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ABSTRACT In recent years, field-programmable gate arrays (FPGAs) have been increasingly deployed in
datacenters as programmable accelerators that can offer software-like flexibility and custom-hardware-like
efficiency for key datacenter workloads. To improve the efficiency of FPGAs for these new datacenter use
cases and data-intensive applications, a new class of reconfigurable acceleration devices (RADs) is emerging.
In these devices, the FPGA fine-grained reconfigurable fabric is a component of a bigger monolithic or
multi-die system-in-package that can incorporate general-purpose software-programmable cores, domain-
specialized accelerator blocks, and high-performance networks-on-chip (NoCs) for efficient communication
between these system components. The integration of all these components in a RAD results in a huge design
space and requires re-thinking the implementation of applications that need to bemigrated from conventional
FPGAs to these novel devices. In this work, we introduce RAD-Sim, an architecture simulator that allows
rapid design space exploration for RADs and facilitates the study of complex interactions between their
various components. We also present a case study that highlights the utility of RAD-Sim in re-designing
applications for these novel RADs by mapping a state-of-the-art deep learning (DL) inference FPGA
overlay to different RAD instances. Our case study illustrates how RAD-Sim can capture a wide variety of
reconfigurable architectures, from conventional FPGAs to devices augmented with hard NoCs, specialized
matrix-vector blocks, and 3D-stackedmulti-die devices. In addition, we show that our tool can help architects
evaluate the effect of specific RAD architecture parameters on end-to-end workload performance. Through
RAD-Sim, we also show that novel RADs can potentially achieve 2.6× better performance on average
compared to conventional FPGAs in the key DL application domain.

20

21

INDEX TERMS Deep learning, field-programmable gate arrays, hardware acceleration, network-on-chip,
reconfigurable computing.

I. INTRODUCTION22

Field-programmable gate arrays (FPGAs) have been con-23

tinuously growing in capacity and heterogeneity over the24

past decades. Besides their soft programmable logic and25

routing, FPGA fabrics now include a wide variety of26

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincenzo Conti .

embedded hard blocks such as on-chip memories, fracturable 27

multi-precision multipliers and high-speed transceivers to 28

enhance their efficiency [1]. However, with the increasing 29

deployment of FPGAs as datacenter accelerators, we are wit- 30

nessing a more radical transition from conventional FPGAs 31

to more complex beyond-FPGA reconfigurable acceleration 32

devices (RADs). These are heterogeneous devices that inte- 33

grate a traditional reconfigurable fabric with other forms of 34
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FIGURE 1. Example 3D-stacked RAD instance integrating an FPGA fabric
and an ASIC base die with different accelerator blocks, more on-chip
memory, external memory controllers, and a general-purpose processor
subsystem.

compute architectures that can range from general-purpose35

Turing-complete scalar processors to coarse-grained domain-36

specialized massively-parallel accelerator blocks. The back-37

bone of these RADs is one or multiple high-performance38

packet-switched networks-on-chip (NoCs) which provide39

efficient system-level communication between the different40

RAD components and a gateway to high-bandwidth device41

IOs (e.g. to external memory, Ethernet, PCIe). An example42

of such RADs is the Xilinx Versal architecture that com-43

bines general-purpose ARM cores, vector processors for deep44

learning (DL) acceleration and an FPGA fabric, all connected45

via a pervasive system-wide NoC [2].46

The recent advances in passive and active interposer47

technology also enable the realization of multi-die system-48

in-package RADs, in which the system-level NoC(s) act49

as a continuous communication layer across dice or even50

between distinct devices. Fig. 1 depicts an example RAD51

instance using 3D chip integration technology, such as Intel52

Foveros [3], to stack an FPGA fabric on top of an ASIC53

base die. In this example, the base die contains different54

NoC-connected accelerator blocks, larger on-chip memories55

and other hardened components such as external memory56

controllers and processor subsystems. Application modules57

that require frequent changes and customization are imple-58

mented on the reconfigurable FPGA fabric and can access the59

NoC to communicate with other RAD components through60

hard fabric NoC adapters that connect to the base die routers61

via interposer micro-bumps.62

Design of such complex devices is challenging; an archi-63

tect not only needs to select many design parameters for each64

independent component of a RAD, but must also consider65

the complex interactions between these different compo-66

nents. This results in a multiplicatively larger design space67

to explore for architecting novel and efficient RADs. What68

makes the design problem even more complicated is that 69

FPGA applications can not be effortlessly migrated to novel 70

RADs or readily make the best use of the specialized accel- 71

erator blocks and NoC-based communication for improved 72

performance. Therefore, architects need to re-think the imple- 73

mentation of applications while designing their novel RADs, 74

which creates amore challenging architecture and application 75

co-design problem. 76

The design of conventional FPGA fabrics has been 77

extensively studied with well-established research tools for 78

exploring and evaluating new architecture ideas, such as 79

the Verilog-to-Routing (VTR) flow [4]. These tools help 80

answer questions on how to best architect the fine-grained 81

programmable routing fabric and logic blocks, what type of 82

hard blocks to integrate in the fabric, and the effect of these 83

architecture enhancements on FPGA computer-aided design 84

(CAD) algorithms and compile time. However, these tools are 85

inadequate for RAD architecture exploration as they lack the 86

following desired qualities: 87

1) Application-driven: These tools focus on optimiz- 88

ing FPGA architectures based on application-agnostic 89

performance metrics such as the maximum operat- 90

ing frequency of given benchmark circuits. For com- 91

plex RADs with coarse-grained accelerator blocks 92

and latency-insensitive NoCs, architecture exploration 93

must be driven by end-to-end application-specific per- 94

formance. In other words, the key metric is how fast 95

a given application is executed on a candidate RAD 96

(cycles or runtime) rather than how fast a given circuit 97

is clocked on an FPGA fabric (clock frequency). 98

2) Higher level of abstraction: Conventional FPGA 99

architecture exploration is typically driven by appli- 100

cations written in a hardware description language 101

(HDL), which can create a productivity bottleneck 102

when re-designing applications for RADs. 103

3) Rapid design space exploration: FPGA application 104

designers usually rely on register-transfer level (RTL) 105

simulation for functional verification of their applica- 106

tions. For RAD architecture and application co-design, 107

RTL simulation would be very slow for such large com- 108

plex systems and would require developing a tremen- 109

dous amount of system components in HDL such as 110

NoC routers, accelerator blocks, memory controllers, 111

etc. This labour-intensive approach would significantly 112

limit the turn-around time for RAD architecture explo- 113

ration, especially at early stages of the design process. 114

4) Packet Routing: Mapping application designs to a 115

conventional FPGA architecture involves placing logic 116

blocks and routing wires between them on the pro- 117

grammable fabric. It has no notion of packet-switched 118

NoC-based communication between modules which is 119

the backbone of novel RADs. 120

Our work addresses this gap by introducing RAD-Sim, 121

a cycle-level architecture simulator for rapid application- 122

driven architecture exploration of RADs. It allows architects 123

to perform what-if analysis to study the complex interactions 124
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between various design choices in a RAD, and facilitates125

the architecture and application co-design process via its126

higher-level design abstraction. RAD-Sim takes as inputs127

SystemC descriptions of application modules and other RAD128

components (e.g. specialized accelerator blocks or scalar129

processor cores), detailed NoC specifications, and module130

NoC placement constraints. It performs detailed system-level131

simulation and produces end-to-end application performance132

results and NoC traffic reports for the application’s traf-133

fic patterns. It can also be used to verify the application’s134

functionality when given appropriate test vectors and their135

expected golden outputs. This enables architects to write136

RAD applications at a high-level of abstraction and rapidly137

tweak them as needed for architecture exploration while138

verifying their functionality during this process, and also to139

evaluate the effect of specific RAD architecture parameter140

choices or application re-design decisions on the overall end-141

to-end performance.142

In our prior work [5], we introduced RAD-Sim as a tool143

for rapid architecture exploration of novel RADs incorpo-144

rating FPGA fabrics, coarse-grained accelerator blocks and145

high-performance system-level NoCs. To further showcase146

the utility of RAD-Sim in the co-design of architecture and147

applications for RADs, this paper’s contributions are:148

• Presenting a case study of migrating a state-of-the-art149

DL application, the neural processing unit (NPU) over-150

lay, from conventional FPGAs to different RADs. This151

study shows how RAD-Sim highlights performance bot-152

tlenecks and provides insights to guide the architecture153

and application co-design process for RADs.154

• Introducing a new bandwidth-aware design approach155

for optimizing the NPU when mapped to RADs with156

embedded NoCs.157

• Studying a variety of RADs ranging from multi-die158

NoC-connected FPGAs to devices augmented with spe-159

cialized matrix-vector accelerator blocks, and multi-160

active-die 3D-stacked architectures.161

• Showcasing novel 3D-stacked RADs that can achieve162

2.6× higher performance on average when compared163

to current conventional FPGAs with up to 145 TOPS164

effective performance on key DL workloads.165

We also open-source RAD-Sim along with the NPU exam-166

ple design to facilitate future research on novel RAD archi-167

tectures.1168

II. BACKGROUND AND RELATED WORK169

A. THE EMERGENCE OF BEYOND-FPGA RADs170

The recent large-scale deployments of FPGAs in datacenters,171

pioneered by the Microsoft Catapult project [6], [7], have172

highlighted two key use cases that FPGAs excel at. Firstly,173

FPGAs are used as bump-in-the-wire devices to pre/post-174

process data streams on-the-fly by performing tasks such as175

network security, packet processing and data compression,176

freeing up CPU resources for the core compute of datacenter177

1Code can be downloaded at: https://github.com/andrewboutros/rad-flow

workloads. For example, the Pigasus project [8] uses a single 178

FPGA to perform 100 Gbps network intrusion detection and 179

prevention, reducing the CPU core count requirement to only 180

5 cores instead of 364 cores in the software-only solution. 181

Other work shows that FPGA-based smart network inter- 182

face cards (NICs) can increase the efficiency of distributed 183

DL training system by up to 2.5× when accelerating the 184

inter-node all reduce communication and gradient compres- 185

sion, freeing up CPU resouces for the core compute-intensive 186

tensor operations [9]. Also, as the number of solid-state 187

drives (SSDs) per server increases, FPGAs can also perform 188

near-data processing in SmartSSDs to alleviate the processor- 189

to-storage bandwidth bottleneck [10]. 190

Secondly, the network-connected datacenter FPGAs can be 191

flexibly combined into datacenter-scale service accelerators 192

that offer low-latency processing for key datacenter services 193

at a fraction of the power budget as in Microsoft’s Brainwave 194

for DL inference [11] and Bing’s search engine [6]. In both 195

use cases, processing pipelines are frequently changed or 196

upgraded, which justifies the use of FPGAs as they offer 197

faster time-to-solution and less development effort compared 198

to taping out specialized fixed-function chips. In addition, 199

FPGAs also offer a variety of high-bandwidth IOs that enable 200

efficient data steering at the crossroads between different 201

datacenter server endpoints such as network, storage, CPU 202

cores and accelerators. 203

However, the FPGA’s fine-grained programmable rout- 204

ing fabric is struggling to keep up with the ever-increasing 205

FPGA transceiver bandwidth and data flow of key datacenter 206

workloads [12]. To mitigate these challenges, prior academic 207

research has shown that embedding hard packet-switched 208

NoCs in FPGA fabrics can offer tremendous on-chip data 209

steering bandwidth at a minimal area cost and without 210

affecting the FPGA’s flexibility [13], [14]. As a result, 211

hard NoCs were recently adopted in commercial FPGAs 212

from Xilinx [15], Achronix [16], and Intel [17]. Besides 213

their programmable routing and logic, modern FPGAs incor- 214

porate a variety of hardened ASIC-style blocks that ide- 215

ally capture common functionalities across as many appli- 216

cations as possible without sacrificing the FPGA’s flexi- 217

bility. Taking DL acceleration as an example, the com- 218

position of layers, data manipulation between them, vec- 219

tor operations, and pre/post-processing stages might signif- 220

icantly differ between different workloads, which can benefit 221

from the FPGA’s reconfigurability. However, all of them 222

includemany dot-product operations that can benefit from the 223

increased efficiency of hardening as high-performance tensor 224

cores [18], [19], [20]. 225

These trends in FPGA architecture along with recent 226

advances in 2.5D and 3D chip integration technologies [3], 227

[21] have resulted in the emergence of a new class of 228

beyond-FPGA reconfigurable devices that combine the flex- 229

ibility of FPGAs, the efficiency of hard NoCs for data 230

steering, and the high-performance of specialized accelerator 231

blocks. Our work focuses on building tools that enable rapid 232

architecture exploration for these complex devices and also 233
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facilitate application re-design when migrating from conven-234

tional FPGAs to novel RADs.235

B. FPGA ARCHITECTURE EXPLORATION236

One unique property of FPGAs is their generality; they237

can be reconfigured to implement a variety of applica-238

tions, some of which might not even exist at the FPGA’s239

design time. Therefore, FPGA architects have to evaluate240

their new architectural ideas using a carefully curated set241

of benchmark circuits that capture key FPGA application242

domains. Major FPGA vendors have their own proprietary243

sets of internal benchmarks and customer designs for opti-244

mizing their products. However, prior academic work has245

compiled suites of representative benchmarks to be used246

for architecture exploration of both general-purpose [22]247

or domain-optimized [23] FPGAs. These benchmark cir-248

cuits are written in an HDL such as Verilog or VHDL,249

and are mapped (i.e. synthesized, placed and routed) to a250

given FPGA fabric architecture using a retargetable CAD251

system.252

VTR [4] is an academic open-source FPGA CAD flow253

that is widely used for FPGA architecture exploration and254

CAD research. It takes as inputs an architecture description255

defining the FPGA blocks, routing architecture, and their256

area/timing models, along with a set of benchmarks to be257

mapped to this architecture. This flow can be used to evaluate258

different FPGA architecture candidates based primarily on259

application-agnostic quality metrics such as the maximum260

operating frequency of benchmark designs or the silicon261

footprint of low-level FPGA circuitry.262

However, this conventional FPGA architecture exploration263

flow is not sufficient for evaluating RAD architectures that264

include other complex components besides the traditional265

FPGA fabric (e.g. NoCs and hard accelerator blocks). For266

example, it cannot evaluate the end-to-end performance of267

applications with some components implemented in the268

FPGA fabric and others executed on instruction-controlled269

accelerator blocks, or produce key system-level metrics such270

as NoC congestion and traffic patterns. On the other hand,271

although standalone NoC simulators do exist [24], they lack272

features to simulate a coupled FPGA fabric and cannot fully273

evaluate a RAD architecture.274

C. ARCHITECTURE SIMULATORS275

Architecture simulators are widely used to guide architec-276

tural decisions, especially during early stages of the design277

process. Depending on their level of detail, they can provide278

fast and accurate performance estimates without the need for279

detailed RTL implementation of architecture ideas. To drive280

architecture research, many simulators with different features281

and areas of focus have been introduced to facilitate design282

space exploration of classic von Neumann architectures as283

well as specialized accelerators and emerging compute tech-284

nologies. gem5 is arguably the most commonly used CPU285

simulator in architecture research [25]. It performs high-286

fidelity cycle-level modeling of modern CPUs and can run287

full applications for different instruction set architectures. 288

More recently, gem5 added support for modeling GPUs 289

based on the AMD Graphics Core Next architecture [26]. 290

Over the years, it has been used to evaluate many computer 291

architecture research ideas such as [27], [28], [29]. Other 292

CPU architecture simulators have been introduced such as 293

Sniper [30] and XIOSim [31] with different foci on more 294

scalable multi-core CPU simulation and more accurate per- 295

formance and power modeling of mobile cores, respectively. 296

GPGPU-Sim [32] is another academic simulator for con- 297

temporary Nvidia GPU architectures that can run CUDA or 298

OpenCL workloads and supports advanced features such as 299

TensorCores and CUDA dynamic parallelism. Unlike these 300

examples, our work does not target classic von Neumann 301

architecture exploration, but rather focuses on novel RADs 302

that combine traditional FPGA fabrics with other styles 303

of compute architectures. To evaluate RAD architectures, 304

the input to the simulator is not just compiled application 305

instructions. Instead, it can be a mix of instructions for 306

any software-programmable RAD components (e.g. coarse- 307

grained accelerator blocks) and custom user-defined modules 308

implemented on the FPGA fabric. 309

Many simulators are also implemented to evaluate custom 310

application-specific accelerator architectures such as in [33], 311

[34], and [35]. Aladdin [36] is a more general accelerator 312

simulator for estimating the performance and power of spe- 313

cialized dataflow hardware from a high-level C description. 314

More recently, gem5-Aladdin [37] integrates the gem5 CPU 315

simulator with Aladdin to model systems-on-chip (SoCs) that 316

include both CPUs and accelerator functional units with the 317

main focus on system-level considerations such as memory 318

interfaces and cache coherency. Similarly, our RAD-Sim can 319

model specialized accelerator blocks as components of a 320

RAD architecture. However, it accepts any user-specified 321

accelerator design written in SystemC and is not limited to 322

dataflow accelerators controlled by finite-state machines as 323

in Aladdin. RAD-Sim also combines accelerator blocks with 324

other application modules implemented on the RAD’s recon- 325

figurable fabric and with packet-switched NoCs for system- 326

level communication; evaluating such combined systems is 327

not possible in gem5-Aladdin. 328

SIAM [38] is a recent example of an architecture simu- 329

lator focusing on emerging compute technologies. It models 330

chiplet-based in-memory compute for deep neural networks, 331

and integrates architecture, NoC, network-on-package, and 332

DRAM models to simulate an end-to-end system. Although 333

our work similarly aims to model complete systems inte- 334

grating different components including NoCs and special- 335

ized accelerator blocks, it is not limited to only modeling 336

in-memory DL compute and focuses mainly on the recon- 337

figurable computing domain. For modeling RADs, another 338

key difference is that both the placement of compute mod- 339

ules and their attachment to NoC routers have to be flex- 340

ible (i.e. not an architecture choice but programmed at 341

application design time) due to the reconfigurability of the 342

FPGA fabric. 343
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FIGURE 2. Overview of our RAD architecture exploration and evaluation flow. This paper focuses on the RAD-Sim component (highlighted in grey).

III. RAD ARCHITECTURE EXPLORATION FLOW344

In this section, wewill first introduce an overview of our com-345

plete architecture exploration flow for RADs. Then, we will346

focus only on the first component of our flow, RAD-Sim,347

which is used to perform initial rapid architecture exploration348

and evaluation. The other components of the flow will be349

covered in future works.350

A. FLOW OVERVIEW351

Fig. 2 gives an overview of our complete RAD architec-352

ture exploration and evaluation flow. The first component of353

this flow is RAD-Sim, an architecture simulator for rapidly354

exploring the design space of RADs and studying the com-355

plex interactions between their different components. The356

inputs of RAD-Sim are a set of RAD architecture param-357

eters, specifications for one or more system-level NoCs,358

and SystemC descriptions of the RAD accelerator blocks.359

These accelerator blocks can be any latency-insensitive cir-360

cuit with an AXI-compatible interface that the designer361

would like to experiment with hardening in a RAD archi-362

tecture. This allows designers to experiment with acceler-363

ator blocks that have different functionalities, granularity364

and programming models (e.g. instruction-controlled, finite365

state machine, fixed pipeline) and also to compose differ-366

ent styles of accelerator blocks in a RAD. In addition, the367

user provides application-related inputs which are SystemC368

descriptions of the application design modules implemented369

on the FPGA and placement constraints assigning their ports370

to specific NoC adapters throughout the FPGA fabric. Then,371

RAD-Sim performs system simulation to estimate end-to-end372

performance and produce NoC traffic reports. To verify the373

functionality of the application design mapped to a given374

RAD instance, a user can pass input test vectors and their375

expected outputs, which can be extremely useful when RADs376

and applications are co-designed during the early stages of377

architecture exploration.378

After narrowing down the design space to a few candi-379

date architectures, more detailed evaluation can be conducted380

using the other two components of our flow. Given the RTL381

implementations of the specialized accelerator blocks as well382

as other system components such as the NoC routers and383

any other hardened functionalities, RAD-Gen pushes these 384

modules through the ASIC implementation flow to provide 385

architects with silicon area footprint, timing, and power 386

results for these blocks. Both RAD-Sim and RAD-Gen will 387

share the same front-end that takes as an input the RAD 388

architecture parameters and NoC specifications. RAD-Gen 389

will then modify a parameterizable NoC router implemen- 390

tation based on the user-specified inputs. It will then push 391

the RTL implementations of the NoC and other system mod- 392

ules through existing ASIC implementation tools targeting 393

either proprietary standard cell libraries or open-source ones 394

(e.g. FreePDK [39] and OpenRAM [40]). To perform power 395

analysis of a RAD/application combination, RAD-Gen will 396

be used to obtain energy per operation results for the imple- 397

mentation of the RAD’s ASIC components on a given process 398

technology. These results, coupled with toggle rates/activities 399

collected by RAD-Sim for a specific simulated application, 400

can be used to estimate the overall power consumption. 401

On the other hand, an enhanced FPGA CAD flow is used to 402

synthesize, place, and route the application design modules to 403

be implemented on the reconfigurable fabric of a candidate 404

RAD. An enhanced version of the VTR flow (in devel- 405

opment) can directly model NoC routers/adapters as hard 406

blocks embedded in the FPGA fabric. However, we can also 407

model them in commercial CAD tools by creating reserved 408

logic locked regions of appropriate size and locations, and 409

connecting design module interfaces to registers placed in 410

these regions. 411

Additionally, the embedding of hard NoCs in FPGA fab- 412

rics presents a new placement problem as modules must be 413

placed not only where they have sufficient fabric resources 414

and minimize traditional programmable routing delay, but 415

also so that their connection to NoC adapters on nearby 416

routers does not cause undue NoC congestion. RAD-Sim can 417

evaluate NoC performance (latency and congestion) given a 418

specific placement solution and expected application NoC 419

traffic patterns. The enhanced FPGA CAD tools can then use 420

these metrics to adjust module placement and assignment to 421

NoC adapters/routers, and iterate again if latency constraints 422

are not met. This is similar in concept to invoking static tim- 423

ing analysis during the placement stage in the conventional 424
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FPGA CAD flow to evaluate the expected critical paths of a425

design in order to guide optimization. While in this work we426

focus mainly on hard NoCs, RAD-Sim can also readily model427

application designs that include soft NoCs either as a design428

component or a pre-placed and routed interconnect overlay429

such as [41], [42].430

This paper focuses mainly on the first component of this431

flow, RAD-Sim, and its use for both rapid architecture explo-432

ration and architecture-application co-design for RADs.433

B. RAD-SIM IMPLEMENTATION DETAILS434

RAD-Sim is developed in SystemC, which allows design-435

ers to model their hard accelerator blocks and application436

modules at various levels of abstraction, trading off model437

faithfulness for designer productivity. For example, a specific438

module can be described using SystemC in a high-level439

behavioral way for fast development time, or a more detailed440

(closer to RTL) way that can be input to high-level synthesis441

tools to generate hardware. RAD-Sim uses BookSim [24]442

to perform cycle-accurate NoC simulation. BookSim is an443

open-source NoC simulator that has been leveraged by many444

other system simulators, such as GPGPU-Sim. It is heavily445

parameterized to allow modeling a wide variety of intercon-446

nect networks with different topologies, routing functions,447

arbitration mechanisms, and router micro-architectures. It is448

also easily extendable to support other features that are not449

provided out-of-the-box depending on specific use cases.450

RAD-Sim builds on top of BookSim in three aspects:451

1) It adds a SystemC wrapper around BookSim to allow452

combining the NoC with different accelerator blocks453

and application modules modeled in SystemC.454

2) It complements BookSim by tracking packet contents455

to enable functional verification of actual applications456

on RADs. This is necessary because BookSim pri-457

marily focuses on performance estimation and hence458

models the arrival times of packets, not their contents.459

As we show later in Section IV, migrating an applica-460

tion design from a conventional FPGA to a new RAD461

instance can require significant re-architecting of the462

application to use the RAD NoC(s) for inter-module463

communication. Therefore, it is necessary to ensure464

that functionality is preserved during this process.465

3) It implements SystemC NoC adapters that allow RAD466

architects to experiment with different user-facing NoC467

abstractions, independently of the underlying NoC pro-468

tocol and physical implementation details.469

The NoC adapters implemented in RAD-Sim also per-470

form clock domain crossing and width adaptation between471

the application modules or hard accelerator blocks and the472

NoC. For example, we provide users with AXI streaming473

(AXI-S) and AXI memory-mapped (AXI-MM) adapters, but474

RAD-Sim is structured to be modular such that architects475

can implement their custom or standardized NoC adapter476

protocol of choice and easily integrate it in the simulator.477

Fig. 3 shows the AXI-S master and slave NoC adapters478

implemented in RAD-Sim as an example. They consist of479

FIGURE 3. AXI streaming slave (top) & master (bottom) NoC adapters
implemented in RAD-Sim.

three main stages: module interfacing, encoding/decoding, 480

and NoC interfacing. For the slave adapter, an input arbiter 481

selects one of the (possibly multiple) AXI-S interfaces con- 482

nected to the same NoC router. Once an AXI-S transaction 483

is buffered, it is packetized into a number of NoC flits and 484

mapped to a specific NoC virtual channel (VC). Then, these 485

flits are pushed into an asynchronous FIFO to be injected 486

into the NoC depending on the router channel arbitration and 487

switch allocation mechanisms. The master adapter works in 488

a similar way but in reverse: flits are ejected from the NoC 489

and once a tail flit is received, they are depacketized into 490

an AXI-S transaction which is then steered to its intended 491

module interface. The adapters implemented in RAD-Sim 492

are parameterized to allow experimentation with different 493

arbitrationmechanisms, VCmapping tables, and FIFO/buffer 494

sizes. They also support up to three distinct clock domains 495

where the connected module, adapter, and NoC can be all 496

operating at different clock frequencies. This enables exper- 497

imentation with scenarios where stages of the NoC adapters 498

are either hardened or implemented in the FPGA’s soft logic. 499

Table 1 lists some of the user input parameters of 500

RAD-Sim. Besides these parameters, RAD-Sim takes as an 501

input a NoC placement file that specifies the assignment 502

of all hard accelerator block and fabric module ports to 503

specific NoC routers/adapters. This is currently passed as 504

a user-specified manual assignment; in our future work we 505

also plan to enable automatic creation of this file such that 506

NoC latency constraints specified by the user are met and/or 507

overall application performance is optimized. As described 508

in Sec. III-A, this router assignment file could be automat- 509

ically created by an enhanced FPGA placement algorithm 510

that repeatedly adjusts the routers to which modules connect 511

(essentially placing the router interfaces) as placement pro- 512

ceeds and invokes RAD-Sim to quantify the effect of these 513

adjustments on the system performance. 514

In addition, RAD-Sim provides users with various teleme- 515

try utilities to record specific simulation events and traces 516

along with different scripts to visualize the collected data. 517

This can be very useful in reasoning about the complex 518

interactions between the different components of a RAD 519

and understanding the effect of changing various architecture 520

parameters on the overall application performance. Fig. 4 521
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TABLE 1. RAD-Sim user input parameters.

FIGURE 4. Example visualizations from RAD-Sim for an unloaded
4× 4 mesh NoC showing: (a) Overall communication latency, number of
hops, and (b) Latency breakdown.

shows example visualizations produced by RAD-Sim when522

trying to characterize the unloaded communication latency523

for a RAD with a 4 × 4 mesh NoC and two modules con-524

nected to each router. In this example experiment, a single525

module sends two AXI-MM transactions to the first module526

connected to each router (15 routers × 2 transactions) one at527

a time, with no other traffic on the NoC. This then repeats528

for the second module connected to each router. The module,529

adapter and NoC operating frequencies are set to 200 MHz,530

800 MHz, and 1 GHz, respectively. The RAD-Sim telemetry531

utilities are used to record various timestamps in the transac- 532

tion lifetime such as transaction initiation at the source mod- 533

ule, packetization, injection/ejection, depacketization, and 534

receipt at the destination module. Fig. 4(a) shows the latency 535

in nanoseconds and number of NoC router hops for each of 536

the 62 issued transactions. The graph shows how the number 537

of hops and communication latency increase as the distance 538

between the source and destination modules increases then 539

drops when moving to the next row in the 4 × 4 mesh of 540

routers. Fig. 4(b) shows another visualization produced by 541

RAD-Sim that breaks down the latency for each transaction 542

into time spent in the injection adapter, the NoC, and the 543

ejection adapter. This can highlight the overhead introduced 544

when experimenting with different adapter implementations. 545

IV. CASE STUDY: RE-DESIGNING THE NPU FOR RADs 546

In this section, we present a case study to showcase the capa- 547

bilities of RAD-Sim bymigrating a state-of-the-art DL FPGA 548

benchmark, the NPU, from conventional FPGAs to novel 549

RADs. This study highlights how RAD-Sim can pin-point 550

performance bottlenecks and allows rapid experimentation 551

with potential solutions both by re-designing the application 552

to better suit RAD architectures and by changing the param- 553

eters of the RAD architecture itself. 554

A. THE NEURAL PROCESSING UNIT (NPU) OVERLAY 555

In this section, we present a brief overview of the NPU 556

overlay that we use as a vehicle for our case study. The 557

NPU is a state-of-the-art FPGA soft processor (i.e. software- 558

programmable processor implemented on an FPGA’s pro- 559

grammable fabric) with an instruction set and compute 560

pipeline specialized for the acceleration of memory-intensive 561

DL models such as multi-layer perceptrons (MLPs), recur- 562

rent neural networks (RNNs), gated recurrent units (GRUs), 563

and long short-term memory models (LSTMs). The NPU 564

architecture is similar to that of the Microsoft Brainwave 565

architecture [11] and achieves an order of magnitude higher 566

performance on Intel’s DL-targeted FPGA, the Stratix 10NX, 567

when compared to same-generation GPUs [43]. 568

Fig. 5 depicts the NPU overlay architecture which consists 569

of several coarse-grained compute blocks chained together 570

such that the output of one block is forwarded to the next. 571

The key block in the NPU architecture is a massively parallel 572

matrix-vector multiplication unit (MVU). It consists of T 573

tiles, each of which has D sets of C dot-product engines 574

(DPEs) of length L multiplication lanes. Each DPE is tightly 575

coupled with a register file (RF) that stores all the model 576

weights persistently on-chip and makes use of the tremen- 577

dous on-chip bandwidth of the FPGA’s BRAMs. An MVU 578

tile computes a row block of a matrix-vector multiplication 579

operation, and then their partial results are reduced and accu- 580

mulated over multiple time steps (if needed) to output the 581

final MVU result. This is followed by an external vector 582

register file (eVRF) to skip the MVU for instructions that 583

do not include a matrix-vector multiplication, and then two 584

identical vector elementwise multi-function units (MFUs) for 585
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FIGURE 5. Overview of the NPU overlay architecture consisting of five chained coarse-grain compute blocks: a matrix-vector multiplication unit (MVU),
an external vector register file (eVRF), two identical vector elementwise multi-function units (MFUs), and a loader (LD) block. The connections
highlighted in red are latency sensitive channels.

operations such as activation functions, addition/subtraction,586

andmultiplication. Finally, there is a loader block (LD)which587

writes back the pipeline results to any of the NPU’s architec-588

ture states and communicates with other external modules or589

interfaces. The NPU processor datapath is massively parallel590

to target the highly parallel and regular DL computations in591

contrast to general-purpose processor pipelines. For instance,592

an NPU with 2 cores, 7 tiles, 40 DPEs, and 40 lanes can593

execute up to 45,000 operations in a single cycle.594

All these blocks are controlled by very long instruction595

words (VLIW). Each field of the VLIW is decoded into a596

sequence of micro-operations and dispatched to its corre-597

sponding compute block by a central control unit as shown in598

Fig. 5. The NPU overlay is heavily optimized and compiled599

once to generate a single bitstream that is deployed on an600

FPGA and then programmed purely through software to run601

different applications. An NPU compiler has also been devel-602

oped to compile a Keras TensorFlow model description into603

NPU VLIW instructions that execute on the FPGA. We refer604

interested readers to [44] and [43] for more details about the605

NPU architecture and front-end.606

B. BASELINE SystemC NPU MODEL607

We implement SystemC simulation models for the different608

NPU blocks to use them in RAD-Sim as either hard accel-609

erator blocks or fabric application modules. To evaluate the610

faithfulness of our SystemC NPU model, we compare it to611

cycle-accurate RTL simulation of the NPU SystemVerilog612

implementation. We use Synopsys VCS v2016.06 for the613

RTL simulations, and run both the SystemC and RTL simula-614

tions on the same 24-core Intel Xeon Gold 6146 CPU.We use615

an NPU configuration similar to that in [43] with 2 cores,616

7 tiles, 40 DPEs and 40 lanes, which we also use for the rest617

of our experiments in this paper.618

We run simulations for a variety of NPUworkloads includ-619

ing simple matrix-vector multiplications (GEMV), RNNs,620

GRUs, LSTMs, and MLPs of different sizes, and report the621

results in Fig. 6 in tera operations per second (TOPS). The622

results show that our SystemC simulation model can estimate623

NPU performance to a high degree of accuracy with average624

FIGURE 6. NPU performance results from RTL and SystemC simulations.
Our SystemC NPU model estimates performance with less than 10.8%
error (5.1% on average) and is 26× faster than RTL simulation.

error of only 5.1% and maximum error of 10.8% compared 625

to cycle-accurate RTL simulation. These small differences 626

result from minor discrepancies between our SystemC and 627

RTL implementations of the NPU architecture that can be 628

tuned to further reduce this gap. However, the SystemC sim- 629

ulations are 26× faster than the RTL simulations on average, 630

with speedups ranging from 6.5× to 100× depending on the 631

workload size. The speed of SystemC models contributes 632

to the larger architecture space we can explore in RAD- 633

Sim, and the close agreement in performance results between 634

the SystemC and RTL simulation means we can trust the 635

RAD-Sim results to have high fidelity for this case study. 636

C. FULLY LATENCY-INSENSITIVE AXI-STREAMING NPU 637

To map the NPU to a RAD instance incorporating a NoC, 638

all communication channels between NPU blocks have to 639

be latency-insensitive (LI). All the feedforward communica- 640

tion between the five chained NPU blocks already contains 641

elastic FIFO interfaces. However, there are two main latency 642

sensitive channels that need to be modified (highlighted in 643

red in Fig. 5). The first is the connection from the LD 644

block to all the different RFs which is used for writing back 645

the pipeline results and issuing instruction tag updates for 646

data hazard resolution. The second is the inter-tile reduction 647

connections between all T tiles and the accumulator within 648

the MVU. Since the MVU alone constitutes 52%, 77% and 649
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FIGURE 7. Relative performance of NPU design iterations for migration from a latency sensitive FPGA design to a latency-insensitive, NoC-ready design.
All results are on a conventional FPGA. The figure compares: (1) baseline NPU, (2) adding LI write-back, (3) adding finer granularity LI for MVU tiles and
accumulator, (4) adding AXI-S wrappers without bandwidth limitations, (5) limiting the AXI-S interfaces data width to 1024 and 512 bits, and (6) using a
bandwidth-driven design approach (BWA) with 512-bit and 640-bit AXI-S interfaces. The results show that direct migration can significantly degrade
performance (AXI-S with DW = 512) and therefore requires careful re-architecting of the application design (BWA AXI-S).

78% of the NPU’s logic, BRAM and tensor block (TB)650

resources respectively, it is desirable to have finer granularity651

latency-insensitivity such that the different tiles and the accu-652

mulator can be treated as distinct modules when mapped to653

RADs.654

We first add an elastic FIFO for the write-back output of655

the LD block and change the latency-sensitive instruction656

tag update broadcast signal to sequential point-to-point LI657

messages from the LD block to each of the other blocks indi-658

vidually. Then, we also break the inter-tile latency sensitive659

reduction chain by adding an elastic output FIFO as well as660

a separate instruction FIFO and issue logic for each of the T661

tiles and the accumulator. After this change, all tiles send their662

outputs to the accumulator block which then performs both663

the reduction and accumulation operations. Finally, we imple-664

ment AXI-Swrappers around each of the NPUmodules so we665

can connect them to the AXI-S NoC adapters in RAD-Sim.666

These wrappers implement the AXI-S protocol on top of the667

FIFO interfaces and are parameterized to allow for changing668

the data width of the AXI-S interfaces. These parameterized669

AXI-Swrappers decouple the compute of thesemodules from670

the communication bandwidth between them, allowing us to671

study the effect of bandwidth restrictions on the overall NPU672

performance.673

Fig. 7 shows the simulation results for the effect of these674

changes on the NPU performance when running our bench-675

marks. On average, the performance is degraded by 9%when676

changing the write-back and hazard resolution channel to be677

LI. This is mainly due to the sequential tag update messages678

from the LD block to each of the other NPU blocks. Then,679

an additional 9% performance hit results when we add finer680

granularity LI to the MVU tiles and accumulator, for two681

reasons. Firstly, the number of sequential tag update mes-682

sages that have to be sent by the LD block for data hazard683

resolution increases from four (MVU, eVRF, 2 MFUs) to684

ten (7 tiles, eVRF, 2 MFUs). Secondly, the latency for the685

accumulator to reduce the tile outputs increases and it also686

does not start execution until the outputs of all 7 tiles are687

ready to be consumed. Sincemost of theNPUworkloads have688

strict sequential dependencies (e.g. between layers in MLPs689

or between time steps in RNNs, GRUs, LSTMs), increasing 690

latency results in pipeline bubbles, reducing performance. 691

Finally, adding the AXI-S wrappers causes less than 3% 692

performance degradation when they are set to the full widths 693

of the NPU block interfaces. 694

Now that the NPU is fully LI, we can map it to RAD archi- 695

tectures where communication and computation are decou- 696

pled by a NoC. As a start, we map the LI AXI-S-wrapped 697

NPUmodules to a simple RADwith only an FPGA fabric and 698

an ideal (unrealistic) NoC. This ideal NoC implements point- 699

to-point connections between the NPU modules without any 700

additional arbitration or latency due to traversing multiple 701

NoC links and has no bandwidth contention between different 702

traffic streams traversing the NoC at the same time.We exper- 703

iment with NoC routers with 1024-bit and 512-bit inter- 704

faces. Although this limits the inter-module communication 705

bandwidth between the NPU modules compared to the base- 706

line design, these router interface widths are not unrealistic; 707

512-bit interfaces are a common design choice for NoC 708

adapters in prior academic research [13] and in the Xilinx 709

Versal NoC architecture [45]. Even in the case of an idealized 710

NoC, however, this significantly throttles the NPU perfor- 711

mance to only 23% and 13% of the original performance 712

for interface widths of 1024 and 512 bits, respectively. This 713

experiment highlights that migrating application designs as-is 714

from FPGAs to novel RADs with embedded NoCs can lead 715

to very poor performance; instead migration requires careful 716

consideration of inter-module communication bandwidth. 717

D. BANDWIDTH-DRIVEN DESIGN APPROACH 718

Fig. 8(a) shows a graph representation of the LI NPU archi- 719

tecture where nodes represent different NPU modules and 720

edges are communication channels between them. Each edge 721

is annotated with the channel bit width as a relation to NPU 722

architecture parameters (C and D are number of cores and 723

DPEs introduced in Sec. IV-A) and the numbers in brack- 724

ets represent the bit width for the NPU configuration we 725

use with C = 2 and D = 40. It is clear that the NPU 726

was originally designed to exploit the tremendous amount 727

of on-chip programmable interconnect bandwidth with very 728
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FIGURE 8. Graph representation of inter-module communication in (a) LI
NPU and (b) re-structured LI NPU using bandwidth-driven design.

wide busses of 7680 and 2560 bits between different modules.729

However, these extremely wide interfaces are not friendly730

for communication over a NoC with limited router interface731

widths. Therefore, the boundaries between NPU modules732

need to be re-structured in a way that limits the widths of733

edges in Fig. 8(a). We refer to this as a bandwidth-driven734

design approach; it follows three principles:735

1) Where possible, convert high-bandwidth inter-module736

channels into local intra-module ones to use the more737

abundant wires in an ASIC implementation (of acceler-738

ator blocks) or on the FPGA fabric, rather than crossing739

module boundaries over the NoC.740

2) Split modules that consist of independent parallel com-741

pute lanes into finer-granularity modules to limit the742

input/output bandwidth of each module.743

3) Divide broadcast channels communicating with differ-744

ent modules that use different data widths into sepa-745

rate channels to avoid unnecessary data padding and746

transfer.747

The graph representation in Fig. 8(b) shows how748

we re-structure the NPU architecture following these749

bandwidth-driven design principles. Firstly, since each tile750

consists of D independent DPEs that send their results to the751

accumulator block to be reduced with the corresponding D752

DPEs from other tiles, we split each tile into S groups of753
D
S DPEs each. Then, we combine the corresponding groups754

from different tiles with a smaller accumulator in a new755

module that we refer to as anMVU slice. With 5 MVU slices756

(S = 5), the output interface of each slice is limited to only757

512 bits at the cost of replicating the instruction FIFO and758

a few of the tile RFs for each slice. This adds negligible759

logic and increases NPUmemory utilization by less than 9%.760

Secondly, since all other NPU blocks (eVRF, MFUs, LD)761

are operating as independent single-instruction multiple-data762

(SIMD) lanes, we also split them into vector elementwise763

(EW) slices of DS SIMD lanes to match the MVU slice output764

bandwidth.765

Thirdly, we split the unified broadcast LD write back766

channel intomultiple channels with data widthsmatching that767

of the destinationmodules. The LDblock internally combines768

the results from different vector EW slices only when writing769

back to the MVU slices; otherwise each LD slice writes back770

to its corresponding vector EW slice modules independently771

as shown in Fig. 8(b). The data width of the MVU write772

FIGURE 9. (a) RAD-Sim traces for an NPU slice with 1 thread (top),
2 threads (middle), and 4 threads (bottom), and (b) Graph representation
of the multi-threaded NPU. The expensive MVU slices are multi-threaded
and the cheaper vector elementwise slices are replicated to consume the
MVU outputs of different thread executions in parallel.

back channel is set to match the int8 numerical precision 773

of the MVU since it is now an independent channel and does 774

not talk to the other blocks (eVRF and MFUs) using int32 775

precision. This limits the width of this channel to 640 bits at 776

no additional cost. Finally, to parallelize MVUwrite backs or 777

tag updates for the NPU’s data hazard resolution, we also add 778

message-passing channels from one MVU slice to the next. 779

By doing this, the LD can send only one write back or tag 780

update message to the first MVU slice; this message is then 781

passed between slices and the LD can start sending messages 782

to other NPU blocks in parallel. 783

The results in Fig. 7 show that, with the same amount 784

of compute resources and an AXI-S interface data width 785

restricted to 512 bits, the bandwidth-driven re-structuring 786

of the NPU can gain back most of the performance lost 787

to bandwidth limitations. It even exceeds the performance 788

of the original NPU (that used very wide, latency-sensitive 789

communication) due to the added parallelism in tag updates 790

through the MVU slice-to-slice message passing channels. 791

The total cost of the NPU re-design to be fully LI and have 792

bandwidth-friendly 512-bit AXI-S interfaces is an average 793

23% degradation in performance compared to the original 794

latency-sensitiveNPU in [43].With a slight increase inAXI-S 795

interface width to 640 bits, performance increases by 10% on 796

average due to matching the full width of the LD write-back 797

andMVU slice-to-slice communication channels. This brings 798

the fully LI NPU to within 87% of the original NPU perfor- 799

mance on average, as shown in Fig. 8(b). 800

E. NPU MULTI-THREADING 801

After restructuring the NPU to be more modular, LI, and 802

bandwidth-friendly as described above, we experiment with 803

mapping it to a realistic NoC. We again assume a RAD 804

instance with a conventional FPGA fabric (similar to a 805

Stratix 10 NX) and no accelerator block, but this time we 806

use a realistic 9 × 9 mesh NoC. For this experiment, we use 807

512-bit AXI interfaces for all the NPU modules. We assume 808

the restructured NPU modules run at 300 MHz similar to 809
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FIGURE 10. Relative performance of multi-threaded NPU with 1, 2 and
4 threads mapped to an FPGA with an embedded NoC in RAD-Sim.

the original NPU, with the NoC adapters and routers run-810

ning at 1.2 GHz and 1.5 GHz, respectively. The NoC has811

166-bit wide links (for flit payload and meta data), 3 VCs,812

input queuing router architecture, and uses dimension order813

packet routing. We also use the same settings for our experi-814

ments with different RAD examples detailed in Section V.815

We perform a manual module assignment of an NPU with816

five slices (S = 5) to NoC routers and pass it as an input to817

RAD-Sim. Each MVU slice receives its instructions/inputs818

and sends its outputs through a separate router, while each819

vector EW slice receives its instructions and inputs from its820

corresponding MVU slice through another dedicated router.821

In addition, both the combined LD interface and the central822

instruction dispatch unit are connected to their dedicated823

routers to communicate with the rest of the NPU. Thismodule824

assignment utilizes 12 out of the 81 NoC routers.825

We simulate the NPU workloads in RAD-Sim to826

evaluate the effect of the additional inter-module commu-827

nication latency through the NoC. On average, the over-828

all performance decreased by 9% compared to the LI829

bandwidth-friendly NPU using the ideal NoC from Sec. IV-830

D, which translates to 0.68× the performance of the original831

latency-sensitive NPU on Stratix 10 NX. The top simulation832

trace in Fig. 9(a) produced using RAD-Sim’s telemetry utili-833

ties shows the first 4000 cycles of a single NPU slice running834

the GRU-512 workload as an example. The green, red and835

blue circles represent micro-operation (uOP) issue, retire and836

tag update events in each of the NPU blocks. There are long837

idle gaps in the MVU slice simulation trace due to sequential838

dependencies on both previous GRU time step results and839

vector operations in the current time step; NoC latency has840

exacerbated these gaps.841

This data highlights an opportunity: interleaving the execu-842

tion of multiple instruction streams (i.e. threads) in the MVU843

slice could fill these idle gaps. Fig. 9(b) illustrates the graph844

representation of an NPU architecture with support for three845

interleaved thread executions. The MVU slices switch from846

one thread execution to another while waiting for sequential847

dependencies to be resolved, and direct the output of each848

thread to a different set of vector EW slices (labeled T1, T2,849

T3 in the figure). The middle and bottom traces in Fig. 9(a)850

show the reduction in idle gaps when the NPU supports two851

TABLE 2. Specifications of example RADs used in our study.

and four interleaved thread executions, respectively. Fig. 10 852

shows that interleaving two and four threads can increase the 853

overall performance by 38% and 57% on average (and up to 854

77% and 135%) respectively, vs. a single thread implemen- 855

tation. However, adding support for each additional thread 856

utilizes 17%, 23% and 20% more ALMs, BRAMs and TBs, 857

respectively. Therefore, it is not feasible to implement more 858

than one thread on the (already full) Stratix 10 NX 2100 used 859

by the baseline NPU. Nevertheless, it is feasible to implement 860

more threads when exploring RADs with bigger/multiple 861

FPGA fabrics or hard accelerator blocks that free up more 862

fabric resources, as we discuss in the next section. 863

V. NPU ON RADs 864

In the previous section, we have shown that RAD-Sim can 865

highlight performance bottlenecks and help architects experi- 866

ment with application re-design ideas (e.g. bandwidth-driven 867

restructuring and multi-threading for our NPU example) to 868

alleviate these bottlenecks. In this section, we will illustrate 869

how RAD-Sim can capture a variety of RAD architectures 870

by mapping the NPU to three example RAD instances rang- 871

ing from a multi-die FPGA using passive interposers to a 872

monolithic FPGAwith side accelerator complex and a device 873

using 3D active die stacking. Additionally, we will show 874

how RAD-Sim can be used to fine-tune specific architecture 875

parameters and quantify the effect on end-to-end perfor- 876

mance. The intention of the experiments presented in this 877

section is by no means to perform a detailed architecture 878

study to find the best RAD architecture for a specific applica- 879

tion, which is an ongoing work combining the use of both the 880

RAD-Sim and RAD-Gen components of our flow. Instead, 881

we aim to illustrate that RAD-Sim can capture a wide variety 882

of RAD styles and also guide the fine-tuning of low level 883

architecture parameters of these devices. 884

Use of LI bandwidth-driven design (as illustrated for the 885

NPU in the previous section) and a system-level NoC com- 886

pletely decouples the application compute from its inter- 887

module communication. This raises the interconnect abstrac- 888

tion level and enables the exploration of complex RADs that 889

span multiple dice and incorporate hard accelerator blocks. 890

In this case, the conventional FPGA CAD tools do not need 891

to optimize the timing and routability of signals crossing 892

the boundaries between dice through interposers or trying to 893

reach the programmable routing interfaces of a hard accelera- 894

tor block. If each application module meets timing separately 895

and can be connected to a NoC adapter, the evaluation of end- 896

to-end application performance on a given RAD instance is 897

raised to the cycle-level simulation of soft/hard modules and 898

NoC latency; this is exactly what is captured by RAD-Sim. 899
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FIGURE 11. RADs used in our study: (a) 2.5D integration of 2 FPGA fabrics
with the NoC links crossing through a passive interposer, (b) monolithic
FPGA fabric and coarse-grained hard accelerators, and (c) 3D integration
of an FPGA fabric on top on an ASIC die of accelerator blocks.

A. EXPERIMENTAL SETUP & METHODOLOGY900

We map the re-designed LI AXI-S multi-threaded NPU to901

three example RADs and evaluate their performance using902

RAD-Sim. The first device (RAD1), illustrated in Fig. 11(a),903

consists of two identical FPGA fabrics using 2.5D chip904

integration [46] where the NoC links are the only wires905

crossing from one fabric to another through a passive inter-906

poser. The second one (RAD2) in Fig. 11(b) is a mono-907

lithic device with an FPGA fabric and a separate com-908

plex of hard accelerator blocks. In this case, the accelerator909

blocks can only be accessed from the fabric using the NoC.910

Finally, the third device (RAD3) is an FPGA fabric 3D-911

stacked on top of a base die of accelerator blocks as shown912

in Fig. 11(c). 3D-stacked RADs offer distributed access913

to more NoC routers, thereby avoiding the congestion of914

specific links when several modules on the reconfigurable915

fabric are trying to access a side accelerator complex, for916

example. We define the term FPGA sector as a region of917

FPGA resources with a NoC router/adapter at its center. For918

example, an FPGA with 8 × 5 sectors has a total of 40 NoC919

routers/adapters throughout its fabric regardless of the NoC920

topology used (i.e. it does not have to be a regular 8×5 mesh921

topology). Equivalently, we define an ASIC sector as an area922

of silicon that has the same footprint of an FPGA sector923

and includes a hard accelerator block (possibly with other924

hardened components) and a NoC router. Table 2 summarizes925

the specifications of the three example RADs we use in our926

study.927

For all three example RADs, we begin with an FPGA928

fabric with the same resources as an Intel Stratix 10 NX929

2100 device (702k ALMs, 6, 847 M20K BRAMs, 3, 960930

TBs). For RAD3, we assume that the FPGA fabric and the931

base die are implemented in the same process technology for932

simplicity. We remove resources to make room for any NoC933

TABLE 3. Resource utilization for the NPU portions implemented on the
RAD FPGAs. (TBs: tensor blocks, M20K: 20Kb BRAMs.)

routers added. We implement matrix-vector multiplication 934

units that resemble the MVU slices of the NPU described in 935

Sec. IV-D as the hard accelerator blocks in RAD2 and RAD3. 936

These blocks are realistic candidates for hardening since 937

they implement common functionality across almost all DL 938

workloads, while the rest of the NPU blocks could be special- 939

ized for different workloads to increase efficiency [47] and 940

thus benefit from the FPGA’s reconfigurability. For RAD1, 941

we use one FPGA for implementing the NPU’s MVU slices 942

(FPGA1) and the other FPGA to instantiate vector EW slices 943

to support 4 interleaved thread executions (FPGA2). For 944

RAD2 and RAD3, we first stamp out enough single thread 945

NPU copies to utilize all the available hard accelerator blocks, 946

and then use any remaining FPGA resources to add support 947

for as many interleaved thread executions as possible. Table 2 948

lists the NPU configurations used. 949

We estimate performance by using RAD-Sim to map the 950

NPU to the three example RADs. We set an FPGA fabric 951

operating frequency of 300 MHz (matching the NPU operat- 952

ing frequency in [43]) and conservatively assume that the hard 953

accelerator blocks run at 600 MHz. We scale the operating 954

frequency of the 28nm NoC routers from [48] to 1.5 GHz 955

in 14nm process technology, and we assume that the NoC 956

adapters operate at 4× the fabric speed, similarly to [48]. 957

The RTL implementation of the NoC router used in [48] 958

is heavily parameterizable and compatible with Booksim 959

parameters (developed by the same developers of Booksim). 960

More details about this RTL implementation and its source 961

code can be found in [49]. In all experiments, we use a mesh 962

NoC topology (dimensions specified in Table 2 for each case) 963

with 166-bit links, 3 VCs, input queuing router architecture, 964

and dimension order packet routing. The depths of the NoC 965

adapters’ injection/ejection FIFOs and ouptut buffers (see 966

Fig. 3) are set to 16 and 2, respectively. We also manually 967

assign NPU module AXI-S ports to specific routers in a 968

reasonable (but possibly sub-optimal) placement. 969

B. FPGA AND ASIC AREA RESULTS 970

To determine FPGA resource utilization, we synthesize, place 971

and route the parts of the NPU to be implemented on the 972

FPGA fabrics using Intel Quartus Prime Pro 21.2 on a 973

Stratix 10 NX 2100 device. We use reserved logic lock 974

regions at the appropriate locations for NoC routers/adapters, 975

mark them as empty design partitions, and connect the NPU 976

modules to them based on our manual module assignment 977

to different routers. We conservatively size each logic lock 978

region as a grid of 10 × 10 logic array blocks (LABs) 979
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FIGURE 12. (a) Quartus chip planner view of the FPGA fabric of RAD3. Different colors show the 4 instantiations of NPU vector elementwise modules
working with hard MVUs on the base die. The small boxes are reserved logic lock regions for the fabric NoC adapters, (b) Relative performance
comparison of the baseline NPU on Stratix 10 NX and the re-designed NPU on the 3 RADs we study, and (c) Performance of bigger workloads that can fit
persistently in the larger on-chip memory resources of RAD2 and RAD3.

compared to the 3 × 3 LAB region used in [50], as we are980

using 128-bit wide links vs. the 32-bit wide links of [50].981

Table 3 shows the FPGA resource utilization of the NPU982

portions implemented on the FPGA fabrics of each of the983

three RADs and Fig. 12(a) shows the Quartus chip planner984

view of the FPGA portion implementation of the RAD3985

instance.986

We also verify that the matrix-vector multiplication units987

we chose to implement as hard accelerator blocks fit in988

the available ASIC sector area footprint. Since the silicon989

area footprint of Stratix 10 FPGA resources are proprietary990

information, we estimate the relative area as follows. First,991

we implement the matrix-vector multiplication unit on the992

Stratix 10 NX programmable fabric and convert its resource993

utilization results into equivalent ALMs [51] to get an area994

footprint breakdown of different components of the circuit.995

The matrix-vector multiplication unit utilizes the equivalent996

of 2.8 FPGA sectors with 68%, 21% and 11% of its area997

dedicated to BRAMs, ALMs and TBs, respectively. Prior998

studies show that ALMs, BRAMs, and DSPs/TBs have 26×,999

3×, and 1.35× smaller area footprint when implemented1000

in an ASIC without any reconfigurability or interfaces to1001

the programmable routing [52], [53]. Therefore, we use a1002

weighted average of these FPGA-to-ASIC area scaling ratios1003

based on our circuit composition to get an approximate ASIC1004

area footprint. The hard matrix-vector unit consumes less1005

than 55% and 40% of the available ASIC sector area for the1006

4-thread (RAD2) and 1-thread (RAD3) variations respec-1007

tively, leaving more than enough area for the NoC routers,1008

adapters, links, and any additional hardened functionality.1009

In the future, the RAD-Gen component of our flow, described1010

in Sec. III-A, will automate anymanual steps needed to obtain1011

the FPGA results and will push the RTL implementation of1012

the hard accelerator blocks through the ASIC design flow to1013

obtain exact area and timing results.1014

C. PERFORMANCE RESULTS1015

Fig. 12(b) shows the relative performance comparison1016

between the baseline latency-sensitive NPU on Stratix 10 NX1017

from [43] and the re-designed NPU mapped to the three 1018

RAD instances we use in our study. Although RAD1 uses 1019

two FPGA fabrics, it does not benefit from any increase in 1020

the MVU compute resources compared to the baseline NPU. 1021

It only uses the resources of the second FPGA to add support 1022

for 4 interleaved thread executions. With the overhead of 1023

LI re-design and higher-latency NoC communication, RAD1 1024

can achieve only 12% better performance on average com- 1025

pared to the baseline NPU. In comparison, the single-die 1026

RAD2 achieves 1.2× (1.32×) the performance of RAD1 (the 1027

baseline NPU) by exploiting the hardened MVU slices in 1028

the side coarse-grained accelerator blocks and interleaving 1029

four thread executions. Finally, the base die of RAD3 can 1030

implement the MVU slices of 4 NPU instances and frees 1031

the FPGA resources to implement the rest of their vector 1032

EW, LD and instruction dispatch units. This results in a 1033

significant 2.6× increase in average performance compared 1034

to the baseline NPU on a same form-factor FPGA without 1035

3D stacking. In addition, since the hard matrix-vector mul- 1036

tiplication units in RAD2 and RAD3 are designed to have 1037

bigger RFs, they can both run a new set of bigger workloads, 1038

shown in Fig. 12(c), that can not fit in the on-chip memory of 1039

the baseline NPU. These results show that RAD3 can achieve 1040

performance up to 145 TOPS on the LSTM-1536 workload. 1041

Besides its ability to model a variety RAD architectures, 1042

RAD-Sim also enables us to study the effect of different 1043

architecture parameters on the performance of application 1044

designs. As an example, Fig. 13 shows the impact of changing 1045

the VC buffer size in the NoC routers of RAD2 for some 1046

of the NPU workloads (other workloads show the exact 1047

same trend but were omitted for brevity). Increasing the 1048

VC buffer size increases the silicon area footprint of the 1049

NoC routers, but acts as a bigger distributed storage for 1050

the packets traversing the NoC which can help avoid frequent 1051

NoC back pressures and decrease the overall communication 1052

latency. The results show that for the NPU traffic patterns 1053

over the NoC, VC buffer depths less than 8 flits can throttle 1054

performance, while increasing them beyond 8 flits yields little 1055

or no additional performance benefit. 1056
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FIGURE 13. Effect of changing NoC VC buffer size on the end-to-end
performance of some NPU workloads. Performance plateaus with no
additional benefit for VC buffers that are more than 8 flits deep for all
workloads.

FIGURE 14. RAD-Sim runtime for simulating different NPU workloads on
different RAD instances.

D. RUNTIME RESULTS1057

Fig. 14 shows a heatmap of RAD-Sim’s runtime for sim-1058

ulating different workloads on the three example RADs1059

we experiment with. It shows that runtime varies mainly1060

depending on the number of simulation cycles for the dif-1061

ferent workloads. For example, runtime increases as work-1062

load size increases (e.g. RNN-512 vs. RNN-1792) and as1063

workload complexity increases (e.g. RNN-1024 vs. LSTM-1064

1024). Runtime also varies depending on the size of the1065

simulated design (i.e. number of user design modules and1066

accelerator blocks) and its NoC traffic patterns. Fig. 14 shows1067

that RAD2 simulation runtime is generally higher than that1068

of RAD1 since the RAD2 design is more distributed with1069

modules connected to 54 NoC routers compared to 33 routers1070

in RAD1.1071

On the other hand, RAD3 has a lower runtime since base1072

die accelerator blocks are communicating with user modules1073

connected to the same routers on the top FPGA die, and thus1074

has simpler NoC traffic patterns than RAD2. In addition,1075

although RAD3 has enough resources to implement 4 NPUs1076

on the same device, it is enough to simulate only one instance1077

since all four instances are completely independent with1078

access to different sub-grids on the NoC (using different1079

routers and links with XY dimension order routing). Across1080

all our simulation runs, RAD-Sim’s runtime ranges from1081

12 seconds to 34 minutes depending on the workload and1082

RAD instance simulated. Evaluating a given RAD instance1083

by simulating all NPU workloads takes between 1 hour and1084

3.5 hours, which can be further reduced by running different1085

workloads in parallel (between 8 and 34 minutes if fully1086

parallelized).1087

VI. CONCLUSION 1088

Recent large-scale deployments of FPGAs in datacenters 1089

were mainly motivated by their faster time-to-solution com- 1090

pared to custom ASICs and their diverse high-bandwidth 1091

I/O interfaces that allow them to accelerate key datacen- 1092

ter functionalities on-the-fly at the data crossroads between 1093

different server end points. Building on these strengths, 1094

we have started to witness the emergence of novel RADs 1095

that combine the hardware flexibility of FPGAs, the high 1096

performance of domain-specialized accelerators, and the effi- 1097

ciency of packet-switched NoCs for system-level commu- 1098

nication. In addition, advances in 3D chip fabrication and 1099

integration technologies are unlocking a whole new design 1100

space of multi-die RADs. However, RAD architects lack 1101

the tools to rapidly explore this huge design space and 1102

evaluate the effect of their design choices on end-to-end 1103

application performance. To this end, we develop RAD-Sim, 1104

an application-driven architecture simulator for modeling 1105

and evaluating candidate RAD architectures. It also allows 1106

early co-optimization of key application designs migrated 1107

from conventional FPGAs and the architecture parameters 1108

of a proposed RAD. We showcase RAD-Sim through a 1109

case study that maps the state-of-the-art NPU DL inference 1110

overlay on different example RAD instances. RAD-Sim’s 1111

telemetry and visualization features pinpoint bottlenecks in 1112

the NPU on RADs with embedded NoCs, which we address 1113

with a new bandwidth-driven design approach and by adding 1114

multi-threading to increase tolerance of NoC latency. Our 1115

study also demonstrates that 3D-stacked RADs can increase 1116

average performance by a 2.6× compared to current FPGAs 1117

and achieve up to 145 TOPS on key DL workloads. We open 1118

source both RAD-Sim and the NPU example design for the 1119

broader research community to leverage in driving further 1120

innovations in RAD architecture. 1121
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