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ABSTRACT Flexible actuators are popular in the consumer andmedical fields because of their flexibility and
compliance. However, they are typically difficult to model because of their viscoelasticity and nonlinearity.
This letter proposes a method for correcting the deformation of the simulated flexible robots to make it
similar to the deformation of real robots using point clouds by deep learning. Long short-term memory
(LSTM) can simulate the next frame of actuator deformation from the previous frames of deformations.
In this study, we presented the robots with four different muscle structures. We found that using an encoder–
LSTM–decoder network can improve the similarity between the deformation of a learned muscle structure
and the real deformation and is also effective in correcting the deformation of the unlearned structures. Our
correction method reduced the average Chamfer distance of the simulated point clouds of the basic-type
structure actuator from 15.89 to 7.81. This research can provide a new concept for future flexible robot
modeling using point clouds.
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INDEX TERMS Soft actuators, deep learning, modeling for soft robots, McKibben Artificial muscle, point
cloud.

I. INTRODUCTION14

Soft actuators, mainly made of stretchable and flexible mate-15

rials, have received considerable attention in recent years16

because of their superior human–machine interface to hard17

robotics, which has substantial economic benefits [1], [2],18

[3], [4]. They have many uses in wearable devices [5], [6],19

[7], [8] and have also been investigated for potential appli-20

cations in medical rehabilitation equipment [9], [10], [11],21

[12]. However, there are common limitations in modeling22

and controlling soft actuators because the material’s struc-23

tural compliance, nonlinearity action, and the viscoelasticity24

in the material result in complex and unpredictable behav-25

iors [13]. Over the past several decades, deep learning has26

made unprecedented progress. The insights that artificial27

intelligence technology can extract from complex data benefit28

the field of medicine [14], [15], [16], autonomous driving29

[17], [18], [19], [20], and many other fields. Deep learning is30

The associate editor coordinating the review of this manuscript and

approving it for publication was Tao Wang .

also well-known for effectively solving nonlinear problems 31

in soft robotics [21]. The finite element method (FEM) and 32

position-based dynamics (PBD), as currentmainstreammeth- 33

ods, have some limitations in modeling, such as the balance 34

between computing power consumption and model accuracy; 35

nonetheless, and deep learning can compensate for these 36

shortcomings to some extent [22], [23], [24], [25], [26], [27]. 37

This paper presents a method of modeling four soft 38

fabric-type actuators by correcting the simulated point clouds 39

through deep learning to make them approach the point 40

clouds obtained from real actuators using four depth sen- 41

sors. This paper also aims to solve the above limitations of 42

fabric-type actuators by deep learning. PointNet [28] is a 43

robust framework that can transform the three-dimensional 44

(3D) coordinates of point clouds into local or global features. 45

It has achieved excellent performance recently in point cloud 46

classification [29], [30], [31] and semantic segmentation [32], 47

[33], [34], [35] tasks. In this research, the encoder of PointNet 48

was used to extract the global features of the point clouds, 49

and then the simulated point cloud features of the previous 50
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five relevant frames were learned by long short-term memory51

(LSTM) as time-series data to predict the real point cloud52

features of the next frame. Finally, using the decoder provided53

by Charles [36], we can decode the real point cloud features54

into 3D point cloud coordinates. By establishing a neural net-55

work structure of encoder–LSTM–decoder, we can describe56

the real point cloud of an actuator from the simulated point57

cloud of the previous state. In this process, the neural network58

compensates for nonlinear mechanical actions from the soft59

actuator design material and geometry difficult to simulate60

with point clouds. The similarity between the corrected sim-61

ulated point cloud and the real point cloud was significantly62

improved.63

II. RELATED WORK64

FEM, PBD, and deep learning are typically used as simula-65

tion methods for flexible actuators. FEM has high simulation66

accuracy and is used not only used for structural analy-67

sis and material property simulation but also for the defor-68

mation simulation of flexible objects [37], [38]. However,69

the computational cost increases when simulating flexible70

objects accurately, and the real-time simulation is chal-71

lenging. For example, Dang et al. [39] simulated the radial72

shrinkage of flexible actuators with slight deformation and no73

timing information by FEM, achieving a considerable simu-74

lation accuracy but with high computing power requirements.75

PBD is a method commonly used in computer graphics76

and 3D games with low computational costs and is suit-77

able for real-time simulation [40], but the simulation is not78

as accurate as the FEM, and there are some differences79

between simulated actuators and actual soft actuators. More-80

over, the point cloud data can be processed well with PBD.81

Liu et al. [41] combined 3D visual perception with PBD82

modeling and proposed a real-to-simulated point cloud reg-83

istration method. The PBD method was used to simulate84

soft tissue dynamics and rigid tool interactions for model-85

based control. Vision-based strategies were used to generate86

3D reconstructed point cloud surfaces based on real-world87

operations to register and update simulations. This approach88

had been tissue-experimented on the da Vinci Research Kit,89

achieving higher accuracy than fusion-based reconstructions90

in occluded regions.91

Liu et al. [42] developed a model based on PBD to achieve92

accurate trajectory torque estimation of rigid robots and the93

ability to support spring stiffness estimation. However, it is94

difficult to apply this method to soft robots. As the simulation95

of PBD is reasonable in motion but not always realistic in96

physical action [43], it is difficult to physically explain spe-97

cific parameters on many occasions, especially for flexible98

bodies with nonlinear motion.99

Deep learning can model the actuators combined with100

PBD to improve the accuracy. In our proposed method, the101

fabric-type actuator was based on Flexible Fabric Actua-102

tor [44] published by our laboratory and its variants, and103

the deformation of the fabric actuator was simulated itera-104

tively including time-series data. Because it is necessary to105

reduce the computational cost of every deformation simu- 106

lation, we used a PBD-based simulator. PBD-based simula- 107

tors can simulate the simple fabric deformations caused by 108

wind shaking or collisions with other objects, but the simu- 109

lation accuracy is insufficient for complex nonlinear defor- 110

mations [41]. The fabric-type actuator, which is the subject 111

of this study, placed multiple artificial muscles on a fabric. 112

As the artificial muscles contract, the fabric can deform to 113

the expected shape. However, the contact between the fabric 114

and the artificial muscles created a nonlinear mechanical 115

effect when the actuator deformed. The simulation accuracy 116

was degraded by nonlinear mechanical effects, and there 117

was a large difference between the simulation results and 118

the actual deformation of the actuator. Therefore, after using 119

the PBD-based simulator to simulate the deformation of the 120

actuator, we used a deep learning-based correction system to 121

correct the nonlinear mechanical actions that the PBD-based 122

simulator could not simulate. In deep learning, LSTM has 123

many advantages over feedforward networks for nonlinear 124

system modeling and is widely used in different engineering 125

fields [45]. For example, Fan et al. [46] recently used LSTM 126

to model nonlinear distributed thermal processes, achiev- 127

ing reliable simulated temperature distributions. In addi- 128

tion, Li et al. [47] developed a reduced-order model for a 129

wind-bridge interaction system by LSTM to accurately and 130

efficiently predict bridges’ flutter and post-flutter behavior, 131

with nonlinear unsteady aerodynamics induced by bridge 132

motion. In this study, LSTM plays the primary role of cor- 133

rection because it can process time-series data and is suitable 134

for connecting high-dimensional features (global features) 135

of simulated and actual point clouds. With an appropriate 136

correction method, the real deformation of the fabric-type 137

actuator can be simulated. 138

The main contribution of this research is to combine deep 139

learning with traditional simulation instead of solely using 140

deep learning modeling. The correction system saved more 141

computing power than the conventional modeling FEM and is 142

more controllable than deep learning-based black-box mod- 143

els because the muscle distribution and parameters of the 144

actuator were set in Unity. This research can provide rapid 145

simulation close to real actuators for future robot design and 146

provide an alternative solution for future real-time simulation. 147

III. ROBOT SETTING AND POINT CLOUD COLLECTION 148

A. BUILD THE ROBOT SYSTEM 149

There are three basic elements of the fabric-type actuator: 150

the fabric body, the artificial muscle, and the fixed point. 151

The fabric body promotes 3D deformation of the actuator 152

by changing the force direction of the artificial muscle. The 153

artificial muscle contracts in the axial direction of the muscle 154

when air pressure is applied to it. The fixed point transmits 155

the force of the artificial muscle to the fabric body by limiting 156

their relative movement. 157

In this study, the square fabric body with a side length 158

of 0.2 m was woven tightly by a thin flexible rubber 159
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FIGURE 1. Muscle configuration example: The red curve denotes the
muscle pattern on the front side of a robot, and the muscles on the back
of the robot are the same size as those in the front.

swath (LYCRA R© Soft Elastic Tape, 10.5 mm width, DAISO160

JAPAN). A thinMcKibben artificial muscle (EM20, s-muscle161

Co.Ltd.) [48], [49] with a length of 800 mm and a tube outer162

diameter of 2.0 mm was passed through the flexible rubber163

swath interstice to make a fixed point, and air pressure of up164

to 400 kPa was applied. Fig. 1 depicts an example of muscle165

configuration. Moreover, various deformations and control166

patterns are shown in Fig. 2.167

The fabric-type actuator was controlled by contracting168

and stretching a plurality of artificial muscles. Thus, a con-169

trol system is required to independently control the con-170

traction and extension states of each artificial muscle. The171

outline of our constructed control system is shown in172

Fig. 3. The control program was implemented in C ++173

using Microsoft R© Visual Studio Community 2017 and per-174

formed serial communication with an input–output device175

(USB3114, Measurement Computing Corporation). The176

input–output device received a command from the worksta-177

tion and adjusted the voltage applied to an electro-pneumatic178

regulator (CRCB-0135W, CRCB-0136W, Koganei Corpora-179

tion). The electro-pneumatic regulator adjusted the air pres-180

sure according to the applied voltage and air pressure to181

the artificial muscle. With this control system, the pressure182

applied to the artificial muscle can be controlled with a183

resolution of 0.1 kPa, and the control cycle was 50 ms.184

B. BUILD THE SIMULATION SYSTEM185

The fabric and the artificial muscle models were developed186

and combined by a fixed point to form a fabric-type actuator187

model. Unity R© was used to simulate movements caused by188

the contraction of artificial muscles and the deformation of189

the actuator. To simulate the movement of the fixed point190

following the contraction of the artificial muscle model, the191

fabric and the artificial muscle models must interact.192

Nvidia Flex [50], [51] was used to simulate a piece of193

fabric. It is particle-based physical simulation technology that194

can use particles to represent rigid bodies, fluids, and flexible195

objects. In Nvidia Flex, the fabric was represented as a group196

of constrained particles, which were placed at the vertices of197

the triangular polygons that make up the fabric model. The198

larger the number of particles, the easier the fabric can be199

FIGURE 2. Fabric-type actuator can achieve different motions through
different muscle combinations. The black curves indicate the relaxed
muscles (setting supplied air pressure to zero). The blue and red curves
denote the activated muscles in different directions. The opaque colors
represent the muscles in the front of the actuator, whereas the
translucent colors represent the muscles in the back. (a) Front bending
motion and its control pattern. (b) Right-side bending motion and its
control pattern. (c) Twisting motion and its control pattern.

described, but the higher the calculation cost. The size of the 200

fabric model (Fig. 4(a)) was set to 1.00 m in length and width, 201

and 0.01 m in thickness, considering the ease of processing 202

objects on Unity. 203

In addition, the artificial muscle was created by connecting 204

multiple tiny rigid body models to form a constrained chain. 205

The size of each tiny rigid body model is a cuboid with a 206

length of 0.01 m, a width of 0.01 m, and a height of 0.05 m. 207

The tiny rigid body model was connected by a Configurable 208

Joint option in Unity to realize the contraction of the artificial 209

muscle. The local coordinate axes of the tiny rigid body 210

model with Configurable Joint are depicted in Fig. 4(b). 211

When no air pressure is applied to the artificial muscle, 212

the movement of the rigid body model in the local y-axis 213

direction is restricted to zero. When air pressure is applied, 214

the movement of the rigid body model in the local y-axis 215

direction can be restricted to a distance that matches the 216

contraction rate of the actual artificial muscle, as described 217

in [52] and [53]. The tiny rigid body model can be moved 218
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FIGURE 3. The robot control system comprises an air compressor that supplies air pressure to power artificial
muscles and a regulation unit that includes a filter regulator to maintain air pressure. In addition, it comprises
an electro-pneumatic regulator that controls air pressure supplied to individual artificial muscles, thereby
controlling the deformation of the fabric actuator.

FIGURE 4. Simulated model representing the elements.

FIGURE 5. The simulated actuator model that combines the fabric and
artificial muscle models.

in the positive direction of the local y-axis by applying a219

force. As a result, the artificial muscle model’s tiny rigid220

body model moved to a restricted position and contracted221

as an artificial muscle model. After combining the fabric222

and artificial muscle models, the simulated actuator model223

(Fig. 5) was obtained.224

C. POINT CLOUD ACQUISITION225

A depth sensor (RealSense D435i, Intel Corporation) was226

used tomeasure the deformation of the actual robot. Themea-227

surement environment is constructed, as shown in Fig. 6(a),228

and the depth sensors are circled in red and located at the229

corner of the metal frame. As the occlusion may occur with230

one sensor, the number of point clouds collected from the 231

actual actuator differed in each deformation, and we mea- 232

sured the entire fabric-type actuator without omission by 233

setting four sensors from multiple angles. By converting the 234

point cloud obtained from each sensor into the world coordi- 235

nate system based on the arrangement of each sensor and the 236

iterative closest point (ICP) algorithm [54], the deformation 237

of the actuator can be acquired as a completed point cloud 238

consisting of point clouds from different cameras. In the ICP 239

algorithm, we can find the translation T and rotation R that 240

minimize the sum of the squared error in Equation (2) from 241

the two corresponding point sets P and X in Equation (1): 242

P = {p1, p2, . . . , pn} 243

X = {x1, x2, . . . , xn} (1) 244

E(R,T ) =
1
Np

Np∑
i=1

‖xi − Rpi − T‖2 (2) 245

where xi and pi denote the corresponding points, and Np 246

represents the number of points. This computing process 247

was completed using MATLAB R© Computer Vision Toolbox. 248

After the ICP registration, we downsampled the registered 249

point clouds to approximately 3,800 points through a box grid 250

filter. To facilitate the comparison of the difference between 251

the actual and the simulated point clouds in the future, we ran- 252

domly sampled the downsampled point clouds to make them 253

be the same number as the simulated point clouds (3,362 254

points). The actuator and the four depth sensors were fixed 255

on the metal frame to prevent changes in relative position. 256

The number of particles placed on one side of the simulated 257

fabric-type actuator model was 41 × 41. Therefore, the total 258

number of particles on the surface of the actuator model 259

representing the point cloud was 41× 41× 2, totaling 3,362. 260

The created fabric model with a point cloud is depicted in 261

Fig. 6(b). 262
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FIGURE 6. Point cloud acquisition. (a) After the shape point cloud of the
robot is collected by the four depth sensors in all directions, the robot
can be used to synthesize a complete point cloud using the ICP method.
(b) Generate point clouds on both sides of the fabric to represent the
fabric deformation directly in Unity.

IV. CORRECTION SYSTEM DEVELOPMENT263

A. CORRECTION STRATEGY264

Some modeling errors are unavoidable in the simulation even265

thoughwe attempted to adjust the parameters of the simulated266

actuator’s properties based on the motion of the real actuator.267

The difference in deformation between the real robot and the268

simulated actuator is caused by the mechanical action that269

occurs between the fabric and the artificial muscle. However,270

the information is insufficient if the feature simulated point271

cloud and the actual point cloud with the same frame are272

directly connected with a neural network because the infor-273

mation about the moving process is missing. The time-series274

data can be used to describe the moving process information,275

such as the contraction process of the artificial muscle for276

some time and the physical effect of the muscle friction on277

the fabric. Therefore, a correction system that estimates the278

actual deformation of the actuator (the point cloud of the279

real actuator) from the deformation of the simulated actuator280

(the position of particles of the simulated actuator model)281

in time series can be developed to address the difference282

in deformation. In this study, Unity realized the contraction283

of artificial muscles and the movement of fixed points, and284

the correction system corrected the mechanical action that285

occurs between the fabric surface and the artificial muscles.286

This relation is shown in Fig. 7. The correction system287

was constructed by deep learning because the mechanical288

action that occurs between the fabric and the artificial muscle289

includes a temporal element, which can be corrected using290

time-series information. The correction system simulated the291

deformation of the (k + 1)-th frame using the deformation of292

the l frame (from the (k−l + 1)-th frame to the k-th frame).293

B. THE STRUCTURE OF NEURAL NETWORK294

Because the correction system predicted the frame using the295

past l frames, LSTM can be used to process time-series296

information. Unlike the images, the order of indexing of297

point clouds is irrelevant. In this study, a point cloud was298

converted to a feature dimension, which is not affected by299

the order of points, and features were associated with LSTM.300

The structure of the correction system comprised an encoder,301

a decoder, and theLSTM, as shown in theCorrection system302

Module of Fig. 8.303

FIGURE 7. Correction strategy.

According to PointNet [28], Autoencoder1 was trained by 304

simulated point clouds (Autoencoder1, Fig. 8) and took its 305

encoder as the encoder of the correction system. Further- 306

more, Autoencoder2 was trained by the real point clouds 307

(Autoencoder2, Fig. 8) and took its decoder as the decoder 308

of the correction system. 309

The encoder of Autoencoder1 converted point clouds with 310

m points from the simulation into n dimensional features, 311

and the LSTM associated the features of the simulated defor- 312

mation of the continuous l frames with the features of the 313

predicted deformation. The decoder converted the output with 314

n-dimensional features from the LSTM into a point cloud 315

with m points. This process is shown in the LSTM Module 316

of Fig. 8. 317

Finally, the encoder (created by learning the simulated 318

point cloud in Autoencoder1)–LSTM–decoder (created by 319

learning the real point cloud n Autoencoder2) was connected 320

to construct the correction system. This system can signifi- 321

cantly correct modeling errors because of viscoelasticity and 322

nonlinear movement. 323

C. LOSS FUNCTION FOR CORRECTION SYSTEM 324

Equation (3) was used to evaluate the loss function, and train- 325

ing was stopped when the loss function stopped improving on 326

the validation set. Early stopping had two main parameters: 327

min delta and patience. An absolute change in loss function 328

less than min delta will be considered no improvement, and it 329

was set to 0.1 in this study. Patience is the number of epochs 330

with no improvement, after which training will be stopped. 331

Patience was set to 10 when training Autoencoder1 and 332

Autoencoder2, whereas it was set to 30 when training LSTM 333

because the training curve of LSTM drops more slowly. 334

After the correction system had been trained, we evaluated 335

whether the corrected simulated point cloud can accurately 336

describe the actual point cloud. Chamfer Distance (CD) [55] 337

was used to evaluate the extent to which the simulated point 338

cloud can fit the actual point cloud. In addition, the loss 339

function of our neural network was also based on the CD, 340

and the neural network was continuously trained toward the 341

smaller value of the CD. In this study, the CD was defined 342

using Equation (3) and was an average index showing the 343

similarity between two groups of point clouds: 344

dCD(S1, S2) =
1
|S1|

∑
x∈S1

min
y∈S2
‖x − y‖22 345

+
1
|S2|

∑
y∈S2

min
x∈S1
‖x − y‖22 (3) 346
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FIGURE 8. The encoder (trained in Autoencoder1) can encode the input simulated point cloud into a global feature, then LSTM converts the global
feature of the previous frames into the global feature of the next frame, and finally the decoder (trained in Autoencoder2) can decode the global
feature into the corrected point cloud.

where S1 and S2 denote the two groups of point clouds, and347

x and y represent the coordinate values. The smaller value348

of the CD value, the more similar the two groups of point349

clouds are.350

V. EXPERIMENT351

A. ACTUATOR SETTING352

The top of the fabric-type actuator was fixed with a cubic353

frame and deformed in a suspended state. The deforma-354

tion of the actuator to be measured always started from a355

relaxed state. After the deformationwas complete, the applied356

pressure was set to 0 kPa (the relaxed state). The air pres-357

sure applied to each artificial muscle was randomly deter-358

mined from 0 kPa to 400 kPa with a step of 100 kPa.359

The measurement frame rate was set to 60 Hz, and a 360

time-series point cloud for 90 frames was acquired from 361

the start of the application of the pneumatic pattern. The 362

four types of artificial muscle actuator configurations used 363

for measurement are shown in Fig. 9, and Fig. 10 depicts 364

an example of basic-type robot measurement results. The 365

deformation of the actuator was described by point clouds 366

measured using four depth sensors. 367

The side type was obtained by rotating the basic type 368

90◦ counterclockwise. There were subtle differences because 369

the basic and side types have different camera angles, even 370

with the same control input. Generally, tilting the actuator 371

at a certain angle can be used as a type of learning data 372

augmentation in deep learning because convolutional neural 373
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FIGURE 9. (a) Eight artificial muscles, four on the front side and four on
the backside, are placed vertically. (b) Eight artificial muscles, four on the
front side and four on the backside, are placed horizontally. (c) Two
artificial muscles on one side are placed crosswise. (d) Three artificial
muscles on one side are placed vertically.

FIGURE 10. Actuator movements can be described as time-series point
clouds.

networks (included by PointNet) do not contain rotation374

invariance [56]. The result of the side-type deformation can375

reveal whether the result can be corrected, even after the actu-376

ator is tilted. The cross-type deformation contained different377

muscle structure information obtained from the basic- and378

side-type deformation, which was used as learning data to379

improve the model’s generalization ability. The vertical type380

was not involved in the neural network learning stage and was381

only used to test the performance of the correction system in382

the unknown muscle structure.383

B. DATA PREPARATION384

In this experiment, we collected 1,188 groups of basic-385

type deformations, 198 groups of side-type deformations,386

25 groups of cross-type deformations, and 125 groups of387

vertical-type deformations. Each group of deformation con-388

tained 90 frames of point cloud data of motion (the entire389

motion was completed in 90 frames), which was collected390

at a sampling frequency of 60 Hz after the artificial muscle391

model started to run. The frame data allocation is shown392

in TABLE 1, each frame of point cloud data was randomly393

TABLE 1. Data allocation.

shuffled. The number of deformations in the cross and ver- 394

tical types was significantly smaller than that of the basic 395

type because there were fewer variations in deformation 396

with only one side installed artificial muscles. Moreover, the 397

vertical-type actuator was used only for testing, whereas the 398

cross-type actuator was used only for training. The number 399

of deformations and frames obtained from the simulation 400

was the same as the number of real deformations under each 401

configuration. According to the number of particles in the 402

fabric model in the simulation, the number of point clouds 403

in each frame was processed into 3,362 points. 404

C. LEARNING BY NEURAL NETWORK 405

In this study, TensorFlow 2.7 was used to construct a the 406

neural network. In the first step, we used the simulated 407

point cloud as the training data and label data identically in 408

Autoencoder1: the input and target data are the same. Then, 409

the global feature of the simulated point cloud can be obtained 410

by the encoder of Autoencoder1. In the second step, we used 411

the real point cloud as the training and label data identically 412

in Autoencoder2, and the global features of the real point 413

cloud can be obtained by the encoder of Autoencoder2. The 414

learning rate of 0.001 with the Adam optimizer was used 415

in the training process of Autoencoder1 and Autoencoder2. 416

In addition, a dropout layer with a dropout rate of 0.05 was 417

used in the hidden layer in the decoder of Autoencoder1 and 418

Autoencoder2 to improve the generalization ability of the 419

simulated point cloud. In the third step, LSTMwas employed 420

to predict the global features of real point clouds from the 421

global features of simulated point clouds. The training data 422

were the global features of the simulated point cloud obtained 423

by Autoencoder1, and the label data were the global features 424

of the real point cloud obtained by Autoencoder2, as pre- 425

viously discussed. The learning rate of 0.00001 with the 426

Adam optimizer was used in the training process of LSTM. 427

LSTM was learned by using the global features converted by 428

the above encoder and decoder. In this study, m = 3,362, n 429

= 1,024, and l = 5. Finally, the encoder of Autoencoder1, 430

LSTM, and the decoder of Autoencoder2 were connected 431

sequentially, forming a structure of encoder–LSTM–decoder. 432

As in the training process in Autoencoder, the loss function 433

uses the Euclidean distance and stops learning when the 434

validation loss does not decrease. After training, the encoder, 435

decoder, and LSTM will be concatenated into a structure 436

of encoder–LSTM–decoder. The simulated point cloud data 437

of five consecutive frames can be transformed into global 438

features through the encoder, and then, these global features 439

were used to predict the global features of the next frame of 440

real point clouds by LSTM, which can be decoded into real 441

point cloud data by the decoder. 442
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TABLE 2. CD [mm].

TABLE 3. CD [mm].

TABLE 4. CD [mm].

FIGURE 11. CD frequency of basic-type actuator. (a) CD between
simulated and real point clouds. (b) CD between corrected simulated and
real point clouds.

FIGURE 12. CD frequency of side-type actuator. (a) CD between simulated
and real point clouds. (b) CD between corrected simulated and real point
clouds.

D. ESTIMATION OF PREDICTED POINT CLOUD443

The trained encoder–LSTM–decoder network was used to444

predict real point clouds from the test set. The test set was445

not used in network training. The basic and side structures446

were learned by the neural network, whereas the vertical type447

was a completely unfamiliar robot structure in the evaluation448

period. The performance of the correction system can be seen449

in the learned (basic type) and unlearned robot (vertical type)450

structures. The comparison of the simulation and corrected451

point clouds in terms of CD is shown in TABLE 2 (basic452

type), TABLE 3 (side type), and TABLE 4 (vertical type).453

There is a decrease in CD across all types of executors in454

values of average, max, min, and standard deviation. In the455

base and side types, the average CD decreased by 50.85% and456

43.19%, respectively, whereas the average CD of the vertical457

type only decreased by 7.49%.458

FIGURE 13. CD frequency of vertical-type actuator. (a) CD between
simulated and real point clouds. (b) CD between corrected simulated and
real point clouds.

FIGURE 14. Simulated point cloud of basic-type actuator (CD: 18.33 mm).
Green point: simulated point cloud. Red point: real point cloud.

In addition, Figs. 11 - 13 shows the CD frequency distri- 459

bution for each type of actuator before and after correction. 460

Comparing the simulations without the correction system 461

(Fig. 11(a), Fig. 12(a)) and the simulations with the correction 462

system (Fig. 11(b), Fig. 12(b)) in basic type and side types, 463

the CD of the point cloud decreased after correction; i.e., the 464

overall value of CD decreased. Therefore, based on our neural 465

network, the correction system can learn high-dimensional 466

features of muscle structure in the actuator, and it is possible 467

to simulate deformations close to those of the actual actuator. 468

Comparing the simulation of the vertical type (Fig. 13(a)) 469

and the simulations with the correction system (Fig. 13(b)), 470

we find that CD, greater than 17, is improved after correc- 471

tion. Although the vertical-type actuator has an untrained 472

structure, the correction system can reduce CD. Therefore, 473

even if the actuator structure is untrained, deformation can be 474

simulated to some extent using the correction system. 475

Figure 14 compares the original simulated point cloud with 476

the real point cloud of the basic-type actuator in the overall, 477

front, right-side, and top views sequentially, and Fig. 15 478

shows the corrected point cloud (CD decreased by 12.41 mm) 479

of the basic-type actuator. The actual point cloud and the 480

point cloud obtained using the correction system are almost 481

the same. Moreover, Fig. 16 depicts the original simulated 482
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FIGURE 15. Corrected point cloud of basic-type actuator (CD: 5.92 mm).
Blue point: corrected point cloud. Red point: real point cloud.

FIGURE 16. Simulated point cloud of vertical-type actuator (CD:
20.15 mm). Green point: simulated point cloud. Red point: real point
cloud.

point cloud of the vertical-type actuator, and Fig. 17 shows483

the corrected point cloud (CD decreased by 4.37 mm) of the484

basic-type actuator. The overall features of the point clouds485

after correction are accurate.486

To intuitively see which regions of the point cloud were487

corrected, we selected four area examples (see Fig. 18) from488

Figs. 14 - 16 (two from the basic type and two from the489

vertical type), and compared the deformation of the actua-490

tor in the selected four areas before and after correction in491

Figs. 19 - 22.492

Figures 19 - 22 show that the majority of the differences493

between the simulated and real point clouds in the basic type494

are significantly corrected, whereas the differences between495

FIGURE 17. Corrected point cloud of vertical-type actuator (CD:
14.45 mm). Blue point: corrected point cloud. Red point: real point cloud.

the simulated and real point clouds in the vertical type are 496

mainly corrected, but new errors were generated. 497

VI. DISCUSSION 498

We compared the trained and untrained data with the sim- 499

ulation results only and the simulation results with the cor- 500

rection system. The correction system can correct nonlinear 501

mechanical actions difficult to simulate using the PBD-based 502

simulator. In this study, the learned structures performed 503

well in the evaluation stage, and the unlearned structures 504

also improved. However, there is still room for improvement. 505

For example, the neural network has not sufficiently learned 506

about the deformation of unlearned muscle structures, and 507

the correction system’s accuracy can still be improved. More- 508

over, this study employed deep learning to learn time-series 509

point cloud features to compensate for the lack of accuracy of 510

PBDmodeling on flexible objects and to facilitate the control 511

of flexible robots in the future. 512

In addition, there are only three types of artificial mus- 513

cle distributions (the types of basic, side, and cross) used 514

in the training set in this study. From Table 2 and 3 and 515

Fig. 11 and 12, for the same muscle type, more training data 516

can improve the correction ability of the neural network. 517

However, for unseen data, we tentatively put forward that 518

adding more muscle distribution types to the training set can 519

improve the generalization ability of the neural network, that 520

is, the neural network’s ability to correct the simulated point 521

cloud of unlearned muscle structures will be improved. 522

The structure of the constructed correction system was 523

developed using the PointNet autoencoder and LSTM. 524

In future research, more neural network structures can be used 525

to solve this problem. For example, the attention mechanism. 526

The way a neural network learns is similar to how the human 527

brain thinks, and there may be an advanced framework for 528

extracting point cloud features in the future. Recently, various 529
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FIGURE 18. The selected areas of each example. Green point: simulated point cloud. Blue point: corrected point cloud. Red point: real point cloud.

FIGURE 19. Example 1. Green point: simulated point cloud. Blue point: corrected point cloud. Red point: real point cloud. Black circle: the corrected
area.

FIGURE 20. Example 2. Green point: simulated point cloud. Blue point: corrected point cloud. Red point: real point cloud. Black circle: the corrected
area.
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FIGURE 21. Example 3. Green point: simulated point cloud. Blue point: corrected point cloud. Red point: real point cloud. Black circle: the corrected
area.

FIGURE 22. Example 4. Green point: simulated point cloud. Blue point: corrected point cloud. Red point: real point cloud. Black circle: the corrected
area.

transformers and their variants based on attention mecha-530

nisms, such as Point Transformer [57] and Point Cloud Trans-531

former (PCT) [58], have demonstrated significant potential to532

process point cloud data, achieving high feature recognition533

performance. Furthermore, note that this study has examined534

only the time-series point clouds as an input. Adding other535

information such as the number of artificial muscles as input536

will also improve the simulation accuracy for untrained struc-537

tures. Alternatively, simply augmenting the learning data for538

training the correction system may also increase simulation539

accuracy, but this may train the neural network deeper rather540

than wider. In addition, we look forward to adding more541

muscle structures to the training set, which will enable neural 542

networks to fit higher-dimensional features, and this will 543

have a positive effect on the correction of unknown muscle 544

structures. 545

This work is intended for use in robot design or con- 546

trol. When the fabric deformation is driven to the expected 547

deformation, many simulated parameters related to mus- 548

cle and fabric in FEM must be optimized. These muscle 549

parameters include the number of muscles and the length, 550

direction, diameter, and mount point of muscles to be con- 551

sidered. Therefore, FEM-based design is challenging because 552

it requires extensive deformation simulation using various 553
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parameters. The constructed correction system can be used554

to design a structure that can respond to the intended defor-555

mations by PBD. In future research, the correction system can556

facilitate robot designers with rapid real-time simulation and557

verification of complex wearable devices without using real558

actuators, owing to the low computational cost. Moreover,559

we are expecting to evaluate the difference in the specific560

computational cost between the proposed and FEM method.561

VII. CONCLUSION562

We proposed a method of modeling real point clouds by563

correcting simulated point clouds through deep learning to564

make them similar to real point clouds. As this research has565

shown, it is feasible to simulate the deformation of known and566

unknown structures of a fabric-type actuator. Our results are567

a step toward deep learning-based modeling of soft robotics,568

which is necessary to correct the inaccuracy of viscoelasticity569

and nonlinear movements in soft robotic modeling.570

There are note-worthy limitations. Although our model571

simulated learned muscle structures well, the model still572

needs to learn more muscle structures to improve its gen-573

eralization ability. Furthermore, more advanced neural net-574

work architectures for extracting point cloud features in the575

future, which merits our continued attention. We hope that576

our framework can be easily used by other researchers in the577

field to model the 3D deformation of other soft robot types,578

anticipating advances in soft robot modeling and control.579
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