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ABSTRACT Virtual reality (VR) has been adopted in various fields such as entertainment, education,
healthcare, and the military, due to its ability to provide an immersive experience to users. However, 360°
images, one of the main components in VR systems, have bulky sizes and thus require effective transmitting
and rendering solutions. One of the potential solutions is to use foveated technologies, that take advantage
of the foveation feature of the human eyes. Foveated technologies can significantly reduce the data required
for transmission and computation complexity in rendering. However, understanding the impact of foveated
360° images on human quality perception is still limited. This paper addresses the above problems by
proposing an accurate machine-learning-based quality assessment model for foveated 360° images. The
proposed model is proven to outperform the three cutting-edge machine-learning-based models, which apply
deep learning techniques and 25 traditional-metric-based models (or analytical-function-based-models),
which utilize analytical functions. It is also expected that our model helps to evaluate and improve 360°
content streaming and rendering solutions to further reduce data sizes while ensuring user experience.
Also, this model could be used as a building block to construct quality assessment methods for 360°
videos, that are reserved for our future work. The source code is available at https://github.com/telagment/
FoVGCN.

INDEX TERMS Foveated image, omnidirectional image, virtual reality, graph convolution network, quality
of experience.

I. INTRODUCTION
Virtual reality (VR) has become a cutting-edge technology in

is that omnidirectional contents of VR applications have huge
data sizes, and thus require effective transmitting and render-

the world since its invention in the 1950s, and its applications
have been expanding and evolving over the past ten years
due to the advancement of both the hardware and software
technologies [1]. In contrast to traditional images (i.e., 2D
images), VR images are typically recorded with a 360° cam-
era, that captures the 360° space of a scene [2]. The problem
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ing solutions [3].

To cope with this problem, one of the most potential solu-
tions is to use foveated technologies, that are based on the
foveation feature of the human eyes. This feature refers to
spatially foveated visual acuity due to the heterogeneous dis-
tribution of photoreceptors in the retina. In foveated technolo-
gies, image areas gazed by the retina region of higher photo
receptor density have higher quality levels than the outside
areas. This allows significantly reducing not only the data
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size in transmission but also the computation complexity in
rendering [3], [4].

However, foveated technologies result in spatial quality
variations, that may cause negative impacts on user quality
perception [3]. Therefore, to build a high-quality VR service,
it is of utmost importance to understand how human per-
ceives the quality of foveated 360° images. It is expected that
answering this question helps figure out the most effective
way to reduce a huge amount of data while ensuring the user
experience.

There have been several types of research, that apply
machine learning-based methods to successfully assess the
quality of 360° images [5], [6]. However, most of these stud-
ies are just designed to deal with uniform-quality images, but
not with foveated-quality images in which quality is changed
from the center to the periphery. Due to the significant dif-
ference between the characteristic of uniform and foveated
360° images, existing models for uniform images can not
be used effectively for foveated images. To the best of our
knowledge, the quality model, called W-VPSNR, in [7] is
the first and the only one dedicated to the quality assess-
ment of foveated 360° images. In their work, the authors use
a weighted sum of mean squared errors (MSEs) of image
areas corresponding to different retina regions. It is worth
noting that, in this model, all pixels in the same area have
the same weight, and so have the same impact on user quality
perception.

In this work, we design a Graph Convolution Network
(GCN)-based quality model, that could automatically and
effectively learn the contribution of each pixel to the per-
ceptual quality of foveated 360° images. Within this scope,
to the best of our knowledge, this is the first quality
model utilizing a deep learning algorithm to assess the
quality of foveated 360° images. The proposed assess-
ment method is proved to outperform the three cutting-
edge machine-learning-based solutions and 25 traditional-
metric-based methods or analytical-function-based-models
over both the main case study with foveated data and the
cross-validation study with uniform data.

The rest of the paper is organized as follows. Section II
describes state of the art of the VR image assessment meth-
ods. In section III, we elaborate our proposed model based
on Graph Convolution Network- FOVGCN - to assess the
quality of foveated 360° images. Section IV shows the per-
formance of FOVGCN in comparison with the three state-of-
the-art machine-learning-based methods (i.e. DeepQA [8],
MIC360IQA [5], and VGCN [6]) and 25 metric-based
schemes (i.e. MSE, FMSE [9], UQI [10], PSNR [11],
FPSNR [12], SSIM [11], MS-SSIM [13], IW-SSIM,
NQM [14], VIF [15], VIFp [16], WSNR, FSIM, FSIMc, F-
SSIM [17], PSIM [18], ADD-SSIM [19], FWQI [20], GSIM,
RFSIM [21], IW-PSNR [22], BRISQUE [23], NFERM [24],
SR-SIM [25], and W-VPSNR [7]). FOVGCN is also evaluated
in some cross-validation experiments on uniform content
datasets. Finally, the conclusion and future work are briefly
discussed in Section V.
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Il. RELATED WORK
Quality of Experience (QoE) has long been investigated for
different content types [26].

A. FOVEATED 360° CONTENT SUBJECTIVE QUALITY
ASSESSMENT

In the literature, there have been a lot of studies on foveated
contents (i.e., images or videos) [3], [4], [7], [12], [20], [27],
[28], [29], [30]. Among them, there are, however, only some
on 360° contents [3], [4], [7], [28], [29]..

In [28], the authors proposed a framework to compare the
performance of four subjective quality assessment methods:
Double Stimulus Quality Comparison (DSQC), Single Stim-
ulus Absolute Category Rating (ACR), Ascending Method
(AM), and Descending Method (DM). By the analysis of
Quality of Experience (QoE) scores of foveated 360° images,
it was found that the DSQC method obtains the highest con-
sistency, but requires more judgments and time to converge
to the consensus. Meanwhile, ACR was found to be the most
efficient method. In [29], the authors focused on the subjec-
tive comparison between 2D and 3D foveated 360° videos in
terms of users’ perceptual quality. The results showed that
the perceptual quality of 2D videos was more affected by
the quality of the image area corresponding to the periph-
eral region. Meanwhile, for 3D videos, the perceptual quality
was largely impacted by the image area quality associated
with the fovea region. Also, based on the results, a perfor-
mance evaluation of 12 objective quality metrics was con-
ducted. Foveated Wavelet Quality Index (FWQI) was found
to be the most effective model for both 2D and 3D foveated
360° videos.

In [4], the key question the authors focused on was how to
spatially reduce data size without noticeable perceptual qual-
ity degradation by taking advantage of the foveation feature.
In particular, a subjective quality assessment for foveated
360° images was conducted taking into account three regions
of the human retina, i.e., the central vision area with one-side
eccentricity 6 € [0°, 9°], the near peripheral area with 6 €
(9°, 30°], and the far peripheral area. In this experiment, the
image quality corresponding to each region was reduced step
by step until the participants notice a perceptual difference.
By utilizing encoding parameters (i.e., quantization param-
eters and resolutions), that had been recorded, the authors
proposed a rendering solution, that is indicated to be able
to significantly improve rendering throughput by about 10x
without perceptual loss, in comparison to the traditional solu-
tion of uniform quality. Reference [3] is the first study, that
could quantify the impacts of different retina regions on user
quality perception. In particular, the authors performed a sub-
jective quality assessment of foveated 360° images. Through
experimental results, it is quantitatively shown that image
areas corresponding to the fovea and parafovea regions are
extremely important for quality perception, while the impacts
of the other zones are small. Besides, a performance evalua-
tion of twenty-five objective quality metrics was conducted.
It turned out that all of them, even the fovea quality metrics,
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are not effective for the quality assessment of foveated 360°
images.

Based on the subjective dataset in [3], the authors
in [7] proposed a simple quality model called W-VPSNR.
W-VPSNR is the first and only objective quality model for
quality assessment of foveated 360° images. Instead of con-
sidering the entire image, this model predicts the quality of
a small part, called viewport, that users observe due to the
limited Field of View (FoV) of human eyes. To consider the
foveation feature, a weighted sum of mean squared errors
(MSEs) of image areas corresponding to different retina
regions was used to predict the quality of foveated 360°
images. It is worth noting that, in this model, all pixels in the
same area have the same weight, and so have the same impact
on user quality perception.

B. QUALITY MODELS FOR OMNIDIRECTIONAL
IMAGE/VIDEO CONTENTS

In general, in the domain of objective Image Quality Assess-
ment, IQA is categorized into three methods: no-reference
(NR-IQA), reduced-reference (RR-IQA), and full-reference
image quality assessment (FR-IQA), depending on their
degree of dependence on the reference image. Full-reference
approaches compare a distorted image to an entire ref-
erence image, while reduced-reference approaches just
need a portion of the reference image’s information. And
no-reference (or blind) approaches only work with distorted
images received at the client’s side [31].

1) TRADITIONAL-METRIC-BASED METHODS (OR
ANALYTICAL-FUNCTION-BASED-MODELS)

Many techniques have been proposed for evaluating image
quality. Traditional technical image quality metrics, that
are leveraged commonly in FR-IQA and RR-IQA include
Mean Squared Error (MSE), Frequency Mean Square Error
(FMSE) [9], Universal Quality Index (UQI) [10], Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) [11], Foveated Peak Signal-to-Noise
Ratio(FPSNR) [12], Multi-scale SSIM (MS-SSIM) [13],
Information content Weighted SSIM (IW-SSIM), Noise
Quality Measure (NQM) [14], Visual Information Fidelity
(VIF) [15], Visual Information Fidelity in the pixel domain
(VIFp) [16], Weight Signal-to-Noise Ratio (WSNR), Fea-
ture similarity index measure (FSIM), Feature similarity
measure (FSIMc) for color image, Foveal feature similarity
measure (F-SSIM) [17], Perceptual Similarity (PSIM) [18],
Analysis of Distortion Distribution-based (ADD-SSIM) [19],
Foveal Structural Similarity [32], and Foveated Wavelet
image Quality Index (FWQI) [20], Generic Statistical Infor-
mation Model (GSIM), Riesz Transforms based Feature
Similarity (RFSIM) [21], Information content Weighted
PSNR (IW-PSNR) [22], Blind/Referenceless Image Spa-
tial Quality Evaluator (BRISQUE) [23], No-reference Free
Energy-Based Robust Metric (NFERM) [24], Spectral Resid-
ual based Similarity (SR-SIM) [25], and Weighted Viewport
PSNR (W-VPSNR) [7]. Therefore in this paper, we will
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evaluate our solution’s performance in terms of 25 met-
rics: MSE, FMSE [9], UQI [10], PSNR [11], FPSNR [12],
SSIM [11], MS-SSIM [13], IW-SSIM, NQM [14], VIF [15],
VIFp [16], WSNR, FSIM, FSIMc, F-SSIM [17], PSIM [18],
ADD-SSIM [19], FWQI [20], GSIM, RFSIM [21],
IW-PSNR [22], BRISQUE [23], NFERM [24], SR-SIM [25],
and W-VPSNR [7] in order to have an insight into our pro-
posed solution from variety of angles.

2) MACHINE LEARNING-BASED METHODS

In most cases, machine learning-based methods have been
found to perform better than traditional-metric-based meth-
ods. There have been a small number of studies, that applied
machine learning in the domain of full-reference uniform
image quality assessment, for instance, [8], [33], and [34].
In [8], the authors proposed a new framework, that applies
a deep neural network to study the human visual sensitivity
(HSV), based on distorted images, a subjective score, and an
objective error map (DeepQA model) or without an objective
error map (DeepQA-s model) in a uniform image quality
dataset. In [33], the author considered the important role of
multiple viewports related to the image inside the field of
view (FoV). Those viewports are extracted by viewport sam-
pling with inputs being reference images (i.e., original images
on the server-side) and distorted images (i.e., received images
on the client-side). Their proposed stereoscopic omnidirec-
tional image quality assessment (SOIQA) model then learned
those viewport features using a deep neural network and sup-
port vector regression (SVR). Machine learning techniques
have been applied efficiently in [8] and [33] to learn the char-
acteristics of uniform immersive image quality in terms of the
full-reference quality approach. However, the characteristics
of uniform 360° image quality are vastly different from those
of foveated 360° image quality. Therefore, the research direc-
tion of assessment methods, that work effectively for foveated
360° images is still an open issue.

In the direction of NR-IQA methods, machine-learning-
based approaches have been utilized quite commonly.
Zhang et al. [35] proposed a deep bi-linear model for non-
reference image quality assessment (BIQA) to deal with
synthetic distortions and authentic distortions in images.
Afterward, Xu et al. [6] developed a novel Viewport oriented
Graph Convolution Network (VGCN), that concatenates a
global branch based on Zhang’s work [35], which predicts
the global quality score by handling the synthetic and authen-
tic distortions, and a local branch, that learns the interac-
tions among different viewports by using graph convolution
network to get the overall image quality. Kim et al. [36],
first, extracted features of distorted images to predict quality
scores, then proposed a user perception guidance by using
adversarial learning to enhance the prediction performance.
Sun et al. [5] introduced a multi-channel convolution neu-
ral network (i.e. MC360IQA), in which the overall quality
is predicted using six simultaneous ResNet-34s, that extract
features from six created viewports. In [37], the authors
introduced meta-learning based image quality assessment
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FIGURE 1. FOVGCN Model Operation based on the full-reference image quality assessment (FR-IQA) approach which leverages the information of both
reference and distorted images. First, the graph structure data is constructed based on Error map and attention weight matrix. Then, the convolution
graph neural network interprets the graph data to predict the final quality assessment score of viewports.

(Meta IQA) method, that successfully deals with different
types of distortions in image quality assessment. Machine
learning approaches have been proved their effectiveness in
terms of studying the characteristics of uniform distorted
images to derive the image quality. However, to deal with
a foveated image dataset, for example in [3], we should
take into account the quality distribution in different regions
as well as the priority of human attraction factors, both of
which have a huge impact on the overall user experience.
In our point of view, this is the main reason why all proposed
NR-IQA machine-learning-based approaches have only been
successful in dealing with uniform image quality assessment
up to now.

In this work, we focus on image quality assessment of spa-
tially foveated images for two reasons. Firstly, 360° images
are still a critical topic with a wide range of applications and
play an important role in evaluating immersive video quality.
Secondly, almost all up-to-date IQA methods have got only
modest performance so that looking for a new scheme to
improve it is necessary.

Therefore, we propose a Foveated-Graph-Convolution-
Network-based 360° Image Processing Method - FOVGCN -
which will be compared with 25 different traditional-metric-
based methods and 3 other machine-learning based models
found in [5], [6], and [36]. Although, FOVGCN is designed to
work efficiently for foveated image quality, its performance
is also cross validated with uniform datasets to evaluate its
application generality over heterogeneous cases in reality.

Ill. DESIGN OF THE FOVEATED GRAPH CONVOLUTION
NETWORK BASED 360° IMAGE PROCESSING METHOD
(FOVGCN)
In this section, we will describe the detailed technical design
of our proposed FOVGCN model (i.e., Foveated Graph Con-
volution Network based 360° Image Processing Method) for
assessing the retina-related zone quality of omnidirectional
images.

Our proposed method FOVGCN consists of two main
blocks which are the preprocessor and the graph convolution
network block as illustrated in Figure 1. The preprocessor
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plays an important role in creating an error map and an atten-
tion weight matrix which represent the spatial quality chang-
ing in different zones of an image and the priority of human
attention, respectively. After being pre-processed, both the
error map and the attention weight matrix construct a graph
structure, that is the input of the graph convolution layer.
The graph structure is then fed into the convolution graph
neural network block to predict the overall quality score of
the image. In the next subsections, the two main blocks of the
FoVGCN model and its parameter settings will be described
in detail.

A. PREPROCESOR

In the preprocessor block, reference and distorted images are
fed into the error map creator block to create an error map.
Error map is implied as a graph in which each vertex (node)
represents a pixel and is connected via an edge to a foveation
node (or foveation pixel), as Figure 2 describes. A foveation
node is defined as the center point in the virtual viewport [3].
Therefore, each non-foveation pixel has only one neighbor
(foveation node), and the information stored at each node is
calculated based on an error map E.

The attention weight matrix block takes the shape of a
viewport as the input to create a distance-based distribution
matrix which has the same size as the viewport. The atten-
tion weight ag; j),(n,,) measures the connective strength based
on distance relation between arbitrary E;; and foveation
node E, ,, i,j € (1,2,...,2n). Consequently, error map
and attention weight matrix construct the graph structure,
that is the input of the graph convolution layer as shown in
Figure 2.

1) ERROR MAP PROCESSING

In this section, we describe details of how to create an error
map as the first step of the Preprocessor to generate the
desired input for the GCN model in the latter phase. Intu-
itively, an Error Map represents spatial quality changing in a
distorted image when comparing the image with a reference
one. Besides, it also serves as the graph matrix input of the
graph convolution network.
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According to human retina characteristics, the quality of
omnidirectional images is typically adjusted based on five
human retina zones of Fovea, Parafovea, Perifovea, Near
periphery, Far periphery [3]. It means that the quality of each
pixel in a distorted image usually changes from the center
region inside to the outside. Our goal is to intuitively imply
the changing of the quality through each zone by using the so-
called Error Map (E). There are some pixel-wise metrics such
as peak signal-to-noise ratio (PSNR) and mean squared error
(MSE), that can be used to construct the error map. How-
ever, we use the normalized log difference function (Eq.1)
following [8] for better correlation with the perceived quality
of viewers:

_ log (1/(Ur — 1a)* + o)
- log(1/e),

where @ = £/255% is a constant and & = 0.1.

The detail of the Error map Creator is shown in Figure 3.
First, the reference and distorted images are converted to
gray-scale images. Let I, and I; be the values of each pixel of
the reference and distorted gray images, respectively. Then,
error maps are created following Eq.1. As can be seen in

€]
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(b) Image 2

FIGURE 4. The visual image of error maps of two foveated images. The
error map is created by the original (or reference) image and the
corresponding distorted image.

Figure 4, the distorted viewport 1 has a quite good quality and
distorted viewport 2 has a lower quality, while the reference
viewport has the highest quality.

In the Errormap Transform block, the error map is first
divided into four quadrants for adapting with Attention
weight matrix transformation, then each of those is rotated
and sorted as four consecutive quadrants following the rule
in Figure 5. The division of the error map is to help reduce
the computational complexity of the proposed model towards
real-time quality assessment. As a result of this process, the
attention weight matrix size is decreased by a factor of 4,
thereby significantly reducing the running time of the whole
model.
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Error Map Transform

FIGURE 5. Errormap transform.

2) ATTENTION WEIGHT MATRIX PROCESSING

The concept of attention weight matrix is used to describe
the priority of human attraction in each zone of an immersive
image. It can be understood that pixels (nodes) in the central
zones are considered to have the higher weight than pixels
(nodes) farther away from the center zone. Therefore, our
attention weight matrix is created in such a way that it has
high density representing high priority in the middle while
decreasing to lower and lower density for further areas from
the middle. Then, we define attention the weight matrix as a
2nx2n symmetric matrix. The elements of the matrix indicate
the edge information between arbitrary nodes to the central
node of the graph structure, as described in Figure 2. The set
of a j),(n,n) entries follow two proposed distributions: Lin-
ear degradation distribution and Gaussian degradation distri-
bution. Later in the Evaluation section, we will present the
solution results based on each type of distribution to have a
broader insight into the performance.

The detail of the Attention Weight matrix processing block
is illustrated in Figure 6. First, an attention weight matrix is
created in the form of a degradation distribution depending
on the viewport shape. Then, we leverage the first quadrant
of the viewport attention weight matrix as the input of our
GCN network.

Linear degradation distribution In our design, we pro-
pose a formula presented in Eq. (2), that describes the linear
degradation from the center node to the edge nodes. The value
of the matrix corresponding to each node is inversely propor-
tional to the distance from node E; ; to the central node E; ,
and decreases gradually and constantly from the center to the
periphery. The elements of the attention matrix are calculated
following Equ.2, and its distribution is visualized in Figure 7.

_ dis(Ei,jv En,n) +

diSmax

Aij = agj),mm =1 8, )

where

e agj),mn Or A;j is the element of the attention weight
matrix, in range of [4, 1 + §];

o dis(Eij, Eny) = /(i —n)?+(j—n)? is the distance
between pixel E; ; and center pixel E;, ;,;

o dispygy is the maximal distance between two nodes E; ;
and Ej, );
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o Threshold § is applied to avoid the zero value, and is set
equal to 0.0001.

Gaussian degradation distribution As mentioned in [4],
the density function of cones presented in [38] can be approx-
imated by a Gaussian distribution. Inspired by this observa-
tion, the Gaussian distribution is leveraged to represent the
perception process of human eyes. This idea follows the con-
cept of the human retina [3] which is user perception tends
to be affected by the quality of fovea and parafovea zones
from the center to the outside of an image. The reason is
that human eyes concentrate significantly on the fovea and
parafovea zones of the human retina - a small region in the
viewport [3]. Therefore, we need a distribution, that describes
a better human perspective. Therefore, we apply formula (3),
following the Gaussian distribution to construct the attention
weight matrix:

Aij=fx)=e 21, 3)

where

o o: standard deviation of x;

« A;;in the range of [0,1].

In fact, changing the value of o results in the different
degrees of central concentration in an image. Figure 8 visual-
izes the Gaussian distribution with different o values where
bigger o values correspond to larger focal regions. Therefore,
in our experiment presented later in this paper, the perfor-
mance of the FOVGCN model will be shown to study the
impact of the sigma value o corresponding to the human
attention.

B. GRAPH CONVOLUTION NETWORK

As the last phase of the whole FOVGCN assessment pro-
cess, the Graph Convolution Network is applied since it can
efficiently learn the graph-structured data and successfully
study the characteristic of foveated 360° images. In GCN,
we construct the graph structure in which a node represents a
pixel and an edge represents the distance-based correlation
between an arbitrary node to a foveation node. The graph
structure is built on the error map and attention weight matrix.
Significantly, the GCN is designed by using the attention
weight matrix instead of an adjacency matrix for a purpose
of describing the humane eyes attention in practice. The
attention weight matrix satisfies real, symmetric, positive
semidefinite properties, that are adapted to the mathematical
requirement in Eq. 4 and 5.

In our work, the Graph Convolution Network is applied
to extract features and study the spatial quality changes rele-
vant to the attention weight matrix in the foveated immersive
image dataset used in [3].

The error map, which is designed as a graph with a
size of (720, 720), is used to represent the quality changes
between different pixels. This size is heuristically chosen
based on the size of the attention weight matrix. Using a large
weight matrix leads to a computational overload in GCN.
In our design and experiment, an attention weight matrix of
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FIGURE 8. Attention weight matrix gaussian distribution.

(720, 720) is proposed in both the linear and Gaussian distri-
bution forms, representing the priorities of human attention
on focal regions.
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The forward propagation of the graph convolution layer is
applied using the rule provided in [39] to eliminate the vanish-
ing and exploding gradient in back-propagation, as follows:

HD = oD~ 2AD1HOW®) )
A=A+1Iy 3)

where

o H®: the activation matrix in /" layer;

o W®: the learnable model parameters in layer [

. l:): the degree matrix which can be calculated by
D =} Ay

« A: attention weight matrix and identity matrix Iy;

o o(): anon-linear activation function such as the Softmax
function, ReLU function, Softplus function, etc. In our
work, we use the Softplus function for better stabiliza-
tion and performance to deep neural networks.

First, the attention weight matrix is symmetrically nor-
malized by D_%AD_%, before being multiplied with the
learnable model parameters W and the output of the prior
layer H®). Then, the output layer is obtained after going
through the activation function.

In addition, following Eq.(4), a degree matrix D is inversely
calculated. Since this process takes huge computation and
resources, the inputs such as attention weight matrix and
error map need to be pre-processed before being fed into
the FoOVGCN model in order to reduce the computational
complexity, thereby reducing running time. Instead of feeding
the entire error map and attention weight matrix A, we process
them as described in Section III-A1 and Section III-A2.

C. MODEL PARAMETER SETTINGS

To create a down-sampled image with a size of (720, 720),
we use the zero-padding method to form a square matrix of
(1440, 1440) in order to avoid distortion when the image is
down-scaled. This square matrix is then down-sampled to the
size of (720, 720) to reduce the computational cost. Next,
an error map is created from those viewports and the atten-
tion weight matrix is fed through the six blocks of the graph
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FIGURE 9. The detail of each GCN block.

TABLE 1. The configuration of the FOVGCN model.

No. Layer Name |Attention Weight Matrix Size [Input Size (Output Size
1 GCN layer 1 (360, 360) (360, 1440) (360, 720)
2 GCN layer 2 (360, 360) (360, 720) | (360, 360)
3 GCN layer 3 (360, 360) (360, 360) | (360, 180)
4 GCN layer 4 (360, 360) (360, 180)| (360, 90)
5 GCN layer 5 (360, 360) (360, 90) | (360, 45)
6 GCN layer 6 (360, 360) (360, 45) | (360, 1)

7 [Fully connected layer] (360, 1) (1, 1)

convolution layers which is shown in Figure 9. Each block
contains a graph convolution layer, batch normalization, and
a Softplus activation function as described in Eq. (6):

f)=In(1+e") (6)

Batch normalization is a comprehensive method for
parameterizing virtually any deep neural network, and the
re-parameterization significantly reduces the issue of plan-
ning updates across multiple layers. Finally, a fully-connected
layer extracts the final predicted score.

The details of all parameters used in the FOVGCN model
are presented in Table 1.

IV. EXPERIMENTS AND RESULTS

To evaluate the performance of FOVGCN, we use three open
datasets, one of which is a foveated image dataset, and the
other two are uniform image datasets. In the following sec-
tions, we will firstly describe these datasets. Then, the experi-
mental settings and results of FOVGCN and existing solutions
are presented.

A. DATASET PREPARATION

1) FOVEATED IMAGE DATASET

Our proposed FOVGCN solution is designed to work effec-
tively for the foveated dataset, in which the quality changes
in different zones correspond to the five regions of the human
retina.

FoVGCN is trained and tested with the foveated immer-
sive image dataset of [3], that contains 16 reference and
512 distorted viewport-extracted images. These 16 reference
images are retrieved from various scenes such as indoor, large
conference room, containing human faces, and natural land-
scape. To create the distorted images, Gaussian filters were
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employed with a fixed filter size of 50 and four different
standard deviations. Specifically, the distortion of images was
conducted based on five regions of the human retina and two
basic scenarios of spatial quality changes: the quality gradu-
ally decreases or increases from the center to the periphery.
For each scenario, four different quality levels were generated
corresponding to four different standard deviations o. Due
to the fact that blurring in the center zones is easier to be
perceived than in the peripheral zones, the values of ¢ are 2,
4, 8, and 12 for the first scenario and 1, 2, 4, and 6 for the
second scenario. To prevent boundaries between the low and
high-quality zones from irritating viewers, a linear function
was used to smooth transition belts between two adjacent
zones. Please refer to [3] for more details about the process
of creating the distorted images.

However, this foveated dataset has a limited number
of samples to achieve a good training performance. So,
to enhance the performance and accuracy of our proposed
method, we apply a data augmentation technique by flip-
ping the viewports twice from the left to the right and from
the bottom to the top, without destroying the characteristics
of the foveated dataset. As the result, this technique triples
the amount of data, thus helping to achieve a better training
performance.

2) CROSS-VALIDATION DATASETS

In our work, FOVGCN is specifically designed to cope with
foveated-quality images. That inclusively means that it may
not work well for uniform-quality images in comparison
with the other existing solutions, which are designed for this
uniform type. However, to investigate the effectiveness of
FoVGCN for uniform images, we also evaluate the perfor-
mance of FOVGCN on two other uniform image datasets -
CVIQ [5] and OIQA [40] - which are experimented to vali-
date the FOVGCN model:

o The CVIQ dataset consists of 524 distorted images
which were created from 16 source images. Those
images are distorted by three standards: JPEG,
H.264/AVC, and H.265/HEVC.

o The OIQA dataset includes 320 distorted images cre-
ated from 16 reference images by four distortion types,
namely JPEG compression, JPEG2000 compression,
Gaussian blur, and Gaussian noise.

B. PERFORMANCE EVALUATION

1) EXPERIMENTAL SETTINGS

To evaluate the performance of the FOVGCN model, we use
common performance measures such as Pearson linear cor-
relation coefficient (PLCC), Spearman rank order correlation
coefficient (SROCC), and Root mean square error (RMSE).
In the literature, RMSE, PLCC, and SROCC are commonly
considered as standard metrics to evaluate the accuracy of
quality models [41], [42], [43]. Specifically, they are uti-
lized to measure the difference, the linear and non-linear
correlations between subjective quality values and objective
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FIGURE 10. SROCC, PLCC and RMSE with the gaussian distributed and
linear distributed weight matrices.

quality values predicted from a model, respectively [44]. The
experiments are conducted in various aspects to have a better
understanding of the impacts of different factors.

It should be noted that we focus on dealing only with
the viewports of full foveated immersive images in order
to reflect what viewers are actually watching. As aforemen-
tioned, we use the foveated immersive image dataset [3],
that is constructed from 16 source distorted images. More
specifically, we need to select 2 source distorted images for
testing from the 16 source distorted images. So it means the
remaining 14 distorted images are used for training.

Since we have to cover all cases of choosing any 2 distorted
images from a set of 16 source images, it leads to the mathe-
matics combination problem of choosing 2 from 16 subjects.

Therefore, in total, there are totally (126) = 120 possible
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testing sets. The aforementioned performance metrics are cal-
culated by averaging the results of those 120 cases.

Note that in our experiments, the learning model is found
out to work efficiently with the learning rate set at 10~ as
the model could converge after 200 epochs. The training and
testing phases are executed in Google colab pro (Intel(R)
Xeon(R) CPU @ 2.30GHz, Tesla P100-PCIE-16GB GPU).

In the evaluation process, firstly, we analyze the perfor-
mance of our FOVGCN model on the foveated image dataset
in two cases of the attention weight matrix, namely (1) the
Linear degradation distribution and (2) the Gaussian degrada-
tion distribution. Secondly, we change the sigma coefficient
in the Gaussian attention weight matrix in order to study
the impact of sigma on the performance of the FOVGCN
method. Thirdly, FOVGCN is compared with 25 traditional-
metric-based methods and three machine-learning-based
image assessment approaches. Finally, we conduct some
cross-validation experiments to investigate how FoVGCN
and other fovea-quality-metrics solutions would work with
the two uniform datasets.

2) IMPACT OF GAUSSIAN DISTRIBUTION VERSUS LINEAR
DISTRIBUTION

In this evaluation, we want to analyze how the selection of
the Gaussian distribution or linear distribution for the atten-
tion weight matrix could impact the final performance of
FoVGCN. This evaluation helps us to have deeper insight into
what distribution should be selected for better performance of
FoVGCN.

Figure 10 illustrates PLCC, SROCC, and RMSE measured
for our FOVGCN method using two different attention weight
matrices: (1) with Gaussian distribution, and (2) with Linear
distribution. It can be obviously seen that both of the two dis-
tribution attention weight matrices result in high SROCC and
PLCC (i.e., over 0.85 for both SROCC and PLCC). Mean-
while, RMSE values are shown to be low, which are under
0.5 in almost 120 cases.

In more detail, in the case where the weight matrix is
processed with the Gaussian distribution, the highest values
of PLCC and SROCC are 0.994 and 0.991, respectively. The
average values calculated for the 120 cases with the Gaus-
sian distribution are SROCC = 0.983, PLCC = 0.967, and
RMSE = 0.084. Moreover, the average values calculated for
the 120 cases with the linear distribution are SROCC = 0.938,
PLCC = 0.941, and RMSE = 0.056. Besides, SROCC stays
in the range of [0.853, 0.982], PLCC stays in the range of
[0.835, 0.982], whilst RMSE is under 0.4.

In conclusion, the FOVGCN model with the Gaussian
weight matrix outperforms the linear distribution weight
matrix. Moreover, it is proven that our method achieves a
stable and significantly good performance in all experiments.

3) IMPACT OF DIFFERENT SIGMA COEFFICIENTS

As mentioned in Section III-A2, we know that any change
in the sigma coefficient sigma of the Gaussian distribution,
which is used to construct the weight matrix, will result in
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FIGURE 11. The performance of FOVGCN over different sigma coefficients.

different degrees of the central concentration, relating to dif-
ferent human attention in each zone. In order to figure out
the best performance related to the o coefficient, Figure 11
illustrates SROCC, PLCC and RMSE with different o values.
It can be seen that, in general, SROCC, PLCC, and RMSE
increase as o is decreased. When o is less than 0.1, the
accuracy values saturate while RMSE quickly increases. So,
we set 0=0.1 to have a good balance among the three values
SROCC, PLCC, and RMSE.

C. FoVGCN VERSUS OTHER EXISTING SOLUTIONS

In this section, we compare FOVGCN with other existing
solutions, including 25 analytical metrics and 3 machine-
learning-based methods. The 25 analytical metrics include
MSE, FMSE, UQI, PSNR, FPSNR, SSIM, MS-SSIM, IW-
SSIM, NQM, VIF, VIFp, WSNR, FSIM, FSIMc, F-SSIM,
PSIM, ADD-SSIM, FWQI, GSIM, RFSIM, IW-PSNR,
BRISQUE, NFERM, SR-SIM, and W-VPSNR. The results
of those 25 metrics are calculated by averaging the values
of the 120 cases. The 3 machine-learning-based methods
are DeepQA [8], MIC360IQA [5], and VGCN [6]. To have
a fair comparison, all machine-learning-based methods are
re-trained with the above foveated 360° image dataset, in the
same manner as the proposed FOVGCN.

Figure 13 shows that FOVGCN outperforms the 25 ana-
lytical metrics. As it can be seen, FOVGCN achieves much
higher accuracy, with SROCC = 0.983 and PLCC = 0.967,
while the other methods can reach to approximately 0.9 at
most. In addition, FOVGCN achieves much lower RMSE (i.e.,
0.084) compared to the other existing schemes.

Without loss of generality, we present specific results
for one single case (i.e., case 5 using source images 11
and 16) to compare FOVGCN with 3 other machine-learning-
based methods, as shown in Figure 12. It can be seen that,
DeepQA [8] fails to evaluate the foveated image quality
efficiently, while the VGCN and MIC360IQA models have
modest performance, namely SROCC = 0.748, PLCC =
0.730, RMSE = 13.237 with MIC360IQA, and SROCC =
0.512, PLCC = 0.335, RMSE = 16.102 for VGCN. Mean-
while, FOVGCN achieves SROCC = 0.944, PLCC = 0.977,
RMSE = 0.069, which are much better than the three
mentioned machine-learning-based methods. The overall
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FIGURE 12. Performance of 3 current machine-learning-based
approaches vs. FOVGCN.

performance comparison between FoVGCN versus other
existing solutions over the foveated dataset is also summa-
rized in Table 4.

In addition, the scatter diagrams of the ground truth and
the predicted MOSs of all metrics and models are shown
in Figure 14. In this figure, the horizontal axis presents the
MOS score, and the vertical axis shows the predicted MOS
score, which is the quality image score predicted by each
different model/approach. The trend of those diagrams is
expected to be the shape of Identity Function Graph indicat-
ing the relationship between the predicted MOS score and
real MOS score. MOS stands for Mean Opinion Score, which
is a numerical measure of the human-judged overall quality
of experience (QoE), normally for voice and video sessions,
ranked on a scale from 1 (bad) to 5 (excellent). The definition
of QoE and MOS can be found in [26].

We can see that, among the analytical metrics, only
the FMSE, FPSNR, and WVPSNR have reasonable rela-
tionships between the actual MOSs and predicted MOSs.
This is because these metrics are specifically designed with
foveation feature.

As for the machine-learning-based methods, both VGCN
and DeepQA provide predicted MOS values in a very nar-
row range. Especially, DeepQA results in very low predicted
MOSs (almost zero). The scatter diagrams of FOVGCN con-
firm that this model (with either the Gaussian or linear degra-
dation weight matrices) can describe exactly the trend of
MOS scores.
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TABLE 2. Performance of FOVGCN over the CVIQ dataset.

SROCC | PLCC | RMSE
WYVPSNR 0.807 0.802 8.404
VPSNR 0.770 0.773 8.942
FVPSNR 0.804 0.797 8.512
FWPSNR 0.488 0.509 | 12.124
WSNR 0.670 0.671 | 10.440
FoVGCN 0.920 0.925 0.614

D. CROSS VALIDATION EXPERIMENTS

In the previous section, FOVGCN has been shown to be effi-
cient in quality assessment for the foveated images. In order
to see how FoVGCN will work with different types of
content, we investigate the performance of FoOVGCN with two

VOLUME 10, 2022

TABLE 3. Performance of FOVGCN over the OIQA dataset.

SROCC | PLCC | RMSE
WYVPSNR 0.675 0.674 | 10.631
VPSNR 0.681 0.679 | 10.567
FVPSNR 0.670 0.670 | 10.684
FWPSNR -0.477 | -0.474 | 17.062
WSNR 0.638 0.630 | 11.175
FoVGCN 0.781 0.815 0.285

other uniform image datasets of CVIQ [5] and OIQA [40].
In the cross-validation experiment, we use the foveated image
dataset for training, while the CVIQ dataset and OIQA dataset
are employed for testing. In this part, other foveal metrics are
used for comparison.
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98176 VOLUME 10, 2022



T. Thu Huong et al.: Effective Foveated 360° Image Assessment Based on GCN

IEEE Access

TABLE 4. FoVGCN vs. other solutions over 3 different datasets.

OIQA dataset CVIQA dataset Foveated dataset

Method SROCC | PLCC | RMSE | SROCC | PLCC | RMSE | SROCC | PLCC | RMSE

MIC3601QA 09139 | 0.9267 | 0.7854 | 0.9428 | 0.9429 | 4.6506 | 0.7482 | 0.7302 | 13.2373
VGCN 0.9584 | 0.9584 | 0.5967 | 0.9651 | 0.9639 | 3.6573 | 0.5124 | 03354 | 16.1019
DecpQA 0.8973 | 0.9044 | 0.8914 | 09292 | 0.9375 | 4.8574 | -0.2044 | -0.2385 | 58.7569

FoVGCN Gaussian with ¢ = 0.5 07571 [ 0.7870 | 1.0224 | 0.8599 | 0.8567 | 3.8729 | 09760 | 0.9710 | 0.1190

FoVGCN Gaussian with o = 0.4 0.7733 | 0.7803 | 0.9155 | 0.8326 | 0.8618 | 43105 | 0.9780 | 0.9720 | 0.0080

Machine-learning-based model FoVGCN Gaussian with o = 0.3 0.7794 | 0.8132 | 0.5374 | 0.8929 | 0.9084 | 3.0532 | 0.9740 | 0.9810 | 0.0190
: FoVGCN Gaussian with o = 0.2 0.7986 | 0.8199 | 0.0187 | 0.8994 | 0.9113 | 1.6876 | 0.9740 | 0.9800 | 0.0090

FoVGCN Gaussian with o = 0.15 0.7900 | 0.8173 | 0.1517 | 0.9097 | 0.9185 | 1.1508 | 0.9740 | 0.9810 | 0.0090

FoVGCN Gaussian with o = 0.1 0.7813 | 0.8147 | 0.2848 | 0.9201 | 0.9256 | 0.6140 | 0.9850 | 0.9910 | 0.0940

FoVGCN Gaussian with o = 0.09 0.8441 | 0.8551 | 0.9270 | 0.9240 | 0.9295 | 0.5087 | 0.9870 | 0.9910 | 0.1650

FoVGCN Gaussian with o = 0.08 0.8461 | 0.8569 | 0.9087 | 0.9304 | 0.9335 | 0.0947 | 0.9880 | 0.9930 | 0.9930

FoVGCN Linear 0.7676 | 0.7985 | 1.4006 | 0.8558 | 0.8536 | 2.7726 | 0.9381 | 09319 | 0.0967

ADD-SSIM 0.8411 | 0.7040 | 10.2171 | 0.8447 | 0.7642 | 9.0835 | 04125 | 04102 | 09157

BRISQUE 0.5032 | 0.5098 | 12.3762 | 0.4350 | 0.4258 | 12.7421 | 0.7259 | 0.7312 | 0.6637

FMSE 0.6698 | 0.3846 | 13.2795 | 0.8041 | 0.6656 | 10.5096 | 0.8440 | 0.8376 | 0.5051

FPSNR 0.6698 | 0.6696 | 10.6840 | 0.8041 | 0.7967 | 8.5119 | 0.8442 | 0.8330 | 0.5048

FSIM 0.8687 | 0.7470 | 9.4768 | 0.8798 | 0.8250 | 7.8113 | 0.3935 | 04169 | 0.9039

FSIMC 0.8768 | 0.7584 | 9.2908 | 0.8836 | 0.8284 | 7.7422 | 03976 | 04199 | 0.9021

FSSIM 0.8377 | 0.8029 | 8.5762 | 0.8560 | 0.8373 | 7.6995 | 0.3950 | 0.3893 | 0.9027

TWQI 0.7654 | 0.7722 | 9.1402 | 0.8055 | 0.8233 | 7.9929 | 0.2381 | 0.2858 | 0.9563

GSIM 0.8663 | 0.7673 | 9.2261 | 0.8665 | 0.8129 | 8.2025 | 0.3961 | 0.4036 | 0.9383

TWPSNR 0.7887 | 0.7810 | 8.9848 | 0.8225 | 0.8215 | 8.0302 | 0.5641 | 0.5605 | 0.8094

MSE 0.6813 | 0.4365 | 12.9429 | 0.7702 | 0.7841 | 8.7400 | 0.6433 | 0.6232 | 0.7483

N ) MS-SSIM 0.8163 | 0.8407 | 7.9526 | 0.8442 | 0.8065 | 8.3251 | 04629 | 04621 | 0.8710
25 Traditional-metric-based models  —NFERM 0.0162 | 0.0095 | 14.3850 | 0.2251 | 0.2673 | 13.5703 | 0.7351 | 0.7606 | 0.6544
(or analytical-function-based-models) M 0.8121 | 0.7846 | 8.9183 | 0.8201 | 0.8314 | 7.8251 | 0.6555 | 0.6339 | 0.7404
PSNR 0.6813 | 0.6785 | 10.5674 | 0.7702 | 0.7725 | 89419 | 0.6285 | 0.6296 | 0.7564

RFSIM 0.7822 | 0.7800 | 9.0023 | 0.7937 | 0.7933 | 8.5736 | 0.5335 | 0.5003 | 0.8294

SR-SIM 0.8470 | 0.8218 | 8.1223 | 0.8760 | 0.7884 | 8.5027 | 0.3830 | 0.3996 | 0.9084

SSIM 0.8247 | 0.8312 | 7.9979 | 0.8382 | 0.7961 | 8.5227 | 04077 | 04243 | 0.8976

UQI 07921 | 0.7892 | 8.8349 | 0.7689 | 0.7906 | 8.6226 | 0.6435 | 0.5955 | 0.7485

WSNR 0.7336 | 0.7221 | 9.9512 | 0.7312 | 0.7293 | 9.6359 | 0.6064 | 0.611T | 0.7760

VIF 0.8001 | 0.8023 | 8.5862 | 0.8096 | 0.7859 | 8.7082 | 0.6571 | 05912 | 0.7390

VIFP 0.7979 | 0.8000 | 8.6320 | 0.8382 | 0.8312 | 7.8293 | 0.6247 | 05311 | 0.7636

PSIM 0.8774 | 0.7822 | 8.8797 | 0.8940 | 0.8393 | 7.5411 | 04568 | 0.4498 | 0.8736

TWSSIM 0.8248 | 0.8010 | 8.4870 | 0.8602 | 0.8425 | 7.5854 | 04564 | 04554 | 0.8744

WVPSNR 0.6750 | 0.6740 | 10.6310 | 0.8070 | 0.8020 | 8.4040 | 0.8780 | 0.8912 | 0.4526

The results are illustrated in Table 2 and Table 3. We can
see that, with the CVIQ dataset, FOVGCN achieves better per-
formance in terms of SROCC, PLCC, and RMSE, which are
0.920, 0.925, and 0.614 respectively. With the OIQA dataset,
FoVGCN achieves comparable accuracy with other metrics;
however, its RMSE (0.285) is much smaller than others. That
means FOVGCN is more stable than other foveal metrics.

E. DISCUSSIONS

To get the overview of the performance of FOVGCN vs.
other existing solutions over different datasets, we summarize
all performances in Table 4. The above results show that
the proposed model FoOVGCN provides the best performance
compared to reference methods. Also, FOVGCN is effective
not only with foveated images but also with uniform-quality
images. We believe that constructing a graph structure that is
composed of an errormap and attention weight matrix allows
the model to efficiently interpret the characteristics of data
structure with spatial quality changes. It is the main rea-
son our proposed model achieved high performance. Testing
our model with three different datasets of various scenar-
ios (i.e., uniform-quality and foveated images) also help
avoid bias and guarantee that the model can work well in
general.

The use of foveation feature in quality models is crucial to
effectively deal with foveated images. As seen in Fig. 13, the
performances of the analytical foveation-based models like
FMSE, FPSNR, WVPSNR are quite good (over 0.8 for both
PLCC and SROCC). Meanwhile, the three reference deep-
learning-based models, namely DeepQA, MIC360IQA, and
VGCN, have lower (or very low) performances (see Fig. 12).
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Note that, though these deep-learning-based models are
already retrained using the same foveated image dataset as the
proposed FOVGCN model, their low performances imply that
the deep-learning architectures of these models still cannot
capture the characteristics of foveated images.

Currently, the study in this paper still has some limitations.

« First, the proposed model is just focused on image con-
tents. It was not evaluated with video contents due to the
lack of foveated video datasets.

« Second, the resolution of foveated images in this study is
fixed. This is also because of the available dataset does
not provide images of different resolutions.

In the future, we will carry out subjective tests to obtain
more foveated content datasets, which cover different cases
of resolutions, headsets, and content types (i.e. images and
videos). The FoOVGCN model will be extended and evaluated
using these future datasets. Field studies using foveated qual-
ity models in the context of VR video streaming will be also
implemented.

V. CONCLUSION

In this paper, we have proposed FOVGCN as an efficient
assessment model for foveated 360° images. The model uses
Graph Convolutional Network to represent the complex rela-
tionships among different locations of an immersive image.
It is expected that the proposed FoOVGCN model will be an
effective and reliable method for researchers to evaluate cod-
ing and rendering solutions of foveated image/video field.
In the future work, we will employ this model to improve
VR video streaming adaptation techniques to ensure good
perceived quality for viewers.
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