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ABSTRACT The fully connected topology, which coordinates the connection of each neuron with all other
neurons, remains the most commonly used structure in Hopfield-type neural networks. However, fully
connected neurons may form a highly complex network, resulting in a high training cost and making the
network biologically unrealistic. Biologists have observed a small-world topology with sparse connections
in the actual brain cortex. The bionic small-world neural network structure has inspired various application
scenarios. However, in previous studies, the long-range wirings in the small-world network have been found
to cause network instability. In this study, we investigate the influence of neural network training on the
small-world topology. The role of the path length and clustering coefficient of neurons is expounded in
the neural network training process. We employ Watt and Strogatz’s small-world model as the topology
for the Hopfield neural network and conduct computer simulations. We observe that the random existence
of neuron connections may cause unstable network energies and generate oscillations during the training
process. A new method is proposed to mitigate the instability of small-world networks. The proposed method
starts with a neuron as the pattern centroid along the radial, which arranges its wirings in compliance with
the Gaussian distribution. The new method is tested on the MNIST handwritten digit dataset. The simulation
confirms that the new small-world series has higher stability in terms of the learning accuracy and a higher
convergence speed compared with Watt and Strogatz’s small-world model.

INDEX TERMS Small world network, artificial neural networks, hopfield neural networks, k satisfiability,

network theory (graphs), logic programming.

I. INTRODUCTION (e.g., convolutional neural networks) using different learning

John Hopfield introduced a neurobiology-based computa-
tional model in his research on content addressable mem-
ory in 1982 [1], and the Hopfield neural network (HNN)
became one of the best bionic computational models of that
time. The HNN showed various advantageous properties such
as object recognition capabilities, categorization, and error
correction. Despite the recent dominance of neural networks

The associate editor coordinating the review of this manuscript and

approving it for publication was Rodrigo S. Couto

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

methods (e.g., gradient descent), classifiers (e.g., softmax),
and hardware accelerations (e.g., CUDA), the Hopfield-type
neural network is still one of the most effective computational
models that can be trained similar to the real biological brain.
The HNN is a spin dynamics system that coordinates the
connection of each neuron with all the other neurons (without
self-loops, Discrete HNN). Each neuron pair is connected
by a synaptic weight, and each neuron performs a weighted
summing on the states of other neurons. The neuron state is
activated by the presetting threshold of the signum function
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and the influences of the other neurons. The weight matrix
of Hopfield neural networks is symmetric and has zeroes as
diagonal elements. The Lyapunov function is employed to
define its minimum network energy. Driven by the minimized
energy, neurons flip the state towards the local minimum
solution.

Decades after its introduction, the HNN had been used and
enhanced in various applications, such as object recognition
[2], image restoration [3], combination optimization [4], and
very-large-scale integrated arrays [5]. By mining the logic
relations of a neural network, Abdullah proposed a new learn-
ing method for the DHNN in 1992 [6]. In 2011, Sathasivam
and Abdullah expanded this method and formally named it
the Wan Abdullah method [7]. The Wan Abdullah method
first processes neurons in bipolar states (DHNN), and then,
the Boolean relation between the pair of neurons is written
as a clause in a conjunctive normal form (CNF). When all
clauses are “true,” the CNF is satisfied. The cost function
is established, and the inconsistencies in the clauses are
mostly minimized. In 2016, Mansor et al. extended the Wan
Abdullah method to 3-satisfiability (3-SAT) to optimize the
pattern satisfiability problem [8]. In 2017, Kasihmuddin et al.
proposed a hybrid method that employed the HNN and
genetic algorithm to solve k-SAT problems [9]. In 2020,
Sathasivam et al. [10] proposed a method that integrated ran-
dom k-SAT with the HNN. Despite the HNN being enhanced
with various reinforcements from the Wan Abdullah learning
method in terms of computing efficiencies, learning accura-
cies, etc., fully connecting a large number of neurons remains
a bottleneck for training large neural networks. In practice,
if a 400 x 400 pixel image is used, a neural network would
need 160,000 neurons to generate a weight matrix of a size
of 1/2 x (160,000 — 1) x160,000. This leads to an insur-
mountable problem of allocating considerable memory space
for the weight matrix [11]. During the training process, enu-
meration of such a large weight matrix would also reduce
the learning efficiency of the algorithm. Moreover, the fully
connected topology is biologically unrealistic [12]. As shown
in biological applications [13], the structure of the real brain
is sparser than that of the fully connected topology, each
neuron is connected with only a few other neurons, exhibit-
ing more complexity than the fully connected and the fully
random topologies [14]. In a recent biological study [15], the
small-world topology was observed in human anatomical and
functional brain networks. The small-world network is named
based on the analogy with the small-world phenomenon, and
it is a high-centrality network discovered by Duncan J. Watts
and Steven H. Strogatz in 1998 [16]. The Watts and Strogatz
(WS) small-world model starts with a regular ring lattice of N
nodes, where each node connects with K nodes from a nearby
region. Subsequently, based on parameter P (0 <P < 1),
each node is rewired at one side (K/2 connections per side)
to other randomly chosen nodes in the network, forming a
high centrality network. After biological observations, the
bionic sparse small-world network has attracted significant
attention across many fields. Scientists have evaluated the
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influence of the topology on the network memory function
and measured varieties of topologies in terms of storage
performance and pattern retrieval [17], [18]. The small-world
network with several shortcuts has been shown to have the
same efficiency as a random network. Recently, researchers
further confirmed the biological reality of small-world net-
works. Chen et al. [19] reported that the cerebellar functional
connectome of an actual human is small-world organized.
Rosen et al. [20] estimated the absolute number of axons
linking cortical areas from a whole-cortex diffusion MRI
connectome and observed that real human cortical areas are
small-world connected. Pircher ef al. [21] further compared
the small-world network between artificial and biological-
based neural networks and observed remarkable parallels
between these two neural networks. Scientists have started
exploring the specifics of the characteristics of small-world
networks. Arvin et al. [22] explored the role of short and long-
range connections in small-world networks. Their research
revealed that short-range connections dominate the dynam-
ics of the system, e.g., affect the volatility and stability of
the network, and long-range connections drive the system
state. Riidiger er al. [23] also reported that the long-range
connections of small-world networks may make the network
unstable, supporting frequent supercritical mutations. Ercsey-
Ravasz et al. [24], [25] uncover a rule that the probability that
two neurons are connected declines exponentially as a func-
tion of the distance between them. This important principle is
termed ‘‘the exponential distance rule”. Takagi [26] studied
energy constraints for modeling human brain connections.
His results shown that the energy constraints play a crucial
role in regulating brain structures. These studies have implied
the random rewiring mechanism of the WS small world
model may form a neuron connection distribution that does
not conform to the bio-growth cost rule and the exponential
distance rule. In addition, the current WS small-world model
is yet to consider the specifics of neural network training,
such as the consistency of network energy and the random
neuron connections that may cause unstable network energy.
Therefore, clarifying the influence of neural network training
on the small-world topology and improving its stability are
urgent.

The contributions of this study are as follows: 1) The
impact of the small-world topology on the HNN training
is investigated. The role of the path length and clustering
coefficient of neurons in the neural network training pro-
cess is elaborated. 2) The instability shortcoming of the
random rewire mechanism in the WS small-world model
is discussed. The random existence of neuron connections
that may cause unstable network energies and generate oscil-
lations during the training process is highlighted. 3) The
Gaussian-distributed small-world wiring method is proposed
to improve the stability of the small-world HNN. The nov-
elty of the new rewiring method is that it organizes neuron
connections in compliance with the Gaussian distribution.
This reduces random connections from the distant area and
makes the short-range connections dominate the main part of
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network energy, improving the stability of the small-world
network model.

The remainder of this paper is organized as follows:
In Section II, we provide a brief overview of the DHNN.
We introduce the fully connected topology, Hebbian learning
method, and 2-Satisfiability (2-SAT) Wan Abdullah learning
method. Then, we present the theory of the small-world
network model and the network properties. In section III,
we describe the small-world DHNN. We start by elaborating
on the impact of the small-world topology on discrete neural
network training. Then, we discuss the implementation of
our computer simulation. Finally, we discuss our evaluation
of small-world network characteristics and learning accu-
racies. In section IV, we explain the proposed Gaussian-
distributed small-world wiring method. We introduce the
instability problem of the small-world neural network and
the Gaussian -distributed small-world wiring method. Next,
we discuss the coincidence degree comparison test and logic
energy validation test. Finally, we describe our digit recogni-
tion experiment. In section V, we provide the conclusions.

Il. BACKGROUND

A. DHNN

The DHNN is a special HNN capable of processing binary
data. The DHNN remains in compliance with the spin
dynamic system; however, the state of each neuron is bipolar
and is usually denoted by {0,1} or {—1,1}. Each neuron
is fully connected without the self-loop, and each neuron
pair is connected by synaptic weight. Figure 1 illustrates
a fully connected DHNN with n neurons. Xi, Xa, ..., X,
represents the output of each neural node, and 71, 7> . ..., T,
represents the predefined threshold. Each neuron performs
a weighted sum on the states of other neurons, denoted by
Vi = Z}’zl w; j-Xj, where i # j, i € {1,n}. The state of neural
node i can be calculated by its activation function, which
typically is a signum function. S; represents the state of neural

X; X, X, X,

Node; Node, Node; Node,

FIGURE 1. Fully connected Hopfield neural network.
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node i,

S — 1 where V; — T;> 0
" | =1 where V; — T;< 0.

Therefore, the state of neura 1 node i is determined by thresh-
old 7; and the influences received from the states of other
nodes. The weight matrix of the DHNN, which is symmet-
ric and zero diagonal, has w;; = wj;, wi; = wj; =
0. The state updating rule is maintained by S;(t + 1) =
signum[V; (t)—T;]], where ¢ represents the time of process for
the neural node i. The Lyapunov energy function is E (¢) =
—5 3 Y iwiSi (1S (1) — Y, TiSi (1), where i # j. The
energy function reduces with dynamics monotonically. Sub-
sequently, motivated by the minimized energy, neural nodes
flip state towards the local or global minimum solution.

In the training process, the weight between neurons i and j
can be calculated by (1). In equation (1), s denotes the pattern
number. This weight updation method is usually called the
Hebbian method.

m
wig =y v 1) (2v; 1) ()
s=1
In the Wan Abdullah method, energy is built upon the sat-
isfiability of the clause composed of neurons. o represents
the Boolean relations between neurons i and j, and the CNF
is written as (2). To identify inconsistencies between the
clauses, (2) is negated by applying the De Morgan law and is
written as (3). Subsequently, the cost function can be written
as (4).

o = (Si \4 Sj) AN (Si \ ﬁSj) A (—'Si \ Sj)

A(=Si v =8;) A (T v Tj) )
o = (—'S,' A —'Sj) Vv (—'S,‘ VAN Sj) Vv (S,‘ A —'Sj)
Vv (Si AS)) Vv (=T A —Tj) 3)
E =l(l—S-)l(l—S<)~|—1(1—S-)l(1+S-)
* 72 "2 ) "2 /
+1(1+S~)1(l—S-)+1(1+S-)1(1+S')
2 "2 ) "2 /
+l (1-T) ! (1-1)) )
2 ) /

The synaptic weight can be computed in Table 1. In equa-
tion (2), when all the clauses (composed of two literals) are
satisfied, « is called 2-satisfied. When extended to the entire
network, each weight of the network can be computed by
iterating all the pairs of neurons according to equations (3),
(4), and Table 1.

In this study, we implemented both the Hebbian method
and the 2-SAT Wan Abdullah learning method to explore the
impact of small-world topology on neural network training
in our computer simulations. We compare these two meth-
ods under the small-world neural network regarding learning
accuracy and convergence speed. However, higher 3-SAT
and Max-kSAT are not integrated because the small-world
rewiring mechanism does not guarantee connections between
any three neurons.
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TABLE 1. Wan Abdullah method for 2 satisfiability.

1 1 1 1 1 1 1 1 1 1
E(1—51-)5(1—5]») E(1—51-)5(1+ ) S+ si)5(1—sj) S+ si)5(1+ ) E(l—Ti)E(l—T,-)
1 1 1 1 1
= (1-5-5+ =(1+5-5- =(1-5+8- =;(1+5+85+ =.(1-1-T;+
5:5;) 5:5;) 5:5;) 5:5;) T;T;)
1 1
=5 Wi;SiS; = W;S; = WiSi = 5 Wryp TiTy — Wy Ti=WrT;
” 1 1 1 1 0
' 4 4 4 4
w 1 1 1 1 0
! 4 4 4 4
1 1 1 1
Wi j - = = -= 0
2 2 2 2
Wr, 0 0 0 0 %
1
Wr, 0 0 0 0 n
1
Wr,r, 0 0 0 0 -

k=4, P=0

k=4,P=1

FIGURE 2. Small world network and topologies formed by different rewired probabilities.

B. SMALL-WORLD NETWORK MODEL

The small-world network, named after the analogy with the
small-world phenomenon, is a high-centrality network dis-
covered by Watts and Strogatz in 1998 [16]. The small-world
network is a network model with a high clustering coefficient
and low average path length. The nodes in the small-world
network are mostly not neighbors of each other. However,
anode pair can access another pair by just a few steps (neigh-
bors). Therefore, the small-world network is defined as a net-
work [16] where Loo log N, where L denotes the average path
length of the network, and N denotes the number of nodes in
the network. Loo log N means L increases proportionally to
log N. Meanwhile, given a node i that might connect with k
nodes in the network and denoting e as the actual connections
of node i, the maximum connection quantity can be written
as Max(e) = 1/2 k (k — 1), representing the node i being fully
connected with the other nodes. The clustering coefficient of
node i is defined as W The entire network clustering

coefficient can be computed by averaging the total clustering
coefficient of all nodes.
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In 1998, WS proposed a method to form the small-world
network [16]. The method proposed two stages to form
the small-world network: initializing and rewiring. With n
nodes in the network initializing stage, each node is con-
nected with k nodes from the near region to begin forming
a high-centralization ring structure. Each node N; is divided
into two sides (left and right) in the rewiring stage, with k/2
connections per side. P is the rewiring probability. Connec-
tions are taken from the right side and rewired to a randomly
selected node by P, and no self-loop is stipulated. Adjusting P
can yield a small-world network between the regular network
(P = 0) and the random network (P = 1). Figure 2 shows
three topologies formed by different rewiring probabilities
from a 20 node network. The case k = 4, P = 0, forms a
regular network, while k = 4, P = 1 generates a random
network. The small-world network may be formed when P is
in the interval [0,1]. This illustrates a small-world network
formed under k¥ = 4, P = 0.5. By adjusting the P, the
small-world network can be formed between the regular and
random networks.

VOLUME 10, 2022
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The WS small-world model elaborates on the small-world
phenomenon in the real world, such as the neural network
of the worm Caenorhabditis elegans, the power grid, and
the collaboration graph of film actors. In complex network
theory, the small-world network belongs to a type of ran-
dom network. However, the small-world network has unique
bionic advantages that differ from other complex networks.
In this study, we employed the WS small-world model as
the topology for HNN. As the small-world network is the
only complex network observed in real biological situations,
we did not compare it with other complex networks regarding
performance. However, the clustering coefficient and average
length, important network properties in complex network
theory, were considered.

C. SMALL WORLD NETWORK PROPERTIES
1) CLUSTERING COEFFICIENT
The clustering coefficient is the probability that specific neu-
rons in a network are likely to cluster together [16]. In the
local network, for node i, which has k neighboring nodes
connected, the local cluster coefficient, C;, of neuron i can
be written as (5). Numerator e denotes the number of wired
connections between neighbors, and denominator %k k-1
indicates the maximum possible (fully connected) connection
number.
e

C; %k(k—l) k # 1 5)
Extended to the network with n nodes. The summing of
clustering coefficient C; can be averaged to rewrite C,, as

1 n
q=;2a (©6)
=

2) AVERAGE PATH LENGTH

The average path length is defined as the average distance
between each node pair in the network [16]. Suppose D; ;
denotes the distance of the shortest path between neural node i
and j in the network, then L represents the average path length
that can be computed by (7), where (g) denotes the number
of all possible pairs of neural nodes in the n nodes network.

-1
n
L= <2> > Dij )

i#j

Ill. SMALL-WORLD DHNN

A. IMPACTION OF SMALL-WORLD TOPOLOGY

ON DHNN TRAINING

We observed two major changes from the WS small-world
model that significantly impact DHNN training. The first is
the changes in the network characteristics. The sparse neuron
connections increase the average path length and reduce the
clustering coefficient of the network. The degradation of
the network characteristics may eventually cause insufficient
training neurons, decrease the training efficiency, and even
generate oscillations. The second is the changes in network
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energy. The small-world network energy may be divided into
two parts: the regular lattice part is formed by K/2 nodes from
the near region, and randomly chosen nodes form the random
rewire part of the network. The network neuron flips the state
driven by these two energy parts. The regular lattice part is the
same as that formed by the same region of the network. But
the random rewired part is unstable. It may cause the neuron
to flip to the wrong state. In this section, we compare the
training process of the fully connected structure with that of
the small-world structure, and then elaborate on the impact
on network training in terms of network characteristics and
energy.

Figure 3 illustrates two neural network training processes.
The figure on the top is the fully connected structured neural
network, and the bottom is the small-world structured neural
network. The yellow node represents the neuron in training.
The fully connected structure organizes the yellow node to
connect with all other nodes. The yellow node connects to
only a few blue nodes in the small-world structure. The nodes
in the green frame represent the regular lattice nodes, and the
rest of the nodes represent the random rewired nodes of the
small-world network. During the training process, the yellow
node traverses from left-top to right-bottom of the network.
Under the fully connected structure, each weight between the
yellow and blue nodes needs to be updated. By comparison,
the yellow node connects fewer blue nodes under the small-
world structure, thus requiring fewer weights to be updated.
The Hebbian method and the Wan Abdullah method remain
applicable as the learning method for the small-world neural
network, and the signum function decides the neuron state.
We noted no significant difference in the training mechanism
between the fully connected and the small-world neural net-
work. The changes in network characteristics and energy are
two essential factors that impact neural network training.

Training cycle of fully connected structured HNN

Training cycle of small-world structured HNN

FIGURE 3. Small-world topology vs full connected topology on Hopfield
neural network training process.

The impact of the network characteristics is mainly
reflected in the energy converge efficiency of neural network
training. The network characteristics are described by two
factors: the average path length and the clustering coefficient
of the network. In Figure 4, we compare the average path
length of the fully connected topology with that of the small-
world topology HNN. In the fully connected structure, each

95373



IEEE Access

J. Sun et al.: Analysis and Optimization of Network Properties for Bionic Topology Hopfield Neural Network

shortcuts 9!

path length = 1

Fully connected topology HNN

path length = 2

Small-world topology HNN

FIGURE 4. Topology impaction on Hopfield neural network training:
average path length.

node pair has a shortcut, which means any node can be
accessed in just one step. Hence, the path length of the fully
connected structure equals one. After one round of training,
each neuron considers the effects of all the other neurons
in the network. However, most neuron pairs may not have
a shortcut in the small-world structure. The regular lattice
ring assures that each neuron is accessible, and the random
rewire decreases the average path length. Figure 4 illustrates
an example of a neuron pair whose path length is two.
During network training, each neuron only considers a few
connected neurons in the network. Therefore, the neuron in
the small-world structure requires more training cycles to
accumulate the full effects of all the neurons. The average
path length usually is proportional to the number of train-
ing iterations. The longer the average path length, the more
training iterations are required. In addition, the clustering
coefficient impacts the network training from another angle.

In Figure 5, the clustering coefficient of the fully connected
structure equals one because all neighbors are connected,
where ¢ = %k(k — 1). The clustering coefficient of the
small-world structure is smaller than that of the fully con-
nected structure; C; = ﬁ is the clustering coefficient
of the yellow neuron, K’ denotes the number of neighbors
(means the neurons that are connected with the yellow neu-
ron), and e represents the actual connection number between
its neighbors. The clustering coefficient describes how the
neighbors of a neuron are clustered together. The smaller
the clustering coefficient, the fewer neighbors are connected,
and the lower the energy transfer efficacy. Therefore, more
training is required.

The composition of the small-world neural network energy
differs from the fully connected network. In Figure 6, a digit
image is selected as the data pattern to display the network
energy. The small-world topology is formed by the WS
method. We evaluated and compared the energy distribution
for the small-world and the fully connected topologies. Under
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neighbors of yellow neuron

Clustering coefficient of fully connected topology

Clustering coefficient of small-world topology

FIGURE 5. Topology impaction on Hopfield neural network training:
clustering coefficient.

the fully connected topology, the energy distribution appears
uniform. A neuron may absorb the energy from each neuron
in the network. The signum function decides the neuron states
by summing the energy. By contrast, the energy distribution
of the small-world network is highly centralized. The neu-
rons compose the ring lattice occupying the central part of
the energy. The energy of the rewiring part is distributed
randomly and scattered in the network. During the training
process, the neuron absorbs energy from both the lattice ring
and the randomly wired neurons. Unconnected neurons are
indirectly affected by the connected neurons. In addition, the
energy of the random wire part is composed of randomly
chosen neurons; hence, it is not guaranteed to be consistent
with the remaining parts of the fully connected network.

B. IMPLEMENTATION OF SMALL WORLD DISCRETE
HOPFIELD NEURAL NETWORK

1) THE SMALL-WORLD DHNN ALGORITHM

To better clarify the small-world DHNN, we constructed the
WS small-world model over the DHNN. We divided the
small-world HNN algorithm into two stages. In the initial-
izing stage, a user is required to input the parameters k and
rewire probability P. Then, the weight matrix for the HNN
is initialized by the connection information of the topology.
In the learning stage, both the Hebbian and 2SAT Wan Abdul-
lah learning methods are integrated, and a variable is defined
to switch between the learning methods. Either the Heb-
bian or 2SAT Wan Abdullah method may update the weight
matrix. The signum function is applied to update the neuron
state till all neurons remain at a stable state, and then the
stop condition is met. Then, the output pattern can be pro-
duced. Based on the assumption that the input is a pattern in
binary format, the algorithm of the small-world HNN is as
follows.

VOLUME 10, 2022
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FIGURE 6. Energy comparison: small-world neural network vs fully connected neural network.

TABLE 2. Parameters of small-world Hopfield neural network.

Parameters
Parameter name Data type Descriptions
num_neurons Integer neuron numbers of the network
k_neurons Integer number of connected nearest neurons
p_rewire Double rewire probability
weights Double 2d matrix to store weights
links Integer 2d matrix to store links
patterns Scalar matrix to store data for train patterns
cur_patterns Scalar Matric for output pattern
num_patterns Integer Number of patterns
threshold Double Threshold T of neural work
iterations Long Iterations of training cycle or epoch

Initializing stage:

Step 1: Initialize the input pattern, and specify the size of
the pattern n and the data of the neuron states.

Step 2: Initialize the small-world parameters, specify
parameter k, rewire probability P, and allocate the weight
matrix with n x k size.

Step 3: Initialize the small-world network, and connect
each neural node with its k nearest neighbor nodes.

Step 4: Rewire each neural node, divide k/2 connections
for each neural node as “left” and the remaining k/2 connec-
tions as “‘right.” Hold the connections of the left side of the
neural node, and rewire the remaining connections from the
right side to other nodes selected randomly by probability P.

Learning stage:

Step 5: Start iterating neural nodes in the network, and read
the neuron state from the pattern.

Step 6: If the Hebbian method is specified, compute
the weight for neural node i, j by equation w;; =

Y (2vi—1) (2Vf—1). Sum the weight calculated for
each pattern.

Step 7: If the 2-SAT Wan Abdullah method is specified,
check the weight value from equation (5). The Wan Abdullah
method for 2-SAT by the neuron state represents variables of
the clause.

VOLUME 10, 2022

Step 8: Update the state for neural nodes by S; =
{ (1) XZ::: “2 : ;iz 8 , where T; is the presetting threshold,
and V; can be computed by V; = /| w; j-x;. x; refers to the
output of neural node j.

Step 9: Check the stop condition where all neurons of
the network meet S (f) = S (¢t — 1), then stop the training
iteration. Otherwise return to Step 5. Continue the training
iterations till the stop condition is met.

Step 10: Obtain the weight matrix. Compute the state for
all neurons of the network by signum function. Yield the
pattern for output.

2) IMPLEMENTATION

The small-world-based HNN algorithm was implemented
using C++4 for Microsoft visual studio 2017 on a machine
with an i5 CPU, 16 GB memory, and the Windows 10 oper-
ating system. In our embodiment, the neural network’s size
(number of neural nodes) is defined as an integer variable.
The rewire probability P and the number of the nearest neu-
ron k are parameterized to form the small-world network.
A multi-dimensional array is assigned to store the weight
matrix and the connection in the formation. The weight
matrix is allocated on a continuous memory address to boost
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the searching and iteration speed. In the initializing stage, the
weight matrix is initialized according to the network size and
the value of parameter k. Then, each node is connected with k
neurons from the nearest region. While rewiring neurons, the
random number generator (RNG) service is applied to gener-
ate the rewire probability P and the random address of neural
nodes for selection. Each neuron rewires k/2 connections
using the probability P. The input pattern is stored in a scalar
matrix in the learning stage, and the pattern data is assigned
to the neuron at the corresponding address. The Hebbian
and Wan Abdullah methods are alternatives for updating the
neuron weights. The state of the neuron is determined by
1 where V; — T;> 0
Owhere Vi — Ti< 0’
the neuron’s threshold, and V; is updated by summing up the
neuron states. As an intermediate result, these states are saved
in a separate matrix. The training process is maintained till
the stop condition is met. In our embodiment, two criteria
are considered to stop training. The first criterion is that all
neurons remain stable and meet the condition S(t)=S(t-1).
Meanwhile, a threshold (epoch) for limiting the maximum
learning cycle is integrated to prevent the program from
overflowing. In the retrieval stage, the output pattern can be
computed by applying the signum function to the learned
weight matrix.

the signum function S;= T; denotes

C. MEASUREMENTS AND TRAINING

EXPERIMENTAL RESULTS

To further explore the competency of the small-world net-
work as the topology of HNN, we measured its performance
in two aspects. First, we measured the network characteristics
and compared them with the fully connected network. Sec-
ond, to comprehensively measure the learning competence
of the small-world neural network, we tested the learning
accuracy under different combinations of k and P.

The first test was run on small-world structures of 100,
500, and 1000 nodes, mainly considering the impact of the
rewiring on the network clustering coefficient and the aver-
age path length. By making k constant, P was increased
gradually. The network clustering coefficient and average
path length were then measured. In Figure 8, the horizontal
coordinates represent the rewiring probability, and the ver-
tical coordinates represent L(P)/L(0) and C(P)/C(0), which
denote the ratios of the average path length and clustering
coefficient when rewiring probability equals P and 0. From
Figure 8, we observed that while the rewiring probability
remains small, a slight increase leads to a substantial drop
in the average path length; meanwhile, the impact on the
clustering coefficient appears very small. Therefore, such
network characteristics may enable the small-world network
to reduce its average path length by only slightly rewiring
and further shrink the gap with the fully connected network.
This also suggests that the sparse small-world may achieve
a performance comparable to the fully connected network.
Its competency as a neural network topology is confirmed
regarding network characteristics.
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In the second test, we measure the learning accuracy of
the small-world neural networks formed by different com-
binations of the parameter k and rewiring probability P.
We defined learning accuracy as the similarity between the
retrieved and original input patterns. We assumed that k
equals the size of a network with n neurons and that the
rewiring probability P equals 0. Then, k is gradually reduced
to k = 4, and for each k, P is distributed from O to 1 at
0.05 intervals. Figure 9 shows the similarity distributions
with different combinations of k and P. We observed that
in most cases where k is large (k > 20), the similarity
equals 1, which means that the retrieved pattern is entirely
consistent with the original pattern. Points at which the sim-
ilarity is less than 1 mostly appear in the area where k is
small (k < 16). Figure 9 shows the trend in learning accuracy
under different combinations of k and P for the small-world
network characteristics. Starting with P = 0, when k tends
toward n, it means the network is closer to the fully connected
structure and tends toward obtaining the same learning results
as the fully connected neural network. The fully connected
neural network is obtained till k = n. Conversely, while k is
gradually decreased by only slight rewiring, we may obtain a
remarkably high learning accuracy (learning accuracy = 1).
When k drops to a small value (k < 20), the learning accuracy
also drops. This trend is also observed throughout our tests on
the MNIST dataset.

However, we also realize that one combination of k and
P may form different structures because the current random
rewiring mechanism may wire a neuron to any neuron in the
network. Therefore, the random drop in the learning accuracy
may be attributed to the unguaranteed composition of the
inconsistent energy compared with that of the fully connected
structure.

IV. GAUSSIAN-DISTRIBUTED SMALL- WORLD WIRING
METHOD

A. INSTABILITY

As mentioned in Section III, there are two energy parts to
consider during the training process of the WS small-world
neural network: 1) The regular lattice ring, which is entirely
consistent with that of neurons at the corresponding position
of the fully connected network. These neurons form a sta-
ble energy. 2) The random rewiring, which is of a highly
uncertain state because these neurons are chosen randomly
from the network. These rewired neurons form the unstable
energy of the network. When the rewiring energy is increased
to a certain proportion in the composition of the network
energy, it magnifies the adverse effects in terms of conver-
gence efficiency and learning accuracy and even generates
oscillations during the training process. However, appropriate
rewiring may substantially reduce the average path length
for the network, and can promote convergence efficiency.
In addition, when k increases, the granularity of the regu-
lar lattice ring increases, and the learning accuracy is also
enhanced.
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FIGURE 7. Flowchart of small-world Hopfield neural network.

VOLUME 10, 2022

95377



IEEE Access

J. Sun et al.: Analysis and Optimization of Network Properties for Bionic Topology Hopfield Neural Network

0.9
0.8
o) 0.7

o e

( 1]
[

o
L(PY/L(0)

0.3
0.2
0.1

0.0001 0.001 0.01 0.1 1

P rewire probability
@ 1000 nodes

(a) average path length

® 500 nodes

FIGURE 8. Measurement the network characteristics: average path length and clustering coefficient.

] ® @ @ @ ¢ ¢ ¢ 00occiNnNnImEEETTTTTTEnTRe 1

°
H L]

[ e 8

H N s

° ]

4 a0

k

0 1
b © 8
0.9
0.8
% 0.7
06 S
05 2
Ry
04
0.3
0.2
0.1
0
0.0001 0.001 0.01 0.1 1
P rewire probability
100 nodes
(b) clustering coefficient
®P=0
®P=0.05
0.9 P=0.1
P=0.15
08 ®p=-02
07 ®p=-025
®P=03
06 » ®@P=035
g ®P=04
0.5 = ®p=045
o4 & ®P=0.50
@® P =0.55
0.3 ®P=0.60
P =0.65
0.2 P=0.70
P=0.75
0.1 P =0.80
0 P=0.85
200 ®P=0.90
®P=0.95
®P=10

FIGURE 9. Measurement of learning results with small world combinations of k, P.

The current WS small-world model uses the random
rewiring mechanism. However, as the topology of the neu-
ral network, the assurance of consistent energy is yet to
be considered. We propose two improvements to the WS
small-world model to promote stable network energy and
learning accuracy. The first is to increase the proportion
of the energy for the regular lattice ring (which means
increasing the granularity for the regular lattice ring part)
and reduce the unstable energy formed by random recon-
nections. The second is to add an energy pledge step for
the WS small-world model to ensure consistent network
energy.

For the first requirement, we take a neuron from the
network as the centroid, compose the regular lattice ring,
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and then examine the neurons along the radial in terms of
their impact on the network characteristics. We observed
that in the WS small-world model, the neurons near the
centroid have more overlapped neighbors with the regular
lattice ring. While extrapolating along the radial, the increase
in the clustering coefficient showed an exponential decline,
and the neurons far from the centroid barely benefited from
increasing the clustering coefficient. However, slight wiring
with distant neurons may substantially reduce the average
path length. Therefore, we assumed that the connection quan-
tities along the radial obey the Gaussian distribution. For the
second requirement, we integrate the validation step using the
2SAT Wan Abdullah method in the new small-world rewiring
method to ensure consistent energy.
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B. GAUSSIAN-DISTRIBUED WIRING FOR SMALL-WORLD
NETWORK

We propose a new rewiring method for the WS small-world
model to promote the stability of the network energy and
the learning result accuracy. The method starts by selecting
a neuron as the pattern centroid along the radial, which
divides the pattern into data layers. Considering the impact
of network properties, we assumed that the quantities of con-
nections on each data layer obey the Gaussian distribution.
x represents the data layer variable, and f(x) represents the
connection quantities on each data layer and can be written
as equation (8).

—1 2

£ @) = 12”55( ) ®)
o
1

— 9
’ C\ 27 ©)

2
fx) =cC- o H(evEm) (10)

C is the size of the regular lattice ring, p is initialized to 0,
ando is the parameter that can adjust the centrality of distri-
bution. While x = 0, we may decide o by C. Substitute (9)
in (8), and the connection distribution of each layer may be
written as equation (10). Figure 10 plots the Gaussian distri-
bution of neuron connections; we see that the connections are
denser near the centroid, forming a highly clustered region
that dominates the main part of the network energy. But in
the distance area from the centroid, only a few connections
substantially reduce the average path length. Therefore, the
distribution of neuron connections changes the proportion
of network energy, and part of random energy is shrunk.
However, the regular lattice ring is expanded, thus improving
the stability of the learning accuracy. In addition, to ensure
consistent network energy, we add the energy validation step
by the 2SAT Wan Abdullah method.

~ Centroid

J®)

Data layer

FIGURE 10. Gaussian distribution small-world neuron wiring.

The detailed steps of the Gaussian-distributed small-world
rewiring algorithm are as below:
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Step 1: Choose parameter k and rewiring probability P for
the small-world topology.

Step 2: Take the neuron as the centroid of the pattern,
Divide the pattern into x data layers.

Step 3: Connect the neuron with its k nearest neighbor
neurons as a cluster. Denote C as the size of the cluster.

Step 4: Initialize the rewiring quantity R = 0 and generate
K/2 random numbers. Check for every random number. If it
is smaller than the preset rewiring probability P, increase one
to R.

Step S: If the random number is greater than the rewiring
probability P, connect the neuron with the follow-up neuron.
Increase the cluster size C by one.

Step 6: Taking the current neuron as the cluster center,
divide the pattern into data layers along the radial. Initialize
o by equations (8) and (9).

Step 7: Compute the connection quantity for each layer by
equation (10) and initialize x = 1.

Step 8: Wire neurons randomly to the related layer.

Step 9: Validate the energy for the neuron by the 2SAT
Wan Abdullah method. Restart rewiring the neurons to the
related layer if energy is inconsistent.

C. EVALUATIONS AND RESULTS

We evaluated the Gaussian-distributed small-world rewiring
method using two aspects. 1) The coincidence degree with
the fully connected neuron series - The similarity of the
new small-world series with the fully connected series was
measured to demonstrate that the small-world may obtain the
same accurate result as the fully connected series. 2) The con-
sistency of the energy- By evaluating the consistent energy of
the small-world series formed by the new method, we further
confirm the stability of the Gaussian distribution rewiring
method.

To evaluate the approximation between the small-world
series generated by the new method with the fully connected
structure, we employed dynamic time warping (DTW) to
measure the coincidence for these two series with different
sizes. Figure 11 illustrates three small-world neuron series
compared with the fully connected series, which formed on
different regions of 100 neurons. In most places, the neuron
series of the small-world highly coincides with the fully
connected series, while the differentials appear at only a
few positions. This explains the reason for the new rewiring
mechanism’s high learning accuracy. The new Gaussian-
distributed rewiring mechanism ensures high clustering cen-
trality in the near region of the centroid and slight rewiring in
the distant region, therefore maintaining stability. The rewire
mechanism reserved randomness regarding the rewire prob-
ability P to ensure that the disordered small-world topology
is formed, further measuring its convergence trends to ensure
the stability of output results.

To verify that the neuron series of the small-world structure
is accurately converged, we evaluated its logic inconsistent
energy using the Wan Abdullah method [7]. We randomly
chose a neuron (state is 1, occasionally) from the network,
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TABLE 3. Wan Abdullah method for 3-satisfiability.

C1 C2 C3 C4 C5 Cé Cc7 C8 Cc9
“PA =Q PA —Q “PAQ —~P A =Q PA —Q PA —Q ~PAQ | PAQAR | =SA T

A =R A =R A =R AR A =R AR AR AN=U
1 1 1 1 1 1 1 1

Wp - - = - - - = = 0
8 8 8 8 8 8 8 8
1 1 1 1 1 1 1 1

WQ — — _— — —_— — —_— —_— 0
8 8 8 8 8 8 8 8

e 1 1 1 B 1 B B B .
8 8 8 8 8 8 8 8

W 1 1 1 1 1 1 1 1 0
8 8 8 8 8 8 8 8

Wor _1 _1 1 1 1 1 _1 _1L 0
8 8 8 8 8 8 8 8
1 1 1 1 1 1 1 1

Wog - = - = = - = - 0
8 8 8 8 8 8 8 8
1 1 1 1 1 1 1 1

Weor — - - - — — — — 0
16 16 16 16 16 16 16 16

1

W 0 0 0 0 0 0 0 0 3

1

Wr 0 0 0 0 0 0 0 0 3

1

Wy 0 0 0 0 0 0 0 0 g

1

Wsr 0 0 0 0 0 0 0 0 ~3

1

Way 0 0 0 0 0 0 0 0 -5

1

Wsy 0 0 0 0 0 0 0 0 —g

W, 0 0 0 0 0 0 0 0 !

STU 16

and then set a small value of k (k = 6) as the starting value.
This forms the neuron series of the small-world structure for
this neuron, and then k increases gradually (interval = 10) till
k equals the size of the entire network. We verified the logic
inconsistent energy on the neuron series and calculated the
state of the neuron. The CNF starts from k variables corre-
sponding to k£ neuron small-world series. Each clause is com-
posed of three neurons, and the neuron state represents each
literal of the clause. For example, the RAN3-SAT CNF may
be written as & = (S1VS2 V —83) A (S4 V =S5 Vv Sg), where
k starts from 6, and the small-world series may be “110101.”
By negation of the CNF, we obtain —a = (=51 A =S2AS83) v
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(=S84 A S5 A =S6). We can compute the weight between neu-
rons by applying the 3-SAT Wan Abdullah method in Table 3.
Hence, we can verify the logic inconsistent energy by com-
puting the state of the neuron. Then, we increase parameter
k and the variables for the CNF, and we verify the logic
inconsistent energy till k equals n, which is the network size.

On the left-hand side of Figure 12, the curve shows the
convergence trends of the standard deviations obtained from
twelve rounds of repeat testing. The abscissa denotes the
k value, and the data points of the ordinate represent the
corresponding standard deviation. When k£ < 26, the results
of the remaining incorrect neuron states (state of 0) can be

VOLUME 10, 2022



J. Sun et al.: Analysis and Optimization of Network Properties for Bionic Topology Hopfield Neural Network

IEEE Access

06
05 <><)<>
Lo
<o
g . Lo
£ ™o o
= o) o
2 03 (@]
T
= (0] <
g o2
3 o) o
0.1
0 0000000000000
6 16 26 36 6
k

©O WS small world

IO OO0 00O OCCOOO0

Neuron state

000000 OOOOO

6 16 26 36 46

k

O Gaussian distributed small world

FIGURE 12. Standard deviation and neuron state convergence trends.

1
0.99 KK R R X I M X X MR XXM 3¢

0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91

0.9
0.89
0.88
0.87
0.86
0.85
0.84
0.83
0.82
0.81

0.8
0.79
0.78

Similarity

1 10001 20001 30001 40001

FIGURE 13. Similarities obtained from two training cycles.

obtained. By increasing k, the number of results with the
incorrect state is reduced, and the related standard deviation
converges toward zero rapidly. In the figure on the left-hand
side, the data points represent the corresponding neuron states
obtained from the twelve rounds of testing. The straight line
displays the trend that when k increases, the inconsistent
energy drives the neuron convergence towards its original
state. Because neurons are sampled randomly in repeated
testing, when the sample neuron has O as the original state,
it accurately displays the same trend and convergence toward
Zero.

D. DIGIT RECOGNITION EXPERIMENT
1) MEMORIZATION AND RECOGNITION
To clarify the memorization and the recognition capability of
the Gaussian-distributed small-world HNN, we tested it on a
handwritten digit dataset in terms of the learning accuracy and
convergence efficiency. Digit recognition is a classic property

VOLUME 10, 2022

%
B %o Koo o KuxX VAN L X %X X, Ko XXX
X XxX Hsg ¥ X
%X XX§ XX X*% XXX% " XK %% ¥ X X *x

X Fully connected network with Hebbian
X Fully connected network with WAT method
WS small world network with Hebbian method
WS small world network with WAT method
% Gaussian distributed small world network with Hebbian method
X Gaussian distributed small world network with WAT method

X

50001 60001

of the HNN. To measure the performance of the Gaussian-
distributed small-world HNN algorithm, we used the MNIST
dataset [27], [28] as the testing dataset. It is a mainstream
dataset in digit recognition, which contains 60,000 handwrit-
ten digit training samples and 10,000 testing samples. Each
sample has been standardized to a 28 x 28 pixels grayscale
image. We measured similarity in the MNIST dataset by com-
paring the retrieved and original patterns. The measurement
covered 60,000 training samples and was conducted using
different configurations of learning methods and topologies.
However, when measuring the similarity under these con-
figurations, we observed that all the configurations could
obtain a result that has a similarity equal to one, after just
a few rounds of training. Meanwhile, we obtained accurate
recognition results on almost all of the testing images.

In Figure 13, from the plotted digit testing results, we can
observe that the small-world network is significantly ahead of
the fully connected topology in terms of learning accuracy.
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Under the Gaussian-distributed small-world network, the
similarity obtained by the Wan Abdullah method and the
Hebbian method exceeds 0.99. Compared with the WS small-
world network, the similarity obtained are more stable, with
only a few changes. Under the WS small-world network, the
median value of the similarity obtained by the Wan Abdullah
method was 0.988 and that of the Hebbian method was 0.983,
but the extent of change is more significant.

Because these configurations converged after just a few
rounds of training (epoch < 10), we dumped the data of
10 training cycles and computed the median value for each
configuration to further compare the performance of these
configurations. In Figure 14, the Gaussian-distributed small-
world configuration shows convergence to a target pattern
within the 3rd training cycle, which is faster than the WS
small-world configuration, and the fully connected neural
network converged at the 5th training cycle. Therefore,
after comparisons, it can be concluded that the Gaussian-
distributed small-world neural network displays better con-
vergence efficiency. Meantime, the Wan Abdullah method,
which computes the synaptic weight by logical inconsistency
energy of neurons, always shows a slight advantage through-
out the testing, especially in terms of convergence efficiency.

Using the MNIST dataset, we confirmed the applicability
of the Gaussian-distributed small-world neural network in
terms of the learning accuracy of handwritten digit recogni-
tion. The Gaussian-distributed wiring mechanism improved
the clustering coefficient for the small-world network and
reduced the unstable energy caused by random rewiring. The
reserved slight rewiring substantially reduced the average
path length; therefore, higher learning accuracy and con-
vergence efficiency were achieved compared with the WS
small-world and fully connected networks. In addition, the
small-world network is the only complex network that has
confirmed its biological existence; therefore, we did not per-
form comparisons with other complex networks.
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2) HANDWRITTEN DIGIT IMAGE CLASSIFICATION

Many methods have achieved impressive results in hand-
written digit image classification. The MNIST benchmark
database [28] shows that the convolutional neural network
is the most accurate model for handwritten digit classifi-
cation. Jarrett et al. [29] reported their CNN model with
multistage feature exaction obtained a test error rate of 0.53.
Ciresan et al. [30] employed a plain multi-layer perceptron
(MLP) in their DNN (deep neural network) model and yielded
a 0.35% test error rate. In this section, we test the per-
formance of the proposed Gaussian-distributed small-world
HNN from a practical application view. Because the HNN
is a feedback neural network [1] [31], to better test perfor-
mance, we integrated the Gaussian-distributed small-world
HNN with Ciresan’s DNN model as a solution for hand-
written digit image classification [32]. Figure 15 illustrates
the architecture of the Gaussian-distributed SWHNN-DNN
of the training and testing stages.

The training architecture of Gaussian-distributed SWHNN-
DNN contains a Hopfield layer [31] and a DNN layer
[30]. The Hopfield layer contains ten units of the Gaussian-
distributed SWHNN, which are used for training the digit
images of the digits from “0” to ““9’, respectively. As shown
in Figure 15, the Gaussian-distributed SWHNN unit orga-
nizes 784 neurons with Gaussian-distributed small-world
wiring. The DNN layer is trained in a separate process. Its
hidden layer is initialized by five fully connected layers in
which the number of neurons of each layer is 2500, 2000,
1500, 1000, and 500. The output layer (SoftMax layer)
contains ten neurons that use the “SoftMax” function as the
activation function to output classification results.

Under the testing architecture, each test image is input
into the Gaussian-distributed SWHNN units in parallel.
We restricted the Gaussian-distributed SWHNN unit from
memorizing test images, which means the weight matrix in
the SWHNN unit is protected and test images are running on
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TABLE 4. Test error rates on MNIST handwritten digit dataset.

Architecture of DNN layer Test0 error Trainir}g simulation Trainiqg simulation Weights (millions)
Input Hidden layer SofiMax | [/;)O] ‘;ITI“[%(OI? e (W, in [30]
layer layer y
{1000,500} 0.49 234 10.6 1.34
{1500,1000,500} 0.46 442 18.5 3.26
784 {2000,1500,1000,500} 10 0.41 66.7 30.5 6.69
{2500,2000,1500,1000,500} 0.35 114.5 55.1 12.11
{9x1000} 0.44 107.7 50.8 8.86
Test error (%) Trainitr;Ignzi?}qll)Jlation (t}\::)]iisigtjs)
DNN layer Gaussian-distributed SWHNN-DNN Gaussian- Gaussian-
{input =784, SoftMax = 10} distributed distributed
SWHNN SWHNN
Best test error (%) Averagg}gst error
{1000,500} 0.28 0.37
{1500,1000,500} 0.22 0.31
{2000,1500,1000,500} 0.19 0.24 2.1 203.84
{2500,2000,1500,1000,500} 0.16 0.19
{9x1000} 0.19 0.23

the copy of weight matrices. The selector module is applied
to select the SWHNN channel with the highest learning
accuracy. Learning accuracy is the similarity between the
memorized pattern and the pattern retrieved from SWHNN
units [32], [33], [34]. The pattern from the selected channel
is retrieved and submitted to the DNN layer for classification.

During the training stage, first, we trained the HNN layer.
We manually divided the MNIST training set into ten clusters
of digits “0” to “9”, and these digit images were submit-
ted to Gaussian-distributed SWHNN units for training. The
Hebbian method was employed to update the weight matrix
of the Gaussian-distributed SWHNN unit, and these matrices
were saved for further tests. Then the DNN layer was trained
under diverse configurations. Table 4 lists the details of the
configurations of the DNN layer.

We tested on an Intel Core i7 11800, 16GB memory,
and Nvidia GTX3060 GPU hardware platform. As shown in
Table 4, the simulation time is ahead of that measured in [30]
due to the difference in hardware platforms. Through test-
ing simulations, we observed that the Gaussian-distributed
SWHNN unit may effectively attract test images to con-
verge to the trained pattern; hence, it improved the test
error of the DNN layer during the testing process. We listed
the test error rates of the Gaussian-distributed SWHNN-
DNN with different structures of the hidden layer at the
bottom of Table 4. The lowest test error rate of the
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Gaussian-distributed SHWNN-DNN appeared in the hidden
layer of structure {2500,2000,1500,1000,500}, and it arrived
at 0.16%. Its average test error rate collected from five
rounds of repeating tests is 0.19, is listed in the right col-
umn. The test error rates of the rest of the hidden layers
are lower than that of the DNN in [30]. The test error rate
of {1000,500} is 0.28 and its average test error is 0.37,
{1500,1000,500} is 0.22 and 0.31, {2000,1500,1000,500} is
0.19 and 0.24, and {9 x 1000} is 0.19 and 0.23, respec-
tively. In addition, from the memory occupation aspect, the
weight matrix of the Gaussian-distributed SWHNN unit is
set to 26 x 784. Therefore, 203.84K weights are used in
the ten Gaussian-distributed SWHNN units in the Hopfield
layer. Through the comparison testing, we noted that the
associative memory property of SWHNN units provides
enhancement and correction functions for testing patterns;
hence, it reduced the classification complexity for the DNN
layer. The above comparison data shows that the Gaussian-
distributed SWHNN-DNN obtained a lower test error rate
than the DNN model. We further compare the Gaussian-
distributed SWHNN-DNN with other methods to know its
performance.

The comparison of the Gaussian-distributed SWHNN-
DNN with other methods for handwritten digit image clas-
sification is listed in Table 5. From the test error rates in
Table 5, we can observe that the best test error rate of
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TABLE 5. Comparison of the Gaussian-distributed SWHNN-DNN with other methods on MNIST handwritten digit dataset.

Methods References Test error (%)
CNN [29] 0.53
CNN [35] 0.23
DNN [30] 0.35
Gaussian-distributed SWHNN-DNN this paper 0.16
Hybrid CNN-SVM [36] 0.19

the Gaussian-distributed SWHNN-DNN is lower than other
listed CNN methods. From training complexity aspects, the
architecture of the proposed Gaussian-distributed SWHNN-
DNN is even simpler, including only a plain MLP network
and an HNN layer. Therefore, its computational cost and
training complexity are also lower than CNN models. Thus,
through the above comparison, we conclude that the proposed
Gaussian-distributed SWHNN-DNN outperforms other CNN
models on the MNIST handwritten digit set.

In addition, Namane et al. [32] proposed a method com-
bined fully connected HNN and MLP for degraded machine-
printed digit recognition, they report obtained a 98.62%
recognition rate. We tested HNN-DNN under hidden layer of
{2000,1500,1000,500}. We obtained 92 misclassified images
as the lowest test error. The best test error rate is 0.92%, and
the average test error of five rounds repeat testing is 1.06%.

3) DISCUSSION

The proposed Gaussian distribution small-world model opti-
mizes the small-world network in terms of the following
aspects: 1) short average path length- during the training
process of a small-world HNN, the average path length
plays an important role in reducing training cycles. The
proposed Gaussian-distributed small-world network contains
only slight random wirings to the distant neurons, signif-
icantly reducing the average path length, thus improving
training efficiency. In the memorization capability test, the
proposed neural network converged in only a few training
cycles (epoch < 10). 2) High clustering coefficient- in the
small-world model, the network clustering coefficient illus-
trates the degree to which the adjacent neurons of a neuron
are connected. During the training process, the clustering
coefficient can significantly affect the transfer efficacy of
network energy. The proposed method arranges neuron con-
nections obeying Gaussian distribution, which concentrates
connections in the near neuron region, thus improving net-
work energy’s transfer efficacy and obtaining high learn-
ing accuracy and fast convergence speed. 3) Stable network
energy- the proposed method changed the distribution of neu-
ron connections in the small-world network, altering the net-
work energy proportion. It reduced the random connections,
thus reducing the random energy in the network. Therefore,
the stable energy formed by the neurons in the near region of
the centroid neuron dominated the main part of the network.
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In addition, the Gaussian-distribution small-world wiring
method is dedicated to improving the instability defi-
ciency of the WS small-world model. However, it dif-
fers from the hyper-parameter optimization method in deep
learning. We summarize the key points. 1) The proposed
Gaussian-distributed small-world network does not leverage
the optimal parameter combinations for improving train-
ing performance. The parameter combinations of k and P
cannot determine the connection between a pair of neu-
rons; one combination of k and P may form different
small-world networks. 2) The workflow of the Gaussian-
distributed small-world wiring method differs from that of the
hyper-parameter optimization method. The hyper-parameter
optimization method usually contains an expensive step of
finding the optimal parameters. The Gaussian-distributed
small-world wiring method does not include such steps.
3) These two methods have different perspectives on opti-
mizing the training of neural networks. The hyper-parameter
optimization method more focuses on the pros and cons of the
combination of configurations of neural networks. However,
the Gaussian-distributed small-world method emphasizes the
biological reality and the stability of the network energy of
the HNN.

V. CONCLUSION

In this study, to address the instability issue of the small-
world network, we examined the influence of the small-
world topology on the HNN learning process and conducted
computer simulations. We observed that instabilities due to
the random existence of neuron connections cause unsta-
ble network energies, which may generate oscillations dur-
ing the WS small-world neural network training process.
Therefore, we proposed the Gaussian-distributed small-world
wiring method to improve the stability of WS small-world
networks. The proposed method organizes neuron connec-
tions in compliance with the Gaussian-distribution, which
reduces random connections from a distant area and makes
the short-range connections dominate the main part of net-
work energy, thus improving the stability of small-world
networks. To evaluate the new small-world rewiring method,
we compared the new small-world series with the fully con-
nected series by applying DTW. The new small-world series
displayed high levels of coincidence compared with the fully
connected series in terms of the distributions of neuron states
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and the logical energy value. The new Gaussian-distribution
rewiring method was compared with WS small-world method
and the fully connected neural network on the MNIST hand-
written digit dataset. The experimental result revealed that
the Gaussian-distribution rewiring method performed with
higher stability in terms of the learning accuracy and had a
higher convergence speed than the WS small-world model
and the fully connected network. In the application com-
parison experiment, we integrated the Gaussian-distributed
small-world neural network with Ciresan’s DNN model and
obtained the best test error rate of 0.16%.
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