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ABSTRACT This paper proposes a new method to design a single-layer dual-band circularly polarized (CP)
patch antenna with a small frequency ratio. The design consists of one or several pairs of rectangular patches
proximity-fed by a 50-� microstrip line with an open-circuit termination. By exploiting both capacitive
and inductive coupling mechanisms, and both orthogonal radiating modes of these patches, the antenna can
be designed to operate at two close resonance frequencies. Due to its simple and single-layer structure,
the antenna can be easily adapted with meshed configuration, which is suitable for transparent devices.
For verification, a dual-band CP meshed patch antenna with a frequency ratio of 1.12 and two pairs of
patch is designed, fabricated, and tested. The measurements show that the antenna prototype provides a
|S11| < −10-dB bandwidth of 4.82−5.03 GHz (210 MHz) and 5.49−5.78 GHz (290 MHz), axial ratio
< 3-dB bandwidth of 4.88−4.93 GHz (50 MHz) and 5.50−5.57 GHz (70 MHz), and broadside realized
gains of 9.0 dBic and 8.6 dBic for the lower and upper bands, respectively.
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INDEX TERMS Single layer, rectangular patch, proximity feed, dual-band, circular polarization, meshed
patch.

I. INTRODUCTION14

In recent years, meshed antennas have been received signif-15

icantly pervasive attention as one a major class for optically16

transparent antennas [1], [2], [3]. Indeed, meshed configura-17

tion is used for almost 50% of the transparent antennas in18

the literature [2]. Due to their increasing number of applica-19

tions, such as, integration with solar-cells, wireless sensors,20

onboard CubeSats or SmallSats, RF identification, broadcast,21

global positioning systems, 5G, and smart devices, significant22

efforts have been invested in antenna structures that can be23

adapted to meshed configuration. Inheriting features of the24

microstrip antennas [4], including low-profile, lightweight,25

low cost, and conformability to a shaped surface, the meshed26

patch antennas [5], [6], [7], [8], [9], [10], [11], [12], [13]27

are one of the most preferred choices for integration with28
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solar cells. Nevertheless, the performance of most of these 29

antennas are still limited with single-band operation. 30

Along with the higher demands in quality of service, 31

data-rate and reliability, many modern wireless communica- 32

tion systems employ different frequency bands. Moreover, 33

some of these systems favorably employ circularly polar- 34

ized (CP) antennas [14] to mitigate multipath interference, 35

polarization mismatch, and Faraday’s effects. Thus, there has 36

been a demand on multi-band CP antennas, which, in some 37

cases, are more reliable than the broadband antennas due 38

to the reduction of out-of-band interference. Furthermore, 39

broadband CP antennas typically require a higher profile 40

or larger planar size. A common approach for designing 41

dual-band CP antennas is to use dual resonant elements 42

printed on multi-layer substrate, i.e., stacked patch configu- 43

rations [15], [16], [17], [18], [19], [20]. These designs, how- 44

ever, are not suitable for transparent devices as multi-layer 45

structures would reduce the transparency. Some notable 46
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techniques to design dual-band single-layer CP radiators47

include embeddingY and T-shape slots [21], using two differ-48

ent rings [22], [23], embedding metamaterial structures [24],49

loading open-ended stub [25], series-fed patch leaky-wave50

antenna [26], and adding non-radiative resonators [27].51

Nevertheless, there are several challenges when adapting52

these techniques for meshed antennas. For example, probe53

feeds [21], [22], [23], [24], [25] and conducting vias [24]54

should be avoided for transparent devices. Meshing the res-55

onators in [27] can be difficult due to the small gaps and thin56

conducting lines. In general, to adapt to the meshed configu-57

ration, simple structures are desirable because the mesh could58

alter the currents on the patch, and consequently, change59

the radiation mechanisms. For this purpose, [26] can be a60

good option but this technique requires large space for the61

antenna.62

In this paper, a single-layer dual-band CP meshed patch63

antenna with a small frequency ratio is presented. The design64

consists of two pairs of meshed patches, which are fed65

by an open-ended 50-� microstrip-line through proximity66

coupling. Regarding the theoretical aspect, the proposed tech-67

nique is unique where both inductive and capacitive cou-68

plings are exploited at two different frequencies by the same69

simple feeding structure. Regarding the practical aspect, the70

design avoids using probe feed, shorting vias, and any extra71

non-radiating or radiating element, which makes it suitable72

for adapating on transparent devices. As a validation, a dual-73

band CP antenna with a frequency ratio of 1.12 is charac-74

terized using the ANSYS Electronics Desktop and validated75

experimentally.76

II. RESONANT-TYPE PROXIMITY-FED PATCH ANTENNA77

For completion, we first present the theory of a resonant-78

type proximity-fed patch antenna. The proximity-fed method79

was first presented by Itoh and Ohtsuka in 1982 [28] to80

avoid the multi-layer structure and exploit the advantages of81

non-contacting coupling feeds. It should be noted the princi-82

ple is different from the traveling-wave structures as in [26],83

[29], and [30].84

The basic structure is shown in Fig. 1, which consists85

of a rectangular patch fed from a microstrip line with dis-86

tance L from its open-circuit termination. This creates a87

standing-wave on the microstrip line with maximum volt-88

age and zero current at the termination. Interestingly, two89

types of coupling occur in this structure at two different90

frequencies:91

1) At a frequency f1 with guided-wavelength λg1, if92

L =
nλg1
2
, (1)93

where n is an integer, the patch is aligned at Vmax.94

If the patch length Lp ≈ λeff1/2, the patch resonates at95

TM10 mode with vertical polarization through capaci-96

tive coupling. It is noted that λg1 6= λeff1 as the effective97

permittivities of the patch and the microstrip line are98

different.99

FIGURE 1. Coupling mechanisms of coplanar proximity feed for a
rectangular patch at different frequencies.

FIGURE 2. Top-view of the proposed dual-band CP proximity-fed patch
antenna with one pair of patch.

2) At a different frequency f2 with guided-waveglenth λg2, 100

if 101

L =
nλg2
2
+
λg2

4
, (2) 102

where n is also an integer, the patch is alignedwith Imax. 103

If the patch widthWp ≈ λeff2/2, the patch resonates in 104

TM01 modewith horizontal polarization through induc- 105

tive coupling. 106

Therefore, the structure works as a dual-band linear- 107

polarized (LP) antenna where the polarization in each band is 108

orthogonal to each other. Furthermore, the level of coupling, 109

which affects the impedance matching, can be controlled by 110

the gap between the patches and the feed lines. The principle 111

demonstrated here is a generalization of what shown in [7], 112

which will be exploited to design a dual-band CP antenna in 113

the next section. 114

III. DUAL-BAND CP PROXIMITY-FED PATCH ANTENNA 115

A. PRINCIPLE AND DESIGN 116

A CP antenna can be realized if a vertically polarized patch 117

and a horizontally polarized patch are both excited with 90◦ 118

phase difference. Since the standing-wave current and voltage 119
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TABLE 1. Parameters of dual-band CP patch antenna.

FIGURE 3. Capacitive and inductive coupling mechanisms of
microstrip-line feed for the patches at two different frequencies.

are inherently 90◦ phase different, this is naturally achieved120

and will be exploited in the design.121

Fig. 2 shows the geometry of the proposed concept, which122

consists of a pair of patch fed by an open-ended 50-�123

microstrip-line through proximity coupling. The two patches124

and feedline are printed on the top side of a single-layer125

grounded substrate (Roger RO4003, εr = 3.55, tan δ =126

0.0021, hs = 1.524 mm). To operate at two different frequen-127

cies, f1 and f2, the length and width of each patch are chosen128

as about λeff1/2 and λeff2/2, respectively.129

According to the principle demonstrated in Section II,130

we select the position of the patches from the open termina-131

tion such that132

y1 ≈

{
nλg1/2 at f1
nλg2/2+ λg2/4 at f2

(3)133

and134

y2 ≈

{
nλg1/2+ λg1/4 at f1
(n+ 1)λg2/2 at f2

(4)135

where n is an integer. If (3) and (4) are satisfied, at f1, the 1st136

patch (Fig. 2) resonates at TM10 mode while the 2nd patch137

resonates at TM01 mode. Meanwhile, at f2, the 1st patches138

resonate at TM01 mode and the 2nd patch resonates at TM10139

mode.140

FIGURE 4. Current distribution on the dual-band CP patch antenna for
different phases: (a) lower frequency of 5.0 GHz and (b) upper frequency
of 5.6 GHz.

Finally, as mentioned before, the standing-wave voltage 141

and current have 90◦ phase difference, thus, CP radiation at 142

both resonance frequencies can be achieved. Fig. 3 illustrates 143

the standing-wave voltage and current along the microstrip 144

line, and how CP is achieved at both lower and upper bands. 145

By tuning the patch dimensions as well as the positions y1 and 146

y2, it will be shown later that satisfactory axial ratio (AR) and 147

broadside radiation can still be achieved. 148

For demonstration, a design with a frequency ratio of 1.12 149

(operating at 5.0 GHz and 5.6 GHz) is characterized. Its 150

design parameters are given in Table 1. The simulation results 151

will be shown in the next section. To confirm the analysis 152

shown in Fig. 3, the surface currents on the antenna are simu- 153

lated at the two frequencies of 5.0GHz and 5.6GHz and given 154

in Fig. 4. For the lower frequency, at 0◦ phase, the dominant 155

currents on the 1st patch are vertical (TM10 mode), whereas 156

at 90◦ phase, the dominant currents on the 2nd patch are in 157

horizontal direction (TM01 mode). For the upper frequency, 158

at 0◦ phase, the dominant currents on the 1st patch are hor- 159

izontal, whereas at 90◦ phase, the dominant currents on the 160

2nd patch are vertical. These simulation results are consistent 161

with the above analysis. It can be confirmed from Fig. 4 that 162

the antenna achieves a right-hand CP (RHCP) radiation at 163

both frequencies. By simply mirroring the patches through 164

the feed-line, the proposed antenna achieves a dual-band 165

left-hand CP (LHCP) radiation. 166

B. DIFFERENT NUMBERS OF PATCH 167

Based on the proposed method, dual-band CP antennas with 168

gain enhancement can be realized by adding more radiating 169

elements, as shown in Fig. 5. For the second and third pairs 170

of patches, it needs to resonate with the same phase as the 171

first pair. Strictly speaking, this cannot be satisfied at both 172

frequencies f1 and f2 at the same time. However, a compro- 173

mise can be made when f1 and f2 are very close to each other 174

(so that λg2 is close to λg1). Here we can choose y3 ≈ y4 ≈ 175

0.5(λg2 + λg1). After the optimization, y3 = 33.8 mm and 176
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FIGURE 5. Geometry of the dual-band CP patch antenna with different
number of patch.

FIGURE 6. Simulated performances of the dual-band CP patch antenna
for different numbers of patch: (a) |S11|, (b) axial ratio, and (c) broadside
realized gain.

y4 = 33.4 mm are chosen for both designs with the double177

and triple pairs of patch, while their other parameters are same178

as those listed in Table 1.179

All antennas in Fig. 5 are characterized and their perfor-180

mances are compared in Fig. 6. It is observed that the three181

FIGURE 7. Different configurations of the dual-band CP patch antenna.

configurations achieve good CP radiations at dual frequency. 182

As the number of patches increases, the impedance match- 183

ing, bandwidth, and gain are improved for both lower and 184

upper bands [Figs. 6(a) and (c)]. The antenna with a single 185

pair of patch does not yield satisfactory impedance match- 186

ing, which is due to the slightly weak coupling between the 187

patches and the feed line. By adding more patchs, the cou- 188

pling is enhanced, and consequently, the impedance match- 189

ing in the antennas with double and triple pairs of patch is 190

improved [Fig. 6(a)]. Due to the same CP radiation mecha- 191

nism, their AR characteristics are nearly identical, as shown 192

in Fig. 6(b). From Fig. 6(c), the broadside gains at both 193

frequency-bands are proportionally increased by addingmore 194

number of patches; i.e., the single pair of patch antenna 195

yields gain of 6.5 and 5.9 dBi at 5.0 and 5.6 GHz, respec- 196

tively, while the gains at both bands increase ∼3 dB and 197

∼4.8 dB for the double and triple pair of patch designs, 198

respectively. 199

IV. DUAL-BAND CP MESHED PATCH ANTENNAS 200

A. DIFFERENT MESHED CONFIGURATIONS 201

Due its simplicity, the proposed concept is well suited for 202

transparent antennas, as also illustrated with a single-band 203

CP antenna in [7]. For demonstration, dual-band CP antennas 204

with two pairs of patches are implemented, as shown in Fig. 7. 205

Ant. 1 is the dual-band CP antenna with double pair of solid- 206

patch, while the patches of other designs are meshed. For 207

the Ants. 2 and 3, each patch is meshed into 6 × 5 meshes 208

with a line width of 0.2 mm. For Ant. 3, the feed-line is 209

meshed; i.e. its width is meshed into 2-cells with a line 210

width of 0.2 mm. Although an optically transparent dielectric 211

(e.g., glass or polymer) is required for an actual transparent 212

antenna, the design philosophy is the same for transparent 213

and non-transparent substrates. Thus, the Roger’s RO4003C 214

laminate (εr = 3.55, tan δ = 0.0021, and hs = 1.524 mm) 215

is chosen for the validation of the proposed method. Since 216

the mesh changes the sheet resistance of the patch, the 217

design parameters of the meshed patch antennas are slightly 218
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FIGURE 8. Performance comparison of the different antennas: (a) |S11|,
(b) axial ratio, and (c) broadside realized gain.

TABLE 2. Parameters of dual-band CP meshed patch prototype.

modified as compared to the solid patch. Referring to219

Figs. 2 and 5, the optimized parameters of Ants. 2 and 3 are220

given in Table 2.221

The three different configurations in Fig. 7 are character-222

ized as demonstrated in Fig. 8. The three antennas achieve a223

good dual-band CP radiation; i.e., good impedance matching,224

AR values<1 dB at 5.0 and 5.6 GHz, and broadside gains of225

>8.0 dBic. As shown in Figs. 8(a) and (b), the |S11| and AR226

curves are quite similar for the three configurations. As ana-227

lyzed in [2], [5], and [6], the conductivity (σ ) of meshed sheet228

is less than the conductivity of solid-sheet, and consequently,229

the radiation efficiencies (REs) of the meshed patch antennas230

FIGURE 9. Fabricated prototype of the dual-band CP meshed patch
antenna.

(Ants. 2 and 3) are less than the RE of Ant. 1. Accordingly, 231

the meshed patch antennas yield a lower gain as compared 232

to the solid patch design, as illustrated in Fig. 8(c). With the 233

meshed transmission line, the gain of Ant. 3 shows a drop 234

of about 0.3-dB relative to Ant. 2. The meshed transmission 235

lines have been investigated in [31], [32], [33], and [34], 236

which also showed a minor additional losses (depending on 237

the transparency). 238

B. MEASUREMENTS 239

For verification, the meshed patch antenna with solid feed- 240

line (Ant. 2) is fabricated and tested. It is noted that for 241

applications such as integration with solar cells, thin trans- 242

mission linesmight not be necessary tomesh [7]. Fig. 9 shows 243

a prototype of the fabricated antenna. The antenna is fab- 244

ricated using the standard printed circuit board technology. 245

The prototype employs a SubMiniature version A (SMA) 246

connector as coaxial-to-microstripline transformer. The sim- 247

ulation and measurement performances of the antenna pro- 248

totype are compared in Fig. 10. There is a good agreement 249

between the simulated and measured results. From Fig. 10(a), 250

the antenna prototype yields a measured −10-dB impedance 251

bandwidth of 210 MHz/290 MHz (about 4.3% and 5.1% at 252

the lower and upper band, respectively). In Fig. 10(b), the 253

measurements result in a AR bandwidth (AR < 3 dB) of 254

about 50 MHz/70 MHz, i.e. corresponding to 1.0% and 1.3% 255

at the the lower and upper band, respectively. As shown in 256

Fig. 10(c), the fabricated mesh prototype achieves a good 257

broadside gain at both frequency bands, which agrees well 258

with the simulations. The meshed patch antenna yields mea- 259

sured gains of about 9.0 dBic at 4.9 GHz and 8.6 dBic at 260

5.5 GHz. Finally, simulations of the meshed design indicate 261

radiation efficiencies (RE) of 70% and 76% at the lower and 262

upper bands, respectively. Similar to any meshed antennas in 263

literature, there is a tradeoff between the transparency and 264

radiation efficiency [5]. Although the measured RE is not 265
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FIGURE 10. Simulated and measured (a) |S11|; (b) AR values; and
(c) realized gain of the dual-band CP meshed patch antenna.

available due to the function limitation of the anechoic cham-266

ber, the good agreement between the simulated and measured267

gains also indicates a similar value of around 70% for the268

practical RE.269

The radiation patterns of the antenna prototype are illus-270

trated in Fig. 11. Note that the simulation and measure-271

ment results are plotted for the frequencies where the AR272

values are at minimum. Observably, at both frequencies,273

the antenna achieves a good broadside RHCP radiation274

with reasonably symmetric pattern and high front-to-back275

ratio. At the broadside, the measured RHCP field intensity276

is >20 dB larger than that of LHCP for the both bands.277

At both frequencies, the measurements result in half-power278

beamwidths of about 72◦ and 40◦ in the xz and yz-plane,279

respectively.280

C. DISCUSSION281

Table 3 shows a comparison between the proposed antenna282

and previous meshed patch antennas. It is noted that283

our design exploits the advantage of simple feeding from284

series-fed patch structure. As illustrated in Table 3, only the285

FIGURE 11. Radiation patterns of the meshed patch antenna prototype.

TABLE 3. A comparison of the proposed antenna and the previous
meshed patch antennas.

antenna in [8] provides a dual-band CP radiation, however, 286

it uses metamaterial components, which makes it not trans- 287

parent in a large feeding region. It is also more compli- 288

catedwithmulti-layered structure. To achieve higher gain, the 289

antenna in [8] would require more complex feeding network 290

with array configuration, as compared to the proposed design. 291

V. CONCLUSION 292

A method of designing a simple dual-band CP patch antenna 293

with tight frequency ratio has been described. The antenna 294

consists of one/several pair of rectangle patches, which are 295

excited by an open-ended 50-�microstrip line through prox- 296

imity coupling. Based on the capacitive and inductive cou- 297

plings, the dimensions and arrangement of these patches are 298

designed to generate a dual-band CP radiation. Due to its 299

simplicity, the design is well suited for applications requir- 300

ing transparent radiators. For demonstration, a dual-band 301

CP meshed patch antenna with a frequency ratio of 1.12 at 302

C-band has been designed, fabricated, and tested. It is empha- 303

sized again that although non-transparent substrate has been 304
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used, the theory, design method and procedure are the same305

for trasparent or non-transparent substrates. The antenna pro-306

totype yields a |S11| < −10 dB bandwidth of 4.82−5.03 GHz307

(210 MHz) and 5.49−5.78 GHz (290 MHz), AR < 3-dB308

bandwidth of 4.88−4.93 GHz (50 MHz) and 5.50−5.57 GHz309

(70 MHz), and a high measured gain of 9.0 dBic and 8.6 dBic310

for the lower and upper bands, respectively.311
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