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ABSTRACT Intrusion Detection System (IDS) dataset is crucial to detect lateral movement of cyber-
attacks. IDS dataset will help to train the IDS classifier model to achieve earliest detection. A good near-
realism public dataset is essential to assist the development of advanced IDS classifier models. However,
the available public IDS dataset has long been under scrutiny for its practicality to reflect real low-footprint
cyber threats, render real-time network scenario, reflect recent malware attack over newly developed DoH
protocol, disregard layer 3 information and finally publish contradictory results of classification and analysis
between various studies which makes it non-reproducible and without shareable results. This problem can be
resolved by sophisticatedly visualizing a new realistic, real-time, low footprint and up-to-date benchmarked
dataset. Visualization helps to detect data deformation before designing the optimized and highly accurate
classifier model. Therefore, this study aims to review a new realistic benchmarked IDS dataset and apply
sophisticated technique to visualize them. The review starts by carefully examining production network
features. These are then compared with various well-established public IDS datasets. Many of them are
static, unrealistic meta-features and disregard source and destination Internet Protocol (IP) information
except CIRA-CIC-DoHBrw-2020 dataset. The study then applies Eigen Centrality (EC) technique from the
graph theory to visualize this layer 3 (L3) information. Finally, using various visualization techniques such
as Principal Component Analysis (PCA) and Gaussian Mixture Model (GMM), the study further analyzes
and subsequently visualizes the data. Results show that the CIRA-CIC-DoHBrw-2020 simulated recent
malware attack and has a very imbalanced dataset which reflects the realistic low-footprint cyber-attacks.
The centrality graph clearly visualizes IPs that are compromised by recent DoH attack in real-time, and the
study concludes decisively that smaller packet length of size 1000 to 2000 bytes is to fit an attack trait.

INDEX TERMS Intrusion detection system (IDS), IDS dataset review, imbalanced dataset, data visualiza-
tion, machine learning in cybersecurity.

I. INTRODUCTION

Intrusion Detection System (IDS) is always concealed by
connected, ever-changing zero day cyber-attack. This stealthy
attack is almost undetectable by conventional IDS technol-
ogy and firewalls [1]. Hence it is critical to develop an
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advanced monitoring system and irreplaceable solution to
detect unknown malware [2], [3].

From the literature as shown in Table 1, most of the major
works focus on developing IDS classifiers and also it apparent
that fewer works have been done particularly in the area of
IDS dataset review and visualization. Hence, preliminary sys-
tematic reviews on the public IDS datasets were conducted at
the early stage of this research. Various several notable public
datasets have been surveyed which expose several advantages
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and disadvantages. It is revealed that the existing IDS dataset
has some issues; 1) the deficiencies to reflect modern net-
work threats; 2) an augmented minority dataset has limited
properties to replicate the nature of network attacks. Hence,
real -time capture is needed; 3) none of these public datasets
have been simulated against the recent Domain Name System
over HTTPS (DoH) protocol. Most public datasets demon-
strate the classical DDoS attacks and its variants; 4) none
of these public datasets have included layer 3 information in
its column’s features; 5) finally, a contradictory analysis and
classifying results have been shown in a few studies.

Those problems are further expounded from hereon. Vari-
ous public datasets have been examined and some encompass
various updated intrusion footprints. However, many of them
were classical and well-known for their deficiencies to reflect
modern network threats, as highlighted by [4], [5], [6], [7],
and [8]. The authors in [4] also concluded that current IDS
datasets suffer from realistic network traits.

Furthermore, many techniques were applied to oversample
minority class or downsample the majority class [9], [6].
This is done to increase efficiency of the IDS model. How-
ever, imbalanced dataset usually has low threats of footprint.
This will certainly be reflected in modern network threats,
in which both attack and normal traffic are concealed on top
of each other. Hence, rendering a very low threats footprint
is needed and getting it augmented is a problem. On the
other hand, instead of augmenting the dataset, a few studies
suggested a real-time packet capture is needed, as in [7]
and [4]. This can be done by capturing traffic from a real
network set-up or through injected or simulated traffic. This
is to ensure that the dataset is reproducible, shareable and has
similar properties to the production network [4]. The absence
of real-time and real network datasets in many IDS researches
is still prevalent.

Subsequently, there is a new protocol called DNS over
HTTPS (DoH) that was introduced in 2018 by Internet Engi-
neering Task Force (IETF). It was published as Request For
Comment (RFC) document number 8484 (RFC8484). From
that development, there are more sophisticated exploits being
introduced to compromise DNS over this DoH protocol.
From Table 1, it is noticeable that DDoS and various DDoS-
related attacks were analyzed by many researchers. However,
none of them have simulated the attack against the recent
DoH protocol.

PCAP’s features are labels for ordinary network traffic.
Obviously, PCAP’s features, as shown in Table 2, have no
attack and normal label. This requires unsupervised type
of Machine Learning (ML) trainings. Many popularly cited
public datasets have demonstrated different meta-data or raw-
data features. A few features have some resemblance with
the PCAP’s features. However, many have totally different
feature sets. Based on Table 2, none of them has the source IP
and destination IP (layer 3 information) as one of the feature
sets. Hence new coefficient values are needed so as to design
an unsupervised IDS model.
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It is worth highlighting that a few studies have shown con-
tradictory results from its classification models. For instance,
some studies have shown that RF has achieved highest accu-
racy as in [10] contrast to the report from [11] which reported
that NB had achieved excellent performance. The irony is
that both use similar CICIDS2017 standard dataset. Some
contradictory analyses were also spotted. For instance, NSL-
KD dataset is used to detect low-frequency attacks. It is well-
known that NSL-KDD was not an inclusive depiction of a
contemporary low footprint attack, as stated in [8].

This suggests that this domain might have non-
reproducible and shareable results, as suggested by [4]. It also
indicates that various classification models are event-specific
and have to be handled case by case. However, the good news
is that this gives plenty of room and opportunities for future
improvements. This is particularly true in the area of data
pre-processing and data visualizations. This issue serves as
one of the reasons why this study is conducted.

In this study, since a real attack is made up from multiple
frames and network packets, visualization through statistical
analysis and machine learning approach is introduced. This
will reduce the misclassification and contradictory analysis
issues as highlighted in problem number 5. The discussion
on visualization approach of this study is further expounded
from hereon. Visualization in essence helps to dissect these
complex network datasets into visual format. This will assist
during the training process of IDS classifiers. It will eventu-
ally assist in the development of an advanced classifier that
applies state-of-the-art machine learning techniques. Visual-
izing dataset also helps to detect data deformation before it is
trained by the classifier model to achieve an optimized, highly
accurate model. From the literature, a few pre-processing
techniques were applied, such as PCA, ¢-SNE, k-Means,
ADASYN, SMOTE, min-max method, Shrunken centroid
and a few others. These techniques were applied for various
reasons. For instance, to resolve issues in imbalanced dataset,
for feature reduction and notwithstanding for visualization.
Since lack of layer 3 information is apparent in the previous
studies, as highlighted in problem number 4, this feature will
be visualized in this study. Layer 3 or network layer is an
essential feature in networking. Many underlying patterns
can be revealed out of this feature. Due to that, the Eigen
Centrality (EC) visualization concept from the graph theory
will be applied. The outcome of this analysis will contribute
to the discovery of centrality’s degrees. This centrality pattern
is drawn from the interaction of these IP addresses. This
eventually will notify the source of lateral movement or the
attack vector.

Several other approaches are utilized in this study to
enhance the visualization analysis. These include PCA and
GMM, a type of k-Means analysis. Pre-processing techniques
for visualization like PCA and GMM are crucial to address
data deformation problems that might exist prior testing the
dataset against the classifier model [6]. Notwithstanding,
various visualization techniques like bar plot, skewness and
outlier distributions were also applied. As stated before, since
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production network has no label, this approach will help to
highlight a few coefficient values which helps as a target
feature in the unsupervised IDS classifier model. In this study,
meta-data features or raw-data features are treated equally.
There is no differentiation between processes flow informa-
tion and raw label.

On problem number 1; deficiencies to reflect modern net-
work threats, problem number 2; lack of dataset that reflects
real-time or real-network and problem number 3; lack of
study on malicious attack over DoH, protocol involved in
searching of realistic dataset. This dataset must have imbal-
anced properties to realistically portray the low footprint trait.
The dataset must reflect real-time and real-network features
and finally the dataset must furnish reached data over the
attack on DoH protocol. For this study, after a thorough
examination, we rely on the closest to the real environment
dataset, which is CIRA-CIC-DoHBrw-2020. However, in the
future, a real ground-truth dataset through real production
network set-up should be initiated. Formerly CICIDS2017
dataset was claimed to be the closest related public dataset to
production network [11]. Nevertheless, when comparable to
the PCAP features, it satisfies most of the labels except source
and destination IP. Missing this layer 3 information makes
this dataset lacking up-to-date information of real-network
traffic. Layer 3 information is a vital feature in network
communication. This is the major concern highlighted in
problem number 1 and number 2. In a nutshell, none of these
public datasets include network layer information (OSI layer
3) except for CIRA-CIC-DoHBrw-2020.

CIRA-CIC-DoHBrw-2020 is a relatively new dataset that
also simulates modern attack on DoH. Visualizing CIRA-
CIC-DoHBrw-2020 will subsequently expose h the essence
of DoH attack. This will help to resolve problem number 3.
As far as this research is concerned, there are very limited
studies on IDS dataset survey, review or data visualization
especially on CIRA-CIC-DoHBrw-2020 dataset. Hence, this
study aims to review this new realistic benchmarked IDS
dataset. Then sophisticatedly visualize CIRA-CIC-DoHBrw-
2020 using EC, PCA and GMM. This is to provide intrinsic
details which may assist on the development of the IDS
model. Finally, the contributions of this work are listed below:

1- Design EC visualization technique on realistic real-time
IDS dataset which involves layer 3 information. Layer
3 information is mandatory in any cyber-attack analysis
and network intrusion studies.

2- Introduce a few coefficient features to assist the training
process of the unsupervised IDS model. Since realistic
real-time traffic has no attack and benign label, the chosen
labels are essential.

3- Introduce GMM and PCA pre-processing and visualiza-
tion techniques over low cyber-attack footprints.

4- Introduce time-series pre-processing and visualization
techniques over real-time dataset to reduce the chances of
contradictory analysis.
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5- Highlight eminent problems in current public IDS dataset
and how it contributes to the contradictory analysis issues.
Subsequently, state the urgency of having a realistic
real-time IDS dataset.

Il. RELATED WORKS

This section systematically reviews various related studies on
IDS dataset. It contains three sections. Section A explains
the gaps of the studies. It summarizes the related works
and describe the gaps as an extended problem statement.
Then, section B clarifies the benchmarked dataset of CIRA-
CIC-DoHBrw-2020. Finally, section C explains the layer
2 frame which clarifies the differentiation between bench-
marked dataset and ground-truth dataset column labels.

The authors in [6] visualized security dataset of UNSW-
NB15 on malicious DoS attacks. They applied several pre-
processing algorithms such as PCA, t-SNE, k-Means dis-
tance cluster, shrunken centroid, Elastic Net Algorithm and
Manhalanobis distance. These were used to examine IDS
dataset. They discovered two main issues; 1) an imbalanced
dataset 2) an overlapped label. This information was crucial
to address problems that might exist prior testing the dataset
against the developed classification model. However, the
study did not process datasets that were specific to network
infrastructure such as IP address.

In [5], the authors offered a review on IDS technol-
ogy especially on classification models. Part of the work
was to compare on benchmarked Network IDS dataset, for
instance,NSL-KDD, ADFA-LD/WD, AWID, UNSW-NB15,
CIC-IDS 2017, CIC-DDo0S2019 and BoT-IOT. ADFA-
LD/WD dataset from Australian Defense Force Academy of
host-based system calls traces from Linux and Windows oper-
ating system. AWID from Aegean contains labelled Wi-Fi
dataset. CICIDS 2017 dataset showed attacks on various DoS,
DDoS. CIC-DDo0S2019 contained 88 features with normal
and assorted types of DDoS attacks and finally BoT-IOT also
demonstrated various attacks on DoS and DDoS. The data
were summarized in a simple tabular form. ADFA, AWID,
UNSW-NBI15 and CICIDS contained deficiencies and CIC-
DDoS2019 and BOT-IoT dataset encompassed latest intru-
sion traits [5].

The authors in [12] proposed an intrusion detection model
that integrates deep learning technique. NSL-KDD and CIS-
IDS2017 datasets were used to train and test the model.
Both have been adopted by many studies during the evalu-
ation process. Adaptive Synthetic Sampling (ADASYN) was
applied to resolve the issue on imbalanced dataset. Some
other pre-processing steps that were applied include k-Mean
and 7-SNE. The classifier was modelled by using Convolu-
tional Neural Network (CNN), Long Short-Term Memory
(LSTM) and Random Forest (RF) for binary classification.
The main objective of this study is an IDS classification
model.

Similarly, authors in [13] introduced a classification model
that applies improved CNN, which is known as Split Module
CNN (SPCCNN) and ADASYN which is used to augment
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dataset distribution. The well-known NSL-KDD dataset was
used, which is extremely unbalanced. Therefore, ADASYN
algorithm augmented minority features. Imbalanced dataset
weakened the training process of the model. However, imbal-
anced dataset certainly reflected modern network threats.
Both attack and normal traffic were concealed on top of each
other and rendered a very low threats footprint.

In [4], the authors highlighted current threat taxonomy
in IDS researches and concluded that current IDS datasets
suffered from realistic network threats practicality. They sug-
gested that datasets could either be captured from a real
network set-up or through injected or simulated traffic. This
dataset must be reproducible, similar to production network
and shareable. The analysis in [4] has helped to improve
the creation of close-to-real-world datasets and subsequently
improved the classifier efficiency. CAIDA DDoS, Waikato,
ISCXIDS2012, CTU-13, STA2018, Botnet dataset, TUIDS,
Booters, DDoSTB, Unified Network Dataset, ADFA-IDS are
amongst the new observed datasets.

The authors in [7] offered a study on the development of
real-time web intrusion using CNN and LSTM. They real-
ized no study had been done to analyze large scale network
traffic in real time. Dataset of fixed real-time HTTP traffic
was normalized using Spatial Feature Learning (SFL) tech-
nique. Finally encoded UTF-8 characters were extracted. This
experiment was repeated using two public datasets of CSIC-
2010 and CICIDS2017. It is stated that NSL-KDD dataset
is not suitable to train real-time detection as it deals with
metadata. Metadata processes statistics information from a
raw input and generates a new dataset. According to [7],
most of the published datasets have repetitive features and
inefficient attack traits to reflect the recent web-attacks trend.

The authors in [11] extensively reviewed the efficacy of
the anomaly IDS model that uses various algorithms and
techniques. Then, the performance of the selected machine
learning approach was tested over CICIDS2017 dataset. This
dataset is claimed to be the closest dataset related to pro-
duction network. The authors stated that current studies on
anomaly IDS are not meant for benchmarking the modelling
techniques, the methodology and the algorithm, particularly
on deep learning. The study in [11] also highlighted that
k-NN, Naive Bayes (NB) had achieved excellent perfor-
mance.

The authors in [10] analyzed significant and relevant
features to improve anomaly detection and also to reduce
execution time. Information Gain (IG) was the chosen fea-
ture selection technique which applies in CICIDS-2017. This
involves ranking and segmenting the features following its
smallest possible values. The reduced dataset was then tested
over RF, Bayes Net (BN), NB and J48 classifier algorithms.
Paper in [10] also showed that RF has achieved highest
accuracy contrary to the report from [11] which demonstrated
excellent performance from NB classifier.

This shows this domain has non-reproducible and share-
able results, as suggested by [4]. It also indicated that var-
ious classification models were event-specific and have to
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be handled case by case. Hence, there is still plenty of room
for future improvements in this domain, particularly on IDS
dataset and visualizations.

In [9], the authors applied data generation model named
Synthetic Minority Oversampling Technique (SMOTE) to
increase efficiency of the IDS model. Data from minority
class were oversampled to increase the average data size. This
method basically used k-NN algorithm to augment new data.
The final machine learning model with a few fixed hyper-
parameters was then tested on CSE-CIC-IDS2018 dataset.
There was obviously an imbalanced data size in each class.

The authors in [14] worked on intrusion detection machine
learning model over imbalanced dataset. They proposed a
Difficult Set Sampling Technique (DSSTE) algorithm to
separate imbalanced dataset into difficult set and easy set.
The algorithm used ‘““edited” Nearest Neighbor which sub-
sequently applied k-NN to compress the majority samples.
This compressed majority was then combined to the easy set
to produce a whole new dataset. To verify the performance of
the classifier, CSE-CIC-IDS2018 and NSL-KDD were used
to train the model. The authors used #-SNE to visualize these
datasets.

The authors in [15] proposed a detection model called
SAVAER-DNN which applied auto-encoder with regulariza-
tion technique to detect low-frequent attacks. The model
was evaluated against benchmarked dataset from NSL-KDD
variants and UNSW-NB15. The work in [15] then applied
Uniform Manifold Approximation and Projection (UMAP)
techniques to visualize spatial distribution of original and
synthetic samples. A few pre-processing techniques on data
scaling and one-hot data encoding were performed.

The authors in [16] proposed an intrusion detection that
applied a technique known as Intrusion Detection Based on
Feature Graph (IDBFG). It started with generating filtered
normal connections using grid partitions and subsequently
recorded those patterns with a graph structure. The behav-
ioral pattern arising from the graph indicates intrusion traits.
The model was evaluated against KDD-Cup 99 dataset, the
old version of NSL-KDD. The result was compared against
Support Vector Machine (SVM) and Decision Tree (DT).
However, NSL-KDD is not an inclusive depiction of a con-
temporary low footprint attack environment [8].

The authors in [17] proposed network IDS model based on
bio-inspired metaheuristic algorithm. The first objective was
to get optimized features for the input dataset. This model
applied various bio-inspired algorithms such as Multiverse
Optimizer (MVO), Moth-Flame Optimization (MFO), Grey
Wolf Optimizer (GWO), Bat Algorithm (BAT) and Firefly
Algorithm (FFA). The next objective was to classify the
generic attacks through SVM, J48 and DT. The model was
trained with UNSW-NB15 dataset.

In [18], the authors developed a hybrid network IDS model
to address low false-negative and high false (cited as per the
text) rates.

The process included three phases, which were 1) Data nor-
malization using min-max method, 2) Feature and 3) Attacks’
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TABLE 1. Summary of related studies.

Author Pre-processing Technique Primary Attack Type Benchmarked Main Contribution Year
(visualizing dataset) Dataset
g ;g I £ s.o 5
P £& g g E=% g 5 3
£ 2°g <& £ 9 X =E£E%& I 28 =g S=ZE =S £8 2
S & %% 5£3% A% 5§ z 5 ETEEE; ESE 22 2% 2% S £2 52 g% 2
& T 2% E8F <8< &2 & 5 Ce E<f EH§A A Ex &%=z 8% 24 2« 2
Zoghie et al. [6] v iv|v v UNSW-NBI15 v 2021
Ozkan-Okay et al. [5] v N N v NSL-KDD N 2021
,CIC-
DDoS2019,
CIC-IDS 2017,
BOT-IoT
Liu Chao et al. [12] v |V v v NSL-KDD, v | 2021
UNSW-NBI15
Hu Zhiquan et al. [7] v v NSL-KDD v’ | 2020
Hindy Hanan et al. [1] v NS v v CAIDA DDoS, NS 2020
‘Waikato,
ISCXIDS2012,
CTU-13,
STA2018,
Botnet dataset,
TUIDS, Booters,
DDoSTB,
Unified Network
Dataset, ADFA-
1IDS
Kim Aechan et al. [8] v v v v CICIDS2017 v | 2020
Maseer Z K et al. [2] v v v v CICIDS2017 v 2021
Kurniabudi et al. [3] v v v v CICIDS2017 v 2020
Karatas Gozde et al. [9] N N CSE-CIC- v 2020
IDS2018
Liu L etal. [10] v v CS;Z—(():I;} | v 2021
1D: 18 an
NSL-KDD
Yang Yangqing et al. [11] v v NSL-KDD v | 2020
variants and
UNSW-NBI15
Yu Xiang et al. [12] v v KDD-CUP99 v' | 2019
Mehmod M et al. [18] v v NSL-KDD v | 2021
Almomani O [7] v v UNSW-NBI15 v | 2021
Hao X et al. [14] Vv v KDD-CUP99 v | 2020
TABLE 2. PCAP labels. The authors in [19] offered a cloud network intrusion
PCAP model based on Bi-LSTM and attention mechanism. This was
Features g = claimed as an effective measure to address the problem of
‘l/’sliblic 2 - Ea learning attack pattern. Particularly attacks in massive and
Dataset & 3 ﬁ . £ g £ high dimensional data. This massive data with high dimen-
= - = . . . .
e 5 = E ;o: £ V; E sionality can be found in the complex and variable nature of
. B £ S ¢ £ £ g @ production network traffic. In [19], public dataset KDDCup
= = s = 9 . .
E E g E E = ;5‘) g § o 99 was used to analyze the efficacy of the IDS classifier. Data
< . . . .
— — — first were normalized by using min and max method. How-
NSL- .
KDD ever, according to [8], KDDCup99 suffers from redundant
UNSW- v v v v records in its training set.
NBI5 . L . L Table 1 summarizes the important characteristics from the
%gi(m past related works. The discussion is available in the follow-
CSE- v v v v v v ing section, which establishes the study gaps.
CIC-
IDS2018
CIRA- 7 7 7 v 7 7 A. SUMMARY OF RELATED STUDIES (EXTENDED
e PROBLEM STATEMENT)
2020 From Table 1, most of the major works were done on devel-

detection and categorization process by using Fine Gaussian
SVM (FGSVM) and Adaptive Neuro-Fuzzy System (ANFIS)
technique.

NSL-KDD was used to perform the training and testing
process.
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oping IDS classifiers and obviously fewer works have been
seen particularly in the area of IDS dataset review and visu-
alization. Those classifier models manipulate various IDS
datasets, which is discussed in the next paragraph. A few pre-
processing techniques were applied on previous works such
as PCA, ¢t-SNE, k-Means, ADASYN, SMOTE, min-max
method and a few others. These techniques were applied for
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various reasons, for instance, to resolve issues on imbalanced
dataset, for features reduction and also for visualization.
Since network intrusion involves Internet Protocols (IPs),
hence a graph model is an essential technique. None of the
previous works attempted to visualize the dataset by using
graph model.

Various standards and public IDS datasets have been exam-
ined, which are UNSW-NB15, NSL-KDD, CIC-DD0S2019,
CIC-IDS 2017, BOT-IoT, CAIDA DDoS, Waikato, ISCX-
IDS2012, CTU-13, STA2018, Botnet dataset, TUIDS,
Booters, DDoSTB, Unified Network Dataset, ADFA-IDS,
CICIDS2017, CSE-CIC-IDS2018 and the KDD-CUP99.
These datasets were mainly to simulate attack traffic over
computer networks. Amongst them, NSL-KDD, UNSW-
NB15, CIC-IDS2017, CSE-CIC-IDS2018 were popularly
cited many times. These datasets were specifically to demon-
strate DDoS attacks and their variants. Some of them encom-
passed latest intrusion traits and some of them were classic
and well-known for deficiencies to reflect modern network
threats.

For instance, NSL-KDD was not an inclusive depiction of
a contemporary low footprint attack environment and KDD-
Cup99 suffered from redundant records and many others [8].
Some web attacks datasets have repetitive features and are
inefficient to reflect recent web-attacks trends [8]. On the
other hand, [4] concluded that current IDS datasets suffer
from realistic network threats practicality.

Some datasets show imbalanced traits between normal
and attack’s label and between attack and another attack’s
label. Imbalanced dataset weakens the training process of
the model [13]. However, imbalanced dataset really reflects
modern network threats. Both attack and normal traffic
were concealed on top of each other and render a very
low threats footprint. This is the characteristic of a stealth
attack.

Next, Table 2 depicts the compatibility report between
these public features set and the real production network
feature set denoted as PCAP features. Here CICIDS2017
dataset, which is considered as the closest related dataset to
production network, as stated in [11] when comparable to
the PCAP features, satisfies most of the labels except source
and destination IP. This real-world column features of PCAP
labels are usually extracted from the Wireshark, an analysis
tool API for network that sniffs frames information which
enables for deep packet inspection. The frame details are
as depicted in Fig. 2. The explanation of the frame or layer
2 information is available in section C.

From Table 2, duration, protocol_type, src_byte and
dst_byte from the NSL-KDD dataset are tuples that accord-
ingly have resemblance to time, protocol and window size
of the PCAP labels. Dur, proto, dwin, is_sm_ips_ports,
ct_src_dport_ltm for UNSW-NB15 similar to time, protocol,
window size and source port. DstPort, proto, timestamp, Pkt-
SizeAvg and a few others flow bytes information for CIC-
IDS2017 can be accounted for representing destination Port,
protocol, time and window size of the PCAP features. This
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FIGURE 1. Network topology that is used to capture the DoH traffic.
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FIGURE 2. Layer 2 information (data link layer). Reassembled bits from
electrical signal into a frame field.

similar representation applies to CSE-CIC-IDS2018 bench-
marked dataset.

It seems there are no clear-cut similarities or differences
between popularly cited benchmarked datasets and PCAP
features. Hence the comparison requires some expert judg-
ments and field experiences. These benchmarked datasets
are claimed to closely resemble the real-world network
dataset, similar to ground-truth dataset. However, none of
these include network layer information (L3) of source and
destination IP except for CIRA-CIC-DoHBrw-2020. This is
highlighted in Table 2.

CIRA-CIC-DoHBrw-2020 is a DNS over HTTPS dataset,
which is relatively a new protocol t introduced in 2018 by
IETF and published as RFC8484 [6]. A simulated version of a
network traffic over this protocol was generated in 2020. It is
under the initiative of study in [19] and this dataset is mainly
used for IDS studies. It aims to reinforce security and privacy
issue of DNS request over HTTPS channel. Many trusted
web browsers such as Firefox, Safari, Chrome and Edge have
adopted DoH. DoH will combat DNS data manipulation,
Man-in-the-Middle (M2M) attacks and eavesdropping. Fur-
ther discussion on CIRA-CIC-DoHBrw-2020 is available in
section B.
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In conclusion, a few problems were identified from the
previous related studies. First problem is that the majority
of the works were emphasized on classifiers development.
In contrast, less effort has been put into data preprocessing,
specifically in the area of data visualization [4].

Second problem is the authors in [4] concluded that cur-
rent IDS datasets suffer from realistic network traits. Most
public datasets have deficiencies to reflect complex mod-
ern network threats [5], [20]. Furthermore, those datasets
have redundant records, repetitive features and overlapped
label [6], [7]. The unrealistic properties limit their ability
to represent contemporary low footprint and stealthy cyber-
attack [8]. Thus, it is important to have a realistic dataset.

Third problem is the practice of generating augmented
dataset will not represent the underlying nature of cyber-
attack. Usually, the practice is to increase or replicate the
volume of minority class, like in [9]. Imbalanced traits have
low threats footprint. This is actually the characteristic of a
stealthy attack. Stealthy attack has low traffic frequency [15].
Hence a dataset that renders a very low threats footprint is
highly recommended. This dataset reflects real-world cyber-
attacks.

Fourth problem is most of the public datasets demonstrate
the classical DDoS attacks and its variants. Many researches
have analyzed these types of attacks. However, none of
them have simulated against the recent DoH protocol that
was published by IETF in 2018. There are more sophis-
ticated exploits that have been introduced to compromise
DNS servers in recent years. Due to that, IETF introduces
DNS over HTTPS. However, this protocol is vulnerable to
Malicious-DoH, a type of exploit that can be generated using
off-the-shelf tools like dns2tcp, DNSCat2 and Iodine. Hence
effort to study this attack type is crucial.

Fifth problem is none of these public datasets include net-
work layer information or the OSI layer 3 information. Layer
3 information is the most significant protocol in intercon-
nected networks [21]. It is responsible for packets routing [4]
which is crucial for packets’ forwarding. Since, the attack’s
transaction takes place over network, hence the presence of
this protocol is mandatory. This layer-related makes most of
the popular cited public datasets categorized differently from
the standard PCAP features. Many meta-data and raw-data
features of the popular dataset have different features from the
real production features. PCAP features of the real production
network are discussed in section C of this section. Worth to
note here, CICIDS2017 dataset, for example, is claimed to be
the closest related public dataset to production network [2].
However, when comparable to the PCAP features, it satisfies
most of the related labels except the layer 3 information
(source and destination IP).

Finally, the sixth problem is a few studies have shown con-
tradictory analysis and classifying results. For instance, some
studies showed RF achieved highest accuracy, as in [10],
contrary to the report from [11] which reported that NB
had achieved excellent performance. The irony is that both
used similar CICIDS2017 standard dataset. There are studies

94630

utilizing NSL-KDD to train on detection model of modern
low-frequent attack. As mentioned in [8], NSL-KDD was not
a depiction of low footprint attack. This suggests that this
domain has realistic, non-reproducible and shareable results,
as suggested by [4]. It also indicated that various classifica-
tion models are event-specific and have to be handled case by
case.

B. CIRA-CIC-DoHBrw-2020 DATASET

Domain Name System (DNS) has several security loopholes
and has been a great concern for cybersecurity researchers.
More sophisticated exploits have been introduced to compro-
mise DNS servers over the years. To countermeasure some
issues related to DNS vulnerabilities, DNS over HTTPS was
introduced by IETF in 2018. This is done by encrypting DNS
queries and sending them over a covert tunnel. This DoH
transaction has been replicated in CIRA-CIC-DoHBrw-2020.
CIRA-CIC-DoHBrw-2020 is a synthetic dataset which aims
to evaluate DoH traffic in a network environment.

This network topology implements two-layered
approaches which are used to generate normal and attack
DoH traffic along with non-DoH traffic. DoH traffic is gen-
erated by accessing top 10,000 Alexa websites. It is sub-
divided into non-DoH, benign-DoH and malicious-DoH. A
non-DoH is a traffic generated through HTTPS protocol.
Then a benign-DoH is a non-malicious DoH traffic that
is also generated through HTTPS and it is accessed by
clients that use Mozilla Firefox and Google Chrome web
browsers. These two browsers support DoH protocol. Finally,
the malicious-DoH is generated by using tools like dns2tcp,
DNSCat2 and Iodine.

Fig. 1 shows the network diagram that is used to capture
the DoH traffic. Firstly, for the first layer, traffic with normal
web browsing activity that involves benign DoH is gener-
ated through the web browsers. This will generate non-DoH
HTTPS and benign DoH traffic. This traffic was then cap-
tured by a few web servers. Secondly, for the second layer,
malicious DoH was generated by a mixture of tools to be cap-
tured by malicious DNS server and DoH server. These gen-
erated traffics were then captured for pre-processing phase.

The web browsers utilized various public DoH resolvers.
To utilize this resolver and various capturing tools, Firefox
web browser was connected to GeckoDriver and Chrome
web browser to ChromeDriver. These generated traffics were
captured by tcpdump. A Python script that uses Scapy was
developed to generate a DoH traffic flow generator and ana-
lyzer. A tool named DoH Data Collector was then mounted
to simulate different sets of DoH tunneling incidents.

For DoH server infrastructure, it is implemented by using
Adguard, Cloudflare, Google and Quad9 platform. For the
non-DoH and benign DoH, the packets generated amounted
to 48952 Kbytes packets. On the other hand, the malicious
packets that were generated amounted to 219458 Kbytes
packets of traffic. The transmission rate is set randomly
between 100bps to 1100bps. The dataset document provides
lists of IP addresses used to generate non-DoH, normal DoH
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TABLE 3. IP addresses in relation with DoH traffics.

IP addresses

TLS packets are DoH
packets)
Source IPs (Connect

to Google Chrome

client)
Source IPs (Connect

Destination IPs (all
to Mozilla Firefox)
Source IPs (used to
create DoH tunnels)

1.1.1.1

8.8.4.4

8.8.8.8

9.9.9.9

9.99.10

9.9.9.11
176.103.130.131
176.103.130.130
149.112.112.10
149.112.112.112
104.16.248.249
104.16.249.249
192.168.20.191 v
192.168.20.111 v
192.168.20.112 v
192.168.20.113 v
192.168.20.144
192.168.20.204
192.168.20.205
192.168.20.206
192.168.20.207
192.168.20.208
192.168.20.209
192.168.20.210
192.168.20.211
192.168.20.212

AN N N N U R N N NN

SN N N N W R NN

and malicious DoH traffic. This data are generated by running
the simulation simultaneously over the entire servers. The
generated traffic captured all destination IPs that are used for
browsing public DoH servers. It means that all the TLS traffic
to these servers is DoH packets. It also captured source IP of
the clients that had used various web browsers to access those
websites. As designed, only Google Chrome and Mozilla
Firefox were used to depict client’s web browsers. Finally,
the source IPs that utilized DoH tunnels were also captured
and recorded. Table 3 visualizes the lists of IP addresses and
its relation to DoH traffics.

The generated packets were extracted as flow-based or
meta-data features. In this study, meta-data features or raw-
data features are treated equally. The study doesn’t discrimi-
nate between processes flow information label and raw label.
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C. LAYER 2 INFORMATION

Generic PCAP features as depicted in Table 2 show col-
umn time; the time for which the frames were captured.
Time here, however, measures delta time up to microseconds
from sequence of a completed handshake network trans-
actions. Then there are columns source and destination IP
address. These are valuable network layer information (L3).
It shows the communication between packet originator and
the intended recipient.

Next column is protocol which is a set of rules that are
used in network communication. The column frame length
is the size of communication wire in bytes of a particu-
lar transaction and finally is the info column which is not
included in Table 2. This column is to provide more descrip-
tions about a particular packet in text form. Usually, it is
difficult to process this column in a classification machine
learning (ML) training program, hence it is safe to drop this
column. Obviously, in PCAP’s features there are no attack
and normal labels which require unsupervised type of ML
trainings. Here, extra features like source port, destination
port (L2 information) and a few more from the frame field
information can be added into the column. It is added as
additional filters and sometimes through careful examination
and deep packet inspection. There are obviously more vital
OSI layer components that need to be added.

These vital OSI layer components reside in the data layer
link layer, which encapsulates most of the information from
the upper layers and provides function to transfer Protocol
Data Unit (PDU) between nodes. It serves a request from
network layer and directs it to the physical layer. During this
transmission, data can be successfully received and acknowl-
edged. However, sometimes that transfer can become unre-
liable. Hence, in those cases, upper layer protocols like data
link layer will perform error checking, acknowledgments and
retransmission. It includes application layer protocol infor-
mation, transportation layer protocol number (either TCP
or UDP) information, source and destination IP or simply
layer 3 information, source and destination Media Access
Control (MAC) address information, source and destination
port number and finally checksum.

In IEEE 802 Local Area Networks (LAN) standard, this
data link layer is defined in great detail. Logical Link Control
(LLC) and Media Access Control (MAC) are amongst the
sub-layers sitting in the data link layer. MAC layer determines
who is allowed to enter the medium of communication. Car-
rier Sense Multiple Access (CSMA) Collision Detection or
Avoidance (CD/A) are the protocols to control this access.
This MAC sub-layer is also important for frame synchroniza-
tion and bit stuffing. On the other hand, LLC sub-layer is
important for error control and flow control.

Obviously, PCAP’s features have no attack and normal
label as represented in many synthetic datasets. This label
will help classifier model to learn to ultimately reduce the loss
function. Hence, to train classifier model against PCAP file
or from ground-truth dataset requires unsupervised learning.
A feature or a combination of coefficient values are needed
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as the output label. This feature requirement is perfectly
matched to the data link layer information, as depicted in
Fig. 2. Many of these features can be extracted and elected
as the output label.

From various public datasets or synthetic datasets,
CICIDS2017 is claimed to be the closest related public
dataset to production network [2]. However, when compa-
rable to the PCAP features, it satisfies most of the input
labels except source and destination IP. As stated, source and
destination IP, or L3 information is crucial information in
network communication. In a nutshell, none of these public
datasets include network layer information (OSI layer 3)
except for CIRA-CIC-DoHBrw-2020, which is a relatively
new dataset that simulates attack on a new protocol DNS over
HTTPS (DoH). This dataset was introduced in 2018 by IETF
and published as RFC8484.

Ill. RESEARCH METHODOLOGY

This section introduces the research methodology to com-
plete this study. Altogether, there are three essential methods.
Firstly, the dataset will be processed through EC, a centrality
density method that is applied in Graph and Network theory.
Secondly, through the PCA and finally through the GMM
analysis, a prominent feature for unsupervised learning is
unleashed. GMM is a variant of k-NN and mostly used in
machine learning algorithms [22].

A. GRAPH MODEL

Network is a collection of interacting elements, for instance
the World Wide Web (WWW), social networks, brain net-
works, and, in our use case, a connected DNS over HTTPS
networks. To understand these DoH network as to perform
clustering and classification tasks, graph theory is used to
model their relationship. A graph, G is represented by ver-
tices, v (or nodes or in this case the IP address) and its edges,
e (or links or communication between IPs) and is denoted as
in (1).

G=(,e) (D

v and e indicate the number of vertices and edges in the
represented graph. Graphs can be either; 1) undirected or
bidirectional between two nodes or 2) directed, which implies
only one path from one node to another. In this case, the graph
is undirected, as shown in Fig. 13(a) in Section I'V; Results.
It illustrates a simple three nodes network in different subnets
that are able to reach each other in bidirectional or in full
duplex communication. Creating the graph with list of source
IP and destination IP is defined in (2).

v = {Allipaddresess}
e = {sourceip, destinationip} 2)
This graph is then transformed into adjacency matrix which
shows the relationship between nodes and how many edges
are set between them. Since this is an undirected graph where

all the edges go bidirectional, the adjacency matrix is sym-
metrical. To define adjacency matrix, it starts with a set of
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vertex v = vi, ..., v, where the matrix is a square of n x n
of matrix A of element i, w. This A;,, must be the element of
an edge from v; to v,,. It will be denoted as O if there is no
edge. Eventually, all the diagonal elements of this matrix will
be zero since a vertex is connected to itself (a loop).

The next step is to calculate the degree of the graph, d.
This is calculated by looking at the number of edges that are
connected to a particular vertex. It is denoted by (3).

d=2e/v(v—1) 3)

where v is the number of vertices or nodes (IP addresses) and e
is the number of edges (links between source and destination
IP). Then, the next step is to calculate degree of centrality.
Degree of centrality for a node v, is the fraction of nodes
it is connected to. They are normalized, s, by dividing to
the maximum number of possible degrees in a graph n-1,
as shown in (4).

s=1/(n—1) “

where n is the number of nodes, v in the graph G. Hence
degree of centrality is calculated by (5).

Centrality, C =d x s ©)

Next Eigenvector centrality (EC) is computed. EC com-
putes the centrality of a node according to the centrality of
its neighbors. It is also to measure the influence of a node
in a network. For the given graph G = (v, e), where |v| are
the vertices and e are the edges, let adjacency matrix be as
A = (ay,) where v and w are two different vertices. When
ay,w = 1, v and w are connected to each other, and when
ay,w = 0, these are disconnected to each other. Given relative
centrality of node or vertex v as x,, it is denoted as in (6).

Xy = 1/ % ZWGMM Xy (6)

where M (v) is all the neighbors of node v and A is a constant
and x,, is the sum of relative centrality between node v and
w, which is denoted as x,, = 1/A Zwevav,wxw- This can
be simplified into vector notation of Eigenvector as denoted
in (7)

Ax = \x @)

The next step is to calculate the Shortest Path or Betwee-
ness Centrality (BC). Shortest Path or BC of a node v is
computed by summing up all the fractions of all shortest path
pairs that pass-through v. It is expressed in (8).

Betweeness, C_B(v)= Z_(s, w e V)|(a(s, w|v)/o(s, w)
(3)

where v, is the set of vertices (nodes), o (s, w) is the number
of the shortest path between s and w, o (s, w|v) is the number
of the shortest path between s and w given some other nodes,
the set of vertices v. Whens =w, o (s, w) = 1, and if v € s,
w then o (s, w|v) = 0. The latter condition is understood since
there is no unique shortest path in a given new node.

VOLUME 10, 2022



M. H. M. Yusof et al.: Visualizing Realistic Benchmarked IDS Dataset: CIRA-CIC-DoHBrw-2020

IEEE Access

B. PRINCIPAL COMPONENTS

This method is used to find major patterns in this dataset.
This typical pattern is called Principle Component (PC). It is
used when data points contain a lot of measurement and not
all of those are meaningful, or defined as a lot of covariance
in the measurements. Variance helps to understand how far
the random variable is spread out from its mean. First step
is to calculate each column average ¥ = 1/n) ;. . %
Then check how each frame deviates from that average,
deviation; = x; — x and subsequently compute the covariance
between two locations, as given in (9).

o, )=1/n—1)Y (=1"(_i—0_i—5 (O

Sum of all deviations from all frames will form a covari-
ance matrix which contains terms for all possible pairs of fea-
tures. PCA can be computed from these covariance matrices.
Eigenvectors with the largest Eigenvalues are the PCs. The
equation as stated in (7) is applied here. Av = Av, where A is
transformed into covariance matrix, v is the Eigenvector and
A is the Eigenvalue. To process PCA, column SourcelP, Des-
tinationationIP and Timestamp, however, have to be dropped
as calculation can only process real numbers. Then Respon-
seTimeTimeSkewFromMedian and ResponseTimeTimeMe-
dian have to be imputed since they include missing values.
These are done with the help of a Python library package
called NetworkX.

PC shrinks all encoded vectors into a single line. PC will
capture all the major axis of variation but doesn’t lose much of
the information. In this research, negative covariance is dis-
covered, which will be reported in the Results and Discussion
section.

C. GAUSSIAN MIXTURE MODEL

This model is used to fit a vector of unknown prior parameter,
6 or the means u; and covariance matrices %;, as shown
in (10). In this research, it is used in clustering model based
on the underlying pattern from the dataset.

P®) =" GiN(ui. %) (10)

where i, vector component is characterized by normal distri-
butions with weights ¢;, means w; and covariance matrices
¥;. To integrate this prior into a Bayesian approximation,
the prior is multiplied with the known distribution of p(x)
given the unknown parameter 6. This p (x|0) is also known
as posterior distribution and can be expressed as in (11).

PO =Y FiNGi i) (a1

With another new parameters of 43,-, ;i and i, another
algorithm is needed to update them. This is usually done
by Expectation Maximization (EM) algorithm, an iterative
method to find maximum likelihood between parameters. For
example, given a set of X observed data, a set of missing
values Z and a vector of unknown parameters, the likelihood
function is L (0; X, Z) = p (X, Z|f). The Maximum like-
lihood is determined by maximizing the marginal likelihood.
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It can be done iteratively to find Expectation step (E step) and
Maximization step (M step). E step Q (910®) is computed by
(11).

0010 = Ej, ¢ [log L(6;X,2)] (12)

where E is the expected value, z|x, 0" is the distribution of
Z given X and the current estimation of parameters 6@,
log L(8;X, Z) is alog likelihood function of parameter 8 with
respect of all that. To maximize the step, the M step is denoted
by (13)

6+ = argmax Q0|6 +D) (13)

Which denotes to find the maximum parameters that
finally satisfy this equation.

IV. RESULTS

DNS over HTTPS is relatively a new protocol that was intro-
duced in 2018. It aims to reinforce security and privacy issue
of DNS requests over HTTPS channel. Many trusted web
browsers such as Firefox, Safari, Chrome and Edge have
adopted DoH. DoH combats DNS data manipulation, Man-
in-the-Middle (M2M) attacks and eavesdropping.

Despite that, it also suffers other security breaches such
as spoofing. Spoofing will lead to data exfiltration and C&C
attacks through malware proliferation. DoH dataset of CIRA-
CIC-DoHBrw-2020 establishes security flaws in DNS like
DNS tunneling and DNSbased malware. This flaw can bypass
firewalls. Hence detecting DoH threats is crucial. Dataset
features here is defined as flow information or a processed
meta-data. Table 4 below shows the output of data.info() from
CIRA-CIC-DoHBrw-2020 dataset.

From Table 4, there are 35 columns (from O to 34) alto-
gether. An entry index from 0 to 167516. It has one entry
datatype (dtypes) of boolean, 26 entries of float64 datatype,
five entries of int64 datatypes and, three objects datatype.
Memory usage to process this 167k counts of dataset is about
44Mbytes.

The source and destination IP by far haven’t been found in
any benchmarked dataset accept in the CIRA-CIC-DoHBrw-
2020. Fig. 3 shows its description. Most of the features’ mean
value lay at the floor level except for PacketLength informa-
tion. These are attributed for value ranges from minimum to
50%. It is also clearly seen a back wall that contains vertical
values range from 70% of sizes to maximum. Those features
are coming from FlowBytes and the PacketLengthVariance.
Most of these back wall features are coming from the raw
features an, in contrast, most of the features below the floor
level are the processed features or meta data.

From Fig. 4 of skewness and outliers distribution graphs,
there are many insightful informations revealed. For instance,
Fig. 4(a) shows most of the traffic was attributed to the
DoH attack’s label. Almost 99.9% of the traffic or 167,486
frames are labelled malicious and only 0.01% or 31 frames
are labelled normal. It is indeed an imbalanced dataset of
CIRA-CIC-DoHBrw-2020 whereby most of its traffic are the
attack’s traffic and only 31 of them are considered benign. In a
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FIGURE 3. CIC-DoHBrw-2020 dataset descriptions.

low footprint attack, this is considered a near-realistic public
dataset. In retrospective, most of the features were rightly
skewed as opposed to the DoH label. Duration, for instance,
as shown in Fig. 4(b) has a bimodal shape that shows the
distribution of time from 0 seconds to under 20 seconds and
from 30 seconds to under 40 seconds. These are the typical
times attributed to attack traffic. On the other hand, a longer
duration or the outliers (rightly skewed) are from 80 seconds
to below 140 seconds and these are considered normal traffic
duration.

Similarly, features like FlowBytesSent, FlowSentRate,
FlowBytesReceived, FlowReceivedRate, PacketLengthVari-
ance, PacketLengthStandardDeviation, PacketTimeMean,
ResponseTimeTimeMean, PacketLengthMean and Respon-
seTimeTimeMedia as represented by Fig. 4(c) and (d) have
a similar rightly skewed distribution. PacketLengthMean,
as shown in Fig. 4(d) for instance, has the packet length
around O to 400 bytes. This is mainly the packet size of an
attack traffic. The outliers’ packet length size of 500 byte to
2500 bytes, on the other hand, indicates the normal traffic.
FlowBytesSent and FlowBytesReceived have majority bytes
of size below 1x10° This is also the majority bytes of
attack traffic. Anything above this size to the maximum of
7 to 8 x10° bytes is the minority normal traffic. Based on
these observations, most of the normal traffic has the least
outliers.

Fig. 5 shows the evolution of DoH label over time. These
were collected every second in 2020. For efficiency, the data
collected and displayed here are between March 2020 until
April 2020. It is clearly seen here that the entire duration was
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filled by attacks’ attempt over DoH traffic. There are some
indications of a normal condition which is on 31 March,
2020 at time 06 hour and the similar pattern was spotted on
01 April 2020 at time 06 hour, which also indicates a normal
traffic. Time here is formatted as %H: %M: %S. These are the
only two timestamps where the traffic get normal and were
characterized before as having the minority outliers’ traffic
distribution.

To visualize the DoH traffic better, Fig. 6 shows the evo-
lution of three flows, namely FlowSentRate, FlowBytesRe-
ceived and FlowReceivedRate. From the graph, it is seen,
prior the normal condition both on 31 March, 2020 at 06 hours
and 01 April, 2020 at 06 hours, these three flows show a spike
in network traffic. These three labels could reflect the DoH
normal traffic traits. These spikes might indicate the outliers’
distribution of the flows. Low footprints of an attack traffic
are clearly demonstrated in this graph.

Similarly, Fig. 7 shows the evolution of three packets
types namely PacketLengthMedian, PacketLengthVariance
and PacketLengthMean. On the 06th hours of both dates (31
March, 2020 and 01 April, 2020) those packet types show
increases in their sizes. They reach up to 1000 x10° size in
bytes (1000Mbytes). This is also another indication to show
how a normal traffic behaves. Again, it is demonstrated here
that a normal DoH traffic will have outliers’ distribution,
which is usually off the mean and reaches its maximum sizes.

Fig. 8 shows the evolution of PacketTimes’ label over
time. PacketTime, however, shows a different characteristic.
This PacketTime (Mean, Median, Mode) evolution doesn’t
indicate any significant difference of sizes as compared to
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TABLE 4. Dataset Info.

Column Dtype Count

(datatype)

SourcelP
DestinationIP
TimeStamp
SourcePort
DestinationPort Int64
FlowBytesSent

FlowBytesReceived

PacketLengthMode

Duration

FlowSentRate

FlowReceivedRate

PacketLengthVariance
PacketLengthStandardDeviation
PacketLengthMean

PacketLengthMedian
PacketLengthSkewFromMedian
PacketLengthSkewFromMode
PacketLengthCoefficientofVariation
PacketTimeVariance
PacketTimeStandardDeviation
PacketTimeMean

PacketTimeMedian

PacketTimeMode
PacketTimeSkewFromMedian
PacketTimeSkewFromMode
PacketTimeCoefficientofVariation
ResponseTimeTimeVariance
ResponseTimeTimeStandardDeviation
ResponseTimeTimeMean
ResponseTimeTimeMode
ResponseTimeTimeSkewFromMode
ResponseTimeTimeCoefficientofVariation
ResponseTimeTimeMedian
ResponseTimeTimeSkewFromMedian
DoH (Note: Attack label) Bool

Object

167517

Float64

167318
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FIGURE 5. DoH Timestamp.

the Flow and PacketLength features on both dates. This
is easy to comprehend since transmitting a packet of size
1 kbytes will have similar sending time effect as transmitting
a packet of size 1Mbytes given a locally connected network.
However, sending time changes dramatically when a packet
is transmitted over a WAN network or IPSEC tunnel for
instance.
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A. DOH GRAPH MODEL

Graph and network model are used to understand this DoH
network as well as understand their IP relationships. This
will better assist on visualizing the dataset subsequently to
perform clustering and classification tasks. Fig. 9 shows the
SourcelP relationships with the DoH label. Almost all of
these IPs have been compromised by DoH traffic. However,
there are a few IPs which have not been listed as the source
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of benign DoH traffic, which are 1.1.1.1, 176.103.130.130,
8.8.4.4and 9.9.9.11.

Lest we forget, from the document, those IPs were marked
as destination IPs that are equipped with TLS packets over
DoH traffic. In contrast, the IPs range from 192.168.20.144 to
212, these are marked as the source IPs that had generated the
DoH tunnels (traffic originator). That is reasonably why most
of these IPs were plotted as DoH attack’s label.

Meantime, Fig. 10 shows the DestinationIP relationships
with the DoH label. This graph has similar pattern from the
previous graph in Fig. 9. Again, most of the IPs were destined
to DoH’s attack terminal except from IP 151.101.2.49.

1) BAR PLOT INFORMATION

Apparently, this IP wasn’t registered in any part of the
dataset’s official document either from the source IPs con-
nected to Google Chrome or Mozilla or from the destination
IPs. This is very interesting because, on the later analysis
using the centrality graph, on many occasions throughout
these analyses, this IP was sorted as one of the most important
nodes.

Fig. 11 shows the count of Source IP addresses against the
DoH label to further support the given graph in Fig. 9 Pre-
viously, Fig. 9 shows most of these IPs were the source
of DoH’s attack traffic. From Fig. 11, it is known that the
most attack traffic was generated from IP 192.168.20.144.
The very least attacks generator is from the host IP
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176.103.130.130 and followed by IPs 1.1.1.1 and 8.8.4.4.
In contrast, these are the IPs that have not been listed as
the source of benign DoH traffic. Surprisingly, in similar
condition, IP 9.9.9.11 is amongst the top attacks generator,
which has similar counts as 192.168.20.x IPs range.

Fig. 12 shows the count of DestinationIP against the DoH
label. The destination’s host compromised heavily by the
DoH’s attack is 9.9.9.11. This is the host also marked as
attacks generator. This host has the characteristic of a Com-
mand and Control (C&C) server which can transmit and serve
exploits traffic concurrently. A compromised host with C&C
exploit is also known as Zombie.

2) NETWORK GRAPH MODEL (CENTRALITY INFORMATION)
Fig. 13 shows the generated graph model of CIRA-CIC-
DoHBrw-2020 dataset. Graph G, which was introduced in
Section III (a) is shown in Fig 13 (a). It shows all the nodes,
v and its edges, e. To understand the centrality information
of the graph G, degree of the node was being measured.
Fig. 14 shows the degree information.

Nodes with IPs 1.1.1.1,9.9.9.11, 176.103.130.130, 8.8.4.4,
151.101.2.49 and 8.8.8.8 have the highest degree. These
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FIGURE 13. DoH graph model.

are the nodes that have been identified previously as the
DoH attacks’ generator and the most visited attack’s DoH
destination host. The newest recorded node is IP 8.8.8.8.
This is known as Google Public DNS IP. From the dataset
manual, it is stated that Public DNS is used as public DoH
resolver.

This degree information will help to generate the
centrality graph of Degree Centrality, Eigen Central-
ity and Betweenness Centrality, as shown in Fig. 13
(b), (¢) and (d) accordingly. From the three cen-
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176.10/30.131

(d) Betweeness Centrality

tralities’ graphs, the following nodes [‘1.1.1.1’,
‘9.9.9.11’, '176.103.130.130’,'8.8.4.4’,

*151.101.2.49’] define the most importance features,
i.e. the most traffic travels in and out of these nodes. Again,
these are all the IPs which have been described as an attacks
generator and destination nodes.

B. DOH PRINCIPAL COMPONENT (PC) MODEL
Fig. 15 shows three different PC values which are generated
from its original features. These PC explains the original
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FIGURE 15. DoH principal components (1,2,3).

variance and look as a linear combination from original fea-
tures. Some of the variance score higher than 0.2 and some
scores below —0.2. These signify different covariance matrix
values. This value is used to understand some underlying
patterns of the data. Since the equation can only process real
numbers, Source IP and Destination IP are dropped in this
function.

PC1 is normally associated with high scores of all features
even though, in this case, a few PCs indicate negative values.
PC2 has also generated a few important coefficients. PC1
and PC2 will be good candidates to visualize this dataset in
2-dimensional (2D) graph. PC3 on the other hand performs
poorly. Many of the coefficients lay just above zero and many
more lay below zero (negative coefficients), which shows the
least significant features.

Fig. 16 shows the 2D PC’s graph for DoH dataset. It has
two observable clusters. Do these two groups explain any
of these underlying patterns of normal or attack’s traffic?
Fig. 17 unearths a few characteristics of this graph by asso-
ciating the scatter plot with some hues information, such as
SourcePort, DestinationPort, PacketLength and DoH. These
features’ labels were selected based on the previous flow and
graph analysis.
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Furthermore, Fig. 17c) depicts the PCs value with hue
information on DoH label. Legend 0 indicates benign or nor-
mal and 1 indicates attack or malicious. It is noticeable that
both clusters are mostly populated by attack traffic. Normal
traffic fills a tiny spot from the bottom part of the big cluster.
From Fig. 17d) on the other hand depicts the PC’s value
with hue information of the PacketLengthMean label. This
label was chosen based on the timestamp characteristic in
Fig. 8; PacketLengthMean timestamp. It has similar trait to
the normal traffic of the DoH dataset.

In Fig. 17d), PacketLengthMean of size 1000 to 2000
bytes have filled up the exact same spot of the normal traffic
characterized in Fig. 17c). Hence, larger packet length size
seems to fit a normal traffic. This is a vital information as it
assists to design an unsupervised IDS classifier model.

Then, Fig. 17a) and b) show the PC’s graph for DoH dataset
with hue information from SourcePort and DestinationPort.
Apparently those two figures do not demonstrate similar
traits, as shown in Fig 17d). However, it has revealed a few
important attributes. For instance, the small cluster is entirely
populated by the DestinationPort which has been labelled as
malicious destination. Hence, the destination mostly has been
compromised by malware.

Meanwhile in the west region of the biggest cluster, it is
entirely populated by the SourcePort, as shown in Fig. 17a),
which is also the source for benign hosts. In this region, the
majority of the hosts have been infected by malware.

C. DOH GMM MODEL
This model, on the other hand, has unearthed three clusters
as depicted by graphs in Fig. 18. These 2D graphs show
dataset features with GMM values against DoH attack and
benign label. Cluster 0 has 94877 plots’ count. Cluster 2 is
the second highest with 39915 count and finally cluster 1 with
32725 counts. Total counts from these three clusters will sum
up to 167,517 which is the total number of entries.

Since this is not a spatial dataset, the plot looks very
straightforward with one-dimensional (1D) outlook. Cluster
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FIGURE 17. DoH dataset visualization using two PCs values with SourcePort, DestinationPort, PacketLengthMean and DoH hue information.

0 and cluster 1 have noticeable plots, whilst cluster 2 in some
regions has the least plots. However, it is still recognizable.
Fig. 18d) shows PacketLengthMean clustered in 1, 2 and 3.
Cluster 1 and a tiny spot of cluster 0 have PacketLengthMean
less than 1500 bytes. They populate at the attack traffic or
DoH label 1. A few spots in the range of 1000 to 2500 bytes
are grouped in cluster 2. They populate at the benign traffic
or DoH label 0. This is coherent to the finding in Fig. 17d) of
the PCs 2D graph. In that graph PacketLengthMean of size
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1000 to 2000 filled up the exact same spot of the normal or
benign traffic.

Fig. 19 shows the boxplot graph for SourcePort which
is also clustered into three classes. Most of these clusters
have SourcePort mean ranges from port 40000 to port 50000.
In Fig. 18a) cluster 1 populates both attack and benign traffic.
This is also coherent to the finding shown in Fig. 17a) where
some of the SourcePort are safe and source from a benign
traffic. On the other hand, majority of the cluster 1 ports
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populate attack DoH traffic, as can be seen in Fig. 17b). Only
one port, based on GMM model, from this range is considered
benign.

V. CONCLUSION

The advancement in security mechanism revolves around
protection and detection system. Intrusion Detection System
security is still an important technology in the network and
identity perimeter. It is used to detect classical and zero
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day attacks in corporate network. It also provides just in
time reporting during investigation and response process.
However, the available public IDS dataset is impractical
to reflect real cyber threats, to render real-time network
scenario, to reflect recent malware attack, disregard layer
3 information and publish contradictory results. This problem
can be resolved by sophisticatedly visualizing a new real-
istic, real-time, low footprint and up-to-date benchmarked
dataset. Visualization helps to detect data deformation before
designing the optimized and highly accurate classifier model.
This study aims to review a new realistic benchmarked
IDS dataset and apply sophisticated technique to visualize
them. The study then applies Eigen Centrality (EC) tech-
nique from the graph theory to visualize this layer 3 (L3)
information. Finally, it uses various visualization techniques
such as Principal Component Analysis (PCA) and Gaussian
Mixture Model (GMM). Results show the centrality graph
clearly visualizes IPs that are compromised by recent attacks
in real-time and the study concludes decisively that smaller
packet length of size 1000 to 2000 bytes is to fit an attack
trait.
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