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ABSTRACT The fully connected topology, which coordinates the connection of each neuron with all other
neurons, remains the most commonly used structure in Hopfield-type neural networks. However, fully
connected neurons may form a highly complex network, resulting in a high training cost and making the
network biologically unrealistic. Biologists have observed a small-world topology with sparse connections
in the actual brain cortex. The bionic small-world neural network structure has inspired various application
scenarios. However, in previous studies, the long-range wirings in the small-world network have been found
to cause network instability. In this study, we investigate the influence of neural network training on the
small-world topology. The role of the path length and clustering coefficient of neurons is expounded in
the neural network training process. We employ Watt and Strogatz’s small-world model as the topology
for the Hopfield neural network and conduct computer simulations. We observe that the random existence
of neuron connections may cause unstable network energies and generate oscillations during the training
process. A newmethod is proposed to mitigate the instability of small-world networks. The proposedmethod
starts with a neuron as the pattern centroid along the radial, which arranges its wirings in compliance with
the Gaussian distribution. The new method is tested on the MNIST handwritten digit dataset. The simulation
confirms that the new small-world series has higher stability in terms of the learning accuracy and a higher
convergence speed compared with Watt and Strogatz’s small-world model.
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INDEX TERMS Small world network, artificial neural networks, hopfield neural networks, k satisfiability,
network theory (graphs), logic programming.

I. INTRODUCTION19

John Hopfield introduced a neurobiology-based computa-20

tional model in his research on content addressable mem-21

ory in 1982 [1], and the Hopfield neural network (HNN)22

became one of the best bionic computational models of that23

time. The HNN showed various advantageous properties such24

as object recognition capabilities, categorization, and error25

correction. Despite the recent dominance of neural networks26

The associate editor coordinating the review of this manuscript and

approving it for publication was Rodrigo S. Couto .

(e.g., convolutional neural networks) using different learning 27

methods (e.g., gradient descent), classifiers (e.g., softmax), 28

and hardware accelerations (e.g., CUDA), the Hopfield-type 29

neural network is still one of the most effective computational 30

models that can be trained similar to the real biological brain. 31

The HNN is a spin dynamics system that coordinates the 32

connection of each neuron with all the other neurons (without 33

self-loops, Discrete HNN). Each neuron pair is connected 34

by a synaptic weight, and each neuron performs a weighted 35

summing on the states of other neurons. The neuron state is 36

activated by the presetting threshold of the signum function 37
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and the influences of the other neurons. The weight matrix38

of Hopfield neural networks is symmetric and has zeroes as39

diagonal elements. The Lyapunov function is employed to40

define its minimum network energy. Driven by the minimized41

energy, neurons flip the state towards the local minimum42

solution.43

Decades after its introduction, the HNN had been used and44

enhanced in various applications, such as object recognition45

[2], image restoration [3], combination optimization [4], and46

very-large-scale integrated arrays [5]. By mining the logic47

relations of a neural network, Abdullah proposed a new learn-48

ing method for the DHNN in 1992 [6]. In 2011, Sathasivam49

and Abdullah expanded this method and formally named it50

the Wan Abdullah method [7]. The Wan Abdullah method51

first processes neurons in bipolar states (DHNN), and then,52

the Boolean relation between the pair of neurons is written53

as a clause in a conjunctive normal form (CNF). When all54

clauses are ‘‘true,’’ the CNF is satisfied. The cost function55

is established, and the inconsistencies in the clauses are56

mostly minimized. In 2016, Mansor et al. extended the Wan57

Abdullah method to 3-satisfiability (3-SAT) to optimize the58

pattern satisfiability problem [8]. In 2017, Kasihmuddin et al.59

proposed a hybrid method that employed the HNN and60

genetic algorithm to solve k-SAT problems [9]. In 2020,61

Sathasivam et al. [10] proposed a method that integrated ran-62

dom k-SAT with the HNN. Despite the HNN being enhanced63

with various reinforcements from the Wan Abdullah learning64

method in terms of computing efficiencies, learning accura-65

cies, etc., fully connecting a large number of neurons remains66

a bottleneck for training large neural networks. In practice,67

if a 400 × 400 pixel image is used, a neural network would68

need 160,000 neurons to generate a weight matrix of a size69

of 1/2 × (160,000 – 1) ×160,000. This leads to an insur-70

mountable problem of allocating considerable memory space71

for the weight matrix [11]. During the training process, enu-72

meration of such a large weight matrix would also reduce73

the learning efficiency of the algorithm. Moreover, the fully74

connected topology is biologically unrealistic [12]. As shown75

in biological applications [13], the structure of the real brain76

is sparser than that of the fully connected topology, each77

neuron is connected with only a few other neurons, exhibit-78

ing more complexity than the fully connected and the fully79

random topologies [14]. In a recent biological study [15], the80

small-world topology was observed in human anatomical and81

functional brain networks. The small-world network is named82

based on the analogy with the small-world phenomenon, and83

it is a high-centrality network discovered by Duncan J. Watts84

and Steven H. Strogatz in 1998 [16]. The Watts and Strogatz85

(WS) small-world model starts with a regular ring lattice of N86

nodes, where each node connects with K nodes from a nearby87

region. Subsequently, based on parameter P (0 ≤ P ≤ 1),88

each node is rewired at one side (K/2 connections per side)89

to other randomly chosen nodes in the network, forming a90

high centrality network. After biological observations, the91

bionic sparse small-world network has attracted significant92

attention across many fields. Scientists have evaluated the93

influence of the topology on the network memory function 94

and measured varieties of topologies in terms of storage 95

performance and pattern retrieval [17], [18]. The small-world 96

network with several shortcuts has been shown to have the 97

same efficiency as a random network. Recently, researchers 98

further confirmed the biological reality of small-world net- 99

works. Chen et al. [19] reported that the cerebellar functional 100

connectome of an actual human is small-world organized. 101

Rosen et al. [20] estimated the absolute number of axons 102

linking cortical areas from a whole-cortex diffusion MRI 103

connectome and observed that real human cortical areas are 104

small-world connected. Pircher et al. [21] further compared 105

the small-world network between artificial and biological- 106

based neural networks and observed remarkable parallels 107

between these two neural networks. Scientists have started 108

exploring the specifics of the characteristics of small-world 109

networks. Arvin et al. [22] explored the role of short and long- 110

range connections in small-world networks. Their research 111

revealed that short-range connections dominate the dynam- 112

ics of the system, e.g., affect the volatility and stability of 113

the network, and long-range connections drive the system 114

state. Rüdiger et al. [23] also reported that the long-range 115

connections of small-world networks may make the network 116

unstable, supporting frequent supercritical mutations. Ercsey- 117

Ravasz et al. [24], [25] uncover a rule that the probability that 118

two neurons are connected declines exponentially as a func- 119

tion of the distance between them. This important principle is 120

termed ‘‘the exponential distance rule’’. Takagi [26] studied 121

energy constraints for modeling human brain connections. 122

His results shown that the energy constraints play a crucial 123

role in regulating brain structures. These studies have implied 124

the random rewiring mechanism of the WS small world 125

model may form a neuron connection distribution that does 126

not conform to the bio-growth cost rule and the exponential 127

distance rule. In addition, the current WS small-world model 128

is yet to consider the specifics of neural network training, 129

such as the consistency of network energy and the random 130

neuron connections that may cause unstable network energy. 131

Therefore, clarifying the influence of neural network training 132

on the small-world topology and improving its stability are 133

urgent. 134

The contributions of this study are as follows: 1) The 135

impact of the small-world topology on the HNN training 136

is investigated. The role of the path length and clustering 137

coefficient of neurons in the neural network training pro- 138

cess is elaborated. 2) The instability shortcoming of the 139

random rewire mechanism in the WS small-world model 140

is discussed. The random existence of neuron connections 141

that may cause unstable network energies and generate oscil- 142

lations during the training process is highlighted. 3) The 143

Gaussian-distributed small-world wiring method is proposed 144

to improve the stability of the small-world HNN. The nov- 145

elty of the new rewiring method is that it organizes neuron 146

connections in compliance with the Gaussian distribution. 147

This reduces random connections from the distant area and 148

makes the short-range connections dominate the main part of 149
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network energy, improving the stability of the small-world150

network model.151

The remainder of this paper is organized as follows:152

In Section II, we provide a brief overview of the DHNN.153

We introduce the fully connected topology, Hebbian learning154

method, and 2-Satisfiability (2-SAT) Wan Abdullah learning155

method. Then, we present the theory of the small-world156

network model and the network properties. In section III,157

we describe the small-world DHNN. We start by elaborating158

on the impact of the small-world topology on discrete neural159

network training. Then, we discuss the implementation of160

our computer simulation. Finally, we discuss our evaluation161

of small-world network characteristics and learning accu-162

racies. In section IV, we explain the proposed Gaussian-163

distributed small-world wiring method. We introduce the164

instability problem of the small-world neural network and165

the Gaussian -distributed small-world wiring method. Next,166

we discuss the coincidence degree comparison test and logic167

energy validation test. Finally, we describe our digit recogni-168

tion experiment. In section V, we provide the conclusions.169

II. BACKGROUND170

A. DHNN171

The DHNN is a special HNN capable of processing binary172

data. The DHNN remains in compliance with the spin173

dynamic system; however, the state of each neuron is bipolar174

and is usually denoted by {0,1} or {−1,1}. Each neuron175

is fully connected without the self-loop, and each neuron176

pair is connected by synaptic weight. Figure 1 illustrates177

a fully connected DHNN with n neurons. X1, X2, . . . ,Xn178

represents the output of each neural node, and T1, T2 . . . .,Tn179

represents the predefined threshold. Each neuron performs180

a weighted sum on the states of other neurons, denoted by181

Vi =
∑n

j=1 wi,j·xj, where i 6= j, i ∈ {1,n}. The state of neural182

node i can be calculated by its activation function, which183

typically is a signum function. Si represents the state of neural184

FIGURE 1. Fully connected Hopfield neural network.

node i, 185

Si =

{
1 where Vi − Ti> 0
−1 where Vi − Ti< 0.

186

Therefore, the state of neura l node i is determined by thresh- 187

old Ti and the influences received from the states of other 188

nodes. The weight matrix of the DHNN, which is symmet- 189

ric and zero diagonal, has wi,j = wj,i, wi,i = wj,j = 190

0. The state updating rule is maintained by Si(t + 1) = 191

signum[Vi (t)−Ti]], where t represents the time of process for 192

the neural node i. The Lyapunov energy function is E (t) = 193

−
1
2

∑
j
∑

i wi,jSi (t)Sj (t) −
∑

i TiSi (t), where i 6= j. The 194

energy function reduces with dynamics monotonically. Sub- 195

sequently, motivated by the minimized energy, neural nodes 196

flip state towards the local or global minimum solution. 197

In the training process, the weight between neurons i and j 198

can be calculated by (1). In equation (1), s denotes the pattern 199

number. This weight updation method is usually called the 200

Hebbian method. 201

wi,j =
m∑
s=1

(
2V s

i − 1
) (

2V s
j − 1

)
(1) 202

In the Wan Abdullah method, energy is built upon the sat- 203

isfiability of the clause composed of neurons. α represents 204

the Boolean relations between neurons i and j, and the CNF 205

is written as (2). To identify inconsistencies between the 206

clauses, (2) is negated by applying the De Morgan law and is 207

written as (3). Subsequently, the cost function can be written 208

as (4). 209

α =
(
Si ∨ Sj

)
∧
(
Si ∨ ¬S j

)
∧
(
¬Si ∨ Sj

)
210

∧
(
¬Si ∨ ¬S j

)
∧
(
Ti ∨ Tj

)
(2) 211

¬α =
(
¬Si ∧ ¬Sj

)
∨
(
¬Si ∧ Sj

)
∨
(
Si ∧ ¬S j

)
212

∨
(
Si ∧ Sj

)
∨
(
¬Ti ∧ ¬Tj

)
(3) 213

Eα =
1
2
(1− Si)

1
2

(
1− Sj

)
+

1
2
(1− Si)

1
2

(
1+ Sj

)
214

+
1
2
(1+ Si)

1
2

(
1− Sj

)
+

1
2
(1+ Si)

1
2

(
1+ Sj

)
215

+
1
2
(1− Ti)

1
2

(
1− Tj

)
(4) 216

The synaptic weight can be computed in Table 1. In equa- 217

tion (2), when all the clauses (composed of two literals) are 218

satisfied, α is called 2-satisfied. When extended to the entire 219

network, each weight of the network can be computed by 220

iterating all the pairs of neurons according to equations (3), 221

(4), and Table 1. 222

In this study, we implemented both the Hebbian method 223

and the 2-SAT Wan Abdullah learning method to explore the 224

impact of small-world topology on neural network training 225

in our computer simulations. We compare these two meth- 226

ods under the small-world neural network regarding learning 227

accuracy and convergence speed. However, higher 3-SAT 228

and Max-kSAT are not integrated because the small-world 229

rewiring mechanism does not guarantee connections between 230

any three neurons. 231
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TABLE 1. Wan Abdullah method for 2 satisfiability.

FIGURE 2. Small world network and topologies formed by different rewired probabilities.

B. SMALL-WORLD NETWORK MODEL232

The small-world network, named after the analogy with the233

small-world phenomenon, is a high-centrality network dis-234

covered by Watts and Strogatz in 1998 [16]. The small-world235

network is a network model with a high clustering coefficient236

and low average path length. The nodes in the small-world237

network are mostly not neighbors of each other. However,238

a node pair can access another pair by just a few steps (neigh-239

bors). Therefore, the small-world network is defined as a net-240

work [16] where L∞ log N , where L denotes the average path241

length of the network, and N denotes the number of nodes in242

the network. L∞ log N means L increases proportionally to243

logN . Meanwhile, given a node i that might connect with k244

nodes in the network and denoting e as the actual connections245

of node i, the maximum connection quantity can be written246

as Max(e) = 1/2 k (k−1), representing the node i being fully247

connected with the other nodes. The clustering coefficient of248

node i is defined as e
1
2 k(k−1)

. The entire network clustering249

coefficient can be computed by averaging the total clustering250

coefficient of all nodes.251

In 1998, WS proposed a method to form the small-world 252

network [16]. The method proposed two stages to form 253

the small-world network: initializing and rewiring. With n 254

nodes in the network initializing stage, each node is con- 255

nected with k nodes from the near region to begin forming 256

a high-centralization ring structure. Each node Ni is divided 257

into two sides (left and right) in the rewiring stage, with k/2 258

connections per side. P is the rewiring probability. Connec- 259

tions are taken from the right side and rewired to a randomly 260

selected node byP, and no self-loop is stipulated. AdjustingP 261

can yield a small-world network between the regular network 262

(P = 0) and the random network (P = 1). Figure 2 shows 263

three topologies formed by different rewiring probabilities 264

from a 20 node network. The case k = 4, P = 0, forms a 265

regular network, while k = 4, P = 1 generates a random 266

network. The small-world network may be formed when P is 267

in the interval [0,1]. This illustrates a small-world network 268

formed under k = 4, P = 0.5. By adjusting the P, the 269

small-world network can be formed between the regular and 270

random networks. 271
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The WS small-world model elaborates on the small-world272

phenomenon in the real world, such as the neural network273

of the worm Caenorhabditis elegans, the power grid, and274

the collaboration graph of film actors. In complex network275

theory, the small-world network belongs to a type of ran-276

dom network. However, the small-world network has unique277

bionic advantages that differ from other complex networks.278

In this study, we employed the WS small-world model as279

the topology for HNN. As the small-world network is the280

only complex network observed in real biological situations,281

we did not compare it with other complex networks regarding282

performance. However, the clustering coefficient and average283

length, important network properties in complex network284

theory, were considered.285

C. SMALL WORLD NETWORK PROPERTIES286

1) CLUSTERING COEFFICIENT287

The clustering coefficient is the probability that specific neu-288

rons in a network are likely to cluster together [16]. In the289

local network, for node i, which has k neighboring nodes290

connected, the local cluster coefficient, Ci, of neuron i can291

be written as (5). Numerator e denotes the number of wired292

connections between neighbors, and denominator 1
2k (k − 1)293

indicates the maximum possible (fully connected) connection294

number.295

Ci =
e

1
2k (k − 1)

k 6= 1 (5)296

Extended to the network with n nodes. The summing of297

clustering coefficient Ci can be averaged to rewrite Cn as298

Cn =
1
n

n∑
i=1

Ci (6)299

2) AVERAGE PATH LENGTH300

The average path length is defined as the average distance301

between each node pair in the network [16]. Suppose Di,j302

denotes the distance of the shortest path between neural node i303

and j in the network, then L represents the average path length304

that can be computed by (7), where
(n
2

)
denotes the number305

of all possible pairs of neural nodes in the n nodes network.306

L =
(
n
2

)−1∑
i6=j

Di,j (7)307

III. SMALL-WORLD DHNN308

A. IMPACTION OF SMALL-WORLD TOPOLOGY309

ON DHNN TRAINING310

We observed two major changes from the WS small-world311

model that significantly impact DHNN training. The first is312

the changes in the network characteristics. The sparse neuron313

connections increase the average path length and reduce the314

clustering coefficient of the network. The degradation of315

the network characteristics may eventually cause insufficient316

training neurons, decrease the training efficiency, and even317

generate oscillations. The second is the changes in network318

energy. The small-world network energy may be divided into 319

two parts: the regular lattice part is formed byK /2 nodes from 320

the near region, and randomly chosen nodes form the random 321

rewire part of the network. The network neuron flips the state 322

driven by these two energy parts. The regular lattice part is the 323

same as that formed by the same region of the network. But 324

the random rewired part is unstable. It may cause the neuron 325

to flip to the wrong state. In this section, we compare the 326

training process of the fully connected structure with that of 327

the small-world structure, and then elaborate on the impact 328

on network training in terms of network characteristics and 329

energy. 330

Figure 3 illustrates two neural network training processes. 331

The figure on the top is the fully connected structured neural 332

network, and the bottom is the small-world structured neural 333

network. The yellow node represents the neuron in training. 334

The fully connected structure organizes the yellow node to 335

connect with all other nodes. The yellow node connects to 336

only a few blue nodes in the small-world structure. The nodes 337

in the green frame represent the regular lattice nodes, and the 338

rest of the nodes represent the random rewired nodes of the 339

small-world network. During the training process, the yellow 340

node traverses from left-top to right-bottom of the network. 341

Under the fully connected structure, each weight between the 342

yellow and blue nodes needs to be updated. By comparison, 343

the yellow node connects fewer blue nodes under the small- 344

world structure, thus requiring fewer weights to be updated. 345

The Hebbian method and the Wan Abdullah method remain 346

applicable as the learning method for the small-world neural 347

network, and the signum function decides the neuron state. 348

We noted no significant difference in the training mechanism 349

between the fully connected and the small-world neural net- 350

work. The changes in network characteristics and energy are 351

two essential factors that impact neural network training. 352

FIGURE 3. Small-world topology vs full connected topology on Hopfield
neural network training process.

The impact of the network characteristics is mainly 353

reflected in the energy converge efficiency of neural network 354

training. The network characteristics are described by two 355

factors: the average path length and the clustering coefficient 356

of the network. In Figure 4, we compare the average path 357

length of the fully connected topology with that of the small- 358

world topology HNN. In the fully connected structure, each 359
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FIGURE 4. Topology impaction on Hopfield neural network training:
average path length.

node pair has a shortcut, which means any node can be360

accessed in just one step. Hence, the path length of the fully361

connected structure equals one. After one round of training,362

each neuron considers the effects of all the other neurons363

in the network. However, most neuron pairs may not have364

a shortcut in the small-world structure. The regular lattice365

ring assures that each neuron is accessible, and the random366

rewire decreases the average path length. Figure 4 illustrates367

an example of a neuron pair whose path length is two.368

During network training, each neuron only considers a few369

connected neurons in the network. Therefore, the neuron in370

the small-world structure requires more training cycles to371

accumulate the full effects of all the neurons. The average372

path length usually is proportional to the number of train-373

ing iterations. The longer the average path length, the more374

training iterations are required. In addition, the clustering375

coefficient impacts the network training from another angle.376

In Figure 5, the clustering coefficient of the fully connected377

structure equals one because all neighbors are connected,378

where e = 1
2k(k − 1). The clustering coefficient of the379

small-world structure is smaller than that of the fully con-380

nected structure; Ci = e
1
2 k(k−1)

is the clustering coefficient381

of the yellow neuron, k denotes the number of neighbors382

(means the neurons that are connected with the yellow neu-383

ron), and e represents the actual connection number between384

its neighbors. The clustering coefficient describes how the385

neighbors of a neuron are clustered together. The smaller386

the clustering coefficient, the fewer neighbors are connected,387

and the lower the energy transfer efficacy. Therefore, more388

training is required.389

The composition of the small-world neural network energy390

differs from the fully connected network. In Figure 6, a digit391

image is selected as the data pattern to display the network392

energy. The small-world topology is formed by the WS393

method. We evaluated and compared the energy distribution394

for the small-world and the fully connected topologies. Under395

FIGURE 5. Topology impaction on Hopfield neural network training:
clustering coefficient.

the fully connected topology, the energy distribution appears 396

uniform. A neuron may absorb the energy from each neuron 397

in the network. The signum function decides the neuron states 398

by summing the energy. By contrast, the energy distribution 399

of the small-world network is highly centralized. The neu- 400

rons compose the ring lattice occupying the central part of 401

the energy. The energy of the rewiring part is distributed 402

randomly and scattered in the network. During the training 403

process, the neuron absorbs energy from both the lattice ring 404

and the randomly wired neurons. Unconnected neurons are 405

indirectly affected by the connected neurons. In addition, the 406

energy of the random wire part is composed of randomly 407

chosen neurons; hence, it is not guaranteed to be consistent 408

with the remaining parts of the fully connected network. 409

B. IMPLEMENTATION OF SMALL WORLD DISCRETE 410

HOPFIELD NEURAL NETWORK 411

1) THE SMALL-WORLD DHNN ALGORITHM 412

To better clarify the small-world DHNN, we constructed the 413

WS small-world model over the DHNN. We divided the 414

small-world HNN algorithm into two stages. In the initial- 415

izing stage, a user is required to input the parameters k and 416

rewire probability P. Then, the weight matrix for the HNN 417

is initialized by the connection information of the topology. 418

In the learning stage, both the Hebbian and 2SATWanAbdul- 419

lah learning methods are integrated, and a variable is defined 420

to switch between the learning methods. Either the Heb- 421

bian or 2SAT Wan Abdullah method may update the weight 422

matrix. The signum function is applied to update the neuron 423

state till all neurons remain at a stable state, and then the 424

stop condition is met. Then, the output pattern can be pro- 425

duced. Based on the assumption that the input is a pattern in 426

binary format, the algorithm of the small-world HNN is as 427

follows. 428

95374 VOLUME 10, 2022



J. Sun et al.: Analysis and Optimization of Network Properties for Bionic Topology Hopfield Neural Network

FIGURE 6. Energy comparison: small-world neural network vs fully connected neural network.

TABLE 2. Parameters of small-world Hopfield neural network.

Initializing stage:429

Step 1: Initialize the input pattern, and specify the size of430

the pattern n and the data of the neuron states.431

Step 2: Initialize the small-world parameters, specify432

parameter k, rewire probability P, and allocate the weight433

matrix with n× k size.434

Step 3: Initialize the small-world network, and connect435

each neural node with its k nearest neighbor nodes.436

Step 4: Rewire each neural node, divide k/2 connections437

for each neural node as ‘‘left’’ and the remaining k/2 connec-438

tions as ‘‘right.’’ Hold the connections of the left side of the439

neural node, and rewire the remaining connections from the440

right side to other nodes selected randomly by probability P.441

Learning stage:442

Step 5: Start iterating neural nodes in the network, and read443

the neuron state from the pattern.444

Step 6: If the Hebbian method is specified, compute445

the weight for neural node i, j by equation wi,j =446 ∑m
s=1

(
2V s

i − 1
) (

2V s
j −1

)
. Sum the weight calculated for447

each pattern.448

Step 7: If the 2-SAT Wan Abdullah method is specified,449

check the weight value from equation (5). The Wan Abdullah450

method for 2-SAT by the neuron state represents variables of451

the clause.452

Step 8: Update the state for neural nodes by Si = 453{
1 where Vi − Ti> 0
0 where Vi − Ti< 0

, where Ti is the presetting threshold, 454

and Vi can be computed by Vi =
∑n

j=1 wi,j·xj. xj refers to the 455

output of neural node j. 456

Step 9: Check the stop condition where all neurons of 457

the network meet S (t) = S (t − 1), then stop the training 458

iteration. Otherwise return to Step 5. Continue the training 459

iterations till the stop condition is met. 460

Step 10: Obtain the weight matrix. Compute the state for 461

all neurons of the network by signum function. Yield the 462

pattern for output. 463

2) IMPLEMENTATION 464

The small-world-based HNN algorithm was implemented 465

using C++ for Microsoft visual studio 2017 on a machine 466

with an i5 CPU, 16 GB memory, and the Windows 10 oper- 467

ating system. In our embodiment, the neural network’s size 468

(number of neural nodes) is defined as an integer variable. 469

The rewire probability P and the number of the nearest neu- 470

ron k are parameterized to form the small-world network. 471

A multi-dimensional array is assigned to store the weight 472

matrix and the connection in the formation. The weight 473

matrix is allocated on a continuous memory address to boost 474
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the searching and iteration speed. In the initializing stage, the475

weight matrix is initialized according to the network size and476

the value of parameter k . Then, each node is connected with k477

neurons from the nearest region. While rewiring neurons, the478

random number generator (RNG) service is applied to gener-479

ate the rewire probability P and the random address of neural480

nodes for selection. Each neuron rewires k/2 connections481

using the probability P. The input pattern is stored in a scalar482

matrix in the learning stage, and the pattern data is assigned483

to the neuron at the corresponding address. The Hebbian484

and Wan Abdullah methods are alternatives for updating the485

neuron weights. The state of the neuron is determined by486

the signum function Si=
{
1 where Vi − Ti> 0
0 where Vi − Ti< 0

, Ti denotes487

the neuron’s threshold, and Vi is updated by summing up the488

neuron states. As an intermediate result, these states are saved489

in a separate matrix. The training process is maintained till490

the stop condition is met. In our embodiment, two criteria491

are considered to stop training. The first criterion is that all492

neurons remain stable and meet the condition S(t)=S(t-1).493

Meanwhile, a threshold (epoch) for limiting the maximum494

learning cycle is integrated to prevent the program from495

overflowing. In the retrieval stage, the output pattern can be496

computed by applying the signum function to the learned497

weight matrix.498

C. MEASUREMENTS AND TRAINING499

EXPERIMENTAL RESULTS500

To further explore the competency of the small-world net-501

work as the topology of HNN, we measured its performance502

in two aspects. First, we measured the network characteristics503

and compared them with the fully connected network. Sec-504

ond, to comprehensively measure the learning competence505

of the small-world neural network, we tested the learning506

accuracy under different combinations of k and P.507

The first test was run on small-world structures of 100,508

500, and 1000 nodes, mainly considering the impact of the509

rewiring on the network clustering coefficient and the aver-510

age path length. By making k constant, P was increased511

gradually. The network clustering coefficient and average512

path length were then measured. In Figure 8, the horizontal513

coordinates represent the rewiring probability, and the ver-514

tical coordinates represent L(P)/L(0) and C(P)/C(0), which515

denote the ratios of the average path length and clustering516

coefficient when rewiring probability equals P and 0. From517

Figure 8, we observed that while the rewiring probability518

remains small, a slight increase leads to a substantial drop519

in the average path length; meanwhile, the impact on the520

clustering coefficient appears very small. Therefore, such521

network characteristics may enable the small-world network522

to reduce its average path length by only slightly rewiring523

and further shrink the gap with the fully connected network.524

This also suggests that the sparse small-world may achieve525

a performance comparable to the fully connected network.526

Its competency as a neural network topology is confirmed527

regarding network characteristics.528

In the second test, we measure the learning accuracy of 529

the small-world neural networks formed by different com- 530

binations of the parameter k and rewiring probability P. 531

We defined learning accuracy as the similarity between the 532

retrieved and original input patterns. We assumed that k 533

equals the size of a network with n neurons and that the 534

rewiring probability P equals 0. Then, k is gradually reduced 535

to k = 4, and for each k , P is distributed from 0 to 1 at 536

0.05 intervals. Figure 9 shows the similarity distributions 537

with different combinations of k and P. We observed that 538

in most cases where k is large (k > 20), the similarity 539

equals 1, which means that the retrieved pattern is entirely 540

consistent with the original pattern. Points at which the sim- 541

ilarity is less than 1 mostly appear in the area where k is 542

small (k < 16). Figure 9 shows the trend in learning accuracy 543

under different combinations of k and P for the small-world 544

network characteristics. Starting with P = 0, when k tends 545

toward n, it means the network is closer to the fully connected 546

structure and tends toward obtaining the same learning results 547

as the fully connected neural network. The fully connected 548

neural network is obtained till k = n. Conversely, while k is 549

gradually decreased by only slight rewiring, we may obtain a 550

remarkably high learning accuracy (learning accuracy = 1). 551

When k drops to a small value (k < 20), the learning accuracy 552

also drops. This trend is also observed throughout our tests on 553

the MNIST dataset. 554

However, we also realize that one combination of k and 555

P may form different structures because the current random 556

rewiring mechanism may wire a neuron to any neuron in the 557

network. Therefore, the random drop in the learning accuracy 558

may be attributed to the unguaranteed composition of the 559

inconsistent energy compared with that of the fully connected 560

structure. 561

IV. GAUSSIAN-DISTRIBUTED SMALL- WORLD WIRING 562

METHOD 563

A. INSTABILITY 564

As mentioned in Section III, there are two energy parts to 565

consider during the training process of the WS small-world 566

neural network: 1) The regular lattice ring, which is entirely 567

consistent with that of neurons at the corresponding position 568

of the fully connected network. These neurons form a sta- 569

ble energy. 2) The random rewiring, which is of a highly 570

uncertain state because these neurons are chosen randomly 571

from the network. These rewired neurons form the unstable 572

energy of the network. When the rewiring energy is increased 573

to a certain proportion in the composition of the network 574

energy, it magnifies the adverse effects in terms of conver- 575

gence efficiency and learning accuracy and even generates 576

oscillations during the training process. However, appropriate 577

rewiring may substantially reduce the average path length 578

for the network, and can promote convergence efficiency. 579

In addition, when k increases, the granularity of the regu- 580

lar lattice ring increases, and the learning accuracy is also 581

enhanced. 582
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FIGURE 7. Flowchart of small-world Hopfield neural network.
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FIGURE 8. Measurement the network characteristics: average path length and clustering coefficient.

FIGURE 9. Measurement of learning results with small world combinations of k, P .

The current WS small-world model uses the random583

rewiring mechanism. However, as the topology of the neu-584

ral network, the assurance of consistent energy is yet to585

be considered. We propose two improvements to the WS586

small-world model to promote stable network energy and587

learning accuracy. The first is to increase the proportion588

of the energy for the regular lattice ring (which means589

increasing the granularity for the regular lattice ring part)590

and reduce the unstable energy formed by random recon-591

nections. The second is to add an energy pledge step for592

the WS small-world model to ensure consistent network593

energy.594

For the first requirement, we take a neuron from the595

network as the centroid, compose the regular lattice ring,596

and then examine the neurons along the radial in terms of 597

their impact on the network characteristics. We observed 598

that in the WS small-world model, the neurons near the 599

centroid have more overlapped neighbors with the regular 600

lattice ring. While extrapolating along the radial, the increase 601

in the clustering coefficient showed an exponential decline, 602

and the neurons far from the centroid barely benefited from 603

increasing the clustering coefficient. However, slight wiring 604

with distant neurons may substantially reduce the average 605

path length. Therefore, we assumed that the connection quan- 606

tities along the radial obey the Gaussian distribution. For the 607

second requirement, we integrate the validation step using the 608

2SATWan Abdullah method in the new small-world rewiring 609

method to ensure consistent energy. 610

95378 VOLUME 10, 2022



J. Sun et al.: Analysis and Optimization of Network Properties for Bionic Topology Hopfield Neural Network

B. GAUSSIAN-DISTRIBUED WIRING FOR SMALL-WORLD611

NETWORK612

We propose a new rewiring method for the WS small-world613

model to promote the stability of the network energy and614

the learning result accuracy. The method starts by selecting615

a neuron as the pattern centroid along the radial, which616

divides the pattern into data layers. Considering the impact617

of network properties, we assumed that the quantities of con-618

nections on each data layer obey the Gaussian distribution.619

x represents the data layer variable, and f (x) represents the620

connection quantities on each data layer and can be written621

as equation (8).622

f (x) =
1

σ
√
2π

e
−

1
2

(
x−µ
σ

)2
(8)623

σ =
1

C
√
2π

(9)624

f (x) = C · e
−

1
2

(
C
√
2π ·x

)2
(10)625

C is the size of the regular lattice ring, µ is initialized to 0,626

andσ is the parameter that can adjust the centrality of distri-627

bution. While x = 0, we may decide σ by C. Substitute (9)628

in (8), and the connection distribution of each layer may be629

written as equation (10). Figure 10 plots the Gaussian distri-630

bution of neuron connections; we see that the connections are631

denser near the centroid, forming a highly clustered region632

that dominates the main part of the network energy. But in633

the distance area from the centroid, only a few connections634

substantially reduce the average path length. Therefore, the635

distribution of neuron connections changes the proportion636

of network energy, and part of random energy is shrunk.637

However, the regular lattice ring is expanded, thus improving638

the stability of the learning accuracy. In addition, to ensure639

consistent network energy, we add the energy validation step640

by the 2SAT Wan Abdullah method.641

FIGURE 10. Gaussian distribution small-world neuron wiring.

The detailed steps of the Gaussian-distributed small-world642

rewiring algorithm are as below:643

Step 1: Choose parameter k and rewiring probability P for 644

the small-world topology. 645

Step 2: Take the neuron as the centroid of the pattern, 646

Divide the pattern into x data layers. 647

Step 3: Connect the neuron with its k nearest neighbor 648

neurons as a cluster. Denote C as the size of the cluster. 649

Step 4: Initialize the rewiring quantity R = 0 and generate 650

K /2 random numbers. Check for every random number. If it 651

is smaller than the preset rewiring probability P, increase one 652

to R. 653

Step 5: If the random number is greater than the rewiring 654

probability P, connect the neuron with the follow-up neuron. 655

Increase the cluster size C by one. 656

Step 6: Taking the current neuron as the cluster center, 657

divide the pattern into data layers along the radial. Initialize 658

σ by equations (8) and (9). 659

Step 7: Compute the connection quantity for each layer by 660

equation (10) and initialize x = 1. 661

Step 8:Wire neurons randomly to the related layer. 662

Step 9: Validate the energy for the neuron by the 2SAT 663

Wan Abdullah method. Restart rewiring the neurons to the 664

related layer if energy is inconsistent. 665

C. EVALUATIONS AND RESULTS 666

We evaluated the Gaussian-distributed small-world rewiring 667

method using two aspects. 1) The coincidence degree with 668

the fully connected neuron series - The similarity of the 669

new small-world series with the fully connected series was 670

measured to demonstrate that the small-world may obtain the 671

same accurate result as the fully connected series. 2) The con- 672

sistency of the energy- By evaluating the consistent energy of 673

the small-world series formed by the new method, we further 674

confirm the stability of the Gaussian distribution rewiring 675

method. 676

To evaluate the approximation between the small-world 677

series generated by the new method with the fully connected 678

structure, we employed dynamic time warping (DTW) to 679

measure the coincidence for these two series with different 680

sizes. Figure 11 illustrates three small-world neuron series 681

compared with the fully connected series, which formed on 682

different regions of 100 neurons. In most places, the neuron 683

series of the small-world highly coincides with the fully 684

connected series, while the differentials appear at only a 685

few positions. This explains the reason for the new rewiring 686

mechanism’s high learning accuracy. The new Gaussian- 687

distributed rewiring mechanism ensures high clustering cen- 688

trality in the near region of the centroid and slight rewiring in 689

the distant region, therefore maintaining stability. The rewire 690

mechanism reserved randomness regarding the rewire prob- 691

ability P to ensure that the disordered small-world topology 692

is formed, further measuring its convergence trends to ensure 693

the stability of output results. 694

To verify that the neuron series of the small-world structure 695

is accurately converged, we evaluated its logic inconsistent 696

energy using the Wan Abdullah method [7]. We randomly 697

chose a neuron (state is 1, occasionally) from the network, 698
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FIGURE 11. Comparison of the small-world series and the fully connected series by dynamic time warping.

95380 VOLUME 10, 2022



J. Sun et al.: Analysis and Optimization of Network Properties for Bionic Topology Hopfield Neural Network

FIGURE 11. (Continued.) Comparison of the small-world series and the fully connected series by dynamic time warping.
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TABLE 3. Wan Abdullah method for 3-satisfiability.

and then set a small value of k (k = 6) as the starting value.699

This forms the neuron series of the small-world structure for700

this neuron, and then k increases gradually (interval = 10) till701

k equals the size of the entire network. We verified the logic702

inconsistent energy on the neuron series and calculated the703

state of the neuron. The CNF starts from k variables corre-704

sponding to k neuron small-world series. Each clause is com-705

posed of three neurons, and the neuron state represents each706

literal of the clause. For example, the RAN3-SAT CNF may707

be written as α = (S1∨S2 ∨ ¬S3) ∧ (S4 ∨ ¬S5 ∨ S6), where708

k starts from 6, and the small-world series may be ‘‘110101.’’709

By negation of the CNF, we obtain¬α = (¬S1 ∧ ¬S2∧S3)∨710

(¬S4 ∧ S5 ∧ ¬S6). We can compute the weight between neu- 711

rons by applying the 3-SATWanAbdullah method in Table 3. 712

Hence, we can verify the logic inconsistent energy by com- 713

puting the state of the neuron. Then, we increase parameter 714

k and the variables for the CNF, and we verify the logic 715

inconsistent energy till k equals n, which is the network size. 716

On the left-hand side of Figure 12, the curve shows the 717

convergence trends of the standard deviations obtained from 718

twelve rounds of repeat testing. The abscissa denotes the 719

k value, and the data points of the ordinate represent the 720

corresponding standard deviation. When k < 26, the results 721

of the remaining incorrect neuron states (state of 0) can be 722
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FIGURE 12. Standard deviation and neuron state convergence trends.

FIGURE 13. Similarities obtained from two training cycles.

obtained. By increasing k , the number of results with the723

incorrect state is reduced, and the related standard deviation724

converges toward zero rapidly. In the figure on the left-hand725

side, the data points represent the corresponding neuron states726

obtained from the twelve rounds of testing. The straight line727

displays the trend that when k increases, the inconsistent728

energy drives the neuron convergence towards its original729

state. Because neurons are sampled randomly in repeated730

testing, when the sample neuron has 0 as the original state,731

it accurately displays the same trend and convergence toward732

zero.733

D. DIGIT RECOGNITION EXPERIMENT734

1) MEMORIZATION AND RECOGNITION735

To clarify the memorization and the recognition capability of736

the Gaussian-distributed small-world HNN, we tested it on a737

handwritten digit dataset in terms of the learning accuracy and738

convergence efficiency. Digit recognition is a classic property739

of the HNN. To measure the performance of the Gaussian- 740

distributed small-world HNN algorithm, we used the MNIST 741

dataset [27], [28] as the testing dataset. It is a mainstream 742

dataset in digit recognition, which contains 60,000 handwrit- 743

ten digit training samples and 10,000 testing samples. Each 744

sample has been standardized to a 28 × 28 pixels grayscale 745

image.Wemeasured similarity in theMNIST dataset by com- 746

paring the retrieved and original patterns. The measurement 747

covered 60,000 training samples and was conducted using 748

different configurations of learning methods and topologies. 749

However, when measuring the similarity under these con- 750

figurations, we observed that all the configurations could 751

obtain a result that has a similarity equal to one, after just 752

a few rounds of training. Meanwhile, we obtained accurate 753

recognition results on almost all of the testing images. 754

In Figure 13, from the plotted digit testing results, we can 755

observe that the small-world network is significantly ahead of 756

the fully connected topology in terms of learning accuracy. 757
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FIGURE 14. Convergence efficiencies of training cycles.

Under the Gaussian-distributed small-world network, the758

similarity obtained by the Wan Abdullah method and the759

Hebbian method exceeds 0.99. Compared with theWS small-760

world network, the similarity obtained are more stable, with761

only a few changes. Under the WS small-world network, the762

median value of the similarity obtained by the Wan Abdullah763

method was 0.988 and that of the Hebbian method was 0.983,764

but the extent of change is more significant.765

Because these configurations converged after just a few766

rounds of training (epoch < 10), we dumped the data of767

10 training cycles and computed the median value for each768

configuration to further compare the performance of these769

configurations. In Figure 14, the Gaussian-distributed small-770

world configuration shows convergence to a target pattern771

within the 3rd training cycle, which is faster than the WS772

small-world configuration, and the fully connected neural773

network converged at the 5th training cycle. Therefore,774

after comparisons, it can be concluded that the Gaussian-775

distributed small-world neural network displays better con-776

vergence efficiency. Meantime, the Wan Abdullah method,777

which computes the synaptic weight by logical inconsistency778

energy of neurons, always shows a slight advantage through-779

out the testing, especially in terms of convergence efficiency.780

Using the MNIST dataset, we confirmed the applicability781

of the Gaussian-distributed small-world neural network in782

terms of the learning accuracy of handwritten digit recogni-783

tion. The Gaussian-distributed wiring mechanism improved784

the clustering coefficient for the small-world network and785

reduced the unstable energy caused by random rewiring. The786

reserved slight rewiring substantially reduced the average787

path length; therefore, higher learning accuracy and con-788

vergence efficiency were achieved compared with the WS789

small-world and fully connected networks. In addition, the790

small-world network is the only complex network that has791

confirmed its biological existence; therefore, we did not per-792

form comparisons with other complex networks.793

2) HANDWRITTEN DIGIT IMAGE CLASSIFICATION 794

Many methods have achieved impressive results in hand- 795

written digit image classification. The MNIST benchmark 796

database [28] shows that the convolutional neural network 797

is the most accurate model for handwritten digit classifi- 798

cation. Jarrett et al. [29] reported their CNN model with 799

multistage feature exaction obtained a test error rate of 0.53. 800

Cireşan et al. [30] employed a plain multi-layer perceptron 801

(MLP) in their DNN (deep neural network)model and yielded 802

a 0.35% test error rate. In this section, we test the per- 803

formance of the proposed Gaussian-distributed small-world 804

HNN from a practical application view. Because the HNN 805

is a feedback neural network [1] [31], to better test perfor- 806

mance, we integrated the Gaussian-distributed small-world 807

HNN with Cireşan’s DNN model as a solution for hand- 808

written digit image classification [32]. Figure 15 illustrates 809

the architecture of the Gaussian-distributed SWHNN-DNN 810

of the training and testing stages. 811

The training architecture ofGaussian-distributed SWHNN- 812

DNN contains a Hopfield layer [31] and a DNN layer 813

[30]. The Hopfield layer contains ten units of the Gaussian- 814

distributed SWHNN, which are used for training the digit 815

images of the digits from ‘‘0’’ to ‘‘9’’, respectively. As shown 816

in Figure 15, the Gaussian-distributed SWHNN unit orga- 817

nizes 784 neurons with Gaussian-distributed small-world 818

wiring. The DNN layer is trained in a separate process. Its 819

hidden layer is initialized by five fully connected layers in 820

which the number of neurons of each layer is 2500, 2000, 821

1500, 1000, and 500. The output layer (SoftMax layer) 822

contains ten neurons that use the ‘‘SoftMax’’ function as the 823

activation function to output classification results. 824

Under the testing architecture, each test image is input 825

into the Gaussian-distributed SWHNN units in parallel. 826

We restricted the Gaussian-distributed SWHNN unit from 827

memorizing test images, which means the weight matrix in 828

the SWHNN unit is protected and test images are running on 829
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FIGURE 15. Architecture of the Gaussian-distributed SWHNN-DNN.
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TABLE 4. Test error rates on MNIST handwritten digit dataset.

the copy of weight matrices. The selector module is applied830

to select the SWHNN channel with the highest learning831

accuracy. Learning accuracy is the similarity between the832

memorized pattern and the pattern retrieved from SWHNN833

units [32], [33], [34]. The pattern from the selected channel834

is retrieved and submitted to the DNN layer for classification.835

During the training stage, first, we trained the HNN layer.836

Wemanually divided the MNIST training set into ten clusters837

of digits ‘‘0’’ to ‘‘9’’, and these digit images were submit-838

ted to Gaussian-distributed SWHNN units for training. The839

Hebbian method was employed to update the weight matrix840

of the Gaussian-distributed SWHNN unit, and these matrices841

were saved for further tests. Then the DNN layer was trained842

under diverse configurations. Table 4 lists the details of the843

configurations of the DNN layer.844

We tested on an Intel Core i7 11800, 16GB memory,845

and Nvidia GTX3060 GPU hardware platform. As shown in846

Table 4, the simulation time is ahead of that measured in [30]847

due to the difference in hardware platforms. Through test-848

ing simulations, we observed that the Gaussian-distributed849

SWHNN unit may effectively attract test images to con-850

verge to the trained pattern; hence, it improved the test851

error of the DNN layer during the testing process. We listed852

the test error rates of the Gaussian-distributed SWHNN-853

DNN with different structures of the hidden layer at the854

bottom of Table 4. The lowest test error rate of the855

Gaussian-distributed SHWNN-DNN appeared in the hidden 856

layer of structure {2500,2000,1500,1000,500}, and it arrived 857

at 0.16%. Its average test error rate collected from five 858

rounds of repeating tests is 0.19, is listed in the right col- 859

umn. The test error rates of the rest of the hidden layers 860

are lower than that of the DNN in [30]. The test error rate 861

of {1000,500} is 0.28 and its average test error is 0.37, 862

{1500,1000,500} is 0.22 and 0.31, {2000,1500,1000,500} is 863

0.19 and 0.24, and {9 × 1000} is 0.19 and 0.23, respec- 864

tively. In addition, from the memory occupation aspect, the 865

weight matrix of the Gaussian-distributed SWHNN unit is 866

set to 26 × 784. Therefore, 203.84K weights are used in 867

the ten Gaussian-distributed SWHNN units in the Hopfield 868

layer. Through the comparison testing, we noted that the 869

associative memory property of SWHNN units provides 870

enhancement and correction functions for testing patterns; 871

hence, it reduced the classification complexity for the DNN 872

layer. The above comparison data shows that the Gaussian- 873

distributed SWHNN-DNN obtained a lower test error rate 874

than the DNN model. We further compare the Gaussian- 875

distributed SWHNN-DNN with other methods to know its 876

performance. 877

The comparison of the Gaussian-distributed SWHNN- 878

DNN with other methods for handwritten digit image clas- 879

sification is listed in Table 5. From the test error rates in 880

Table 5, we can observe that the best test error rate of 881
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TABLE 5. Comparison of the Gaussian-distributed SWHNN-DNN with other methods on MNIST handwritten digit dataset.

the Gaussian-distributed SWHNN-DNN is lower than other882

listed CNN methods. From training complexity aspects, the883

architecture of the proposed Gaussian-distributed SWHNN-884

DNN is even simpler, including only a plain MLP network885

and an HNN layer. Therefore, its computational cost and886

training complexity are also lower than CNN models. Thus,887

through the above comparison, we conclude that the proposed888

Gaussian-distributed SWHNN-DNN outperforms other CNN889

models on the MNIST handwritten digit set.890

In addition, Namane et al. [32] proposed a method com-891

bined fully connected HNN and MLP for degraded machine-892

printed digit recognition, they report obtained a 98.62%893

recognition rate. We tested HNN-DNN under hidden layer of894

{2000,1500,1000,500}.We obtained 92misclassified images895

as the lowest test error. The best test error rate is 0.92%, and896

the average test error of five rounds repeat testing is 1.06%.897

3) DISCUSSION898

The proposed Gaussian distribution small-world model opti-899

mizes the small-world network in terms of the following900

aspects: 1) short average path length- during the training901

process of a small-world HNN, the average path length902

plays an important role in reducing training cycles. The903

proposed Gaussian-distributed small-world network contains904

only slight random wirings to the distant neurons, signif-905

icantly reducing the average path length, thus improving906

training efficiency. In the memorization capability test, the907

proposed neural network converged in only a few training908

cycles (epoch < 10). 2) High clustering coefficient- in the909

small-world model, the network clustering coefficient illus-910

trates the degree to which the adjacent neurons of a neuron911

are connected. During the training process, the clustering912

coefficient can significantly affect the transfer efficacy of913

network energy. The proposed method arranges neuron con-914

nections obeying Gaussian distribution, which concentrates915

connections in the near neuron region, thus improving net-916

work energy’s transfer efficacy and obtaining high learn-917

ing accuracy and fast convergence speed. 3) Stable network918

energy- the proposed method changed the distribution of neu-919

ron connections in the small-world network, altering the net-920

work energy proportion. It reduced the random connections,921

thus reducing the random energy in the network. Therefore,922

the stable energy formed by the neurons in the near region of923

the centroid neuron dominated the main part of the network.924

In addition, the Gaussian-distribution small-world wiring 925

method is dedicated to improving the instability defi- 926

ciency of the WS small-world model. However, it dif- 927

fers from the hyper-parameter optimization method in deep 928

learning. We summarize the key points. 1) The proposed 929

Gaussian-distributed small-world network does not leverage 930

the optimal parameter combinations for improving train- 931

ing performance. The parameter combinations of k and P 932

cannot determine the connection between a pair of neu- 933

rons; one combination of k and P may form different 934

small-world networks. 2) The workflow of the Gaussian- 935

distributed small-world wiringmethod differs from that of the 936

hyper-parameter optimization method. The hyper-parameter 937

optimization method usually contains an expensive step of 938

finding the optimal parameters. The Gaussian-distributed 939

small-world wiring method does not include such steps. 940

3) These two methods have different perspectives on opti- 941

mizing the training of neural networks. The hyper-parameter 942

optimizationmethodmore focuses on the pros and cons of the 943

combination of configurations of neural networks. However, 944

the Gaussian-distributed small-world method emphasizes the 945

biological reality and the stability of the network energy of 946

the HNN. 947

V. CONCLUSION 948

In this study, to address the instability issue of the small- 949

world network, we examined the influence of the small- 950

world topology on the HNN learning process and conducted 951

computer simulations. We observed that instabilities due to 952

the random existence of neuron connections cause unsta- 953

ble network energies, which may generate oscillations dur- 954

ing the WS small-world neural network training process. 955

Therefore, we proposed the Gaussian-distributed small-world 956

wiring method to improve the stability of WS small-world 957

networks. The proposed method organizes neuron connec- 958

tions in compliance with the Gaussian-distribution, which 959

reduces random connections from a distant area and makes 960

the short-range connections dominate the main part of net- 961

work energy, thus improving the stability of small-world 962

networks. To evaluate the new small-world rewiring method, 963

we compared the new small-world series with the fully con- 964

nected series by applying DTW. The new small-world series 965

displayed high levels of coincidence compared with the fully 966

connected series in terms of the distributions of neuron states 967
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and the logical energy value. The new Gaussian-distribution968

rewiringmethodwas compared withWS small-worldmethod969

and the fully connected neural network on the MNIST hand-970

written digit dataset. The experimental result revealed that971

the Gaussian-distribution rewiring method performed with972

higher stability in terms of the learning accuracy and had a973

higher convergence speed than the WS small-world model974

and the fully connected network. In the application com-975

parison experiment, we integrated the Gaussian-distributed976

small-world neural network with Ciresan’s DNN model and977

obtained the best test error rate of 0.16%.978
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