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ABSTRACT Most congestion occurs at intersections. Increasing the intersection capacity is crucial to
alleviate the congestion. Saturation flow rate (SFR) is the basis for capacity calculation. SFR depends on
many factors, and the guidelines sketched in the highway capacity manual can be applied. Most SFR are
defined at the stop-line. The vehicles depart from the stop-line, enter the intersection, and exit from the
outlet of the intersection. In a congestion scenario, vehicles would compete with each other before leaving
the intersection and even get stuck within the intersection. The flow rate at the outlet thus decreased, and as
a result, the theoretical capacity based on conventional SFR cannot be achieved. The manuscript defines a
concept called OSFR (outlet saturation flow rate) to reflect the influence of the game behavior at the outlet
and proposes a model that generates the OSFR. The model divides the vehicle’s movement into three parts:
departure from the stop-line, drive along its trajectory, and finally exist from the outlet with game behavior
with other drivers. A gamemodel for outlet lane-choosing is proposed. Based on empirical data, the stop-line
headway distribution model, speed model, and payoff function involved in the model were calibrated. The
results show that the proposed model can generate real-world OSFR distributions. This model can effectively
describe the invisible interaction between vehicles and can be used to get the outlet headway distribution in
the case of mismatched lanes number.

INDEX TERMS Headway, speed model, game theory, intersections.

I. INTRODUCTION
Intersection plays a vital role in the urban road system.
Most congestions originate from intersections. The entire
road network’s operational efficiency is determined by the
intersectional traffic efficiency [1]. Therefore, the correct
assessment of intersection capacity is of great significance
for traffic planning, operational assessment, and intersection
management [2].

If your paper is intended for a conference, please contact
your conference editor concerning acceptable word processor
formats for your particular conference.

According to the Highway Capacity Manual, the basic
method for calculating intersection capacity is based on the
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saturation flow rate [3]. The traditional way to calculate the
saturation flow rate is the headway method. However, the
departure headways are unstable for many reasons, including
driver behavior, vehicle performance, etc [4]. In order to
describe the instability of the headway, a log-normal dis-
tribution model was introduced to model the headway with
reasonable accuracy [5]. Jin et al. further found that depar-
ture headways followed a position-dependent log-normal
distribution [6].

The headways above are defined at the stop-line. After
the onset of green, vehicles depart from the stop-line, drive
through the intersection, and exit from the intersection outlet.
During rush hours, the vehicles may compete at the inter-
section outlet, and thus some vehicles get stuck within the
intersection, and finally, the queue influence the headways
at the stop-line. The theoretical capacity using the SFR at
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the stop-line cannot be achieved, and the actual capacity
is overestimated. As a result, the intersection planning and
control optimization performances may be compromised.

It is clear that SFR (saturation flow rate) defined at the stop-
line cannot reflect thismechanism. As the vehicle entering the
intersection must exit from the corresponding outlet lanes,
the SFR defined at outlet lanes would be more accurate
than that defined at the stop-line during competing scenar-
ios. Thus we propose a concept, OSFR (outlet saturation
flow rate), to describe the operational efficiency at the inter-
section outlet. The OSFR is influenced by the competing
behavior among vehicles, such as in the case in Figure 2.
In this paper, the game theory method is used to model the
competing behavior. The advantage of game theory over tra-
ditional rule-based models is that it can reflect dynamic inter-
actions among drivers [7]. In recent years, game theory has
been successfully used in the human-like decision-making of
autonomous vehicles [8], [9], [10] and lane-changing behav-
ior modeling in a connected environment [7], [11]. The pro-
posed OSFR model divides the vehicle movements into three
stages: (1) According to a certain SFR model, the vehicles
enter the intersection from the stop-line; (2) After entering
the intersection, the vehicles will drive along their trajectory
based on certain speed profiles; (3) Before the vehicles exit
the intersection, the vehicles need to play games with other
vehicles to get the opportunity to exit, which means some
vehicles will slow down. The overall model framework is
shown in Fig. 1.

FIGURE 1. The overall framework of the OSFR model.

The structure of this paper is organized as follows.
Section 2 describes the data source and the pre-processing
methods. Section 3 presents the models, including stop-
line headway distribution, speed curve model, and the game
model. Section 4 establishes a simulation framework using
the model developed in section 3 to obtain the OSFR.
Section 5 gives the summary of this paper.

II. GUIDELINES FOR MANUSCRIPT PREPARATION
A. DATA ACQUISITION AND PROCESSING PROCESS
The vehicle trajectory dataset used in this paper was collected
by a camera from an intersection (YuHangTang RD & Jiang-
Dun RD) in Hangzhou, China, on October 30, 2020. The
recording time is from 7:30 AM to 8:30 AM (morning peak).
The main reason for choosing this intersection is that for the
left-turn vehicles at the west entrance, the number of incom-
ing lanes is greater than the number of exit lanes(outlet lanes).
As such, the three incoming movements (each incoming lane
corresponds to a movement) compete with each other for the
two outlet lanes. While the incoming lanes number equals the

outlet lanes number for left-turn flow at the east approach,
there is no competing behavior. In this paper, we define the
left-turn traffic flow at the east approach as non-game traffic
flow and the left-turn traffic flow at the west approach as
game traffic flow. The following analysis will also focus on
these two kinds of traffic flow. The channelization status of
the intersection is shown in Fig. 2.

FIGURE 2. The channelization of the intersection and the trajectory of the
two kinds of traffic flow.

The original video of the vehicle trajectory was taken
from a high position on the 11 floors of a building near the
intersection. The video resolution is 1080P (1920∗1080) and
30 frames per second. Through the image recognition method
based on deep learning, the trajectory data of the vehicle is
obtained, and the recognition result is shown in Fig. 3.

FIGURE 3. (a) The original video and the area within the red rectangle is
the study area. (b) The recognition result.

The output trajectory of the vehicles is pixel-based and not
meter-based. We use the homogeneous coordinate transfor-
mation method to convert the image coordinates to real-world
coordinates (i.e., meter-based) [12]. The transformation for-
mula is as follows:

sm = pM (1)

where s is a non-zero scale factor; M is a three-dimensional
world homogeneous coordinate, M = [X Y Z 1]T;
m is a two-dimensional image homogeneous coordinate,
m = [u v 1] T; p is the mapping transformation matrix.
Since the three-dimensional world coordinates are not con-

sidered in this paper, the movement of vehicles at the inter-
section is regarded as a two-dimension trajectory. Therefore,
it can be assumed that the vehicles movement plane is located
on the plane of the world coordinate system Z=0, and the
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conversion equation can be rewritten as:

s×

 u
v
1

 =
 p1 p2 p3
p4 p5 p6
p7 p8 p9

×
X
Y
1

 (2)

After the conversion, the unit of the vehicle trajectory data
is changed from pixels to meters, and the trajectory error
caused by the shooting angle is greatly reduced, making
it possible to calculate the speed. The conversion result is
shown in Fig. 4.

FIGURE 4. (a) The original vehicle trajectory in pixel. (b) The converted
trajectory of the vehicle in the intersection (the red area in Figure 3(a)).

After transformation, the speed can be calculated from the
distance of the trajectory points and the corresponding time
stamps differences. However, due to the random factors (the
image capturing error, the vehicle identification error, etc.),
the speed will be very large or even negative [13]. To over-
come this, we smooth the data using a similar method in [13].
The average of the vehicle’s coordinates within a predefined
time horizon is regarded as the vehicle’s current position.
In other similar studies, Wan et al. chose 1 second as the
time horizon [13]. In this article, we select 5 frames (0.17s),
15 frames (0.5s), and 30 frames (1s) as the time horizon
to compare the results after smooth. Acceleration is used to
determine the best horizon. Under normal driving conditions,
the range of vehicle acceleration should be from −6m/s2

to 5m/s2 [14], [15], [16]. The influence of different smooth
horizons is shown in Fig. 5. The error rates (percentage of
acceleration outliers ) of 5, 15 and 30 frames are 61.4%, 1.0%

FIGURE 5. The acceleration distribution scatter plots of raw and each
resampling data (time refers to the driving time of vehicles in the
intersection).

and 0.1%, respectively. Since the speed curve is too smooth
when the 30-frames range is selected, the driver’s decision is
difficult to be recognized, 15 frames are selected as the final
time range.

B. STATISTICS
After the above processing, the statistics of game traffic flow
and non-game traffic flow can be obtained. The results are
shown in Table 1 and Table 2, respectively (trajectory time
refers to the time the vehicle spends in the intersection). The
result shows that the average speed of the game traffic flow
is slower than that of the non-game traffic flow, and it takes
more time to spend in the intersection. This shows that due to
the game between vehicles, the operating states of non-game
traffic flow and game traffic flow at intersections are quite
different. In the following, this difference will be compared
in detail, and a model will be established to analyze the cause.

TABLE 1. The statistics of game traffic flow.

TABLE 2. The statistics of non-game traffic flow.

III. MODEL
A. MODEL FRAMEWORK
As aforementioned, the trajectory of a vehicle inside an inter-
section can be divided into three parts: entering, accelerating,
and exiting. According to a certain headway distribution
(SFR model), vehicles enter the intersection from the stop-
line. After that, the vehicles will drive along their trajectory
based on certain speed profiles. When the vehicle is ready
to exit the intersection (enter the outlet), the vehicle needs to
play games with other vehicles (if there are any) to get the
opportunity to exit. The models that describe the above three
parts will be presented in this section.

B. SFR MODEL AT STOPLINE
Many models have been used to describe the distribution
of headway, such as Gaussian distribution [17], Shifted
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exponential distribution [18], and Gamma distribution [19].
In this section, we follow Jin’s approach [6] and use a
log-normal distribution to fit both the departure headway
and the empirical outlet headway, and the result is shown
in Fig. 6. The probability density function of the log-normal
distribution:

f (x, µ, σ ) =

{
1

x
√
2πσ

exp
[
−

1
2σ 2 (ln x − µ)

2
]
, x > 0

0, x <= 0
(3)

where x is the continuous random variable with a positive
value; µ is the expected value; σ is the standard deviation.

The estimated parameters of log-normal distribution
and corresponding Kolmogorov-Smirnov hypothesis testing
(K-S test) results are given in Table 3.

FIGURE 6. The distribution of headway and the fitting results of the
log-normal distribution.

TABLE 3. The estimated parameters of different log-normal distributions.

It can be observed that (1) the departure headways are very
alike. Although the departure headway is greater for the game
scenario, the difference is trivial; (2) the outlet headways
of the game scenario increase substantially by about 33.7%
(calculated as (3.33-2.49)/2.49). This is caused by the game
behavior of vehicles in the intersection. Such influences are
never reported in the literature. The specific game behavior
modeling and how the model affects the headway will be
described below.

C. SPEED CURVE MODEL
Traditionally it is assumed that vehicles depart from the stop-
line and accelerate until the speed limit is reached. It is not
truewhen the game behavior of vehicles exists, as the vehicles
that fail in the competition need to decelerate to give way
to other vehicles. The speed profile of the game traffic flow
and the non-game traffic flow thus are quite different. This
conclusion can be confirmed in Fig. 7. Fig. 6-a and b are
speed curves for the non-game scenario, while Fig. 7-c and d
are speed curves for the game scenario. In Fig. 7, the first
few cars before the stop line in the same phase are selected
for comparison. For non-game vehicles, their speed tends to
increase, and they can pass the intersection in less than 8 sec-
onds. For the game vehicles, their speed is very unstable, and
most of the vehicles experience more than one deceleration
process.

FIGURE 7. The speed and distance curve of the two kinds of traffic flow
(t=0 is when the vehicle leaves the stop line).

By analyzing the data of 18 intersections inMelbourne and
Sydney, Akcelik obtained a queue discharge speed model for
signalized intersections [20]. From this model, the relation-
ship between speed and the time since the start of green can
be established:

v = vm[1− e−m(t−t0)] (4)

where v is the queue discharge speed (km/h) at time t; vm
is the maximum queue discharge speed; t is the time since
the start of green (s); m and t0 are the parameters to be
calibrated.

The advantage of this model is that it uses time since the
green start as the independent variable rather than the time
since the vehicles leave the stop line. In this way, the speed of
all vehicles can be considered in a single model. We employ
this model and fit using the speed data and get the following
result (the result is shown in Fig. 8):

v = 26.671× [1− e−0.268(t+1.36)] (5)
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FIGURE 8. The speed model of non-game vehicles at the intersection (t=0
is the time when the green start).

D. GAME BEHAVIOR MODELING AT THE INTERSECTION
OUTLET
1) GAME ENVIRONMENT SETTING
Applying game theory to themicroscopic traffic flow analysis
is not new [7], [8], [9], [10], [11], [21]. Some researchers use
game theory to analyze how drivers make decisions when
changing lanes [7]. The problem studied in this paper is
more like lane-choosing, which is similar to lane-changing
or merging. Fig. 9 shows the lane-choosing scenario of the
game traffic flow. The movements of the vehicles are divided
into three zones: free zone, game zone, and outlet.

In the free zone, the vehicle can accelerate freely without
the influence of competition behavior from other movements
while obeying the speed profiles in Eq 5. In the game zone,
the vehicle needs to play with each other when competing
for the outlet lane. Note that the game may only occur when
the vehicles are close enough, or equivalently more than
one vehicle is presented simultaneously. For example, if the
middle vehicle is in front and far away from the left and
right vehicle, the middle vehicle can go straight into the outlet
without playing games.

FIGURE 9. The schematic of the lane-choosing of the game traffic flow.

2) GAME MODEL FORMULATION
Different types of drivers have different driving habits, which
are related to their gender, age, and personality [22], [23],
[24]. In this research, three types of drivers are considered:
polite, neutral, and rude. For polite drivers, they tend to give
way to competing vehicles. The reasonable explanation is that
these drivers want to minimize the possibility of collision and
are not in a hurry. For rude drivers, they tend to be aggressive.
For neutral drivers, they have no obvious inclinations and will
make judgments based on specific circumstances.

The following assumptions are made:
• The middle vehicle is called the ego vehicle, and the left

or the right vehicle is called the target vehicle;
• The ego vehicle will only play with one target vehicle at

a time;
• The drivers are aware of each other’s speed and distance.
In this paper, the target vehicle does not know whether

the driver in the ego vehicle is rude or polite. So the lane-
choosing behavior is modeled as a two-person non-zero-sum
non-cooperative game under incomplete information. The
payoff matrix is shown in Table 4. In this study, all types of
drivers have the same action set (give way or don’t give way
to other drivers, or equivalently, accelerate and decelerate).
The difference is that different types of drivers will have
different payoffs under the same action. For example,P11 will
be less than R11 because rude drivers are less worried about
the impact of a collision than polite drivers.

TABLE 4. The payoff matrix corresponding to the different strategic
combinations of the two drivers (N, P, and R correspond to the
payoff for neutral, polite, and rude driver, respectively).

Because the game of incomplete information is difficult to
solve, we converts the game of incomplete information into
the game of imperfect information by the Hysanyi transfor-
mation [25]. This approach introduces a virtual participant,
‘‘nature’’. Nature moves first and determines the type of ego
driver. And every driver knows the specific distribution of
the probability. As the extensive form of the game was very
complex, we made a schematic diagram under a simplified
scenario in Fig. 9 (assume that the driver in the target vehicle
is only neutral, while the driver in the ego vehicle is a mixture
of rude and polite).

FIGURE 10. Lane-choosing game in extensive form.

3) PAYOFF FUNCTION
In the game of lane-changing, Alireza [7] constructs the pay-
off function based on the speed changes before and after the
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lane change and the acceleration required to avoid collisions.
In this study, in addition to the speed and distance benefits
of the vehicle, the payment function will also consider the
psychological benefits of different types of drivers. Rude
drivers will get greater psychological benefits when accel-
erating (more inclined to accelerate). The payoff function
formulas for different driver types are as follows.

For neutral drivers:

N11 = abrake + D/d + bnacc (6)

N12 = aacc + D/d + bnacc (7)

N21 = adec − D/d + bndec (8)

N22 = adec − D/d + bndec (9)

where abrake: Both drivers choose to accelerate, the decel-
eration corresponding to the sudden braking of the vehicle
in order to avoid a collision; aacc: When the other driver
chooses to decelerate, the acceleration that the vehicle can
obtain; adec: Deceleration when the vehicle actively chooses
to decelerate;D: The total distance of the intersection; d : The
distance between the vehicle and the lane entrance; bnacc, b

n
dec:

Psychological benefits of neutral drivers when they choose to
accelerate and decelerate, respectively.

For polite drivers:

P11 = abrake + D/d + bpacc (10)

P12 = aacc + D/d + bpacc (11)

P21 = adec − D/d + b
p
dec (12)

P22 = adec − D/d + b
p
dec (13)

where bpacc, b
p
dec: Psychological benefits of polite drivers

when they choose to accelerate and decelerate, respectively.
For rude drivers:

R11 = abrake + D/d + bracc (14)

R12 = aacc + D/d + bracc (15)

R21 = adec − D/d + brdec (16)

R22 = adec − D/d + brdec (17)

where bracc, b
r
dec: Psychological benefits of rude drivers when

they choose to accelerate and decelerate, respectively.
By analyzing the data, the values of the above parameters

are obtained. Under general circumstances, abrake =−5m/s2,
aacc = 2 m/s2 and adec = −2 m/s2. The same type of drivers
is assumed to have the same psychological benefits, bnacc =
bndec = 0, bracc = 6, brdec = −2, b

p
acc = −1 and bpdec = 2.

Note that the setting of these values has taken into account
the range of data values.

4) NASH EQUILIBRIUM SOLUTION
In this section, the details of solving Nash equilibrium are
described. The first step is to decompose the incomplete
information game into three complete information games,
that is, to play with the neutral, polite, and rude drivers,
respectively. For the complete information game, the driver’s

strategy can be uniquely determined.

s(action, type) =

{
acc if utypeacc ≥ u

type
dec ,

dec else.
(18)

where n1, n2, and n3 are the proportions of neutral, polite, and
rude drivers, respectively (n1 + n2 + n3 =1).
After that, by comparing the expected payoff of accelera-

tion and deceleration, the driver’s action can be determined:

E(utypeacc ) = n1u
type
s(acc,netural) + n2u

type
s(acc,polite) + n3u

type
s(acc,rude)

(19)

E(utypedec ) = n1u
type
s(dec,netural) + n2u

type
s(dec,polite) + n3u

type
s(dec,rude)

(20)

where n1, n2, and n3 are the proportions of neutral, polite, and
rude drivers, respectively (n1 + n2 + n3 =1).
If E(utypeacc ) > E(utypedec ), then the driver will choose to accel-

erate. Otherwise, it will choose to decelerate (when equal, it is
assumed that the vehicle will accelerate). Since the game is
symmetric, the actions of the other driver can be determined
in the same way. In fact, Nash equilibrium is directly related
to the distribution of driver types. Under different proportions
of drivers, there will be different Nash equilibriums.

IV. SIMULATION
A. MODEL FRAMEWORK
To investigate the OSFR under the influence of game behav-
ior within the intersection, we resort to the simulation
method. The simulation uses the models above and gets
the moment when vehicles depart from the outlet, given
the vehicles that enter the intersection from the stop-line.
Once the vehicle exiting moments are obtained, the OSFR
can be calculated. The simulation framework is shown in
Fig. 11(the corresponding game scenario is shown in Fig. 9).
First of all, vehicles are generated at the stop line, and the

FIGURE 11. The simulation framework of the game model between
vehicles (the simulation step size is 0.3s).
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Algorithm 1 Proposed Game Theory-Based OSFR Model
input: Time when the vehicles leave the stop line, depature_set; Speed model, v(t);

Driver type ratio, n1, n2, n3; Game model, game; Number of simulated vehicles, n;
output: Time when the vehicles enter the outlet line, outlet_set;
t= 0, i= 0;
while len(outlet_set) < n do

t = t+ 1;
update vehicle.distance =

∫
v(t)dt;

if depature_set[i] > t then
i = i +1;
generate vehicle[i];

end
if vehicle.distance > 30 and vehicle[id1].target_lane == vehicle[id2].target_lane then

game(vehicle[id1], vehicle[id2]);
if vehicle[id1].action == acc and vehicle[id1].action == acc then

update vehicle[id1].speed = vehicle[id1].speed – 2.5m/s;
update vehicle[id2].speed = vehicle[id2].speed – 2.5m/s;

end
if vehicle[id1].action == dec and vehicle[id1].action == dec then

update vehicle[id1].speed = vehicle[id1].speed – 0.5m/s;
update vehicle[id2].speed = vehicle[id2].speed – 0.5m/s;

end
if vehicle[id1].action == acc and vehicle[id1].action == dec then

update vehicle[id1].speed = vehicle[id1].speed + 1m/s;
update vehicle[id2].speed = vehicle[id2].speed – 0.5m/s;

end
end
if vehicle[id].distance > 50 then

delete vehicle[id];
update outlet_set.append(t);

end
end

departure headways distribution of vehicles follows the log-
normal distribution. After that, the vehicles drive according
to the proposed speed model. When a vehicle enters the
game zone, if there are other vehicles in the game zone that
choose the same target lane, then the game needs to be played.
Otherwise, it will exit from the outlet lane directly.

The details of the implementation of the proposed game
theory-based OSFR model are illustrated in Algorithm 1.
Note that the distribution of vehicle headway in the simu-
lation follows the log-normal distribution obtained by fit-
ting in Section 3.2. And the details of the speed model and
game model are illustrated in Section 3.2 and Section 3.4,
respectively.

B. SIMULATION RESULTS
In the simulation, we assume that 20 cars are generated in
each cycle, and 10 cycles are simulated. As there are three
incoming lanes, we have 600 vehicles. After all of these
vehicles leave the intersection, we gather the headways that
the vehicles leave through the outlet (or equivalently, the two
outgoing lanes of the intersection). As there are three types
of drivers, we repeat the simulation 9 times to accommodate
different types of ratios. We set three levels of maximum

ratio for each type of driver, i.e., 100%, 80%, and 60%. The
remaining ratios are assigned equally to the other two types
of drivers. The simulation results are shown in Fig. 12. It is
shown that the distribution of outlet headway is different
under different proportions of types of drivers. The results
show that when there is only one type of driver in the road
network, the headway does not increase significantly (the first
row in Fig. 12). This is because, in this situation, the driver
has an accurate expectation of what the other driver is going
to do andwill not brake sharply.When the flow is amixture of
different types of drivers, theOSFRdeteriorates. Theminimal
headway is the case when all drivers are of rude type, as each
vehicle wants to exit the intersection as early as possible; the
maximal headway is the case when major vehicles (80%) are
rude drivers, and its mean headway is 3. 29 sec.

In essence, the reason for the increase in headway is that
both drivers choose to accelerate, which causes the driver
to brake sharply in order to avoid a collision. This extreme
situation is mainly related to two factors. One is that drivers
misjudge the intentions of other drivers (the driver thinks
the other driver will decelerate, so he chooses to accelerate,
but the other driver also chooses to accelerate). The other
is that rude drivers choose to accelerate when they should
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FIGURE 12. The simulation results of outlet headway under different driver proportions.

yield. In Fig. 13, the log-normal distribution is used to fit the
headway time under simulation scenarios and the real scene,
respectively. The results show that the closest approximation
to the real situation is the scenario in which rude drivers
accounted for 80%.

In order to further analyze the influence of the game model
on the traffic flow at the intersection, we compare the out-
let headway of different vehicles number under the same
driver proportion (10% neutral, 10% polite, 80% rude). The
vehicle’s number can be interpreted as the duration of the
green phase, as a longer green duration would feed more
vehicles into the intersection. The result is shown in Fig. 14.

With the increase in the number of simulated vehicles, the
mean outlet headway increases, and the growth rate increases
first and then stabilizes. When the number of simulation
vehicles is more than 35, the mean outlet headway is basically
stable at 3.43s. The reason for the increase in headway is
that with the increase of vehicles, the game between vehicles
becomes more and more frequent, and the overall speed
will slow down as a result of failure in the competition.
As the vehicle’s number increase to a certain level, each
vehicle would experience a game, and thus the outlet headway
becomes stable, which can be interpreted as the saturated
headway at the outlet (OSFR).
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FIGURE 13. Comparison of headway distribution between real-world and
simulation scenarios.

FIGURE 14. The simulation results of outlet headway under different
numbers of simulated vehicles.

C. APPLICATION IN CALCULATING SFR ADJUSTMENT
FACTOR
Based on the above conclusions, the formula for calcu-
lating intersection capacity can be modified. According to
HCM 2010 [3], the capacity of each lane group at the inter-
section can be calculated as follow:

ci = si
gi
C

(21)

where ci: Capacity of lane group i (veh/h); si: Saturation flow
rate for lane group i (veh/h); gi: Effective green time for lane
group i (s); C : Intersection cycle length (s).

And the saturation flow rate si is related to the basic
saturation flow rate and the adjustment factors:

si = sofwfHV fgfpfbbfafLU fLT fRT fLpbfRpb (22)

where so: Basic saturation flow rate (veh/h); f : The adjust-
ment factors (the specific definition can refer to HCM 2010,
which will not be repeated in this paper).

Note that the saturation flow rate is calculated from the
departure headway, which is suitable for most intersections.
As shown in Fig. 6, when there is no game between vehicles,
departure headway is greater than outlet headway. In this
case, the above calculation can be applied. However, when the

number of incoming lanes is greater than the number of exit
lanes, the effective saturation flow rate should be determined
by the outlet headway rather than the departure headway
based on the above results. Therefore, for intersections with
mismatched lanes, the saturation flow rate calculation for-
mula needs to be adjusted:

si = sofwfHV fgfpfbbfafLU fLT fRT fLpbfRpbfout (23)

where fout : The adjustment factor caused by the game behav-
ior between vehicles.

fout =

{
1 if nin <= nout
h̄in/h̄out else

(24)

where nin: the number of incoming lanes; nout : the number of
exit lanes; h̄in: Mean departure headway(s);h̄out : Mean outlet
headway(s), which can be calculated by the model present in
this paper (h̄in < h̄out ).
Taking the game and non-game traffic flow in this article

as examples, for game traffic flow nin = 3 > nout = 2,
so fout = h̄in/h̄out = 3.03/3.29 = 0.92. For non-game traffic
flow nin = 1 < nout = 3, so fout = 1.

V. CONCLUSION
Solving the congestion that occurs in the intersection is a
challenging thing. The prerequisite to solving this problem
is that we have to understand how the vehicles operate in the
intersection. The existing results show that scholars focus on
the study of SFR but ignore the OSFR. The game behavior
of vehicles in the intersection will affect the operation of the
traffic flow.

Based on empirical data, this paper proposes an OSFR
model to explain the impact of game behavior between vehi-
cles on SFR. And define different types of drivers to make
the model more in line with the real scene. The experimental
results show that the game behavior between vehicles will
increase the headway. And under different proportions of
drivers, there will be different effects. These results help to re-
understand how the congestion in the intersection is generated
and how to calculate the OSFRwhen the number of entrances
and exits does not match. Besides, it can be used to adjust the
calculation method of intersection capacity.

Due to the lack of information such as heading Angle,
accelerator aperture, and specific size of the vehicle, the
model presented in this paper does not consider the vehicle
dynamics model. In future work, the vehicle dynamics model
can be introduced to make the game model more accurate.
Furthermore, it needs to be realized that drivers in different
regions have different driving habits, and the payoff function
needs to be redefined when the model is applied elsewhere.
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