address. This module manages and monitors all484

accelerators in the FPGA. If a match is found corresponding485

to one of the accelerators, the payload is intended for that486

accelerator. Therefore, the router forwards the payload, ensur-487

ing it reaches the right destination via the vFPGA manager.488

The vFPGA manager is discussed in detail in section G.489

On the other hand, if the payload contains bit files and490

is intended for the configuration manager, the destination IP491

address will be the configuration manager. This entails that492

the configuration manager module in the FPGA is assigned493

a unique IP address for itself so that packets can be sent494

accordingly. Once the router gets a match of the IP address495

from the address table, it routes the payload to the configura-496

tion manager. Any routing from the data router to either the497

vFPGA manager or the configuration manager, the payload498

data is initially written into dedicated asynchronous FIFO499

buffers. The recipient module constantly polls its dedicated500

read buffer to read data from it, if any. Using asynchronous501

buffers allows for error-free inter-clock domain communica-502

tion. The router drops the packet if no match is found in the503

address table for a packet’s destination address. Lastly, any504

new communication session is recorded in the ‘‘sessionmem-505

ory’’ so that only one user can establish a secure connection506

with an accelerator at any given time. This specifies the way507

data is received into an FPGA.508

As for data transmission from the FPGA to the external net-509

work, data from other modules are written into asynchronous510

buffers. The network manager reads from these buffers and511

encapsulates the payload with necessary header information512

into a packet for communicating via TCP/IP protocol. For513

example, if the payload contains accelerator results generated514

in the FPGA, then the destination address in the IP header of515

the packet is the one from the user who established the session516

with the accelerator. Once the packet is ready, the physical517

transmitter sends it out via the appropriate port.518

FIGURE 2. Architecture overview of the network manager.

D. CONFIGURATION MANAGER 519

The configuration manager is a static hardware module 520

mainly responsible for creating the user’s accelerator design 521

in the FPGA. Accelerator designs come in the form of bit- 522

streams or bit files. Application hardware logic is sent as 523

partial bitstreams over the network from a host machine 524

using a toolchain provided by the FPGA vendor. The network 525

manager receives bitstreams within the payload content of 526

Ethernet packets, decapsulates the packets, extracts the bit- 527

streams, and writes to buffers from which the configuration 528

manager can read the bit files. Moreover, the configuration 529

manager uses volatile memory to hold bitstreams and a ded- 530

icated controller submodule to communicate with the ICAP 531

interface [9], [33]. DPR uses the ICAP controller to download 532

bitstream data into dynamic regions (PRRs) and reconfigures 533

the regions to create the accelerator hardware specified in 534

the partial bitstreams. Once an accelerator is configured, the 535

configuration manager informs the vFPGA manager of the 536

new accelerator’s physical location. The network manager 537

receives an acknowledgment that an accelerator has been 538

successfully created. Next, the network manager assigns the 539

accelerator a unique IP address, and the address table stores 540

this information. Users can then establish TCP sessions with 541

their respective accelerators to send and receive data. 542

E. ADAPTER INTERFACE 543

Accelerators in the FPGA require a static interface to 544

exchange data with static logic modules such as the network 545

manager. Irrespective of the design of an accelerator, the 546

approach inwhich it will communicatewith the networkman- 547

ager does not change. Hence, the communication interface 548

must be static. According to [9], the interface is called a 549

wrapper. However, in this work, we refer to it as the adapter 550

interface or an adapter. As shown in Fig. 3, an adapter consists 551

of buffer memories, serializer, deserializer, bit packer, and bit 552

unpacker submodules. It has a read and a write buffers where 553

the accelerator can read-from and write-to, respectively. Data 554

are moved in chunks of bits called (data) words. Submodules 555

inside the adapter are used to change the size of data word 556

between modules. This is mainly to resolve any mismatch in 557

word length when static logic modules send data in specific 558

96914 VOLUME 10, 2022



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

FIGURE 3. Architecture overview of adapter interface.

sized words and user accelerators read words in a different559

size, and vice-versa. Moreover, when the user’s accelerator560

design code is converted into partial bitstreams, the adapter561

module is automatically generated, converted into a partial562

bitstream, and included within the same files. This way, the563

user is not required towrite the logic for the adapter. However,564

the user must preset specific parameters of the adapter inter-565

face, such as the number of input and output channels and the566

width (i.e., the number of bits or size of the word allowed) of567

each channel.568

F. VIRTUAL FPGA (vFPGA)569

An accelerator may require more than one homogenous570

dynamic region, especially if it requires resources that cannot571

be fulfilled by a single region alone. However, the num-572

ber of resources required for a hardware design cannot be573

determined ahead of bitstream reconfiguration. This means574

that once the configuration manager configures the acceler-575

ator in the FPGA fabric, we can only identify the number576

of resources utilized. Therefore, we only configure a set577

of predefined accelerators whose required number of CLBs578

are already known and partial bitstreams generated. This is579

typically done by cloud service providers that offer AaaS.580

When the user selects the desired accelerator from a list of581

options, corresponding partial bitstreams for that accelerator582

are transmitted to an available FPGA in the network for583

reconfiguration. A predefined schematic of each accelerator584

is stored as a netlist in a database. Upon selecting an acceler-585

ator, the corresponding netlist and the adapter interface logic586

are converted into partial bitstreams.587

An accelerator requires an adapter interface to commu-588

nicate with the static logic modules and may require one589

or more PRRs for configuration. We encapsulate the accel-590

erator and its adapter module inside a single entity called591

virtual FPGA (vFPGA). From the user’s perspective, they592

get the illusion that their accelerator is operated by a single,593

dedicated, physical FPGA. However, that is not the case594

physically. Each accelerator runs by one vFPGA only, and595

there is secure logical isolation between different vFPGAs.596

Fig. 4 shows three vFPGAs configured in a physical FPGA597

where each vFPGA contains an accelerator hardware and an598

adapter interface. A vFPGA can be configured across one or599

more PRRs and across more than a single physical FPGA.600

FIGURE 4. Encapsulation of accelerator & adapter modules into vFPGA.

This idea of encapsulating an accelerator and an adapter 601

module to create a vFPGA is different from the work done in 602

[9], in which a vFPGA represents a PRR and might be either 603

occupied with an accelerator hardware or empty. 604

G. vFPGA MANAGER 605

Each FPGA can contain one or more vFPGAs depending 606

on the number of resources the FPGA can provide and the 607

number of resources each vFPGA demands. Therefore, this 608

requires a vFPGA manager, as shown in Fig. 5. The vFPGA 609

manager is a module that is responsible for monitoring 610

and maintaining vFPGAs. Each vFPGA, upon instantiation, 611

is given a unique ID by the vFPGA manager for internal 612

addressing. A vFPGA can be in one of the two states – idle 613

or busy. It is idle if its accelerator is not currently process- 614

ing a task and is otherwise busy. The manager constantly 615

monitors the status of each vFPGA instance, whether idle or 616

busy.Moreover, since each accelerator must be addressable to 617

enable communication with the user, assigning and retract- 618

ing IP addresses concerning vFPGAs are performed by the 619

vFPGAmanager. This is done by maintaining two tables; one 620

table contains IP address-to-vFPGA ID mappings, and the 621

other contains vFPGA ID-to-physical address of the vFPGA. 622

Whenever the network manager routes data to this manager, 623

it looks up the destination IP address in the first table to find 624

the corresponding vFPGA ID. Then, it looks up the second 625

table to find the physical address of the vFPGA. Therefore, 626

the vFPGA manager forwards the application data from the 627

network manager to the intended accelerator. This is the core 628

element of the implemented virtualization framework in this 629

work, where physical address spaces are mapped to virtual 630

address spaces. 631

Similarly, when an accelerator attempts to send back data 632

to its user, the manager looks for the physical address of the 633

network manager and writes the data into appropriate buffers 634

for the network manager to read. In addition, all communica- 635

tion between the accelerator inside vFPGA and the vFPGA 636

manager happens via the adapter interface that wasmentioned 637

VOLUME 10, 2022 96915



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

FIGURE 5. Architecture overview of the vFPGA manager.

earlier. The read and write buffers in the adapter allow the638

vFPGA to read from and write to, respectively. For a vFPGA639

to read user input data, the manager writes the data into the640

read buffer of the adapter. For a vFPGA to send result data,641

it writes into the write buffer of the adapter so that the vFPGA642

manager can read and route the data further to the network643

manager.644

H. FPGA HYPERVISOR645

In Fig. 1, the vFPGAmanager and the configuration manager646

are collectively labeled as ‘‘hypervisor’’. Its role is discussed647

in the literature as the software that enables virtualization.648

The hypervisor has frontend and backend functions. The key649

difference in our framework compared to other frameworks650

in the literature is that the hypervisor is split into two sep-651

arate modules – the vFPGA manager and the configuration652

manager. The hypervisor backend includes the configuration653

manager and parts of the vFPGA manager. Thus, the back-654

end functions include initializing and partitioning the FPGA,655

configuring vFPGAs from partial bitstreams, and routing user656

data to and from vFPGAs.657

On the other hand, frontend functions include processing658

requests for new accelerator creation, getting the status of659

created vFPGAs, initiating data transfers to and from user’s660

accelerators, and requesting termination of accelerators. The661

vFPGA manager provides all these functions in the frame-662

work. Moreover, there is a distinction in the implementation663

between the hypervisor frontend and the backend. The back-664

end is usually coded in Verilog and resides on the FPGA665

fabric, whereas the frontend resides in a host machine with666

network capabilities to reach the FPGA. Both front and667

back ends are connected via a TCP stream. Thus, when668

a user from the host machine sends any command to the669

hypervisor frontend, it triggers the corresponding function670

in the backend and processes the user requested function.671

In this approach, FPGA hypervisors establish a practical and672

error-free communication between FPGAs and other cloud673

entities such as host machines and are essential to the virtu-674

alization framework.675

I. FPGA RESOURCE POOL676

Further to the hypervisor capabilities, this section discusses677

the ability to pool FPGA resources in the cloud infrastructure.678

The result of virtualization is to obtain a pool of abstract 679

resources that can be quickly and efficiently provisioned 680

to tasks. To achieve this, one of the backend functions of 681

the FPGA hypervisor is to track the number of occupied 682

and unoccupied regions at any given time. With this, we 683

can obtain the total number of unutilized regions across all 684

FPGAs in the data center at any given time. Therefore, we can 685

generate a pool of available FPGA regions using the hyper- 686

visor of each FPGA that monitors and tracks the number of 687

regions. Upon provisioning any FPGA region for configuring 688

an accelerator, the hypervisor of that FPGA will notify a 689

centralized control module, i.e., a unified manager, that the 690

total number of resources in the pool has been reduced by one. 691

Thus, the resource pool is constantly updated owing to the 692

communication between FPGA hypervisors and the control 693

module. 694

IV. SCHEDULING PROBLEM MODEL 695

As a result of implementing the proposed virtualization 696

framework, we obtained a pool of FPGA resources from 697

which resources can be provisioned to cloud tasks. In this 698

context, a cloud task refers to a user request for configur- 699

ing an accelerator, whereas a resource refers to a PRR in 700

an FPGA chip that resulted from the partitioning process. 701

The FPGA resource allocation must effectively manage the 702

cloud resources and execute the consumers’ tasks. Hence, 703

this section presents an integer linear programming (ILP) 704

optimization model for the FPGA to minimize the competi- 705

tion time of tasks within the pool of FPGA resources. The 706

work assumes a cloud datacenter infrastructure with com- 707

puting servers, limited FPGA-based accelerators, and net- 708

working resources that interconnect compute-to-compute and 709

compute-to-FPGA resources. Moreover, the model assumes 710

the following in the cloud computing environment: 711

- FPGA fabrics are homogeneous with regard to their 712

architecture, and therefore, the model considers that 713

all FPGA devices within the cloud infrastructure are 714

from the same vendor family. The validity of the 715

assumption holds since the architecture of the con- 716

figurable logic block (CLB) in the fabric of an 717

FPGA differs from vendor to vendor. Cloud providers 718

such as Amazon Web Services (AWS) and Microsoft 719

Azure provide their consumers with accelerator ser- 720

vices by using only one FPGA family within their 721

datacenters [34], [35], [36], [37]. 722

- Resource blocks or PRRs obtained within a single 723

FPGA, because of the partitioning process, are all 724

identical. 725

- The number of regions needed for each accelerator is 726

a priori knowledge. Every accelerator request from the 727

users’ tasks has a specific number of required regions. 728

- The execution time of each acceleration task is a known 729

parameter measured in time units. This is true in an 730

AaaS-enabled cloud infrastructure. 731

- The deadline of each task is a known parameter mea- 732

sured in time units. Assigning a deadline is crucial in the 733

96916 VOLUME 10, 2022



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

model to prioritize tasks. For instance, tasks with shorter734

deadlines have higher priority.735

- Tasks are independent. This assumption applies only736

in scenarios where acceleration tasks are considered737

independent of each other and an acceleration task’s738

dependencies, which may exist within its subtask level,739

are ignored [13], [38].740

- No preemption of tasks. Once resource blocks are allo-741

cated to a task, the task execution must finish without742

interruption.743

A. OPTIMIZATION MODEL744

As discussed in section III, a pool of FPGA resource blocks745

results from the partitioning process. Every FPGA is parti-746

tioned as soon as an FPGA instance is initialized. Moreover,747

a task is a request to create an accelerator using the FPGA748

resource pool when a consumer selects an acceleration749

service. This section formulates the minimization of the750

completion time of all tasks as they are allocated to a pool751

of FPGA resources. The objective function Z, presented in752

Equation 1 of Model 1, minimizes the makespan (the max753

completion time). It is a min-max function where it first finds754

the maximum end time of tasks. The end time of task k is755

calculated by adding the start time (tSk ) and execution time756

(tEk ). The subtraction by 1 in the equation accounts for the fact757

that the simulation begins from t = 1, giving the correct end758

time value. Moreover, since the last task to finish execution759

will always yield the highest end time value, the objective760

function thus considers the end time of the last task as the761

maximum. The function minimizes the maximum, and as a762

result, it minimizes the makespan. The objective function is763

formulated as shown in Model 1.764

MODEL 1. ILP optimization model.

Constraint (2) ensures that a block can be part of only one 765

task at a time. That is, a resource block may be allocated to at 766

most one task at any point in time. Two or more tasks cannot 767

share the same resource block simultaneously. 768

Constraint (3) ensures that any task’s execution must be 769

completed before its deadline. This is performed by checking 770

whether a task’s start time and execution time are less than or 771

equal to its deadline. 772

Constraint (4) ensures a task must have all the required 773

blocks ready at its start time. Therefore, it ensures that the 774

number of blocks allocated at a task’s start time equals the 775

number of blocks required. 776

Constraint (5) ensures that a task must have the same block 777

allocation at its start and end times. Blocks allocated at the 778

start time should remain allocated until the end time of a task. 779

Constraint (6) ensures that a task can be allocated to a 780

specific number of blocks for a fixed number of time units. 781

While constraint (4) checks for the correct number of blocks 782

allocated at the start time, constraint (6) ensures that the same 783

number of blocks remain consistently allocated from the start 784

to the end time of a task. 785

Constraint (7) ensures that blocks will continue executing 786

the task until it is completed without any interruption. Hence, 787

this Constraint safeguards the no-preemption assumption. 788

Constraint (8) is a binary variable that indicates whether a 789

task is allocated to a block at a point in time. 790

Constraint (9) limits the start time of a task to be between 791

1 and the maximum deadline of tasks tmax . 792

Table 1 summarizes the notations and their respective 793

descriptions. 794

TABLE 1. Summary of notations.

B. MODEL VALIDATION 795

The proposed model is validated for small-scale problem 796

instances using IBM ILOG CPLEX Optimization engine 797

that implements the branch-and-cut exact solution method. 798

CPLEX ran on a Windows machine with 16 GB DDR4 799

DRAM at 3000MHz and a 6-core processor at 3.6 GHz. Four 800

experiments with an increasing number of tasks and resources 801

VOLUME 10, 2022 96917



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

TABLE 2. Experiment 1 Task specifications.

TABLE 3. Experiment 2 Task specifications.

TABLE 4. Experiment 3 Task specifications.

TABLE 5. Experiments with varying tasks and resources.

are conducted, and an exact solution for each problem is802

sought. Tables 2, 3, and 4 show the different number of tasks803

and resources for the first three experiments. A task is defined804

by execution time, required resource blocks, and deadline.805

The resource blocks refer to PRRs that are obtained because806

of logically partitioning an FPGA. A summary of all four807

experiments can be found in Table 5.808

FIGURE 6. Experiment 1 final solution using exact method.

FIGURE 7. Experiment 2 final solution using exact method.

FIGURE 8. Experiment 3 final solution using exact method.

FIGURE 9. Elapsed time for scheduling using exact method.

The created model was validated with the exact solution 809

method for the first three experiments and achieved the results 810

presented in Fig. 6, Fig. 7, and Fig. 8, respectively. The figures 811

show the discreet time units t , the FPGA blocks as b, and the 812

allocated task k into a block at a specific time slot. 813

Fig. 9 illustrates the elapsed time (y-axis) on CPLEX for 814

finding the exact solution in each experiment (x-axis). The 815

simulation times of these experiments are ∼1 ms, 860 ms, 816

and 320,000 ms, and the makespans are 3, 11, and 19, respec- 817

tively. Although the reported solution for the third experiment 818

was after running CPLEX for around 5 minutes, we allowed 819

CPLEX to run for over 20 hours to find the optimal solu- 820

tion. The entire search space could not be exhausted, and an 821

improved solution was not found. For the fourth experiment, 822

CPLEX could not handle the dataset size. 823

In the exact solution approach used by CPLEX, the number 824

of permutations grows exponentially with an increase in the 825

number of tasks and resources, as shown in Fig. 9. Exploring 826

the entire search space is infeasible due to the exponen- 827

tial growth in time complexity. The presented scheduling 828

problem is NP-hard and requires a heuristic-based approach 829

that ensures a near-optimal solution. The following section 830

introduces the proposed heuristic approach. 831

96918 VOLUME 10, 2022



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

V. PROPOSED HEURISTIC SOLUTION832

Given the modeled scheduling problem in section IV, this833

section provides a detailed description of the implemented834

heuristic algorithm. The inspiration for the algorithm comes835

from the process of annealing. In this technique, the analogy836

of a material is heated to a melting point and then cooled in a837

controlled environment to increase or decrease the size of its838

crystals. Simulations of such behavior are used to solve opti-839

mization problems. The initial temperature and the cooling840

rate are essential parameters in simulated annealing (SA).841

SA accepts worse neighboring states based on an accep-842

tance probability function. This function makes the SA843

a metaheuristic and enables it to overcome the local844

optima problem in heuristic-based approaches. Moreover,845

the acceptance probability function considers the following846

variables – current state energy, neighboring state energy,847

and temperature. If the neighboring state energy appears to848

be worse than the current state energy, then given the cur-849

rent temperature, either accept or decline the move. Usually,850

higher temperature values produce greater probabilities of851

accepting a worse neighbor. As the temperature reaches zero,852

the SA declines to accept worse neighbors and becomes853

more inclined to move with better neighbors. On the one854

hand, this indicates that the cooling rate controls how fast the855

temperature reaches zero and stops accepting worse states.856

On the other hand, the initial temperature is responsible for857

determining how much worse off the energy of a neighbor-858

ing state can be before the SA declines the move. Lastly,859

a very high initial temperature with a very low cooling rate860

would explore more of the search space, almost guaranteeing861

the optimal solution but at the cost of execution time. The862

system’s behavior at every fixed temperature in the cooling863

profile can be investigated using the Metropolis algorithm –864

a significant component of the SA.865

A. SA IMPLEMENTATION866

This section discusses our implementation of the customized867

SA algorithm fused with the Metropolis algorithm to min-868

imize the makespan specified in section IV as depicted by869

the pseudocode shown in Algorithm 1. The initial solution870

sorts out the list of tasks in the increasing order of their871

deadlines. The order of the tasks is the current state in the SA,872

and resources are immediately allocated to the tasks in their873

respective order. Makespan of these tasks is the energy of the874

current state. In the next iteration of theMetropolis algorithm,875

we randomly select two tasks and swap their positions in876

the list. This step is known as perturbation. Perturbation is877

defined as a modification to the state of a system, and this878

modification occurs from a source external to the system.879

In our algorithm, the perturbation is a random swap of two880

tasks in the dataset that is modifying the current state. This881

changes the original order of the tasks and thus, creates a882

new order or a neighboring state. Once all tasks have been883

scheduled in the new order, themakespan becomes the energy884

of the neighboring state. Based on the acceptance probability885

function and the initial temperature, the perturbation is either886

accepted or rejected, and accordingly, the neighbor becomes 887

the current state and the starting point of the next perturba- 888

tion. This process continues iteratively, and the temperature 889

reduces in each iteration based on the predefined cooling 890

rate. The process terminates if the SA does not find a better 891

neighbor for a certain number of iterations or the temper- 892

ature reaches close to zero. Reaching the predefined itera- 893

tion threshold is known as the convergence of the solution. 894

We have chosen 16 to be the iteration threshold based on 895

several parameter-tuning experiments. 896

Algorithm 1 Implementation of Simulated Annealing
Input: Task list that consists of task execution time, required
blocks and deadline;
Initial configuration: Task list is sorted using earliest
deadline first Xsoln;
Determine initial temperature T(0);
Determine freezing temperature Tf;
while (T(i) > Tf and not converged) do
repeat

Perturb (Xsoln) by swapping two tasks randomly;
Find neighbor solution Xnew;
Compute 1Z = cost (Xnow − Xsoln);
if (1Z ≤ 0) then

Update Xsoln; /*accept perturbation*/
else if (random (0, 1) < e−1

Z/T(i)
) then

Update Xsoln;
else

Reject Xnew;
endif

endif
until thermal equilibrium
Save best-so-far Xsoln;
Check convergence
T(i+ 1) = T(i); /∗ cooling schedule ∗/
endwhile

B. TASK LIST GENERATION 897

In section IV, the model was validated using a very small 898

number of tasks and resources, given the limitation of the 899

exact solution method in CPLEX. Besides the gain in per- 900

formance in finding a solution in comparison with an exact 901

method, heuristics solutions must also be scalable to handle 902

large problem sizes. To test the scalability of the proposed 903

algorithm, we generated a long list of tasks with an adequate 904

pool of resources such that there exists a feasible solution. 905

Recall that each task needs to have a specific number of 906

required FPGA resource blocks or PRRs, execution time, and 907

deadline. We use Poisson distribution to randomly retrieve a 908

value for both the number of blocks and the execution time. 909

The Poisson distribution is a discrete random distribution that 910

gives the probability of several events occurring over a fixed 911

time interval. It assumes that events occur at a constant rate 912

and each event occurs independently of the time since the 913

last event. In contrast to a continuous normal distribution, the 914

VOLUME 10, 2022 96919



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

FIGURE 10. Various poisson distributions used in task generation.

Poisson distribution is based on discrete values and is more915

applicable when dealing with integer counts. It has numerous916

practical applications, such as a random number of tasks917

arriving at a data center and the random delay between every918

two tasks [39]. Furthermore, the main characteristic of this919

distribution is the mean indicated by lambda (λ) in Fig. 10.920

A different value of mean signifies a different shape of the921

distribution, and as we choose a higher mean, the distribution922

becomes closer to a normal distribution. Real-world scenarios923

tend to follow a Poisson distribution [39]. Therefore, we use924

various Poisson distributions to determine two random vari-925

ables during task generation: the required number of resource926

blocks and execution time in a discrete-time unit. For the927

number of resource blocks, the mean distribution is kept at928

λ = 5, and for execution time units, the mean is kept at λ =929

10. To comprehend and apply the graphs in Fig. 10, let us930

suppose that we are generating a new list of tasks to specify931

the required resources for each task. The probability that a932

task may require exactly 5 blocks is 0.175. On the other hand,933

the probability that the required execution time would be a934

value between 1 and 20 is ∼1. Note that the first distribution935

with a very low mean (λ = 1) as no use as such but we936

included to illustrate how the selection of mean can produce937

a different distribution.938

From this, the initial tendency is to think in the lines of939

a 3D Boolean array, where the dimensions are task number,940

block number, and time unit, and any cell in the array is either941

1 to indicate occupied or 0 for empty. However, other possible942

representations still exist, andwe aim to represent the solution943

in a way that incurs the minimum amount of constraint vio-944

lations possible. Constraint violations may occur at the time945

of swapping two tasks randomly in our algorithm and when946

scheduling them to resources.947

We propose a 1D representation of the 3D array mentioned948

earlier such that the array cells will hold the unique ID of949

a task based on whether the task is allocated to block b at950

time t . The index value i of the array cell in which this task951

ID exists gives information on the block number and the952

time unit. Fig. 11 shows a conceptual diagram of the solution953

representation (Xsoln), where b is the block number, t is the954

time unit, and every cell in the array holds the ID of the task955

allocated to block b at time t . The array index i starts at 0,956

and the total number of blocks is denoted by B, whereas total957

time units are denoted by tmax .958

FIGURE 11. Solution representation using 1D array.

Xsoln undergoes several perturbations during the anneal- 959

ing process until it reaches an equilibrium where the final 960

task allocation represents the best solution. The initial config- 961

uration is obtained by allocating the tasks using the earliest 962

deadline first algorithm, where the task with the earliest 963

deadline is scheduled first, followed by the next task until all 964

tasks have been allocated. 965

The 1D array representation is by far the best alternative 966

because the only Constraint that must be checked during the 967

perturbations is the deadline constraint. This contrasts with 968

a 3D Boolean array which was the initial alternative and too 969

many constraints must be validated to determine the feasibil- 970

ity of the solution.We also devised a linked list representation 971

where each time node is connected to the next time node 972

in a singly linked list. Each time node is also connected to 973

another singly linked list which consists of resource blocks 974

or resource nodes. 975

C. METROPOLIS STEP AND FEASIBILITY 976

There are three main components to the Metropolis step, 977

namely, the perturbation, the acceptance criteria, and the ther- 978

mal equilibrium criteria. We start by perturbing the existing 979

solution Xsoln by randomly selecting two tasks in the task 980

list and swapping the order in which they appear on the task 981

list. After that, we attempt to schedule the task list by taking 982

them in the order of task deadline yielding Xnew. While doing 983

so, only the deadline constraint, i.e., Constraint (4), needs to 984

be rechecked to ensure that deadlines are not violated. Next, 985

the acceptance criterion outlined in Algorithm 1 checks the 986

change in the objective function, 1Z = Z (Xnew) − Z (Xsoln). 987

If the change due to perturbation reduces the objective func- 988

tion, the perturbation is accepted and Xsoln becomes Xnew. 989

In other words, if the makespan of the Xnew schedule is 990

smaller than that of the Xsoln schedule, which is the best- 991

so-far, Xsoln is updated to Xnew. On the other hand, if the 992

perturbation causes an increase in the objective function, 993

it will only be accepted with a probability of e−1Z/T (i). The 994

acceptance criterion applies only to perturbations yielding a 995

feasible Xsoln. Furthermore, the inner loop in the algorithm 996

deals with thermal equilibrium. As more neighboring solu- 997

tions are found for the same temperature value, it is said that 998

the algorithm is reaching thermal equilibrium. Hence, ther- 999

mal equilibrium is nothing more than a predefined number of 1000

iterations for the inner loop. We set the thermal equilibrium 1001

criterion to be one-third of the dataset size. 1002

D. COOLING SCHEDULE 1003

The initial temperature T(0) yields a high acceptance proba- 1004

bility of around 0.8 for moving to worse neighboring states. 1005

On the other hand, the freezing temperature yields a very 1006

96920 VOLUME 10, 2022



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

small acceptance probability of around 2−25, rendering worse1007

neighboring moves impossible, and hence only better neigh-1008

boring states are allowed. The cooling schedule used in our1009

work is T (i + 1) = αT (i), where α = 0.9. The symbol1010

α denotes the cooling rate of the temperature for the next1011

iteration.1012

E. CONVERGENCE1013

While searching the space for a task order that potentially1014

has a lower makespan, the SA algorithm saves the best-1015

so-far solution that yields the smallest Z . This ensures that1016

the returned solution is the best obtained regardless of the1017

terminating temperature of the SA algorithm. Convergence is1018

then achieved when the best-so-far solution does not change1019

for several iterations. Once 16 iterations have passed with no1020

change to the solution, the process stops and considers best-1021

so-far as the final solution.1022

F. HEURISTIC COMPLEXITY ANALYSIS1023

The initial configuration of the algorithm is obtained by1024

sorting the tasks based on the shortest deadline first. This has1025

a computational cost Klog(K), where K is the total number1026

of tasks. Once tasks are sorted, we obtain the initial solution1027

considering all but Constraint (3) and allocating each task to1028

a specific number of FPGA blocks at a specific time unit.1029

Thus, the complexity of the allocation process is given by1030

KBtmax where B is the total number of blocks in the resource1031

pool, and tmax is the maximum task deadline. Furthermore,1032

in Algorithm 1, it can be observed that the outer while loop1033

depends on two conditions, the current temperature value1034

and whether convergence is achieved. Our solution defines1035

convergence to be achieved when the best-so-far solution1036

does not change for 16 outer loop iterations. The iteration1037

count is defined through parameter tuning experiments.1038

This entails that the complexity can be denoted by M as1039

the number of iterations to occur until convergence is found.1040

Next, the inner loop repeats the block until thermal equilib-1041

rium is achieved.MK/3 gives the computational cost involved1042

because the inner loop runs as many times as one-third of1043

the task size. Then, within this loop, several steps are carried1044

out of which one is the feasibility check on the perturbed1045

Xsoln. Only the deadline constraint is rechecked to ensure a1046

feasible perturbed Xsoln. The computational cost, therefore,1047

as evident from Constraint (3) in Model 1, is some constant1048

denoted by C . Since we allocate once at the beginning after1049

task sort and then reallocate in the inner loop for each pertur-1050

bation, the algorithm complexity can be written as shown in1051

Equation 10. Equation 11 shows a further simplified version1052

of the previous equation. It can be noted that increasing the1053

total number of tasks (K ) will have a greater impact on the1054

performance of the algorithm than increasing total resource1055

blocks (B) or maximum deadline (tmax).1056

K log (K )+ KBtmax +
MK
3
× KBtmax × C (10)1057

K log (K )+ KBtmax(1+
MKC
3

) (11)1058

TABLE 6. Task specifications of datasets for parameter tuning.

G. PARAMETER TUNING 1059

Algorithmic parameters can affect the simulation time heav- 1060

ily. In the proposed SA, the simulation terminates when 1061

the solution does not change for a set number of iterations. 1062

Therefore, the iteration threshold becomes the algorithm’s 1063

termination condition, and we must tune this parameter to 1064

reduce the simulation time as much as possible. At the same 1065

time, minimizing the simulation time must not compromise 1066

the quality of the solution too much. 1067

To conduct the parameter tuning experiments, we consider 1068

3 datasets of different sizes in terms of the number of tasks, 1069

the execution time for each task, and the number of blocks 1070

each task requires. The problems were inputted through the 1071

proposed algorithm, varying the maximum number of itera- 1072

tions allowed from 2 to 128 as 2, 4, 8, 16, 32, 64, 128. The 1073

solution behavior in terms of improvement in the objective 1074

function and the degradation in the incurred simulation time 1075

trying to converge. Table 6 shows the specifications of dif- 1076

ferent dataset sizes. Note that through all parameter tuning 1077

experiments, we keep the resource pool constant with 1000 1078

FPGA blocks, ensuring sufficient resources for all tasks in 1079

each dataset. 1080

Fig. 12 and Fig. 13 show the objective value of the pro- 1081

posed schedule and the simulation duration respectively for 1082

the small dataset size against number of iterations. It is appar- 1083

ent from Fig. 12 that the algorithm was able to obtain the best 1084

solution of 6-time units within the first 2 iterations. Clearly, 1085

increasing the number of iterations does not help reduce the 1086

objective any further as it seems that 6-time units is the mini- 1087

mummakespan for the tasks. Furthermore, Fig. 13 shows that 1088

increasing the number of iterations degrades performance, 1089

since the elapsed time of the simulation for a greater number 1090

of iterations grows larger. Therefore, we conclude that for a 1091

small problem, 2 iterations are sufficient to obtain a subopti- 1092

mal schedule. Running the algorithm for 2 iterations on the 1093

small dataset takes an average of 1 millisecond. 1094

Fig, 14 and Fig. 15 show the objective of the proposed 1095

schedule and the time for which the simulation elapsed, 1096

respectively, for the medium dataset plotted against the num- 1097

ber of iterations. Fig. 14 shows that as the number of iter- 1098

ations increases, a better scheduling solution with a shorter 1099

makespan is produced. This is becausewe allow the algorithm 1100

to run for a larger number of iterations before termination, 1101

increasing the possibility of finding a better schedule. More- 1102

over, Fig. 15 further confirms our previous observation that 1103

an increase in the number of iterations increases simula- 1104

tion duration. We conclude from the two experiments that a 1105

VOLUME 10, 2022 96921



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

FIGURE 12. Objective vs. the number of iterations for a small dataset.

FIGURE 13. Elapsed time vs. the number of iterations for a small dataset.

reasonable schedule is obtained with an objective of around1106

31-time units using 16 iterations. The choice of 16 iterations1107

is because it provides a near-optimal solution while avoid-1108

ing longer simulations incurred by higher iteration counts.1109

Hence, 16 iterations on the medium dataset would take an1110

average of 690 milliseconds.1111

Fig. 16 and Fig. 17 show the objective of the proposed1112

schedule and the simulation duration respectively for the1113

large dataset against the number of iterations. Similar to the1114

medium dataset experiment, Fig. 16 shows that as the number1115

of iterations increase, we obtain a better schedule with a1116

shorter makespan. Hence, we conclude from the experiment1117

that we achieve a reasonable schedule with a makespan of1118

around 152-time units using 16 iterations. The 16 itera-1119

tions seem to be adequate for finding a suboptimal solution.1120

On the large dataset, the simulation takes on average 240001121

milliseconds (24 seconds).1122

H. ADAPTIVE SIMULATED ANNEALING1123

The previous sections discussed the various aspects of the1124

proposed SA algorithm with static scheduling. With static1125

scheduling, a batch of tasks arrive at the data center, and the1126

SA schedules them to the available resources. However, cloud1127

computing is a dynamic environment. Hence, the SA must be1128

adaptive to support newer tasks dynamically arriving at the1129

task queue and obtain a schedule including both previously1130

FIGURE 14. Objective vs. the number of iterations for a medium dataset.

FIGURE 15. Elapsed time vs. the number of iterations for a medium
dataset.

unscheduled and newly queued tasks. Hence, Algorithm 2 1131

shows the adaptive SA that differs from the SA in steps A-1 to 1132

A-6. First, the algorithm deals with the initial batch of tasks in 1133

the task list and evaluates as per the proposed model’s objec- 1134

tive function (see Equation 1). After convergence is achieved, 1135

it saves the best-so-far schedule and calls a delay function 1136

until a new batch of tasks arrives. The delay function is based 1137

on a random value from a Poisson distribution. The task list is 1138

updated with newly arrived tasks in ascending order of task 1139

deadlines. Then, it starts over the process of finding a new 1140

schedule with aminimummakespan that considers tasks from 1141

both the previous batch and the new batch. However, previous 1142

tasks whose execution had already started are excluded from 1143

the rescheduling process (i.e., no preemption of tasks) and 1144

only the tasks that did not start being executed are passed 1145

forth. In this way, the adaptive SA enables dynamic schedul- 1146

ing of tasks which is commonly used in cloud environments. 1147

VI. EXPERIMENTATION AND RESULTS 1148

This section presents the conducted experiments and the 1149

achieved results to validate the proposed virtualization frame- 1150

work and heuristic algorithm. Multiple experiments were 1151

conducted to evaluate the exact solution and the proposed 1152

heuristic solution. The quality and performance of the solu- 1153

tions yielded by both methods are compared. We further 1154

96922 VOLUME 10, 2022



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

FIGURE 16. Objective vs. number of iterations for large dataset.

FIGURE 17. Elapsed time vs. number of iterations large dataset.

compare the performance of the proposed heuristic solution1155

with two classical allocation algorithms – First Come First1156

Serve (FCFS) and Shortest Deadline First (SDF). Those algo-1157

rithms are commonly used in cloud data centers.1158

A. SIMULATION ENVIRONMENT FOR SA SCHEDULER1159

To experiment with the proposed heuristic method, we use1160

the same physical environment as the one used to validate1161

the exact method, i.e., a Windows machine equipped with1162

16 GB DDR4 DRAM at 3000 MHz and a 6-core proces-1163

sor at 3.6 GHz. Moreover, the SA is implemented using1164

Java, whereas the exact method is implemented using the1165

Optimization Programming Language (OPL) and the CPLEX1166

optimization engine. The implementation of the SA algorithm1167

is a standalone module integrated with the CloudSim toolkit1168

and validated in the next section B. The results show that the1169

proposed heuristic algorithm outperforms in comparison to1170

two known techniques: first come, first served (FCFS) and1171

shortest deadline first (SDF).1172

B. VALIDATION OF THE SA SCHEDULER1173

The three experiments that were used to validate the1174

exact solution method were applied to the SA algorithm.1175

Table 2, 3, and 4 provide task specifications of the first three1176

experiments. As discussed in section V, the SA first finds1177

Algorithm 2 Implementation of Adaptive SA
Input: Task list that consists of task execution time, required
blocks and deadline;
Initial configuration: Task list is sorted using earliest
deadline first Xsoln;
Determine initial temperature T(0);
Determine freezing temperature Tf;
A-1: Current schedule is empty;
A-2: repeat
while (T(i) > Tf and not converged) do
repeat
Perturb (Xsoln) by swapping two tasks randomly;
Find neighbor solution Xnew;
Compute 1Z = cost (Xnew − Xsoln);

if (1Z ≤ 0) then
Update Xsoln; /*accept perturbation*/

else if
(
random(0, 1) < e−1Z(i)

)
then

Update Xsoln
else
Reject Xnew

endif
until thermal equilibrium
Save best-so-far Xsoln;
Check convergence;
T(i+ 1) = T(i); /∗ cooling schedule ∗/
Endwhile
A-3: Current schedule = best-so-far Xsoln;
A-4: Delay (based on Poisson distribution);
A-5: Update task list with new set of tasks;
A-6: until (true)

an initial solution that might be infeasible, and then it itera- 1178

tively converges to suboptimal feasible solutions. Fig. 18 and 1179

Fig. 19 show the initial and the final solutions, respectively, 1180

that were obtained in less than a millisecond of the simulation 1181

time. In these figures, b represents a single FPGA resource 1182

block or PRR, k is a task, and t is the unit time. As the 1183

heuristic approach finds a schedule for the tasks, resources 1184

are allocated to each task for a specific duration of time. 1185

Moreover, both the exact and heuristic methods perform com- 1186

parably in terms of speed, and both produce the same schedul- 1187

ing solution for the first experiment. Therefore, solving this 1188

scheduling problem validates that both the methods produce 1189

optimal solutions. 1190

In the second experiment, the SA obtained the final solu- 1191

tion in one millisecond that has optimality. Fig. 20 shows the 1192

initial solution from the SA which was infeasible because 1193

the schedule violated the deadline constraint for task 4 (see 1194

Table 3 for task specifications). Task 4 has a deadline of 1195

t = 11, whereas its execution in the initial solution finished 1196

at t = 12. The SA then iterates further and yields the final 1197

solution within a millisecond, as shown in Fig. 21. The final 1198

solution of the proposed SA produced the same objective 1199

value as the exact method. The SA took 1 ms, whereas 1200

the exact method took 860 ms to obtain the same solution. 1201

VOLUME 10, 2022 96923



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

FIGURE 18. Experiment 1 initial solution using SA.

FIGURE 19. Experiment 1 final solution using SA.

Therefore, the second experiment indicates that the heuristic1202

approach outperforms the exact method and finds the optimal1203

solution for scheduling problems of this size.1204

It was observed that the exact solutions did not scale1205

when the number of tasks increased from 6 to 15 in the1206

third experiment. Therefore, an optimal solution can not be1207

found. Moreover, when the same experiment was conducted1208

using the implemented SA, an initial solution was obtained,1209

as shown in Fig. 22. The SA takes 19 milliseconds to reach1210

the final solution. The objective value, which is 19-time units,1211

is comparable to the exact method solution as shown in see1212

Fig. 23. We further increased the number of tasks to 100 and1213

measured the time required by the SA to obtain the final1214

solution. For this experiment, the exact solution was unable1215

to acquire any feasible solution since the search space with1216

1000 tasks is exponentially larger.1217

C. COMPARISON OF QUALITY VS. PERFORMANCE1218

This section conducts a set of experiments that reflect on the1219

proposed heuristic’s quality and performance. Table 5 shows1220

the number of tasks and resources in each experiment for1221

comparing the proposed heuristic’s performance and quality1222

against the exact solution. The quality of the solution is1223

related to the makespan objective and is measured in sec-1224

onds. On the other hand, the performance is the elapsed1225

simulation time to obtain the final solution, measured in1226

milliseconds (ms).1227

From Fig. 24, we observe that the SA heuristic achieves1228

identical results as the exact method for the first two exper-1229

iments. This validates that the algorithm can obtain optimal1230

solutions for small-scale problems. The next two experiments1231

provide a suboptimal solution, whereas the exact method fails1232

to carry out the simulation for experiment 4 due to the large1233

search space.1234

From Fig. 25, we observe that the exact solution method1235

becomes infeasible in experiment 3 as it takes over five min-1236

utes to find a solution. Moreover, the method was operated1237

in a CPLEX simulation for more than 20 hours; however,1238

the simulation did not finish, indicating that optimality in1239

the obtained solution is not guaranteed. On the other hand,1240

SA found a near-optimal solution in 19 ms showing an1241

appreciable gain in performance. Moreover, it obtained a1242

FIGURE 20. Experiment 2 initial solution using SA.

FIGURE 21. Experiment 2 final solution using SA.

FIGURE 22. Experiment 3 initial solution using SA.

FIGURE 23. Experiment 3 final solution using SA.

near-optimal solution for experiment 4 with 100 resources 1243

and 1000 tasks, whereas the exact method failed to run. 1244

In the next set of experiments, we consider the traditional 1245

FCFS and SDF algorithms and provide our implementation to 1246

draw comparisons between them and the proposed adaptive 1247

SA. Table 7 shows the number of tasks and resources used 1248

in the three experiments. The incoming tasks were sent to 1249

the schedulers in several batches to simulate a real-world 1250

cloud environment. Therefore, all the schedulers under the 1251

experiment are adaptive and perform dynamic scheduling. 1252

In FCFS, tasks in the list are scheduled in the order they 1253

arrive at the data center. The algorithm looks for available 1254

resources from the pool of resources and allocates them to 1255

each task. In case there are no free resources, it searches for 1256

resources that can execute the task at hand before its deadline. 1257

As the new set of tasks arrives, the scheduler tries to allocate 1258

resources for the first task in the set. It performs a linear 1259

search until it finds the required number of available blocks 1260

for allocation. It also tracks the estimated time for the busy 1261

blocks after which the execution ends. Suppose the sched- 1262

uler fails to find any available resource in the pool. In that 1263

case, it chooses among the occupied blocks that yielded the 1264

minimum estimated finish time of execution and queues up 1265

the task to these blocks. The estimated finish time of the 1266

execution for any block includes the execution time of the 1267

currently executed task and tasks previously queued to be 1268

executed by the block. Moreover, in contrast to the adaptive 1269

SA, if a new set of tasks arrives at the FCFS scheduler, tasks 1270

96924 VOLUME 10, 2022



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

FIGURE 24. Quality (makespan) of exact solution vs. SA.

FIGURE 25. Performance (elapsed time) of exact solution vs. SA.

from the old set will not be rescheduled even if the tasks1271

did not start executing. This is to obey the principle of the1272

algorithm so that tasks that come first are always served1273

before others.1274

In SDF, as a batch of tasks arrives at the data center, the first1275

step in the algorithm is to sort the tasks based on the deadline1276

in ascending order, i.e., shortest first. Then, it follows a simi-1277

lar approach to FCFS when scheduling each task to available1278

resources. However, when SDF deals with a newly arrived list1279

of tasks, it reschedules the tasks from the previous set, unlike1280

FCFS. It considers both the new and previous tasks that did1281

not start execution, and sorts based on deadline before finding1282

a schedule.1283

To benchmark and compare the quality of solutions1284

achieved by FCFS, SDF and adaptive SA, we use the datasets1285

specified in Table 7. All the three algorithms are implemented1286

and executed against every problem size. Fig. 26 shows1287

for each experiment (x-axis) the makespan that is achieved1288

(y-axis) when all the tasks are scheduled. We can observe1289

that adaptive SA gives the minimum makespan followed by1290

FCFS and lastly SDF. From the graph, it can be concluded1291

that the adaptive SA minimizes the makespan 17% to 28%1292

further compared to FCFS and 17% to 30% further compared1293

to SDF.1294

Fig. 27 illustrates the time elapsed during each algo-1295

rithm’s simulation to find a schedule. The x-axis represents1296

the problem size, while the y-axis represents the simulation1297

time. FCFS and SDF perform equally or slightly faster than1298

the adaptive SA for the first experiment. For the next two1299

TABLE 7. Experiments for benchmarking algorithm performance.

experiments, the SA outperforms the other two. The under- 1300

performance of FCFS and SDF is because whenever there is 1301

a lack of available resources, these algorithms must perform 1302

a linear search over all resources until resources that can 1303

finish the execution of the selected task before its deadline are 1304

found. Performing the search for each task increases in time 1305

complexity. In the case of the SA, all the tasks in the list are 1306

scheduled at once, validating the deadline constraint without 1307

doing any linear search on the resource pool. Therefore, the 1308

proposed heuristic technique takes a shorter time to find 1309

a schedule. Moreover, SDF takes even longer compared to 1310

FCFS because it performs sorting each time before schedul- 1311

ing a new batch of tasks. 1312

D. SENSITIVITY ANALYSIS 1313

In this section, we conduct various experiments to exam- 1314

ine the impact of different parameters in the scheduling 1315

algorithm. 1316

1) IMPACT OF A VARYING NUMBER OF RESOURCES 1317

AND TASKS 1318

The heuristic increases in time complexity when the number 1319

of tasks is increased. The degradation in performance is not 1320

as much when we increase other parameters, for example, 1321

the number of resources in the pool, the average amount 1322

of resources required by each task, or the execution dead- 1323

lines. The impact on the scheduling performance is much 1324

greater when the dataset size changes. To demonstrate this, 1325

we carried out two series of experiments. In the first series, 1326

we decrease the number of resource blocks in each exper- 1327

iment while keeping the number of tasks constant. In the 1328

second series, we increase the number of tasks in every 1329

experiment while the number of resources remains constant. 1330

Both experiments show an increase in the elapsed simulation 1331

time. Table 8 and Table 9 show the task specifications of the 1332

two experiments. 1333

Fig. 28 plots the results achieved from the experiments 1334

specified in Table 8. The x-axis presents the experiment num- 1335

ber, and the y-axis presents the elapsed time in milliseconds. 1336

We can observe from the figure that the increase in the 1337

elapsed time is linear. Moreover, the increase in elapsed time 1338

is because resources must carry out task execution for longer 1339

periods of time as we decrease the number of resources in the 1340

resource pool. Each resource block must execute a greater 1341

number of tasks in series one after another, and a smaller 1342

number of tasks are executed in parallel due to a lack of suf- 1343

ficient resources. Therefore, decreasing resources increases 1344

simulation time. 1345

VOLUME 10, 2022 96925



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

FIGURE 26. Quality (makespan) of adaptive SA vs. FCFS vs. SDF.

FIGURE 27. Performance (elapsed time) of adaptive SA vs. FCFS vs. SDF.

TABLE 8. Experiments to examine the impact of varying resources.

Fig. 29 shows the elapsed simulation time for the experi-1346

ments in Table 9. The figure shows an exponential increase1347

as we the number of tasks increases, keeping a fixed-size1348

resource pool. The impact of adding tasks to the scheduler1349

is greater than adding more resources. This is because the1350

performance of adaptive SA depends on the complexity equa-1351

tion where K is dominant, as stated in Equation 11.1352

2) IMPACT OF VARYING MEAN REQUIRED BLOCKS AND1353

EXECUTION TIME1354

Various cloud tasks require a specific number of resources1355

and execution time.We examine the effect of increasing these1356

two task parameters in the following experiments. On the1357

one hand, the mean required resource blocks are defined as1358

the number of FPGA resource blocks each task needs on1359

average to execute. On the other hand, the mean execution1360

time is defined as the time units a task needs on average to1361

finish execution. Since both are mean values, a Poisson dis-1362

tribution is used to acquire the absolute values for each task.1363

TABLE 9. Experiments to examine the impact of varying tasks.

FIGURE 28. Impact of varying resources on elapsed time.

FIGURE 29. Impact of varying tasks on elapsed time.

TABLE 10. Experiments to examine impact of varying mean required
resource blocks.

Table 10 and Table 11 show the details of the experiments 1364

conducted. We set the dataset size to be 500 tasks and the 1365

resource pool size to be 500 blocks for all the experiments. 1366

We observe that the increase in both the task parameters 1367

shows a slight exponential increase in the elapsed simulation 1368

96926 VOLUME 10, 2022



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

TABLE 11. Experiments to examine impact of varying mean execution
time.

FIGURE 30. Impact of varying mean required resource blocks and
execution time on elapsed time.

time in Fig. 30. This observation is because an increase in the1369

mean number of required resources makes tasks in the dataset1370

demand more resources in the FPGA. Since the resource pool1371

has limited resources, more tasks must wait until currently1372

executed tasks are completed. This increases the makespan,1373

as well as the time it takes for the algorithm to schedule all the1374

tasks. Similarly, increasing the mean execution time implies1375

that tasks in the dataset need resources to be allocated for a1376

longer period. Therefore, this parameter has the same impact1377

as the mean required blocks on the elapsed time. In [10] the1378

authors created a test environment in which they processed1379

images using vFPGAs and VMs and compared their results.1380

In this work, we recreated the environment on CloudSim and1381

conducted several simulations. As a result, the execution time1382

for processing an image using a vFPGA is much lesser than1383

using a VM. For example, one of the images finished process-1384

ing in 0.02310 seconds using a VM. The same image was1385

processed with hardware acceleration in 0.00504 seconds.1386

We can observe that for this test case, by using a vFPGA,1387

the execution time was reduced by about 78%.1388

VII. CONCLUSION AND FUTURE WORK1389

Cloud datacenters are rapidly adopting reconfigurable hard-1390

ware platforms to accelerate the execution of cloud tasks.1391

Moreover, reprogrammability in FPGAs is significant for1392

dynamic requirements in a cloud environment. However, this1393

is not straightforward because the integration of FPGAs in1394

clouds requires sophisticated approaches to provision them1395

as cloud resources. In addition, virtualization is a key feature1396

of the cloud computing paradigm and is essential for FPGA1397

integration. Since FPGA architecture is different from tra- 1398

ditional cloud resources, different virtualization mechanisms 1399

are developed and proposed in the literature. Besides virtual- 1400

ization schemes, scheduling techniques for FPGA resource 1401

pools are also an active field of research. Furthermore, 1402

validating virtualization and scheduling approaches using 1403

hardware platforms in real-time is not simple. This is because 1404

the hardware resources required to set up a cloud environ- 1405

ment are expensive, and building the environment is time- 1406

consuming. Hence, researchers are heavily dependent on 1407

using cloud simulators for validation purposes. 1408

This work explored several FPGA virtualization frame- 1409

works and proposed an efficient virtualization approach to 1410

DPR-enabled FPGAs in the cloud. Our framework abstracted 1411

physical FPGA chips into a pool of PRRs using grid-style 1412

partitioning and implemented the MFMA virtualization. 1413

Consequently, this enabled multi-tenancy and improved 1414

FPGA resource utilization. Moreover, this work used an 1415

infrastructure where FPGAs in the hardware layer are con- 1416

nected to host machines via PCIe and network devices via 1417

Ethernet. This is unlike most of the works reported in the 1418

literature, where only one type of physical connection was 1419

established with the FPGA. As a result of additional connec- 1420

tivity, the FPGAs could be used as both local and global accel- 1421

erators across the network. In addition, the framework used 1422

an adapter interface which served as a static communication 1423

interface between accelerators and the various framework 1424

managers. By automatically generating the adapter, users 1425

were allowed to be more productive and focus on application 1426

development instead of designing communication interfaces. 1427

Furthermore, the role of an FPGA hypervisor was significant 1428

as it provided frontend functions to initialize, operate, and 1429

terminate vFPGAs. The unifiedmanager interfaces with these 1430

functions to efficiently manage and maintain a pool of FPGA 1431

resources. Moreover, the hypervisor implementation in this 1432

work is novel because the frontend and backend functions 1433

were implemented in separate modules as a vFPGA manager 1434

and a configuration manager, respectively. This allowed for a 1435

modular framework architecture and made implementing the 1436

framework in CloudSim easier. 1437

A typical cloud receives a bulk of user requests to use accel- 1438

erator services, which are the cloud tasks that must be sched- 1439

uled efficiently. We formulated an optimization model whose 1440

objective was to minimize the makespan of cloud tasks. 1441

Unlike the models presented in the literature, the proposed 1442

model can be used to optimize resource allocation from a pool 1443

of architecturally homogenous resources, irrespective of the 1444

resource type. This means the model is suitable for resource 1445

types such as PRRs in a grid, columnar slots, and even whole 1446

FPGA fabrics in a multi-FPGA infrastructure. Moreover, the 1447

proposed implementation of the SA algorithm, a metaheuris- 1448

tic technique, yielded suboptimal solutions. We improved 1449

the SA by incorporating steps of the Metropolis algorithm, 1450

which explored neighboring solutions iteratively. In addition, 1451

we developed the SA, making it adaptive to support dynamic 1452

scheduling. This was crucial because tasks in a cloud arrive in 1453

VOLUME 10, 2022 96927



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

real-time instead of in batches. Therefore, the proposed algo-1454

rithm must be able to dynamically schedule these incoming1455

tasks to FPGA resources. Furthermore, upon performing sen-1456

sitivity analysis, it was observed that the impact of changing1457

the number of tasks on the simulation time is much higher1458

than changing the number of resources. This was due to the1459

heuristic complexity, which depends on the dataset size as1460

defined by Equation 11. Thus, increasing the total number of1461

tasks leads to exponential growth in the simulation time.1462

In comparison to the exact method, the SA was validated1463

by experiments using different datasets, where it achieved1464

the same quality of solutions with better performance. It also1465

proved to be scalable evenwith large datasets, unlike the exact1466

method, which became infeasible when the number of tasks1467

increased from 6 to 15. Moreover, we compared the SA to1468

the FCFS and SDF algorithms using three experiments with1469

different datasets and resource pool sizes. Results showed1470

that the SA minimized the makespan 17% to 28% more than1471

FCFS and 17% to 30% more than SDF.1472

In future work, we will develop a hardware implemen-1473

tation of the proposed virtualization framework to compare1474

with the software implementation in CloudSim. Moreover,1475

we will consider network constraints and delays in communi-1476

cation between the different CloudSim modules. In addition,1477

the simulator will be included with various FPGA resource1478

schedulers using algorithms such as swarm intelligence,1479

shortest job first, and round-robin. Lastly, we will improve1480

the optimization model to support heterogeneous resource1481

scheduling.1482

ACKNOWLEDGMENT1483

This paper represents the opinions of the author(s) and1484

does not mean to represent the position or opinions of the1485

American University of Sharjah.1486

REFERENCES1487

[1] (2011). The NIST Definition of Cloud Computing, SP 800-145. Accessed:1488

Feb. 28, 2019. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/1489

Legacy/SP/nistspecialpublication800-145.pdf1490

[2] C. C. Editor. Virtualization Glossary. CSRC. Accessed: Oct. 30, 2020.1491

[Online]. Available: https://csrc.nist.gov/glossary/term/Virtualization1492

[3] A. Vaishnav, K. D. Pham, and D. Koch, ‘‘A survey on FPGA virtualiza-1493

tion,’’ in Proc. 28th Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2018,1494

pp. 131–1317.1495

[4] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang,1496

‘‘Enabling FPGAs in the cloud,’’ in Proc. 11th ACM Conf. Comput. Fron-1497

tiers, May 2014, pp. 1–10.1498

[5] A. Putnam, ‘‘A reconfigurable fabric for accelerating large-scale datacenter1499

services,’’ IEEE Micro, vol. 35, no. 3, pp. 10–22, May 2015.1500

[6] A. M. Caulfield, ‘‘Configurable clouds,’’ IEEE Micro, vol. 37, no. 3,1501

pp. 52–61, Jan. 2017.1502

[7] J. Zhang, Y. Xiong, N. Xu, R. Shu, B. Li, P. Cheng, G. Chen, and1503

T. Moscibroda, ‘‘The Feniks FPGA operating system for cloud comput-1504

ing,’’ in Proc. 8th Asia–Pacific Workshop Syst., Sep. 2017, pp. 1–7.1505

[8] S. Yazdanshenas and V. Betz, ‘‘Quantifying and mitigating the costs of1506

FPGA virtualization,’’ in Proc. 27th Int. Conf. Field Program. Log. Appl.1507

(FPL), Sep. 2017, pp. 1–7.1508

[9] A. Al-Aghbari and M. E. S. Elrabaa, ‘‘A platform for FPGA virtualization1509

in clouds and data centers,’’ Microprocess. Microsyst., vol. 62, pp. 61–71,1510

Oct. 2018.1511

[10] A. A. Al-Aghbari and M. E. S. Elrabaa, ‘‘Cloud-based FPGA custom 1512

computing machines for streaming applications,’’ IEEE Access, vol. 7, 1513

pp. 38009–38019, 2019. 1514

[11] D. Koch, ‘‘Partial reconfiguration on FPGAs in practice—Tools and appli- 1515

cations,’’ in Proc. ARCS, Feb. 2012, pp. 1–12. 1516

[12] A.Wadhonkar and D. Theng, ‘‘A survey on different scheduling algorithms 1517

in cloud computing,’’ in Proc. 2nd Int. Conf. Adv. Electr., Electron., Inf., 1518

Commun. Bio-Inform. (AEEICB), Feb. 2016, pp. 665–669. 1519

[13] H. Ibrahim, R. O. Aburukba, and K. El-Fakih, ‘‘An integer linear pro- 1520

gramming model and adaptive genetic algorithm approach to minimize 1521

energy consumption of cloud computing data centers,’’ Comput. Electr. 1522

Eng., vol. 67, pp. 551–565, Apr. 2018. 1523

[14] A. Ealiyas and S. P. J. Lovesum, ‘‘Resource allocation and scheduling 1524

methods in cloud—A survey,’’ in Proc. 2nd Int. Conf. Comput. Method- 1525

olog. Commun. (ICCMC), Feb. 2018, pp. 601–604. 1526

[15] H. Hassan, M. A. Ashraf, W. Hussain, M. S. Akram, A. H. Butt, and 1527

Y. D. Khan, ‘‘A survey about efficient job scheduling strategies in cloud 1528

and large scale environments,’’ in Proc. Int. Conf. Innov. Comput. (ICIC), 1529

Nov. 2019, pp. 1–6. 1530

[16] T. A. Xavier and R. Rejimoan, ‘‘Survey on various resource allocation 1531

strategies in cloud,’’ in Proc. Int. Conf. Circuit, Power Comput. Technol. 1532

(ICCPCT), Mar. 2016, pp. 1–4. 1533

[17] M. Alaei, R. Khorsand, and M. Ramezanpour, ‘‘An adaptive fault detector 1534

strategy for scientific workflow scheduling based on improved differential 1535

evolution algorithm in cloud,’’ Appl. Soft Comput., vol. 99, Feb. 2021, 1536

Art. no. 106895. 1537

[18] S. A. Murad, A. J. M. Muzahid, Z. R. M. Azmi, M. I. Hoque, and 1538

M. Kowsher, ‘‘A review on job scheduling technique in cloud computing 1539

and priority rule based intelligent framework,’’ J. King Saud Univ. Comput. 1540

Inf. Sci., vol. 34, no. 6, pp. 2309–2331, Jun. 2022. 1541

[19] G. Dai, Y. Shan, F. Chen, Y. Wang, K. Wang, and H. Yang, ‘‘Online 1542

scheduling for FPGA computation in the cloud,’’ in Proc. Int. Conf. Field- 1543

Programmable Technol. (FPT), Dec. 2014, pp. 330–333. 1544

[20] Y. Zhao, C. Tian, Z. Zhu, J. Cheng, C. Qiao, and A. X. Liu, ‘‘Minimize 1545

the make-span of batched requests for FPGA pooling in cloud comput- 1546

ing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 11, pp. 2514–2527, 1547

Nov. 2018. 1548

[21] J. P. Orellana, B. Caminero, C. Carrión, L. Tomas, S. K. Tesfatsion, and 1549

J. Tordsson, ‘‘FPGA-aware scheduling strategies at hypervisor level in 1550

cloud environments,’’ Sci. Program., vol. 2016, pp. 1–12, Jun. 2016. 1551

[22] D. Su, C.Wang, L. Du, R. Li,W. Liu, andD. Zhang, ‘‘A cooperativemethod 1552

of task scheduling based on FPGA cloud platform,’’ in Proc. IEEE 7th Int. 1553

Conf. Comput. Sci. Netw. Technol. (ICCSNT), Oct. 2019, pp. 447–450. 1554

[23] M. Bertolino, R. Pacalet, L. Apvrille, and A. Enrici, ‘‘Efficient scheduling 1555

of FPGAs for cloud data center infrastructures,’’ in Proc. 23rd Euromicro 1556

Conf. Digit. Syst. Design (DSD), Aug. 2020, pp. 57–64. 1557

[24] P. S. Choudhary and M. S. Ali, ‘‘FPGA-based adaptive task scheduler for 1558

real time embedded systems,’’ in Proc. Int. Conf. Res. Intell. Comput. Eng. 1559

(RICE), Aug. 2018, pp. 1–4. 1560

[25] Z. G. Mohammed, A. M. A. Hamdoon, and M. S. Aziz, ‘‘Scheduling 1561

lecturer system based on FPGA,’’ in Proc. Int. Conf. Advance Sustain. Eng. 1562

its Appl. (ICASEA), Mar. 2018, pp. 54–58. 1563

[26] T. Yu, B. Feng, M. Stillwell, L. Guo, Y. Ma, and J. Thomson, ‘‘Lattice- 1564

based scheduling for multi-FPGA systems,’’ in Proc. Int. Conf. Field- 1565

Program. Technol. (FPT), Dec. 2018, pp. 318–321. 1566

[27] S. Deniziak and S. Bak, ‘‘Scheduling of distributed applications in HHP- 1567

CaaS clouds for Internet of Things,’’ in Proc. 23rd Int. Symp. Design Diag. 1568

Electron. Circuits Syst. (DDECS), Apr. 2020, pp. 1–4. 1569

[28] A. Al-Zoubi, K. Tatas, and C. Kyriacou, ‘‘Towards dynamic multi-task 1570

schedulling of OpenCL programs on emerging CPU-GPU-FPGA hetero- 1571

geneous platforms: A fuzzy logic approach,’’ in Proc. IEEE Int. Conf. 1572

Cloud Comput. Technol. Sci. (CloudCom), Dec. 2018, pp. 247–250. 1573

[29] R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya, 1574

‘‘CloudSim: A toolkit for modeling and simulation of cloud computing 1575

environments and evaluation of resource provisioning algorithms,’’ Softw., 1576

Pract. Exper., vol. 41, no. 1, pp. 23–50, 2011. 1577

[30] B. Louis, ‘‘CloudSimDisk: Energy-aware storage simulation in 1578

CloudSim,’’ M.S. thesis, Dept. Comput. Sci., Elect. Space Eng., Luleå 1579

Univ. Technol., Luleå, Sweden, Dec. 2015. 1580

[31] O. Knodel, ‘‘FPGAs and the Cloud–An endless tale of virtualization, 1581

elasticity and efficiency,’’ Int. J. Adv. Syst. Meas., vol. 11, nos. 3–4, 1582

pp. 230–249, Dec. 2018. 1583

96928 VOLUME 10, 2022



A. Farhan et al.: Virtualizing and Scheduling FPGA Resources in Cloud Computing Datacenters

[32] T. J. Chaney and C. E. Molnar, ‘‘Anomalous behavior of synchronizer1584

and arbiter circuits,’’ IEEE Trans. Comput., vol. C-22, no. 4, pp. 421–422,1585

Apr. 1973.1586

[33] K. Vipin and S. A. Fahmy, ‘‘DyRACT: A partial reconfiguration enabled1587

accelerator and test platform,’’ in Proc. 24th Int. Conf. Field Program. Log.1588

Appl. (FPL), Sep. 2014, pp. 1–7.1589

[34] Amazon EC2 F1 Instances. Amazon. Accessed: Feb. 14, 2019. [Online].1590

Available: https://aws.amazon.com/ec2/instance-types/f1/1591

[35] AWS F1. AmazonWeb Services. Accessed: Feb. 14, 2019. [Online]. Avail-1592

able: https://www.xilinx.com/support/university/aws-f1.html1593

[36] FPGAs, Microsoft Project Brainwave and DNN Acceleration. Intel.1594

Accessed: Feb. 14, 2019. [Online]. Available: https://www.intel.com/1595

content/www/us/en/analytics/artificial-intelligence/accelerating-ai-with-1596

microsoft-project-brainwave.html1597

[37] Instance Type Families. Alibaba Cloud Documentation Center.1598

Accessed: Feb. 14, 2019. [Online]. Available: https://www.alibabacloud.1599

com/help/doc-detail/25378.html?spm=a2c65.11461447.0.0.1600

3f7a2ff9TXWNyX1601

[38] K. Beghdad Bey, F. Benhammadi, F. Sebbak, and M. Mataoui, ‘‘New1602

tasks scheduling strategy for resources allocation in cloud computing1603

environment,’’ in Proc. 6th Int. Conf. Modeling, Simulation, Appl. Optim.1604

(ICMSAO), May 2015, pp. 1–5.1605

[39] J. Letkowski, ‘‘Applications of the Poisson probability distribution,’’ in1606

Proc. Academic Bus. Res. Inst. Conf. San Antonio, TX, USA, Mar. 2012,1607

pp. 1–11.1608

[40] O. Knodel, P. Genssler, and R. Spallek, ‘‘Virtualizing reconfigurable hard-1609

ware to provide scalability in cloud architectures,’’ in Proc. CENICS 10th1610

Int. Conf. Adv. Circuits, Electron. Microelectron. Rome, Italy, Sep. 2017,1611

pp. 33–38.1612

ABID FARHAN received the B.Sc. and M.Sc.1613

degrees in computer engineering from the1614

AmericanUniversity of Sharjah, in 2017 and 2019,1615

respectively. He worked as a Graduate Teach-1616

ing Assistant and a Research Assistant with the1617

American University of Sharjah. His research1618

interests include field-programmable gate array1619

and cloud computing. He is a member of the1620

Upsilon Pi Epsilon Honor Society. He won several1621

awards, including the Chancellor’s Scholarship1622

and the Sharjah Islamic Bank Annual Research Award.1623

RAAFAT ABURUKBA received the bachelor’s1624

degree in computer science and software engi-1625

neering, and the master’s and Ph.D. degrees in1626

computer engineering from the University of1627

Western Ontario, London, ON, Canada. He is cur-1628

rently an Assistant Professor with the Computer1629

Science and Engineering Department, American1630

University of Sharjah (AUS). Before joining AUS,1631

he was a Faculty Member of the Computer1632

Science and Software Engineering Department,1633

Pennsylvania State University, Erie, Pennsylvania. His research interests1634

include cloud computing middleware and applications, fog computing,1635

cooperation and coordination in distributed systems, privacy in dis-1636

tributed systems, economic-based models and approaches for decentralized1637

scheduling, and smart spaces.1638

ASSIM SAGAHYROON (Senior Member, IEEE) 1639

received the M.Sc. degree in electrical engineer- 1640

ing from Northwestern University, Evanston, IL, 1641

USA, and the Ph.D. degree from The University of 1642

Arizona, Tucson, AZ, USA. From 1993 to 1999, 1643

he was a member of the Department of Com- 1644

puter Science and Engineering, Northern Arizona 1645

University. In 1999, he joined the Department 1646

of Mathematics and Computer Science, California 1647

State University. In 2003, he joined the Depart- 1648

ment of Computer Science and Engineering, American University of 1649

Sharjah, where he served as the Department Head for seven years. He was 1650

an Invited Technical Reviewer for some of the National Science Founda- 1651

tion programs and served on the technical program committees of many 1652

conferences. He has many publications in international conferences and 1653

journals. His research interests include innovative applications of emerging 1654

technology in the medical field, power consumption of portable electronics, 1655

and FPGAs-based design. 1656

MOHAMMED ELNAWAWY received the B.Sc. 1657

(summa cum laude) and M.Sc. degrees in com- 1658

puter engineering from the American University of 1659

Sharjah, United Arab Emirates, in 2017 and 2019, 1660

respectively. In 2020, he joined as a Laboratory 1661

Instructor with the Computer Science and Engi- 1662

neering Department, the American University of 1663

Sharjah, where he worked as a Graduate Teaching 1664

and Research Assistant. He won several awards, 1665

including the American University of Sharjah 1666

Graduate Student Research, Scholarly, andCreativeWork ExcellenceAward, 1667

and the Sharjah Islamic BankResearchAward. He is amember of theUpsilon 1668

Pi Epsilon Honor Society. His research interests include machine learning, 1669

field-programmable gate arrays, and embedded systems. 1670

KHALED EL-FAKIH is currently a Professor with 1671

the College of Engineering, American University 1672

of Sharjah, where he joined in September 2001. 1673

He spent a sabbatical year at the Verimag 1674

Laboratory, University of Grenoble 1 (UJF), 1675

France. He acted as the Program Co-Chair 1676

of the 2008 International Conference on For- 1677

mal Techniques for Networked and Distributed 1678

Systems and 2015 International Conference on 1679

Testing Software and Systems. His research inter- 1680

ests include formal testing, automatic synthesis of distributed systems, 1681

optimization, and application of heuristic algorithms. 1682

1683

VOLUME 10, 2022 96929


