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ABSTRACT Flexible actuators are popular in the consumer and medical fields because of their flexibility and
compliance. However, they are typically difficult to model because of their viscoelasticity and nonlinearity.
This letter proposes a method for correcting the deformation of the simulated flexible robots to make it
similar to the deformation of real robots using point clouds by deep learning. Long short-term memory
(LSTM) can simulate the next frame of actuator deformation from the previous frames of deformations.
In this study, we presented the robots with four different muscle structures. We found that using an encoder—
LSTM-decoder network can improve the similarity between the deformation of a learned muscle structure
and the real deformation and is also effective in correcting the deformation of the unlearned structures. Our
correction method reduced the average Chamfer distance of the simulated point clouds of the basic-type
structure actuator from 15.89 to 7.81. This research can provide a new concept for future flexible robot
modeling using point clouds.

INDEX TERMS Soft actuators, deep learning, modeling for soft robots, McKibben Artificial muscle, point

cloud.

I. INTRODUCTION

Soft actuators, mainly made of stretchable and flexible mate-
rials, have received considerable attention in recent years
because of their superior human—machine interface to hard
robotics, which has substantial economic benefits [1], [2],
[3], [4]. They have many uses in wearable devices [5], [6],
[71, [8] and have also been investigated for potential appli-
cations in medical rehabilitation equipment [9], [10], [11],
[12]. However, there are common limitations in modeling
and controlling soft actuators because the material’s struc-
tural compliance, nonlinearity action, and the viscoelasticity
in the material result in complex and unpredictable behav-
iors [13]. Over the past several decades, deep learning has
made unprecedented progress. The insights that artificial
intelligence technology can extract from complex data benefit
the field of medicine [14], [15], [16], autonomous driving
[17], [18], [19], [20], and many other fields. Deep learning is

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Wang

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

also well-known for effectively solving nonlinear problems
in soft robotics [21]. The finite element method (FEM) and
position-based dynamics (PBD), as current mainstream meth-
ods, have some limitations in modeling, such as the balance
between computing power consumption and model accuracy;
nonetheless, and deep learning can compensate for these
shortcomings to some extent [22], [23], [24], [25], [26], [27].

This paper presents a method of modeling four soft
fabric-type actuators by correcting the simulated point clouds
through deep learning to make them approach the point
clouds obtained from real actuators using four depth sen-
sors. This paper also aims to solve the above limitations of
fabric-type actuators by deep learning. PointNet [28] is a
robust framework that can transform the three-dimensional
(3D) coordinates of point clouds into local or global features.
It has achieved excellent performance recently in point cloud
classification [29], [30], [31] and semantic segmentation [32],
[33], [34], [35] tasks. In this research, the encoder of PointNet
was used to extract the global features of the point clouds,
and then the simulated point cloud features of the previous

94363


https://orcid.org/0000-0002-2162-3798
https://orcid.org/0000-0002-4225-7037
https://orcid.org/0000-0003-1477-9273
https://orcid.org/0000-0002-3850-0321
https://orcid.org/0000-0002-5121-0599

IEEE Access

Y. Peng et al.: Modeling Fabric-Type Actuator Using Point Clouds by Deep Learning

five relevant frames were learned by long short-term memory
(LSTM) as time-series data to predict the real point cloud
features of the next frame. Finally, using the decoder provided
by Charles [36], we can decode the real point cloud features
into 3D point cloud coordinates. By establishing a neural net-
work structure of encoder—LSTM-—decoder, we can describe
the real point cloud of an actuator from the simulated point
cloud of the previous state. In this process, the neural network
compensates for nonlinear mechanical actions from the soft
actuator design material and geometry difficult to simulate
with point clouds. The similarity between the corrected sim-
ulated point cloud and the real point cloud was significantly
improved.

Il. RELATED WORK

FEM, PBD, and deep learning are typically used as simula-
tion methods for flexible actuators. FEM has high simulation
accuracy and is used not only used for structural analy-
sis and material property simulation but also for the defor-
mation simulation of flexible objects [37], [38]. However,
the computational cost increases when simulating flexible
objects accurately, and the real-time simulation is chal-
lenging. For example, Dang et al. [39] simulated the radial
shrinkage of flexible actuators with slight deformation and no
timing information by FEM, achieving a considerable simu-
lation accuracy but with high computing power requirements.

PBD is a method commonly used in computer graphics
and 3D games with low computational costs and is suit-
able for real-time simulation [40], but the simulation is not
as accurate as the FEM, and there are some differences
between simulated actuators and actual soft actuators. More-
over, the point cloud data can be processed well with PBD.
Liu et al. [41] combined 3D visual perception with PBD
modeling and proposed a real-to-simulated point cloud reg-
istration method. The PBD method was used to simulate
soft tissue dynamics and rigid tool interactions for model-
based control. Vision-based strategies were used to generate
3D reconstructed point cloud surfaces based on real-world
operations to register and update simulations. This approach
had been tissue-experimented on the da Vinci Research Kit,
achieving higher accuracy than fusion-based reconstructions
in occluded regions.

Liu et al. [42] developed a model based on PBD to achieve
accurate trajectory torque estimation of rigid robots and the
ability to support spring stiffness estimation. However, it is
difficult to apply this method to soft robots. As the simulation
of PBD is reasonable in motion but not always realistic in
physical action [43], it is difficult to physically explain spe-
cific parameters on many occasions, especially for flexible
bodies with nonlinear motion.

Deep learning can model the actuators combined with
PBD to improve the accuracy. In our proposed method, the
fabric-type actuator was based on Flexible Fabric Actua-
tor [44] published by our laboratory and its variants, and
the deformation of the fabric actuator was simulated itera-
tively including time-series data. Because it is necessary to
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reduce the computational cost of every deformation simu-
lation, we used a PBD-based simulator. PBD-based simula-
tors can simulate the simple fabric deformations caused by
wind shaking or collisions with other objects, but the simu-
lation accuracy is insufficient for complex nonlinear defor-
mations [41]. The fabric-type actuator, which is the subject
of this study, placed multiple artificial muscles on a fabric.
As the artificial muscles contract, the fabric can deform to
the expected shape. However, the contact between the fabric
and the artificial muscles created a nonlinear mechanical
effect when the actuator deformed. The simulation accuracy
was degraded by nonlinear mechanical effects, and there
was a large difference between the simulation results and
the actual deformation of the actuator. Therefore, after using
the PBD-based simulator to simulate the deformation of the
actuator, we used a deep learning-based correction system to
correct the nonlinear mechanical actions that the PBD-based
simulator could not simulate. In deep learning, LSTM has
many advantages over feedforward networks for nonlinear
system modeling and is widely used in different engineering
fields [45]. For example, Fan et al. [46] recently used LSTM
to model nonlinear distributed thermal processes, achiev-
ing reliable simulated temperature distributions. In addi-
tion, Li et al. [47] developed a reduced-order model for a
wind-bridge interaction system by LSTM to accurately and
efficiently predict bridges’ flutter and post-flutter behavior,
with nonlinear unsteady aerodynamics induced by bridge
motion. In this study, LSTM plays the primary role of cor-
rection because it can process time-series data and is suitable
for connecting high-dimensional features (global features)
of simulated and actual point clouds. With an appropriate
correction method, the real deformation of the fabric-type
actuator can be simulated.

The main contribution of this research is to combine deep
learning with traditional simulation instead of solely using
deep learning modeling. The correction system saved more
computing power than the conventional modeling FEM and is
more controllable than deep learning-based black-box mod-
els because the muscle distribution and parameters of the
actuator were set in Unity. This research can provide rapid
simulation close to real actuators for future robot design and
provide an alternative solution for future real-time simulation.

IlIl. ROBOT SETTING AND POINT CLOUD COLLECTION
A. BUILD THE ROBOT SYSTEM
There are three basic elements of the fabric-type actuator:
the fabric body, the artificial muscle, and the fixed point.
The fabric body promotes 3D deformation of the actuator
by changing the force direction of the artificial muscle. The
artificial muscle contracts in the axial direction of the muscle
when air pressure is applied to it. The fixed point transmits
the force of the artificial muscle to the fabric body by limiting
their relative movement.

In this study, the square fabric body with a side length
of 0.2 m was woven tightly by a thin flexible rubber
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FIGURE 1. Muscle configuration example: The red curve denotes the
muscle pattern on the front side of a robot, and the muscles on the back
of the robot are the same size as those in the front.

swath (LYCRA® Soft Elastic Tape, 10.5 mm width, DAISO
JAPAN). A thin McKibben artificial muscle (EM20, s-muscle
Co.Ltd.) [48], [49] with a length of 800 mm and a tube outer
diameter of 2.0 mm was passed through the flexible rubber
swath interstice to make a fixed point, and air pressure of up
to 400 kPa was applied. Fig. 1 depicts an example of muscle
configuration. Moreover, various deformations and control
patterns are shown in Fig. 2.

The fabric-type actuator was controlled by contracting
and stretching a plurality of artificial muscles. Thus, a con-
trol system is required to independently control the con-
traction and extension states of each artificial muscle. The
outline of our constructed control system is shown in
Fig. 3. The control program was implemented in C ++
using Microsoft® Visual Studio Community 2017 and per-
formed serial communication with an input—output device
(USB3114, Measurement Computing Corporation). The
input—output device received a command from the worksta-
tion and adjusted the voltage applied to an electro-pneumatic
regulator (CRCB-0135W, CRCB-0136W, Koganei Corpora-
tion). The electro-pneumatic regulator adjusted the air pres-
sure according to the applied voltage and air pressure to
the artificial muscle. With this control system, the pressure
applied to the artificial muscle can be controlled with a
resolution of 0.1 kPa, and the control cycle was 50 ms.

B. BUILD THE SIMULATION SYSTEM

The fabric and the artificial muscle models were developed
and combined by a fixed point to form a fabric-type actuator
model. Unity® was used to simulate movements caused by
the contraction of artificial muscles and the deformation of
the actuator. To simulate the movement of the fixed point
following the contraction of the artificial muscle model, the
fabric and the artificial muscle models must interact.

Nvidia Flex [50], [51] was used to simulate a piece of
fabric. It is particle-based physical simulation technology that
can use particles to represent rigid bodies, fluids, and flexible
objects. In Nvidia Flex, the fabric was represented as a group
of constrained particles, which were placed at the vertices of
the triangular polygons that make up the fabric model. The
larger the number of particles, the easier the fabric can be
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(c) Twisting
FIGURE 2. Fabric-type actuator can achieve different motions through
different muscle combinations. The black curves indicate the relaxed
muscles (setting supplied air pressure to zero). The blue and red curves
denote the activated muscles in different directions. The opaque colors
represent the muscles in the front of the actuator, whereas the
translucent colors represent the muscles in the back. (a) Front bending
motion and its control pattern. (b) Right-side bending motion and its
control pattern. (c) Twisting motion and its control pattern.

described, but the higher the calculation cost. The size of the
fabric model (Fig. 4(a)) was set to 1.00 m in length and width,
and 0.01 m in thickness, considering the ease of processing
objects on Unity.

In addition, the artificial muscle was created by connecting
multiple tiny rigid body models to form a constrained chain.
The size of each tiny rigid body model is a cuboid with a
length of 0.01 m, a width of 0.01 m, and a height of 0.05 m.
The tiny rigid body model was connected by a Configurable
Joint option in Unity to realize the contraction of the artificial
muscle. The local coordinate axes of the tiny rigid body
model with Configurable Joint are depicted in Fig. 4(b).
When no air pressure is applied to the artificial muscle,
the movement of the rigid body model in the local y-axis
direction is restricted to zero. When air pressure is applied,
the movement of the rigid body model in the local y-axis
direction can be restricted to a distance that matches the
contraction rate of the actual artificial muscle, as described
in [52] and [53]. The tiny rigid body model can be moved
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Supply compressed air

E Each artificial muscle is supplied
with compressed air separately

) d% A

~ Controller

(electro-pneumatic
regulator included)

FIGURE 3. The robot control system comprises an air compressor that supplies air pressure to power artificial
muscles and a regulation unit that includes a filter regulator to maintain air pressure. In addition, it comprises
an electro-pneumatic regulator that controls air pressure supplied to individual artificial muscles, thereby

controlling the deformation of the fabric actuator.

(a) Fabric (b) Artificial muscle
FIGURE 4. Simulated model representing the elements.

FIGURE 5. The simulated actuator model that combines the fabric and
artificial muscle models.

in the positive direction of the local y-axis by applying a
force. As a result, the artificial muscle model’s tiny rigid
body model moved to a restricted position and contracted
as an artificial muscle model. After combining the fabric
and artificial muscle models, the simulated actuator model
(Fig. 5) was obtained.

C. POINT CLOUD ACQUISITION

A depth sensor (RealSense D435i, Intel Corporation) was
used to measure the deformation of the actual robot. The mea-
surement environment is constructed, as shown in Fig. 6(a),
and the depth sensors are circled in red and located at the
corner of the metal frame. As the occlusion may occur with
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one sensor, the number of point clouds collected from the
actual actuator differed in each deformation, and we mea-
sured the entire fabric-type actuator without omission by
setting four sensors from multiple angles. By converting the
point cloud obtained from each sensor into the world coordi-
nate system based on the arrangement of each sensor and the
iterative closest point (ICP) algorithm [54], the deformation
of the actuator can be acquired as a completed point cloud
consisting of point clouds from different cameras. In the ICP
algorithm, we can find the translation 7" and rotation R that
minimize the sum of the squared error in Equation (2) from
the two corresponding point sets P and X in Equation (1):

P= {p17p2,~--7pn}

X = {x1,x2,...,xn} (1)
| X
_ 1 E—
ER,T) = N, ;:1 lx; — Rpi — T || 2)

where x; and p; denote the corresponding points, and N,
represents the number of points. This computing process
was completed using MATLAB® Computer Vision Toolbox.
After the ICP registration, we downsampled the registered
point clouds to approximately 3,800 points through a box grid
filter. To facilitate the comparison of the difference between
the actual and the simulated point clouds in the future, we ran-
domly sampled the downsampled point clouds to make them
be the same number as the simulated point clouds (3,362
points). The actuator and the four depth sensors were fixed
on the metal frame to prevent changes in relative position.

The number of particles placed on one side of the simulated
fabric-type actuator model was 41 x 41. Therefore, the total
number of particles on the surface of the actuator model
representing the point cloud was 41 x 41 x 2, totaling 3,362.
The created fabric model with a point cloud is depicted in
Fig. 6(b).
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(a) Real robot

(b) Simulated robot

FIGURE 6. Point cloud acquisition. (a) After the shape point cloud of the
robot is collected by the four depth sensors in all directions, the robot
can be used to synthesize a complete point cloud using the ICP method.
(b) Generate point clouds on both sides of the fabric to represent the
fabric deformation directly in Unity.

IV. CORRECTION SYSTEM DEVELOPMENT

A. CORRECTION STRATEGY

Some modeling errors are unavoidable in the simulation even
though we attempted to adjust the parameters of the simulated
actuator’s properties based on the motion of the real actuator.
The difference in deformation between the real robot and the
simulated actuator is caused by the mechanical action that
occurs between the fabric and the artificial muscle. However,
the information is insufficient if the feature simulated point
cloud and the actual point cloud with the same frame are
directly connected with a neural network because the infor-
mation about the moving process is missing. The time-series
data can be used to describe the moving process information,
such as the contraction process of the artificial muscle for
some time and the physical effect of the muscle friction on
the fabric. Therefore, a correction system that estimates the
actual deformation of the actuator (the point cloud of the
real actuator) from the deformation of the simulated actuator
(the position of particles of the simulated actuator model)
in time series can be developed to address the difference
in deformation. In this study, Unity realized the contraction
of artificial muscles and the movement of fixed points, and
the correction system corrected the mechanical action that
occurs between the fabric surface and the artificial muscles.
This relation is shown in Fig. 7. The correction system
was constructed by deep learning because the mechanical
action that occurs between the fabric and the artificial muscle
includes a temporal element, which can be corrected using
time-series information. The correction system simulated the
deformation of the (k + 1)-th frame using the deformation of
the [ frame (from the (k—I + 1)-th frame to the k-th frame).

B. THE STRUCTURE OF NEURAL NETWORK

Because the correction system predicted the frame using the
past [ frames, LSTM can be used to process time-series
information. Unlike the images, the order of indexing of
point clouds is irrelevant. In this study, a point cloud was
converted to a feature dimension, which is not affected by
the order of points, and features were associated with LSTM.
The structure of the correction system comprised an encoder,
adecoder, and the LSTM, as shown in the Correction system
Module of Fig. 8.
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Correction system

Mechanical action caused
by contact between the
fabric surface and artificial
muscle.

Unity
« Contraction of artificial muscle.

* Movement of fixed points due
to muscle contraction.

FIGURE 7. Correction strategy.

According to PointNet [28], Autoencoder1 was trained by
simulated point clouds (Autoencoderl, Fig. 8) and took its
encoder as the encoder of the correction system. Further-
more, Autoencoder2 was trained by the real point clouds
(Autoencoder?, Fig. 8) and took its decoder as the decoder
of the correction system.

The encoder of Autoencoder1 converted point clouds with
m points from the simulation into » dimensional features,
and the LSTM associated the features of the simulated defor-
mation of the continuous / frames with the features of the
predicted deformation. The decoder converted the output with
n-dimensional features from the LSTM into a point cloud
with m points. This process is shown in the LSTM Module
of Fig. 8.

Finally, the encoder (created by learning the simulated
point cloud in Autoencoder1)-LSTM-decoder (created by
learning the real point cloud n Autoencoder?2) was connected
to construct the correction system. This system can signifi-
cantly correct modeling errors because of viscoelasticity and
nonlinear movement.

C. LOSS FUNCTION FOR CORRECTION SYSTEM

Equation (3) was used to evaluate the loss function, and train-
ing was stopped when the loss function stopped improving on
the validation set. Early stopping had two main parameters:
min delta and patience. An absolute change in loss function
less than min delta will be considered no improvement, and it
was set to 0.1 in this study. Patience is the number of epochs
with no improvement, after which training will be stopped.
Patience was set to 10 when training Autoencoderl and
Autoencoder?2, whereas it was set to 30 when training LSTM
because the training curve of LSTM drops more slowly.
After the correction system had been trained, we evaluated
whether the corrected simulated point cloud can accurately
describe the actual point cloud. Chamfer Distance (CD) [55]
was used to evaluate the extent to which the simulated point
cloud can fit the actual point cloud. In addition, the loss
function of our neural network was also based on the CD,
and the neural network was continuously trained toward the
smaller value of the CD. In this study, the CD was defined
using Equation (3) and was an average index showing the
similarity between two groups of point clouds:

dep(S1,$2) = — Y min ||x — y[I3
|Sl|xesl yes
> min [|lx — y[3 3)
|S2|yeS2xe I
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FIGURE 8. The encoder (trained in Autoencoder1) can encode the input simulated point cloud into a global feature, then LSTM converts the global
feature of the previous frames into the global feature of the next frame, and finally the decoder (trained in Autoencoder2) can decode the global

feature into the corrected point cloud.

where S1 and S7 denote the two groups of point clouds, and
x and y represent the coordinate values. The smaller value
of the CD value, the more similar the two groups of point
clouds are.

V. EXPERIMENT

A. ACTUATOR SETTING

The top of the fabric-type actuator was fixed with a cubic
frame and deformed in a suspended state. The deforma-
tion of the actuator to be measured always started from a
relaxed state. After the deformation was complete, the applied
pressure was set to O kPa (the relaxed state). The air pres-
sure applied to each artificial muscle was randomly deter-
mined from 0 kPa to 400 kPa with a step of 100 kPa.
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The measurement frame rate was set to 60 Hz, and a
time-series point cloud for 90 frames was acquired from
the start of the application of the pneumatic pattern. The
four types of artificial muscle actuator configurations used
for measurement are shown in Fig. 9, and Fig. 10 depicts
an example of basic-type robot measurement results. The
deformation of the actuator was described by point clouds
measured using four depth sensors.

The side type was obtained by rotating the basic type
90° counterclockwise. There were subtle differences because
the basic and side types have different camera angles, even
with the same control input. Generally, tilting the actuator
at a certain angle can be used as a type of learning data
augmentation in deep learning because convolutional neural
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(c) Cross type (d) Vertical type

FIGURE 9. (a) Eight artificial muscles, four on the front side and four on
the backside, are placed vertically. (b) Eight artificial muscles, four on the
front side and four on the backside, are placed horizontally. (c) Two
artificial muscles on one side are placed crosswise. (d) Three artificial
muscles on one side are placed vertically.

»

time

FIGURE 10. Actuator movements can be described as time-series point
clouds.

networks (included by PointNet) do not contain rotation
invariance [56]. The result of the side-type deformation can
reveal whether the result can be corrected, even after the actu-
ator is tilted. The cross-type deformation contained different
muscle structure information obtained from the basic- and
side-type deformation, which was used as learning data to
improve the model’s generalization ability. The vertical type
was not involved in the neural network learning stage and was
only used to test the performance of the correction system in
the unknown muscle structure.

B. DATA PREPARATION

In this experiment, we collected 1,188 groups of basic-
type deformations, 198 groups of side-type deformations,
25 groups of cross-type deformations, and 125 groups of
vertical-type deformations. Each group of deformation con-
tained 90 frames of point cloud data of motion (the entire
motion was completed in 90 frames), which was collected
at a sampling frequency of 60 Hz after the artificial muscle
model started to run. The frame data allocation is shown
in TABLE 1, each frame of point cloud data was randomly
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TABLE 1. Data allocation.

Train set ~ Validation set ~ Test set
Basic type 80,190 8910 17,820
Side type 8,019 891 8,910
Cross type 2,025 225 -
Vertical type - - 11,250

shuffled. The number of deformations in the cross and ver-
tical types was significantly smaller than that of the basic
type because there were fewer variations in deformation
with only one side installed artificial muscles. Moreover, the
vertical-type actuator was used only for testing, whereas the
cross-type actuator was used only for training. The number
of deformations and frames obtained from the simulation
was the same as the number of real deformations under each
configuration. According to the number of particles in the
fabric model in the simulation, the number of point clouds
in each frame was processed into 3,362 points.

C. LEARNING BY NEURAL NETWORK
In this study, TensorFlow 2.7 was used to construct a the
neural network. In the first step, we used the simulated
point cloud as the training data and label data identically in
Autoencoder1: the input and target data are the same. Then,
the global feature of the simulated point cloud can be obtained
by the encoder of Autoencoder1. In the second step, we used
the real point cloud as the training and label data identically
in Autoencoder?2, and the global features of the real point
cloud can be obtained by the encoder of Autoencoder?2. The
learning rate of 0.001 with the Adam optimizer was used
in the training process of Autoencoder1 and Autoencoder?.
In addition, a dropout layer with a dropout rate of 0.05 was
used in the hidden layer in the decoder of Autoencoder1 and
Autoencoder? to improve the generalization ability of the
simulated point cloud. In the third step, LSTM was employed
to predict the global features of real point clouds from the
global features of simulated point clouds. The training data
were the global features of the simulated point cloud obtained
by Autoencoder 1, and the label data were the global features
of the real point cloud obtained by Autoencoder?2, as pre-
viously discussed. The learning rate of 0.00001 with the
Adam optimizer was used in the training process of LSTM.
LSTM was learned by using the global features converted by
the above encoder and decoder. In this study, m = 3,362, n
= 1,024, and [ = 5. Finally, the encoder of Autoencoderl,
LSTM, and the decoder of Autoencoder2 were connected
sequentially, forming a structure of encoder—L.STM-decoder.
As in the training process in Autoencoder, the loss function
uses the Euclidean distance and stops learning when the
validation loss does not decrease. After training, the encoder,
decoder, and LSTM will be concatenated into a structure
of encoder-LSTM-decoder. The simulated point cloud data
of five consecutive frames can be transformed into global
features through the encoder, and then, these global features
were used to predict the global features of the next frame of
real point clouds by LSTM, which can be decoded into real
point cloud data by the decoder.
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TABLE 2. CD [mm].

Simulation ~ Simulation + Correction
Average 15.89 7.81
Max 34.17 19.25
Min 6.76 4.48
Standard deviation 5.19 1.90
TABLE 3. CD [mm].
Simulation ~ Simulation + Correction
Average 18.64 10.59
Max 41.18 26.00
Min 7.93 4.48
Standard deviation 6.24 4.00
TABLE 4. CD [mm].
Simulation ~ Simulation + Correction
Average 17.23 15.94
Max 29.64 26.57
Min 10.13 9.83
Standard deviation 3.57 2.50
3000 10000
8000
& 2000 g
5 S 6000
g g 4000
£ 1000 2
2000
0 0
0 10 20 30 0 10 20 30

Chamfer distance [mm] Chamfer distance [mm]

(a) Before correction (b) After correction

FIGURE 11. CD frequency of basic-type actuator. (a) CD between
simulated and real point clouds. (b) CD between corrected simulated and
real point clouds.

1500 2000

1000

Frequency

o

o

o
Frequency
o o o
o o o
o o o

o
o

0 10 20 30 0 10 20 30
Chamfer distance [mm] Chamfer distance [mm]

(a) Before correction (b) After correction

FIGURE 12. CD frequency of side-type actuator. (a) CD between simulated
and real point clouds. (b) CD between corrected simulated and real point
clouds.

D. ESTIMATION OF PREDICTED POINT CLOUD

The trained encoder-LSTM-decoder network was used to
predict real point clouds from the test set. The test set was
not used in network training. The basic and side structures
were learned by the neural network, whereas the vertical type
was a completely unfamiliar robot structure in the evaluation
period. The performance of the correction system can be seen
in the learned (basic type) and unlearned robot (vertical type)
structures. The comparison of the simulation and corrected
point clouds in terms of CD is shown in TABLE 2 (basic
type), TABLE 3 (side type), and TABLE 4 (vertical type).
There is a decrease in CD across all types of executors in
values of average, max, min, and standard deviation. In the
base and side types, the average CD decreased by 50.85% and
43.19%, respectively, whereas the average CD of the vertical
type only decreased by 7.49%.
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FIGURE 13. CD frequency of vertical-type actuator. (a) CD between
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FIGURE 14. Simulated point cloud of basic-type actuator (CD: 18.33 mm).
Green point: simulated point cloud. Red point: real point cloud.

In addition, Figs. 11 - 13 shows the CD frequency distri-
bution for each type of actuator before and after correction.
Comparing the simulations without the correction system
(Fig. 11(a), Fig. 12(a)) and the simulations with the correction
system (Fig. 11(b), Fig. 12(b)) in basic type and side types,
the CD of the point cloud decreased after correction; i.e., the
overall value of CD decreased. Therefore, based on our neural
network, the correction system can learn high-dimensional
features of muscle structure in the actuator, and it is possible
to simulate deformations close to those of the actual actuator.

Comparing the simulation of the vertical type (Fig. 13(a))
and the simulations with the correction system (Fig. 13(b)),
we find that CD, greater than 17, is improved after correc-
tion. Although the vertical-type actuator has an untrained
structure, the correction system can reduce CD. Therefore,
even if the actuator structure is untrained, deformation can be
simulated to some extent using the correction system.

Figure 14 compares the original simulated point cloud with
the real point cloud of the basic-type actuator in the overall,
front, right-side, and top views sequentially, and Fig. 15
shows the corrected point cloud (CD decreased by 12.41 mm)
of the basic-type actuator. The actual point cloud and the
point cloud obtained using the correction system are almost
the same. Moreover, Fig. 16 depicts the original simulated
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FIGURE 16. Simulated point cloud of vertical-type actuator (CD:
20.15 mm). Green point: simulated point cloud. Red point: real point
cloud.

point cloud of the vertical-type actuator, and Fig. 17 shows
the corrected point cloud (CD decreased by 4.37 mm) of the
basic-type actuator. The overall features of the point clouds
after correction are accurate.

To intuitively see which regions of the point cloud were
corrected, we selected four area examples (see Fig. 18) from
Figs. 14 - 16 (two from the basic type and two from the
vertical type), and compared the deformation of the actua-
tor in the selected four areas before and after correction in
Figs. 19 - 22.

Figures 19 - 22 show that the majority of the differences
between the simulated and real point clouds in the basic type
are significantly corrected, whereas the differences between
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FIGURE 17. Corrected point cloud of vertical-type actuator (CD:
14.45 mm). Blue point: corrected point cloud. Red point: real point cloud.

the simulated and real point clouds in the vertical type are
mainly corrected, but new errors were generated.

VI. DISCUSSION

We compared the trained and untrained data with the sim-
ulation results only and the simulation results with the cor-
rection system. The correction system can correct nonlinear
mechanical actions difficult to simulate using the PBD-based
simulator. In this study, the learned structures performed
well in the evaluation stage, and the unlearned structures
also improved. However, there is still room for improvement.
For example, the neural network has not sufficiently learned
about the deformation of unlearned muscle structures, and
the correction system’s accuracy can still be improved. More-
over, this study employed deep learning to learn time-series
point cloud features to compensate for the lack of accuracy of
PBD modeling on flexible objects and to facilitate the control
of flexible robots in the future.

In addition, there are only three types of artificial mus-
cle distributions (the types of basic, side, and cross) used
in the training set in this study. From Table 2 and 3 and
Fig. 11 and 12, for the same muscle type, more training data
can improve the correction ability of the neural network.
However, for unseen data, we tentatively put forward that
adding more muscle distribution types to the training set can
improve the generalization ability of the neural network, that
is, the neural network’s ability to correct the simulated point
cloud of unlearned muscle structures will be improved.

The structure of the constructed correction system was
developed using the PointNet autoencoder and LSTM.
In future research, more neural network structures can be used
to solve this problem. For example, the attention mechanism.
The way a neural network learns is similar to how the human
brain thinks, and there may be an advanced framework for
extracting point cloud features in the future. Recently, various
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transformers and their variants based on attention mecha-
nisms, such as Point Transformer [57] and Point Cloud Trans-
former (PCT) [58], have demonstrated significant potential to
process point cloud data, achieving high feature recognition
performance. Furthermore, note that this study has examined
only the time-series point clouds as an input. Adding other
information such as the number of artificial muscles as input
will also improve the simulation accuracy for untrained struc-
tures. Alternatively, simply augmenting the learning data for
training the correction system may also increase simulation
accuracy, but this may train the neural network deeper rather
than wider. In addition, we look forward to adding more
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muscle structures to the training set, which will enable neural
networks to fit higher-dimensional features, and this will
have a positive effect on the correction of unknown muscle
structures.

This work is intended for use in robot design or con-
trol. When the fabric deformation is driven to the expected
deformation, many simulated parameters related to mus-
cle and fabric in FEM must be optimized. These muscle
parameters include the number of muscles and the length,
direction, diameter, and mount point of muscles to be con-
sidered. Therefore, FEM-based design is challenging because
it requires extensive deformation simulation using various
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parameters. The constructed correction system can be used
to design a structure that can respond to the intended defor-
mations by PBD. In future research, the correction system can
facilitate robot designers with rapid real-time simulation and
verification of complex wearable devices without using real
actuators, owing to the low computational cost. Moreover,
we are expecting to evaluate the difference in the specific
computational cost between the proposed and FEM method.

VII. CONCLUSION

We proposed a method of modeling real point clouds by
correcting simulated point clouds through deep learning to
make them similar to real point clouds. As this research has
shown, it is feasible to simulate the deformation of known and
unknown structures of a fabric-type actuator. Our results are
a step toward deep learning-based modeling of soft robotics,
which is necessary to correct the inaccuracy of viscoelasticity
and nonlinear movements in soft robotic modeling.

There are note-worthy limitations. Although our model
simulated learned muscle structures well, the model still
needs to learn more muscle structures to improve its gen-
eralization ability. Furthermore, more advanced neural net-
work architectures for extracting point cloud features in the
future, which merits our continued attention. We hope that
our framework can be easily used by other researchers in the
field to model the 3D deformation of other soft robot types,
anticipating advances in soft robot modeling and control.
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