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ABSTRACT Virtual reality (VR) has been adopted in various fields such as entertainment, education,
healthcare, and the military, due to its ability to provide an immersive experience to users. However, 360◦

images, one of the main components in VR systems, have bulky sizes and thus require effective transmitting
and rendering solutions. One of the potential solutions is to use foveated technologies, that take advantage
of the foveation feature of the human eyes. Foveated technologies can significantly reduce the data required
for transmission and computation complexity in rendering. However, understanding the impact of foveated
360◦ images on human quality perception is still limited. This paper addresses the above problems by
proposing an accurate machine-learning-based quality assessment model for foveated 360◦ images. The
proposed model is proven to outperform the three cutting-edge machine-learning-based models, which apply
deep learning techniques and 25 traditional-metric-based models (or analytical-function-based-models),
which utilize analytical functions. It is also expected that our model helps to evaluate and improve 360◦

content streaming and rendering solutions to further reduce data sizes while ensuring user experience.
Also, this model could be used as a building block to construct quality assessment methods for 360◦

videos, that are reserved for our future work. The source code is available at https://github.com/telagment/
FoVGCN.
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INDEX TERMS Foveated image, omnidirectional image, virtual reality, graph convolution network, quality
of experience.

I. INTRODUCTION18

Virtual reality (VR) has become a cutting-edge technology in19

the world since its invention in the 1950s, and its applications20

have been expanding and evolving over the past ten years21

due to the advancement of both the hardware and software22

technologies [1]. In contrast to traditional images (i.e., 2D23

images), VR images are typically recorded with a 360◦ cam-24

era, that captures the 360◦ space of a scene [2]. The problem25

The associate editor coordinating the review of this manuscript and

approving it for publication was Tai-Hoon Kim .

is that omnidirectional contents of VR applications have huge 26

data sizes, and thus require effective transmitting and render- 27

ing solutions [3]. 28

To cope with this problem, one of the most potential solu- 29

tions is to use foveated technologies, that are based on the 30

foveation feature of the human eyes. This feature refers to 31

spatially foveated visual acuity due to the heterogeneous dis- 32

tribution of photoreceptors in the retina. In foveated technolo- 33

gies, image areas gazed by the retina region of higher photo 34

receptor density have higher quality levels than the outside 35

areas. This allows significantly reducing not only the data 36
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size in transmission but also the computation complexity in37

rendering [3], [4].38

However, foveated technologies result in spatial quality39

variations, that may cause negative impacts on user quality40

perception [3]. Therefore, to build a high-quality VR service,41

it is of utmost importance to understand how human per-42

ceives the quality of foveated 360◦ images. It is expected that43

answering this question helps figure out the most effective44

way to reduce a huge amount of data while ensuring the user45

experience.46

There have been several types of research, that apply47

machine learning-based methods to successfully assess the48

quality of 360◦ images [5], [6]. However, most of these stud-49

ies are just designed to deal with uniform-quality images, but50

not with foveated-quality images in which quality is changed51

from the center to the periphery. Due to the significant dif-52

ference between the characteristic of uniform and foveated53

360◦ images, existing models for uniform images can not54

be used effectively for foveated images. To the best of our55

knowledge, the quality model, called W-VPSNR, in [7] is56

the first and the only one dedicated to the quality assess-57

ment of foveated 360◦ images. In their work, the authors use58

a weighted sum of mean squared errors (MSEs) of image59

areas corresponding to different retina regions. It is worth60

noting that, in this model, all pixels in the same area have61

the same weight, and so have the same impact on user quality62

perception.63

In this work, we design a Graph Convolution Network64

(GCN)-based quality model, that could automatically and65

effectively learn the contribution of each pixel to the per-66

ceptual quality of foveated 360◦ images. Within this scope,67

to the best of our knowledge, this is the first quality68

model utilizing a deep learning algorithm to assess the69

quality of foveated 360◦ images. The proposed assess-70

ment method is proved to outperform the three cutting-71

edge machine-learning-based solutions and 25 traditional-72

metric-based methods or analytical-function-based-models73

over both the main case study with foveated data and the74

cross-validation study with uniform data.75

The rest of the paper is organized as follows. Section II76

describes state of the art of the VR image assessment meth-77

ods. In section III, we elaborate our proposed model based78

on Graph Convolution Network- FoVGCN - to assess the79

quality of foveated 360◦ images. Section IV shows the per-80

formance of FoVGCN in comparison with the three state-of-81

the-art machine-learning-based methods (i.e. DeepQA [8],82

MIC360IQA [5], and VGCN [6]) and 25 metric-based83

schemes (i.e. MSE, FMSE [9], UQI [10], PSNR [11],84

FPSNR [12], SSIM [11], MS-SSIM [13], IW-SSIM,85

NQM [14], VIF [15], VIFp [16], WSNR, FSIM, FSIMc, F-86

SSIM [17], PSIM [18], ADD-SSIM [19], FWQI [20], GSIM,87

RFSIM [21], IW-PSNR [22], BRISQUE [23], NFERM [24],88

SR-SIM [25], andW-VPSNR [7]). FoVGCN is also evaluated89

in some cross-validation experiments on uniform content90

datasets. Finally, the conclusion and future work are briefly91

discussed in Section V.92

II. RELATED WORK 93

Quality of Experience (QoE) has long been investigated for 94

different content types [26]. 95

A. FOVEATED 360◦ CONTENT SUBJECTIVE QUALITY 96

ASSESSMENT 97

In the literature, there have been a lot of studies on foveated 98

contents (i.e., images or videos) [3], [4], [7], [12], [20], [27], 99

[28], [29], [30]. Among them, there are, however, only some 100

on 360◦ contents [3], [4], [7], [28], [29].. 101

In [28], the authors proposed a framework to compare the 102

performance of four subjective quality assessment methods: 103

Double Stimulus Quality Comparison (DSQC), Single Stim- 104

ulus Absolute Category Rating (ACR), Ascending Method 105

(AM), and Descending Method (DM). By the analysis of 106

Quality of Experience (QoE) scores of foveated 360◦ images, 107

it was found that the DSQC method obtains the highest con- 108

sistency, but requires more judgments and time to converge 109

to the consensus. Meanwhile, ACR was found to be the most 110

efficient method. In [29], the authors focused on the subjec- 111

tive comparison between 2D and 3D foveated 360◦ videos in 112

terms of users’ perceptual quality. The results showed that 113

the perceptual quality of 2D videos was more affected by 114

the quality of the image area corresponding to the periph- 115

eral region. Meanwhile, for 3D videos, the perceptual quality 116

was largely impacted by the image area quality associated 117

with the fovea region. Also, based on the results, a perfor- 118

mance evaluation of 12 objective quality metrics was con- 119

ducted. Foveated Wavelet Quality Index (FWQI) was found 120

to be the most effective model for both 2D and 3D foveated 121

360◦ videos. 122

In [4], the key question the authors focused on was how to 123

spatially reduce data size without noticeable perceptual qual- 124

ity degradation by taking advantage of the foveation feature. 125

In particular, a subjective quality assessment for foveated 126

360◦ images was conducted taking into account three regions 127

of the human retina, i.e., the central vision area with one-side 128

eccentricity θ ∈ [0◦, 9◦], the near peripheral area with θ ∈ 129

(9◦, 30◦], and the far peripheral area. In this experiment, the 130

image quality corresponding to each region was reduced step 131

by step until the participants notice a perceptual difference. 132

By utilizing encoding parameters (i.e., quantization param- 133

eters and resolutions), that had been recorded, the authors 134

proposed a rendering solution, that is indicated to be able 135

to significantly improve rendering throughput by about 10× 136

without perceptual loss, in comparison to the traditional solu- 137

tion of uniform quality. Reference [3] is the first study, that 138

could quantify the impacts of different retina regions on user 139

quality perception. In particular, the authors performed a sub- 140

jective quality assessment of foveated 360◦ images. Through 141

experimental results, it is quantitatively shown that image 142

areas corresponding to the fovea and parafovea regions are 143

extremely important for quality perception, while the impacts 144

of the other zones are small. Besides, a performance evalua- 145

tion of twenty-five objective quality metrics was conducted. 146

It turned out that all of them, even the fovea quality metrics, 147
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are not effective for the quality assessment of foveated 360◦148

images.149

Based on the subjective dataset in [3], the authors150

in [7] proposed a simple quality model called W-VPSNR.151

W-VPSNR is the first and only objective quality model for152

quality assessment of foveated 360◦ images. Instead of con-153

sidering the entire image, this model predicts the quality of154

a small part, called viewport, that users observe due to the155

limited Field of View (FoV) of human eyes. To consider the156

foveation feature, a weighted sum of mean squared errors157

(MSEs) of image areas corresponding to different retina158

regions was used to predict the quality of foveated 360◦159

images. It is worth noting that, in this model, all pixels in the160

same area have the same weight, and so have the same impact161

on user quality perception.162

B. QUALITY MODELS FOR OMNIDIRECTIONAL163

IMAGE/VIDEO CONTENTS164

In general, in the domain of objective Image Quality Assess-165

ment, IQA is categorized into three methods: no-reference166

(NR-IQA), reduced-reference (RR-IQA), and full-reference167

image quality assessment (FR-IQA), depending on their168

degree of dependence on the reference image. Full-reference169

approaches compare a distorted image to an entire ref-170

erence image, while reduced-reference approaches just171

need a portion of the reference image’s information. And172

no-reference (or blind) approaches only work with distorted173

images received at the client’s side [31].174

1) TRADITIONAL-METRIC-BASED METHODS (OR175

ANALYTICAL-FUNCTION-BASED-MODELS)176

Many techniques have been proposed for evaluating image177

quality. Traditional technical image quality metrics, that178

are leveraged commonly in FR-IQA and RR-IQA include179

Mean Squared Error (MSE), Frequency Mean Square Error180

(FMSE) [9], Universal Quality Index (UQI) [10], Peak181

Signal-to-Noise Ratio (PSNR) and Structural Similarity182

Index Measure (SSIM) [11], Foveated Peak Signal-to-Noise183

Ratio(FPSNR) [12], Multi-scale SSIM (MS-SSIM) [13],184

Information content Weighted SSIM (IW-SSIM), Noise185

Quality Measure (NQM) [14], Visual Information Fidelity186

(VIF) [15], Visual Information Fidelity in the pixel domain187

(VIFp) [16], Weight Signal-to-Noise Ratio (WSNR), Fea-188

ture similarity index measure (FSIM), Feature similarity189

measure (FSIMc) for color image, Foveal feature similarity190

measure (F-SSIM) [17], Perceptual Similarity (PSIM) [18],191

Analysis of Distortion Distribution-based (ADD-SSIM) [19],192

Foveal Structural Similarity [32], and Foveated Wavelet193

image Quality Index (FWQI) [20], Generic Statistical Infor-194

mation Model (GSIM), Riesz Transforms based Feature195

Similarity (RFSIM) [21], Information content Weighted196

PSNR (IW-PSNR) [22], Blind/Referenceless Image Spa-197

tial Quality Evaluator (BRISQUE) [23], No-reference Free198

Energy-Based Robust Metric (NFERM) [24], Spectral Resid-199

ual based Similarity (SR-SIM) [25], and Weighted Viewport200

PSNR (W-VPSNR) [7]. Therefore in this paper, we will201

evaluate our solution’s performance in terms of 25 met- 202

rics: MSE, FMSE [9], UQI [10], PSNR [11], FPSNR [12], 203

SSIM [11], MS-SSIM [13], IW-SSIM, NQM [14], VIF [15], 204

VIFp [16], WSNR, FSIM, FSIMc, F-SSIM [17], PSIM [18], 205

ADD-SSIM [19], FWQI [20], GSIM, RFSIM [21], 206

IW-PSNR [22], BRISQUE [23], NFERM [24], SR-SIM [25], 207

and W-VPSNR [7] in order to have an insight into our pro- 208

posed solution from variety of angles. 209

2) MACHINE LEARNING-BASED METHODS 210

In most cases, machine learning-based methods have been 211

found to perform better than traditional-metric-based meth- 212

ods. There have been a small number of studies, that applied 213

machine learning in the domain of full-reference uniform 214

image quality assessment, for instance, [8], [33], and [34]. 215

In [8], the authors proposed a new framework, that applies 216

a deep neural network to study the human visual sensitivity 217

(HSV), based on distorted images, a subjective score, and an 218

objective error map (DeepQA model) or without an objective 219

error map (DeepQA-s model) in a uniform image quality 220

dataset. In [33], the author considered the important role of 221

multiple viewports related to the image inside the field of 222

view (FoV). Those viewports are extracted by viewport sam- 223

plingwith inputs being reference images (i.e., original images 224

on the server-side) and distorted images (i.e., received images 225

on the client-side). Their proposed stereoscopic omnidirec- 226

tional image quality assessment (SOIQA) model then learned 227

those viewport features using a deep neural network and sup- 228

port vector regression (SVR). Machine learning techniques 229

have been applied efficiently in [8] and [33] to learn the char- 230

acteristics of uniform immersive image quality in terms of the 231

full-reference quality approach. However, the characteristics 232

of uniform 360◦ image quality are vastly different from those 233

of foveated 360◦ image quality. Therefore, the research direc- 234

tion of assessment methods, that work effectively for foveated 235

360◦ images is still an open issue. 236

In the direction of NR-IQA methods, machine-learning- 237

based approaches have been utilized quite commonly. 238

Zhang et al. [35] proposed a deep bi-linear model for non- 239

reference image quality assessment (BIQA) to deal with 240

synthetic distortions and authentic distortions in images. 241

Afterward, Xu et al. [6] developed a novel Viewport oriented 242

Graph Convolution Network (VGCN), that concatenates a 243

global branch based on Zhang’s work [35], which predicts 244

the global quality score by handling the synthetic and authen- 245

tic distortions, and a local branch, that learns the interac- 246

tions among different viewports by using graph convolution 247

network to get the overall image quality. Kim et al. [36], 248

first, extracted features of distorted images to predict quality 249

scores, then proposed a user perception guidance by using 250

adversarial learning to enhance the prediction performance. 251

Sun et al. [5] introduced a multi-channel convolution neu- 252

ral network (i.e. MC360IQA), in which the overall quality 253

is predicted using six simultaneous ResNet-34s, that extract 254

features from six created viewports. In [37], the authors 255

introduced meta-learning based image quality assessment 256
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FIGURE 1. FoVGCN Model Operation based on the full-reference image quality assessment (FR-IQA) approach which leverages the information of both
reference and distorted images. First, the graph structure data is constructed based on Error map and attention weight matrix. Then, the convolution
graph neural network interprets the graph data to predict the final quality assessment score of viewports.

(Meta IQA) method, that successfully deals with different257

types of distortions in image quality assessment. Machine258

learning approaches have been proved their effectiveness in259

terms of studying the characteristics of uniform distorted260

images to derive the image quality. However, to deal with261

a foveated image dataset, for example in [3], we should262

take into account the quality distribution in different regions263

as well as the priority of human attraction factors, both of264

which have a huge impact on the overall user experience.265

In our point of view, this is the main reason why all proposed266

NR-IQAmachine-learning-based approaches have only been267

successful in dealing with uniform image quality assessment268

up to now.269

In this work, we focus on image quality assessment of spa-270

tially foveated images for two reasons. Firstly, 360◦ images271

are still a critical topic with a wide range of applications and272

play an important role in evaluating immersive video quality.273

Secondly, almost all up-to-date IQA methods have got only274

modest performance so that looking for a new scheme to275

improve it is necessary.276

Therefore, we propose a Foveated-Graph-Convolution-277

Network-based 360◦ Image Processing Method - FoVGCN -278

which will be compared with 25 different traditional-metric-279

based methods and 3 other machine-learning based models280

found in [5], [6], and [36]. Although, FoVGCN is designed to281

work efficiently for foveated image quality, its performance282

is also cross validated with uniform datasets to evaluate its283

application generality over heterogeneous cases in reality.284

III. DESIGN OF THE FOVEATED GRAPH CONVOLUTION285

NETWORK BASED 360◦ IMAGE PROCESSING METHOD286

(FoVGCN)287

In this section, we will describe the detailed technical design288

of our proposed FoVGCN model (i.e., Foveated Graph Con-289

volution Network based 360◦ Image Processing Method) for290

assessing the retina-related zone quality of omnidirectional291

images.292

Our proposed method FoVGCN consists of two main293

blocks which are the preprocessor and the graph convolution294

network block as illustrated in Figure 1. The preprocessor295

plays an important role in creating an error map and an atten- 296

tion weight matrix which represent the spatial quality chang- 297

ing in different zones of an image and the priority of human 298

attention, respectively. After being pre-processed, both the 299

error map and the attention weight matrix construct a graph 300

structure, that is the input of the graph convolution layer. 301

The graph structure is then fed into the convolution graph 302

neural network block to predict the overall quality score of 303

the image. In the next subsections, the two main blocks of the 304

FoVGCN model and its parameter settings will be described 305

in detail. 306

A. PREPROCESOR 307

In the preprocessor block, reference and distorted images are 308

fed into the error map creator block to create an error map. 309

Error map is implied as a graph in which each vertex (node) 310

represents a pixel and is connected via an edge to a foveation 311

node (or foveation pixel), as Figure 2 describes. A foveation 312

node is defined as the center point in the virtual viewport [3]. 313

Therefore, each non-foveation pixel has only one neighbor 314

(foveation node), and the information stored at each node is 315

calculated based on an error map E . 316

The attention weight matrix block takes the shape of a 317

viewport as the input to create a distance-based distribution 318

matrix which has the same size as the viewport. The atten- 319

tion weight a(i,j),(n,n) measures the connective strength based 320

on distance relation between arbitrary Ei,j and foveation 321

node En,n, i, j ∈ (1, 2, . . . , 2n). Consequently, error map 322

and attention weight matrix construct the graph structure, 323

that is the input of the graph convolution layer as shown in 324

Figure 2. 325

1) ERROR MAP PROCESSING 326

In this section, we describe details of how to create an error 327

map as the first step of the Preprocessor to generate the 328

desired input for the GCN model in the latter phase. Intu- 329

itively, an Error Map represents spatial quality changing in a 330

distorted image when comparing the image with a reference 331

one. Besides, it also serves as the graph matrix input of the 332

graph convolution network. 333
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FIGURE 2. Graph structure representation.

FIGURE 3. Error map Creator.

According to human retina characteristics, the quality of334

omnidirectional images is typically adjusted based on five335

human retina zones of Fovea, Parafovea, Perifovea, Near336

periphery, Far periphery [3]. It means that the quality of each337

pixel in a distorted image usually changes from the center338

region inside to the outside. Our goal is to intuitively imply339

the changing of the quality through each zone by using the so-340

calledErrorMap (E). There are some pixel-wisemetrics such341

as peak signal-to-noise ratio (PSNR) and mean squared error342

(MSE), that can be used to construct the error map. How-343

ever, we use the normalized log difference function (Eq.1)344

following [8] for better correlation with the perceived quality345

of viewers:346

E =
log (1/((Ir − Id )2 + α)

log(1/α),
(1)347

where α = ε/2552 is a constant and ε = 0.1.348

The detail of the Error map Creator is shown in Figure 3.349

First, the reference and distorted images are converted to350

gray-scale images. Let Ir and Id be the values of each pixel of351

the reference and distorted gray images, respectively. Then,352

error maps are created following Eq.1. As can be seen in353

FIGURE 4. The visual image of error maps of two foveated images. The
error map is created by the original (or reference) image and the
corresponding distorted image.

Figure 4, the distorted viewport 1 has a quite good quality and 354

distorted viewport 2 has a lower quality, while the reference 355

viewport has the highest quality. 356

In the Errormap Transform block, the error map is first 357

divided into four quadrants for adapting with Attention 358

weight matrix transformation, then each of those is rotated 359

and sorted as four consecutive quadrants following the rule 360

in Figure 5. The division of the error map is to help reduce 361

the computational complexity of the proposed model towards 362

real-time quality assessment. As a result of this process, the 363

attention weight matrix size is decreased by a factor of 4, 364

thereby significantly reducing the running time of the whole 365

model. 366
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FIGURE 5. Errormap transform.

2) ATTENTION WEIGHT MATRIX PROCESSING367

The concept of attention weight matrix is used to describe368

the priority of human attraction in each zone of an immersive369

image. It can be understood that pixels (nodes) in the central370

zones are considered to have the higher weight than pixels371

(nodes) farther away from the center zone. Therefore, our372

attention weight matrix is created in such a way that it has373

high density representing high priority in the middle while374

decreasing to lower and lower density for further areas from375

the middle. Then, we define attention the weight matrix as a376

2n×2n symmetricmatrix. The elements of thematrix indicate377

the edge information between arbitrary nodes to the central378

node of the graph structure, as described in Figure 2. The set379

of a(i,j),(n,n) entries follow two proposed distributions: Lin-380

ear degradation distribution and Gaussian degradation distri-381

bution. Later in the Evaluation section, we will present the382

solution results based on each type of distribution to have a383

broader insight into the performance.384

The detail of the AttentionWeight matrix processing block385

is illustrated in Figure 6. First, an attention weight matrix is386

created in the form of a degradation distribution depending387

on the viewport shape. Then, we leverage the first quadrant388

of the viewport attention weight matrix as the input of our389

GCN network.390

Linear degradation distribution In our design, we pro-391

pose a formula presented in Eq. (2), that describes the linear392

degradation from the center node to the edge nodes. The value393

of the matrix corresponding to each node is inversely propor-394

tional to the distance from node Ei,j to the central node En,n395

and decreases gradually and constantly from the center to the396

periphery. The elements of the attention matrix are calculated397

following Equ.2, and its distribution is visualized in Figure 7.398

Ai,j = a(i,j),(n,n) = 1−
dis(Ei,j,En,n)

dismax
+ δ, (2)399

where400

• a(i,j),(n,n) or Ai,j is the element of the attention weight401

matrix, in range of [δ, 1 + δ];402

• dis(Ei,j,En,n) =
√
(i− n)2 + (j− n)2 is the distance403

between pixel Ei,j and center pixel En,n;404

• dismax is the maximal distance between two nodes Ei,j405

and En,n);406

• Threshold δ is applied to avoid the zero value, and is set 407

equal to 0.0001. 408

Gaussian degradation distribution As mentioned in [4], 409

the density function of cones presented in [38] can be approx- 410

imated by a Gaussian distribution. Inspired by this observa- 411

tion, the Gaussian distribution is leveraged to represent the 412

perception process of human eyes. This idea follows the con- 413

cept of the human retina [3] which is user perception tends 414

to be affected by the quality of fovea and parafovea zones 415

from the center to the outside of an image. The reason is 416

that human eyes concentrate significantly on the fovea and 417

parafovea zones of the human retina - a small region in the 418

viewport [3]. Therefore, we need a distribution, that describes 419

a better human perspective. Therefore, we apply formula (3), 420

following the Gaussian distribution to construct the attention 421

weight matrix: 422

Ai,j = f (x) = e−
1
2 (

x
σ
)2 , (3) 423

where 424

• σ : standard deviation of x; 425

• Ai,j in the range of [0,1]. 426

In fact, changing the value of σ results in the different 427

degrees of central concentration in an image. Figure 8 visual- 428

izes the Gaussian distribution with different σ values where 429

bigger σ values correspond to larger focal regions. Therefore, 430

in our experiment presented later in this paper, the perfor- 431

mance of the FoVGCN model will be shown to study the 432

impact of the sigma value σ corresponding to the human 433

attention. 434

B. GRAPH CONVOLUTION NETWORK 435

As the last phase of the whole FoVGCN assessment pro- 436

cess, the Graph Convolution Network is applied since it can 437

efficiently learn the graph-structured data and successfully 438

study the characteristic of foveated 360◦ images. In GCN, 439

we construct the graph structure in which a node represents a 440

pixel and an edge represents the distance-based correlation 441

between an arbitrary node to a foveation node. The graph 442

structure is built on the error map and attention weight matrix. 443

Significantly, the GCN is designed by using the attention 444

weight matrix instead of an adjacency matrix for a purpose 445

of describing the humane eyes attention in practice. The 446

attention weight matrix satisfies real, symmetric, positive 447

semidefinite properties, that are adapted to the mathematical 448

requirement in Eq. 4 and 5. 449

In our work, the Graph Convolution Network is applied 450

to extract features and study the spatial quality changes rele- 451

vant to the attention weight matrix in the foveated immersive 452

image dataset used in [3]. 453

The error map, which is designed as a graph with a 454

size of (720, 720), is used to represent the quality changes 455

between different pixels. This size is heuristically chosen 456

based on the size of the attention weight matrix. Using a large 457

weight matrix leads to a computational overload in GCN. 458

In our design and experiment, an attention weight matrix of 459
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FIGURE 6. Attention Weight matrix processing.

FIGURE 7. Attention weight matrix in linear distribution.

FIGURE 8. Attention weight matrix gaussian distribution.

(720, 720) is proposed in both the linear and Gaussian distri-460

bution forms, representing the priorities of human attention461

on focal regions.462

The forward propagation of the graph convolution layer is 463

applied using the rule provided in [39] to eliminate the vanish- 464

ing and exploding gradient in back-propagation, as follows: 465

H (l+1)
= σ (D̃−

1
2 ÃD̃−

1
2H (l)W (l)) (4) 466

Ã = A+ IN (5) 467

where 468

• H (l): the activation matrix in l th layer; 469

• W (l): the learnable model parameters in layer l 470

• D̃: the degree matrix which can be calculated by 471

D̃ii =
∑

j Ãij; 472

• A: attention weight matrix and identity matrix IN ; 473

• σ (): a non-linear activation function such as the Softmax 474

function, ReLU function, Softplus function, etc. In our 475

work, we use the Softplus function for better stabiliza- 476

tion and performance to deep neural networks. 477

First, the attention weight matrix is symmetrically nor- 478

malized by D̃−
1
2 ÃD̃−

1
2 , before being multiplied with the 479

learnable model parameters W (l) and the output of the prior 480

layer H (l). Then, the output layer is obtained after going 481

through the activation function. 482

In addition, following Eq.(4), a degreematrix D̃ is inversely 483

calculated. Since this process takes huge computation and 484

resources, the inputs such as attention weight matrix and 485

error map need to be pre-processed before being fed into 486

the FoVGCN model in order to reduce the computational 487

complexity, thereby reducing running time. Instead of feeding 488

the entire error map and attentionweight matrixA, we process 489

them as described in Section III-A1 and Section III-A2. 490

C. MODEL PARAMETER SETTINGS 491

To create a down-sampled image with a size of (720, 720), 492

we use the zero-padding method to form a square matrix of 493

(1440, 1440) in order to avoid distortion when the image is 494

down-scaled. This square matrix is then down-sampled to the 495

size of (720, 720) to reduce the computational cost. Next, 496

an error map is created from those viewports and the atten- 497

tion weight matrix is fed through the six blocks of the graph 498
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FIGURE 9. The detail of each GCN block.

TABLE 1. The configuration of the FoVGCN model.

convolution layers which is shown in Figure 9. Each block499

contains a graph convolution layer, batch normalization, and500

a Softplus activation function as described in Eq. (6):501

f (x) = ln (1+ ex) (6)502

Batch normalization is a comprehensive method for503

parameterizing virtually any deep neural network, and the504

re-parameterization significantly reduces the issue of plan-505

ning updates acrossmultiple layers. Finally, a fully-connected506

layer extracts the final predicted score.507

The details of all parameters used in the FoVGCN model508

are presented in Table 1.509

IV. EXPERIMENTS AND RESULTS510

To evaluate the performance of FoVGCN, we use three open511

datasets, one of which is a foveated image dataset, and the512

other two are uniform image datasets. In the following sec-513

tions, we will firstly describe these datasets. Then, the experi-514

mental settings and results of FoVGCN and existing solutions515

are presented.516

A. DATASET PREPARATION517

1) FOVEATED IMAGE DATASET518

Our proposed FoVGCN solution is designed to work effec-519

tively for the foveated dataset, in which the quality changes520

in different zones correspond to the five regions of the human521

retina.522

FoVGCN is trained and tested with the foveated immer-523

sive image dataset of [3], that contains 16 reference and524

512 distorted viewport-extracted images. These 16 reference525

images are retrieved from various scenes such as indoor, large526

conference room, containing human faces, and natural land-527

scape. To create the distorted images, Gaussian filters were528

employed with a fixed filter size of 50 and four different 529

standard deviations. Specifically, the distortion of images was 530

conducted based on five regions of the human retina and two 531

basic scenarios of spatial quality changes: the quality gradu- 532

ally decreases or increases from the center to the periphery. 533

For each scenario, four different quality levels were generated 534

corresponding to four different standard deviations σ . Due 535

to the fact that blurring in the center zones is easier to be 536

perceived than in the peripheral zones, the values of σ are 2, 537

4, 8, and 12 for the first scenario and 1, 2, 4, and 6 for the 538

second scenario. To prevent boundaries between the low and 539

high-quality zones from irritating viewers, a linear function 540

was used to smooth transition belts between two adjacent 541

zones. Please refer to [3] for more details about the process 542

of creating the distorted images. 543

However, this foveated dataset has a limited number 544

of samples to achieve a good training performance. So, 545

to enhance the performance and accuracy of our proposed 546

method, we apply a data augmentation technique by flip- 547

ping the viewports twice from the left to the right and from 548

the bottom to the top, without destroying the characteristics 549

of the foveated dataset. As the result, this technique triples 550

the amount of data, thus helping to achieve a better training 551

performance. 552

2) CROSS-VALIDATION DATASETS 553

In our work, FoVGCN is specifically designed to cope with 554

foveated-quality images. That inclusively means that it may 555

not work well for uniform-quality images in comparison 556

with the other existing solutions, which are designed for this 557

uniform type. However, to investigate the effectiveness of 558

FoVGCN for uniform images, we also evaluate the perfor- 559

mance of FoVGCN on two other uniform image datasets - 560

CVIQ [5] and OIQA [40] - which are experimented to vali- 561

date the FoVGCN model: 562

• The CVIQ dataset consists of 524 distorted images 563

which were created from 16 source images. Those 564

images are distorted by three standards: JPEG, 565

H.264/AVC, and H.265/HEVC. 566

• The OIQA dataset includes 320 distorted images cre- 567

ated from 16 reference images by four distortion types, 568

namely JPEG compression, JPEG2000 compression, 569

Gaussian blur, and Gaussian noise. 570

B. PERFORMANCE EVALUATION 571

1) EXPERIMENTAL SETTINGS 572

To evaluate the performance of the FoVGCN model, we use 573

common performance measures such as Pearson linear cor- 574

relation coefficient (PLCC), Spearman rank order correlation 575

coefficient (SROCC), and Root mean square error (RMSE). 576

In the literature, RMSE, PLCC, and SROCC are commonly 577

considered as standard metrics to evaluate the accuracy of 578

quality models [41], [42], [43]. Specifically, they are uti- 579

lized to measure the difference, the linear and non-linear 580

correlations between subjective quality values and objective 581
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FIGURE 10. SROCC, PLCC and RMSE with the gaussian distributed and
linear distributed weight matrices.

quality values predicted from a model, respectively [44]. The582

experiments are conducted in various aspects to have a better583

understanding of the impacts of different factors.584

It should be noted that we focus on dealing only with585

the viewports of full foveated immersive images in order586

to reflect what viewers are actually watching. As aforemen-587

tioned, we use the foveated immersive image dataset [3],588

that is constructed from 16 source distorted images. More589

specifically, we need to select 2 source distorted images for590

testing from the 16 source distorted images. So it means the591

remaining 14 distorted images are used for training.592

Since we have to cover all cases of choosing any 2 distorted593

images from a set of 16 source images, it leads to the mathe-594

matics combination problem of choosing 2 from 16 subjects.595

Therefore, in total, there are totally
(16
2

)
= 120 possible596

testing sets. The aforementioned performancemetrics are cal- 597

culated by averaging the results of those 120 cases. 598

Note that in our experiments, the learning model is found 599

out to work efficiently with the learning rate set at 10−4 as 600

the model could converge after 200 epochs. The training and 601

testing phases are executed in Google colab pro (Intel(R) 602

Xeon(R) CPU @ 2.30GHz, Tesla P100-PCIE-16GB GPU). 603

In the evaluation process, firstly, we analyze the perfor- 604

mance of our FoVGCN model on the foveated image dataset 605

in two cases of the attention weight matrix, namely (1) the 606

Linear degradation distribution and (2) the Gaussian degrada- 607

tion distribution. Secondly, we change the sigma coefficient 608

in the Gaussian attention weight matrix in order to study 609

the impact of sigma on the performance of the FoVGCN 610

method. Thirdly, FoVGCN is compared with 25 traditional- 611

metric-based methods and three machine-learning-based 612

image assessment approaches. Finally, we conduct some 613

cross-validation experiments to investigate how FoVGCN 614

and other fovea-quality-metrics solutions would work with 615

the two uniform datasets. 616

2) IMPACT OF GAUSSIAN DISTRIBUTION VERSUS LINEAR 617

DISTRIBUTION 618

In this evaluation, we want to analyze how the selection of 619

the Gaussian distribution or linear distribution for the atten- 620

tion weight matrix could impact the final performance of 621

FoVGCN. This evaluation helps us to have deeper insight into 622

what distribution should be selected for better performance of 623

FoVGCN. 624

Figure 10 illustrates PLCC, SROCC, and RMSEmeasured 625

for our FoVGCNmethod using two different attention weight 626

matrices: (1) with Gaussian distribution, and (2) with Linear 627

distribution. It can be obviously seen that both of the two dis- 628

tribution attention weight matrices result in high SROCC and 629

PLCC (i.e., over 0.85 for both SROCC and PLCC). Mean- 630

while, RMSE values are shown to be low, which are under 631

0.5 in almost 120 cases. 632

In more detail, in the case where the weight matrix is 633

processed with the Gaussian distribution, the highest values 634

of PLCC and SROCC are 0.994 and 0.991, respectively. The 635

average values calculated for the 120 cases with the Gaus- 636

sian distribution are SROCC = 0.983, PLCC = 0.967, and 637

RMSE = 0.084. Moreover, the average values calculated for 638

the 120 cases with the linear distribution are SROCC= 0.938, 639

PLCC = 0.941, and RMSE = 0.056. Besides, SROCC stays 640

in the range of [0.853, 0.982], PLCC stays in the range of 641

[0.835, 0.982], whilst RMSE is under 0.4. 642

In conclusion, the FoVGCN model with the Gaussian 643

weight matrix outperforms the linear distribution weight 644

matrix. Moreover, it is proven that our method achieves a 645

stable and significantly good performance in all experiments. 646

3) IMPACT OF DIFFERENT SIGMA COEFFICIENTS 647

As mentioned in Section III-A2, we know that any change 648

in the sigma coefficient sigma of the Gaussian distribution, 649

which is used to construct the weight matrix, will result in 650
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FIGURE 11. The performance of FoVGCN over different sigma coefficients.

different degrees of the central concentration, relating to dif-651

ferent human attention in each zone. In order to figure out652

the best performance related to the σ coefficient, Figure 11653

illustrates SROCC, PLCC and RMSEwith different σ values.654

It can be seen that, in general, SROCC, PLCC, and RMSE655

increase as σ is decreased. When σ is less than 0.1, the656

accuracy values saturate while RMSE quickly increases. So,657

we set σ=0.1 to have a good balance among the three values658

SROCC, PLCC, and RMSE.659

C. FoVGCN VERSUS OTHER EXISTING SOLUTIONS660

In this section, we compare FoVGCN with other existing661

solutions, including 25 analytical metrics and 3 machine-662

learning-based methods. The 25 analytical metrics include663

MSE, FMSE, UQI, PSNR, FPSNR, SSIM, MS-SSIM, IW-664

SSIM, NQM, VIF, VIFp, WSNR, FSIM, FSIMc, F-SSIM,665

PSIM, ADD-SSIM, FWQI, GSIM, RFSIM, IW-PSNR,666

BRISQUE, NFERM, SR-SIM, and W-VPSNR. The results667

of those 25 metrics are calculated by averaging the values668

of the 120 cases. The 3 machine-learning-based methods669

are DeepQA [8], MIC360IQA [5], and VGCN [6]. To have670

a fair comparison, all machine-learning-based methods are671

re-trained with the above foveated 360◦ image dataset, in the672

same manner as the proposed FoVGCN.673

Figure 13 shows that FoVGCN outperforms the 25 ana-674

lytical metrics. As it can be seen, FoVGCN achieves much675

higher accuracy, with SROCC = 0.983 and PLCC = 0.967,676

while the other methods can reach to approximately 0.9 at677

most. In addition, FoVGCN achievesmuch lower RMSE (i.e.,678

0.084) compared to the other existing schemes.679

Without loss of generality, we present specific results680

for one single case (i.e., case 5 using source images I1681

and I6) to compare FoVGCN with 3 other machine-learning-682

based methods, as shown in Figure 12. It can be seen that,683

DeepQA [8] fails to evaluate the foveated image quality684

efficiently, while the VGCN and MIC360IQA models have685

modest performance, namely SROCC = 0.748, PLCC =686

0.730, RMSE = 13.237 with MIC360IQA, and SROCC =687

0.512, PLCC = 0.335, RMSE = 16.102 for VGCN. Mean-688

while, FoVGCN achieves SROCC = 0.944, PLCC = 0.977,689

RMSE = 0.069, which are much better than the three690

mentioned machine-learning-based methods. The overall691

FIGURE 12. Performance of 3 current machine-learning-based
approaches vs. FoVGCN.

performance comparison between FoVGCN versus other 692

existing solutions over the foveated dataset is also summa- 693

rized in Table 4. 694

In addition, the scatter diagrams of the ground truth and 695

the predicted MOSs of all metrics and models are shown 696

in Figure 14. In this figure, the horizontal axis presents the 697

MOS score, and the vertical axis shows the predicted MOS 698

score, which is the quality image score predicted by each 699

different model/approach. The trend of those diagrams is 700

expected to be the shape of Identity Function Graph indicat- 701

ing the relationship between the predicted MOS score and 702

real MOS score. MOS stands for Mean Opinion Score, which 703

is a numerical measure of the human-judged overall quality 704

of experience (QoE), normally for voice and video sessions, 705

ranked on a scale from 1 (bad) to 5 (excellent). The definition 706

of QoE and MOS can be found in [26]. 707

We can see that, among the analytical metrics, only 708

the FMSE, FPSNR, and WVPSNR have reasonable rela- 709

tionships between the actual MOSs and predicted MOSs. 710

This is because these metrics are specifically designed with 711

foveation feature. 712

As for the machine-learning-based methods, both VGCN 713

and DeepQA provide predicted MOS values in a very nar- 714

row range. Especially, DeepQA results in very low predicted 715

MOSs (almost zero). The scatter diagrams of FoVGCN con- 716

firm that this model (with either the Gaussian or linear degra- 717

dation weight matrices) can describe exactly the trend of 718

MOS scores. 719
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FIGURE 13. Performance of 25 analytical metrics vs. FoVGCN.

TABLE 2. Performance of FoVGCN over the CVIQ dataset.

D. CROSS VALIDATION EXPERIMENTS720

In the previous section, FoVGCN has been shown to be effi-721

cient in quality assessment for the foveated images. In order722

to see how FoVGCN will work with different types of723

content, we investigate the performance of FoVGCNwith two724

TABLE 3. Performance of FoVGCN over the OIQA dataset.

other uniform image datasets of CVIQ [5] and OIQA [40]. 725

In the cross-validation experiment, we use the foveated image 726

dataset for training, while the CVIQ dataset andOIQAdataset 727

are employed for testing. In this part, other foveal metrics are 728

used for comparison. 729
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FIGURE 14. Scatter diagrams of the actual MOSs versus the predicted MOS values for all methods.
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TABLE 4. FoVGCN vs. other solutions over 3 different datasets.

The results are illustrated in Table 2 and Table 3. We can730

see that, with the CVIQ dataset, FoVGCN achieves better per-731

formance in terms of SROCC, PLCC, and RMSE, which are732

0.920, 0.925, and 0.614 respectively. With the OIQA dataset,733

FoVGCN achieves comparable accuracy with other metrics;734

however, its RMSE (0.285) is much smaller than others. That735

means FoVGCN is more stable than other foveal metrics.736

E. DISCUSSIONS737

To get the overview of the performance of FoVGCN vs.738

other existing solutions over different datasets, we summarize739

all performances in Table 4. The above results show that740

the proposed model FoVGCN provides the best performance741

compared to reference methods. Also, FoVGCN is effective742

not only with foveated images but also with uniform-quality743

images. We believe that constructing a graph structure that is744

composed of an errormap and attention weight matrix allows745

the model to efficiently interpret the characteristics of data746

structure with spatial quality changes. It is the main rea-747

son our proposed model achieved high performance. Testing748

our model with three different datasets of various scenar-749

ios (i.e., uniform-quality and foveated images) also help750

avoid bias and guarantee that the model can work well in751

general.752

The use of foveation feature in quality models is crucial to753

effectively deal with foveated images. As seen in Fig. 13, the754

performances of the analytical foveation-based models like755

FMSE, FPSNR, WVPSNR are quite good (over 0.8 for both756

PLCC and SROCC). Meanwhile, the three reference deep-757

learning-based models, namely DeepQA, MIC360IQA, and758

VGCN, have lower (or very low) performances (see Fig. 12).759

Note that, though these deep-learning-based models are 760

already retrained using the same foveated image dataset as the 761

proposed FoVGCNmodel, their low performances imply that 762

the deep-learning architectures of these models still cannot 763

capture the characteristics of foveated images. 764

Currently, the study in this paper still has some limitations. 765

• First, the proposed model is just focused on image con- 766

tents. It was not evaluated with video contents due to the 767

lack of foveated video datasets. 768

• Second, the resolution of foveated images in this study is 769

fixed. This is also because of the available dataset does 770

not provide images of different resolutions. 771

In the future, we will carry out subjective tests to obtain 772

more foveated content datasets, which cover different cases 773

of resolutions, headsets, and content types (i.e. images and 774

videos). The FoVGCN model will be extended and evaluated 775

using these future datasets. Field studies using foveated qual- 776

ity models in the context of VR video streaming will be also 777

implemented. 778

V. CONCLUSION 779

In this paper, we have proposed FoVGCN as an efficient 780

assessment model for foveated 360◦ images. The model uses 781

Graph Convolutional Network to represent the complex rela- 782

tionships among different locations of an immersive image. 783

It is expected that the proposed FoVGCN model will be an 784

effective and reliable method for researchers to evaluate cod- 785

ing and rendering solutions of foveated image/video field. 786

In the future work, we will employ this model to improve 787

VR video streaming adaptation techniques to ensure good 788

perceived quality for viewers. 789
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