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ABSTRACT The main black land conservation measure in China is the straw return to the fields. The
processing of high-resolution images collected by aerial photography of UAVs through image stitching
technology can provide image information for achieving fast and accurate detection of straw cover over large
areas. The classical SIFT algorithm has many drawbacks, such as high dimensionality of feature descriptors,
high computational effort, and low matching efficiency. To solve the problems above, this study proposes an
improved algorithm. First, the method down sampled the high-resolution images before detecting the features
to reduce the number of feature points and improve the efficiency of feature detection. Then, matching among
feature points is achieved by gradient normalization-based feature descriptors to improve the matching
accuracy. Next, the Progressive Sample Consistency algorithm eliminates the mismatch points and optimizes
the transformation model. Finally, the images are fused with optimal stitching combined with fade-in and
fade-out to achieve high-quality stitching. The comparative experimental results show that compared with the
traditional SIFT and the speed-up robust feature algorithms, the algorithm has the advantage of the speed and
good robustness to angle rotation, and makes full use of the texture information and the detail information,
so it has higher accuracy. Compared with the traditional methods, the panoramic stitching image quality
herein is excellent and can be applied to subsequent straw cover detection, the straw cover error is <3%,
meeting the demand for large-area straw cover detection. Overall, the method proposed herein achieves an
ideal balance between accuracy and efficiency; and outperforms other widely used and superior methods.

INDEX TERMS Aerial images, down sampling, SIFT operator, panoramic stitching, straw coverage rate.

I. INTRODUCTION technology has been applied and the benefits are signifi-

In recent years, UAV remote sensing technology has become
increasingly popular due to its speed, ease of operation, and
flexibility [1]. Aerial images and videos captured by UAVs
are widely utilized in various fields, such as agriculture mon-
itoring [2], weather forecasting [3], [4], and geographic map-
ping [5]. Agriculture is the first area where remote sensing

The associate editor coordinating the review of this manuscript and
approving it for publication was Miaohui Wang.

cant [6]. Agricultural remote sensing monitoring mainly takes
crops and soil as the objects; and uses the spectral characteris-
tics of the ground to monitor crop growth, crop quality, crop
pests, and diseases. Precision agriculture technologies, rep-
resented by artificial intelligence (AI) and machine learning
(ML) technologies, are now making a huge contribution to
agricultural production [7]. Al and machine learning improve
crop yield prediction with real-time sensor data from drones
and visual analytics data. Agriculture has also become one of
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the most promising AI and ML application scenarios. Black-
land resources are very scarce worldwide, and the only four
major Blackland areas are the Ukrainian plains in Ukraine,
the Mississippi plains in the United States, the Northeast
plains in China, and the Pampas in South America from
Argentina to Uruguay. In the northeastern plains of China,
corn and rice are the main crops. Therefore, the main black
land conservation measure in China is the straw return to
the fields, and relevant straw return subsidy policies have
been promulgated to more effectively limit straw burning and
guide farmers to return straw to the fields in a reasonable
manner [8]. The question of how to quickly and accurately
assess quantitatively the straw return rate is very important.
It is difficult to calculate the coverage rate at any time because
of the wide crop cultivation area, so it is possible to obtain
the image information by collecting high-resolution images
through aerial photography by UAV. However, the single
image collected incompletely covers the target area due to the
height and camera resolution limitations. Therefore, stitching
multiple images collected by UAV aerial photography to
generate a large-area and high-resolution panoramic image
is the key to improving the efficiency and accuracy of straw
cover detection.

Image stitching is the process of combining multiple over-
lapping images to compose a high-resolution panoramic
image. Image alignment is the key technology for UAV aerial
image stitching. Scholars worldwide have conducted sev-
eral studies on this technology. Lowe et al. [9] proposed a
scale-invariant feature transform (SIFT) algorithm that has
the advantages of high matching accuracy, good scale invari-
ance, and strong robustness to illumination and viewpoint
changes. However, the matching is time-consuming and chal-
lenging to meet the requirements of fast-stitching processing.
Hou et al. [10] improved the high-dimensionality problem
for feature vectors detected by the SIFT algorithm and pro-
posed a scale-invariant feature transformation based on cyclic
descriptors to improve the efficiency of coarse matching of
feature points. Bay et al. [11] proposed a highly robust local
feature point detection algorithm, the speed-up robust feature
(SURF) algorithm. It improved the interest point extraction
and feature vector description methods and the speed of fea-
ture extraction and matching compared to the SIFT algorithm.
However, the number of matching points is reduced and less
tolerant of scale and rotational changes. Hu et al. [12] used
the SURF algorithm to stitch aerial images from UAVs and
found that it is faster at matching images than the SIFT
algorithm. However, the number of matching points is small
and unevenly distributed, and the image-stitching quality is
low. Previous studies on image stitching have focused on the
simple case of stitching two images [13] or multiple images
located on the same row to generate panoramic images [14],
[15]. Presently, researchers worldwide have less research on
the fast stitching of multiple high-resolution images. The
problem with the traditional stitching of multiple images is
that there are rotation angles between the acquired high-
resolution images, which makes image alignment difficult
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and time-consuming. At the same time, the errors generated
by multi-image stitching cumulatively affect the accuracy of
panoramic stitching images [16], [17], [18].

To address these problems, a fast-stitching technique was
proposed for straw farmland images based on the optimized
SIFT algorithm. Compared to the traditional SIFT algo-
rithm [8], the image is down sampled before feature detec-
tion to reduce the number of feature points and improve the
efficiency of feature extraction. MN-SIFT feature descriptor
is used for matching, which has better texture features and
can improve the matching accuracy. Here the original coor-
dinates and scale parameters of feature points are restored
in the feature matching stage, and feature point matching
is performed according to the similarity metric to ensure
excellent image-stitching quality and accuracy. Based on this,
the Progressive sample consistency (PROSAC) algorithm
eliminates false matches, improves the accuracy of match-
ing feature points, and solves the projection transformation
matrix model using the least-squares method. To eliminate
the image misalignment, ghosting, and even stitching gaps
generated during stitching, the modified optimal stitching line
and fading-in and fading-out method are used to fuse the
images, which completes the smooth transition between the
overlapping image regions and the nonoverlapping stacked
domain and enhances the details of the images. A layered
stitching strategy is designed for multiple high-resolution
images, which reduces the accumulated error of continuous
projection and improves the accuracy and stitching efficiency
of image stitching compared with the traditional method.
Finally, the fast stitching of multiple remote sensing images
of straw farmland is realized, and a high-quality panoramic
image with reference value was generated.

Il. PROPOSED METHOD

A. FAST STITCHING ALGORITHM

Presently, the framework of remote sensing image-stitching
algorithms has been perfected. It is the primary research
focus on studying the fast-stitching algorithm of remote sens-
ing images and its adaptability and robustness to different
scenes [19], [20], [21]. The panoramic stitching method of
remote sensing images of straw farmlands is studied through
low-altitude and high-resolution sequence images collected
by the UAYV, as shown in Figure 1. Herein, a fast-stitching
method is proposed for high-resolution images in fields to
solve the low-feature alignment efficiency problem due to
the high resolution of field images and the similar color of
the straw surface. Figure 2 shows the overall flow of our
method. The main contributions of the improved image stitch-
ing method proposed herein are summarized as follows: first,
histogram equalization and denoising are preprocessed on the
UAV aerial photography sequence photographs of the straw
farm. Second, the optimized SIFT algorithm detects the fea-
ture points of the processed image to obtain the feature point
descriptor MN-SIFT [22], and feature point matching is per-
formed. Next, the PROSAC algorithm rejects false matches
and improves the matching accuracy. Finally, the stitching
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area is computed using the image projection transformation
model, and the best stitching line and fade-in and fade-out
techniques fuse the images and enhance the image quality.
Multi-image stitching generates large-area panoramic images
according to the multi-image-stitching strategy, which pro-
vides a scientific reference for large-area straw coverage
detection and geographic information detection.

B
Improved SIFT feature point
detection and fast matching -

Image
\ preprocessing

e B,

| The PROSAC method
<:' to optimize matching

&=

e Global transformation
- === and Image Fusion

Multi-image
stitching strategy

FIGURE 2. Overall flow chart of fast stitching method.

B. IMAGE ALIGNMENT

1) FEATURE POINT EXTRACTION

It is challenging to match the texture, projection, luminos-
ity, and nonlinear intensity variations in the high-resolution
aerial images of farmlands taken by UAVs because the straw
features and colors are similar and the images are taken
at different times from different viewpoints. To find and
match feature points, the conventional SIFT algorithm is used
directly, which has drawbacks, such as feature point duplica-
tion, high time consumption, and poor alignment efficiency.
The improved SIFT algorithm which has better stability and
invariance, preferentially down samples the image before
feature detection to effectively reduce the number of feature
points and improve the alignment accuracy. Also, a new
feature descriptor is introduced, which describes the textural
features of the image better and enhances the alignment
efficiency effectively. The process of the improved SIFT
algorithm is outlined below as follows:
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e Image down sampling: According to the down sampling
factor (k), the number of image sampling points is reduced,
and each row and column of the input map is sampled at
k point intervals to form the resulting map; thus, reducing the
image resolution and improving the efficiency of matching
feature point detection, as shown in Figure 3. As the informa-
tion quality contained in remote sensing images in different
scenes varies, k also varies. Herein, k = 5, which was selected
after several experiments by combining the information of the
straw farmland images.

Downsampling

FIGURE 3. Flow chart of down sampling.

e Scale-space extreme value point detection: Scale-
space extreme value point detection: This step entails extreme
point detection and the search for image locations on all
scales. Potential points of interest that are invariant to scale
and rotation are identified using Gaussian differential func-
tions. The scale-space of a two-dimensional image L(x, y, o)
is defined as the convolution of the scale-variable Gaussian
function G(x, y, o) with the original image I(x,y), as follows:

1 k
G (x, y,0) = ﬁe—(x2+)2)/202 )
To
Lx,y,0)=1(x,y)*Gx,y,0) (2)

e Feature point pinpointing: A three-dimensional
quadratic function is fitted to accurately determine the loca-
tion and scale of feature points. Also, low-contrast feature
points and unstable edge response points are filtered to
enhance the matching stability and improve noise immunity.

e Feature point descriptor generation: This study
focuses on farmland images with distinct textural character-
istics, and different plots have different textural complexities.
Therefore, a gradient normalization-based MN-SIFT [22]
descriptor is used, which better describes textural features,
better robustness to farmland remote sensing images, and can
improve the matching efficiency. It modifies gradient magni-
tudes to obtain continuous-valued magnitude features($2)as
follows:

= Q(x,y) = Qpin
¢ (x’ y) Qunax — Lmin (3)
Using the feature points as the origin, an image region
H(x,y) of size 41piex x 4lpiex is constructed, and then
H(x,y) is divided into 4 x 4 subregions as shown in Figure 4.
As shown in (3), where 2,,;, and €2,,,, are the minima and
maximum values of the gradient amplitude obtained from the
image region, and (x,y) denotes the pixel position.
The region H(x,y) is convolved with [—1,0,1] and
[—1,0,1]7 kernels to obtain image gradients in the
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FIGURE 4. Image area map.

horizontal (Fh) and vertical (Fv) directions, respectively.
Then the gradient magnitudes(£2)and directions(S)are calcu-
lated as follows:

Q(x,y) =\ Falx, yP + Fy(x, 3 @)
,3()57)’) :Cltan2(FV (xsy)th(xvy)) (5)
As shown in Figure 4, each subregion is denoted by

H, .(r =0,1,2,3;c = 0,1,2,3), the set of pixels in each sub-
region is {H(x,y) : x € [l;, uc] ANy € [, u,1}, as follows:

= W=be o _@-Detrh o
4 4

p=W-br _@l=be+rh
4 4

Dividing the direction B (x,y) into 8 levels by tak-
ing the remainder operation, and calculating the feature
histogram A, . ;, as follows:

L(x.y) =m0d(\"8(;ﬂ’y) +%J,8) ®)
3
hrei =) QEILE)=0 (9
x=lc y=lI,

where, ¢ € [0, 7], § function takes values equal to zero at all
points except zero, its value § (z) is as follows:

5(0) = { 1 the mal.n dlI:eCthIl (10)
0 other directions

Finally, the &, . ; of each subregion histograms are con-
catenated over all H, ., generating a feature descriptor
MN-SIFT [22] that is independent of scale, rotation, illumi-
nation, etc.

The consumption and low matching efficiency of the tradi-
tional algorithm are improved. This improvement strengthens
its robustness to straw image texture features and maintains
its invariance to image rotation, scaling, brightness changes,
and a certain degree of stability to viewpoint changes, affine
transformations, and noise.

2) FEATURE POINT MATCHING

According to the feature point detection results, the feature
point coordinates and scale parameters are restored to ensure
the accuracy of subsequent high-resolution image stitching.
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Afterward, the MN-SIFT [22] descriptor of the feature points
measures the similarity, and the matched pairs are extracted.
The similarity measure evaluates the similarity of two feature
points, and the Euclidean distance between the feature points
is generally used as a criterion to filter the matches. Next,
the Euclidean geometric distance is calculated from a feature
point to the corresponding feature point of another image,
as shown in (11), and the two feature points in which the
Euclidean geometric distance is the smallest and the second
smallest only are selected. Furthermore, the ratio (r) of the
Euclidean geometric distances of the two selected feature
points is calculated. If r is <a specific threshold T (the
threshold is usually between 0.4 and 0.6), the pair of matches
is recognized; otherwise, it is rejected.

D(p,q) = ||Dp=Dyl| = | Y D, li1 =Dyl (11)

i=1

where p is a feature point in the reference image, q is a feature
point in the target image, D), and D, are the n—dimensional
feature descriptors of p and q.

The feature point matching is a problem of similarity
retrieval between high-dimensional vectors by distance func-
tions. The Best-Bin-First(BBF)search algorithm establishes
data indexes to achieve a fast search of high-dimensional
data and fast matching. It can ensure the priority retrieval of
the space with a higher probability of containing the near-
est neighbors, which effectively reduces the computational
complexity, increase the operation speed and improve the
alignment efficiency. The method proposed herein enables
fast matching of matching points and improves the overall
stitching efficiency.

C. PROSAC ALGORITHM FINE MATCHING

Although the fast matching of image feature points is
achieved, the process inevitably produces some false
matches. False matching pairs may lead to ghosting and
misalignment in the subsequent stitched images, so matching
results must be filtered to achieve fine matching of image fea-
ture points and reliable matching feature point pairs. Next, the
PROSAC algorithm optimizes the matching results. It uses a
similarity function to rank the quality of feature point pairs
linearly, and only the sample set with the highest-ranked
correspondence is gradually selected for model hypothesis
and validation at a time. The details are as follows: Four sets
of matching pairs are randomly drawn from the sample set,
and the transformation matrix H (12) is calculated according
to (13), denoted as model M. The projection error of all
feature matching point pairs in the matching point set with
the model M is calculated according to the error function (14),
and if the requested error is less than a threshold value of 0.1,
the matching point pair is added to the inner point set I until
the end of the iterations when the number of iterations reaches
a preset number (500 in this study). The optimal single-
response matrix H is found according to the optimal inner
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point set L.

myp mpz M3
H | my myp m3 (12)
m3y m3zp 1
g o= et mi2b + m3
- m3ia +mzpb + 1
p = Mmaat mb + mo3
o m31a + m3pb + 1
where (a,b) is the image pixel point coordinates before trans-
formation matrix processing, (a’, b’) is the image pixel point
coordinates after transformation matrix processing.

(13)

n

Z (o, — M1 + mi2bi + mi3
" m3iai+mxnbi+1

2

i=0

() — ma1a; +ma ,+m23) (14)
m31a; +m3b; + 1

D. IMAGE FUSION

Image fusion is the last image-stitching step, which is the key
to high-quality image stitching. Straw farmland aerial images
have a complex background and contain more information,
including houses, roads, and other distractions in addition to
the straw in the field. Besides, the stitching process is prone
to image overlap, ghosting, and misalignment. To solve these
problems, image fusion uses the modified optimal stitching
line [23] and a fading-in and fading-out method. The basic
idea of the optimal stitching line is dynamic planning, which
is calculated by the energy function (15) to find the path
with the minimum energy value. The method proposed herein
incorporates color difference, gradient difference, and textu-
ral complexity to find the most similar sutures on both sides
in the overlapping region. Also, the strategy of finding the
optimal sutures greatly reduces the overlapping region; thus,
alleviating the blurring and ghosting problems. The fading-in
and fading-out method is a distance-based weighted average
method. Its weights are selected according to the distance
from the overlapping boundary. The closer the distance from
the boundary, the smaller the weight value is taken; thus,
reducing the influence of the edge of the overlapping region
of the evidence and making a smooth transition to the fusion
boundary. The two images to be fused are defined as /; and
I, respectively, and the fused image is I (16).

Ecolor + Efexture + T

W= (15)
EGrad

where W is the final weight, Ec,,r is a color difference item,
EGraq 1s the gradient difference term, E7yyre is the texture
difference term, 7 is a penalty item.

Il (X,Y) (x’y)ell

)iy LG,y +da ()b (x,y) (x,y)
(x,y) =

€ (I1NI)

L(x,y) x,yeh

(16)
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where dj (x, y) and d> (x, y) are the weight functions, (x, y) is
the distance from the boundary and d; (x,y) +da (x,y) = 1.
The method proposed herein achieves a smooth transi-
tion between the overlapping regions and the nonoverlapping
stacked domains of the image. Thus, this smooth transi-
tion improves the image quality and removes the redundant
information in the overlapping regions of the image while
supplementing the effective information in the nonoverlap-
ping regions to enhance the image details and obtain a more
comprehensive and clearly described stitched image.

E. MULTIPLE HIGH-RESOLUTION-IMAGES PANORAMIC
STITCHING

The traditional multi-image stitching method entails find-
ing the projection models of all images in the stitching
sequence and using a combination of multiple models to
achieve panoramic stitching of multiple images [24], [25].
This method is simple to operate, but causes stitching errors
to accumulate. For high-resolution aerial images, the stitching
error causes serious misalignment of the stitched image and
affects the panoramic image accuracy.

Herein, a layered stitching strategy of multiple high-
resolution images was designed. The layering idea is such that
because the relative position relationship between the images
acquired from the same route is more accurate, the deflection
angle and the error accumulated by the conversion model are
smaller. Here, each layer of the image is primarily stitched.
Next, the panoramic view of the result of each layer is stitched
to form a complete panoramic image, as shown in Figure 5.

FIGURE 5. Stitching strategy diagram.

Ill. EXPERIMENTS
A. IMAGE ACQUISITION AND EXPERIMENTAL
EQUIPMENT
The experimental images were collected from the conserva-
tion tillage experimental base of the Agricultural Machin-
ery Research Institute in Changchun, Jilin Province, and the
field experiment base of Jilin Agricultural University. The
acquisition time was November 5, 2021, around 10:00 a.m.
to 12:00 p.m. on a cloudy day. The experiment used a DJI
M200 V2 UAV equipped with a stabilizing gimbal X5S to
acquire images. In this study, the UAV acquired 120 meters of
RGB images of different straw farmland with image overlap
at 50% and an image size of 2970 x 5280 pixels. A total of
200 images were acquired for the study of stitching.

The experiments were performed on the Windows 10 sys-
tem with an NVIDIA GeForce GTX 1050 GPU, 2.50 GHz
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TABLE 1. k-value comparison results.

Group Parameters 1 2 3 4 5 6 7 8
Number
feature 58201 26503 12623 8671 6026 2690 1386 863
number
1 Matching 17 20 22 18 24 20 16 14
rate /%
Time /s 62.38 16.74 7.92 4.24 2.38 1.65 1.06 0.53
feature 53637 30279 10643 8093 5036 2413 1186 654
number
2 Matching 16 18 21 19 22 20 13 14
rate /%
Time /s 58.24 14.36 6.03 3.27 2.13 1.33 0.92 0.47
feature 46255 19860 9672 7412 5532 2269 1237 771
number
3 Matching 15 18 22 23 25 22 19 13
rate /%
Time /s 54.66 12.79 5.17 3.19 2.53 1.01 0.79 0.44
feature 55371 28430 13795 9061 4863 2735 1542 996
number
4 Matching 19 22 24 23 26 23 19 15
rate /%
Time /s 58.72 19.64 8.03 4.11 2.55 1.73 1.27 0.76
feature 47623 19756 11632 7824 4667 2256 1187 663
number
5 Matching 17 22 24 24 27 23 19 16
rate /%
Time /s 52.46 13.27 6.36 3.84 2.06 1.35 1.08 0.43

CPU, and 8GB RAM. We quantitatively and qualitatively
compare our feature detection and matching results with
the most commonly used traditional algorithms, including
SIFT [8] and SURF [11]. And also, the stitching results
are compared with excellent stitching algorithms includ-
ing improved SURF [12], APAP [13], SPHP [14], and
AANAP [15].

The performance of the proposed method was evaluated
by experiments related to image stitching, and the values of
each parameter during image processing were counted for
data analysis. The methods and experiments were designed
and conducted using MATLAB R2017b.

B. DOWN SAMPLING FACTORS SELECTION

To obtain a more desirable number of feature points and
matching rate, the k-value is needed for continuous improve-
ments during experiments. According to different coefficients
(K), some remote sensing images of farmlands are selected
randomly for experimental analysis. As shown in Table 1,
the larger the k-value of k, the smaller the number of feature
points and the shorter the time. However, when k = 5, the
number of feature points meets the stitching requirement, and
the running time meets the fast-stitching requirement and the
highest matching rate. Therefore, k = 5 satisfies the research
requirements herein.

C. EXPERIMENTAL RESULTS

1) FEATURE DETECTION AND MATCHING COMPARISON
ANALYSIS

To verify the alignment effect of the method herein, experi-
ments were conducted as shown in Figures 6, 7, and 8, and

different splicing algorithms were compared. The results are
shown (a) the traditional SIFT [8], (b) the SURF [11], and
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FIGURE 6. The feature point detection results of group 1: (a) The result of
traditional SIFT [8]; (b) The result of SURF [11]; (c) The result of proposed
method.

(c) the proposed method. As can be seen from the Figure,
the traditional SIFT [8] algorithm generated too many feature
points, which seriously affected the detection and matching
efficiency. The SURF [11] algorithm generated fewer feature
points, but the feature points are unevenly distributed, thereby
affecting the matching accuracy. The algorithm used herein
achieved excellent effects: the number of feature points was
significantly reduced, and the distribution of feature points
was uniform and effective, which finally improved the detec-
tion and matching efficiency.

Also, the results of multiple experiments of the three algo-
rithms were counted, and the results are shown in Table 2.
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TABLE 2. Feature matching performance comparison results.

Method Number of feature points Number of Matching points Matching Time/s
Maximum Average Minimum Maximum Average Minimum rate/%
SIFT 59965 55230 48524 8705 8366 7652 15.15 69.32
(8]
SURF 15070 13644 12672 1107 930 565 6.82 3.11
[11]
Proposed 6165 5707 5529 1578 1266 1024 22.18 2.32
method

(@)

()

©

FIGURE 7. The feature point detection results of group 2: (a) The result of
traditional SIFT [8]; (b) The result of SURF [11]; (c) The result of proposed
method.

(a)

©

FIGURE 8. The feature point detection results of group 3: (a) The result of
traditional SIFT [8]; (b) The result of SURF [11]; (c) The result of proposed
method.

From the results shown in Table 2, the algorithm used in
this study detected the least number of feature points and
reduced 90% and 58 % of the feature points compared with the
traditional SIFT [8] and SURF [11] algorithms, respectively.
The matching efficiency (matching efficiency is the ratio of
the average number of matching points to the average number
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of feature points) is 22.18%, which was the highest among the
three algorithms. The running time of the three algorithms
shows that the algorithm proposed herein took the least time,
and without affecting the splicing accuracy, it saved 97%
and 25% of the time taken by the traditional SIFT [8] and
SUREF [11] algorithms, respectively, which greatly improved
the efficiency of feature detection and matching and achieved
fast detection.

2) ROBUSTNESS COMPARISON ANALYSIS

To verify the robustness of the algorithm to image rotation,
three algorithms test the image rotation by eight angles,
respectively, and the matching effect and test results are
shown in Figure 9.

As shown in Figure 9, the algorithm proposed herein has
good stability in rotational transformation because the num-
ber of feature points extracted was significantly lower than
that extracted by the standard SIFT [8] and SURF [11] algo-
rithms, which changed insignificantly in the case of image
rotation. Furthermore, in the case of image rotation, it also
maintained good and stable matching performance. There-
fore, it has higher robustness for rotated image stitching.

3) MATCHING RESULT OPTIMIZATION ANALYSIS

The PROSAC algorithm is used to optimize the fast-matching
results of the three algorithms, the comparison results are
shown in Figure 10. It can be seen that, after the calcula-
tion and optimization, the false matches among them are
removed to get the inner points (correct matching points).
The algorithm in this study had the highest inside point rate
(percentage of correctly matched points) of about 95%, the
SIFT [8] algorithm is about 92%, and the SURF [11] algo-
rithm is about 89%.

The fine-matching runtime results for the three algorithms
are listed in Table 3. According to Table 3, the algorithm in
this study dramatically reduces the running time and signifi-
cantly improves the stitching efficiency.

TABLE 3. Running time statistics.

Group number Time/s
SIFT SURF Proposed method
[8] [11]
1 31.34 10.28 3.82
2 38.28 12.57 3.88
3 32.84 11.36 2.66
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FIGURE 9. Rotational robustness comparison chart, (a) Feature point detection line chart; (b) Feature matching rate line chart.
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4) EVALUATION CRITERIA

Two methods were used to evaluate the image quality: first, a
subjective evaluation, in which the panoramic image quality
is evaluated by subjective visual effects. The second is an
objective evaluation, in which information entropy (IE) [28],
mean gradient (Clarity) [29], and image contrast (IC) are
selected as objective evaluation indices, as follows:

L-1

IE = = " [Py(i)log, pr(i)]
1=0

(7)

where f is the image, Py is the proportion of all pixels with
a gray value i in the overall image, L is the gray level, and
256 gray levels are generally selected for the statistics.

Clarity =Y Y [f @ +2.0) —f@.pl?  (18)
y X

where f(x,y) is the gray value of the image f correspond-
ing to a pixel (x,y) and Clarity is the result of Image
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clarity calculation.

IC =" 5(i.j)*Ps(i.j) (19)
s

where 8 (i,j) = |i — j|, the grayscale difference between

adjacent pixels: Ps(i, j) is the pixel distribution probability of

the grayscale difference § between adjacent pixels.

5) TWO-IMAGE STITCHING RESULTS ANALYSIS

The image of the straw farmland had a more complex back-
ground, which contained roads, houses, straw with obvious
grain characteristics, etc. A comparison of the stitching result
of the above three groups of images between the proposed
method and some excellent stitching algorithms respectively
is presented in Figures 11, 12, and 13 where the details of the
image are zoomed in, shown by the corresponding red boxes
in the mosaic images. In the result of (a) SURF [12], it is
seen that there was a clear overlap and misalignment in the
figure. A similar result for blurring and misalignment phe-
nomena were also observed in the output of (b) APAP [13],
and (c) SPHP [14]. The output of (d) AANAP [14] shows
a significant line in the stitching area. The proposed method
achieved good stitching results with no blurring and misalign-
ment phenomena; and had a natural and clear transition in the
stitching area.

Table 4 respectively shows the information entropy, mean
gradient, and image contrast of the five methods in three
groups of images, where the best performance is highlighted
in bold. In Table 4, the proposed method significantly outper-
formed other methods in multiple sets of experiments. And
it has a large improvement in stitching time compared to
other methods, significantly improving stitch efficiency and
meeting the need for rapid stitching.

6) MULTI-IMAGE STITCHING RESULTS ANALYSIS
The following Figure 14 shows the panoramic stitching
image (Figure 15) of the stitching results of each layer
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FIGURE 11. Comparison of image stitching results of group 1: (a) SURF [12], (b) APAP [13], (c) SPHP [14], (d) AANAP [15], and (e) the

proposed method. The highlighted red boxes in each image are zoomed in (shown by the corresponding boxes on the right) for a detailed
visual comparison frame that highlights the details of the image.

(d

(e)

FIGURE 12. Comparison of image stitching results of group 2: (a) SURF [12], (b) APAP [13], (c) SPHP [14], (d) AANAP [15], and (e) the

proposed method. The highlighted red boxes in each image are zoomed in (shown by the corresponding boxes on the right) for a detailed
visual comparison frame that highlights the details of the image.

TABLE 4. Evaluation indicators comparison with excellent stitching algorithms.

Group number Evaluation SURF APAP SPHP AANAP proposed

Indicators [12] [13], [14] [15] method
IE 6.71 6.73 6.75 6.78 6.83
Clarity 5.76 5.82 5.99 6.02 6.13

IC 125.74 132.21 136.62 141.62 144.23
Time/s 44.29 334.27 322.13 289.45 14.06
IE 6.69 6.74 6.76 6.83 6.94
Clarity 3.42 3.58 3.90 3.96 4.54
IC 53.94 54.76 55.63 56.23 73.24
Time/s 48.37 352.13 344.54 314.92 15.68
1IE 7.34 7.35 7.36 7.38 7.52
Clarity 9.23 9.25 9.27 9.33 10.45

IC 294.15 298.34 299.94 304.75 377.23
Time/s 36.81 329.74 289.39 253.94 10.36
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FIGURE 13. Comparison of image stitching results of group 3: (a) SURF [12], (b) APAP [13], (c) SPHP [14], (d) AANAP [15], and (e) the
proposed method. The highlighted red boxes in each image are zoomed in (shown by the corresponding boxes on the right) for a detailed

visual comparison frame that highlights the details of the image.

TABLE 5. Evaluation results of objective indicators.

Group number Traditional method Proposed method

IE Clarity IC Time/s IE Clarity IC Time/s
1 6.23 6.13 121.53 12563.58 6.83 6.74 137.35 883.21
2 6.29 6.24 123.49 12364.41 6.86 6.81 138.26 786.34
3 6.18 6.14 121.64 12401.35 6.78 6.79 136.82 792.61
4 6.26 7.05 288.34 12577.24 6.88 7.42 309.05 889.23
5 6.24 7.18 286.73 12284.26 6.76 7.46 319.64 816.23
6 6.20 7.23 309.62 12326.72 6.65 7.59 3426.2 786.23
7 6.48 6.34 237.23 11877.36 7.15 8.56 288.73 779.81
8 6.32 6.47 249.83 12232.26 7.22 8.67 291.22 806.76
9 6.57 6.53 256.53 12527.22 7.75 8.76 294.56 836.53
10 6.31 6.26 125.31 12566.38 6.88 6.82 138.61 826.86

FIGURE 14. Layered stitching results. (a) The image stitching results of layer 1; (b) The image stitching results of layer 2; (c) The image
stitching results of layer 3; (d) The image stitching results of layer 4.

generated according to the method proposed herein.
As shown in Figures 15, 16, and 17, three groups of different
methods of panoramic stitching results were compared and
analyzed.

The subjective evaluation outcome reveals that the stitch-
ing results of each layer are more natural, better retaining
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the detailed components of the image, high definition, and
high overall image quality. From the results shown in
Figures 15, 16, and 17, the method proposed herein achieved
excellent stitching results for all three groups of images with
complex backgrounds and large differences in features. The
details of the selected image in the red frame are enlarged,
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FIGURE 15. The panoramic stitching results of group 1: (a) The result of the traditional method; (b) The result of proposed method. The
highlighted red boxes in each image are zoomed in for a detailed visual comparison.

(@) (®)

FIGURE 16. The panoramic stitching results of group 2: (a) The result of the traditional method; (b) The result of proposed method. The
highlighted red boxes in each image are zoomed in for a detailed visual comparison.

FIGURE 17. The panoramic stitching results of group 3: (a) The result of the traditional method; (b) The result of proposed method. The
highlighted red boxes in each image are zoomed in for a detailed visual comparison.
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(a)

(b)

FIGURE 18. Segmentation results for two-threshold; (a) Segmentation results for Parcel 1; (b) Segmentation results for Parcel 2. The red

frame highlights the details of the image.

FIGURE 19. Segmentation results for multi-threshold; (a) Segmentation results for Parcel 1; (b) Segmentation results for Parcel 2. The red
frame highlights the details of the image.

and evidently, the overall quality of the image stitched by
the method proposed herein is high, the details are clear, the
stitching effect is natural, and there is no missing stitching and
ghosting phenomenon. However, the overall image quality
of the stitched image of the traditional method is low, with
obvious ghosting, misalignment, and blurring effects. The
objective evaluation indices of the two methods were also
calculated, and the results are shown in Table 5.

From the results shown in Table 5, after several sets of
experiments, IE [26], Clarity [27], and IC of the method
proposed herein were significantly higher, with better image
quality. According to the subjective and objective index eval-
uations, the stitching quality of the method herein is high,
which can improve the clarity and fusion effect of the stitch-
ing image and solve the misalignment and ghosting problems
caused by the traditional method.
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IV. APPLICATIONS

Currently, the flexible characteristics of UAVs are used
to acquire images, and a complete image of the area
to be measured is obtained by the image-stitching tech-
nique. Afterward, the image is processed simply and easily
by machine vision techniques using image segmentation.
This approach can provide an image and methodological
basis for calculating straw cover [28] and monitoring crop
growth.

The DE-AS-MOGWO [29] algorithm was used to per-
form two-threshold and multi-threshold segmentation on the
panoramic images herein, respectively, and the result graphs
are shown in Figures 18 and 19. The straw coverage area and
rate of the segmented map plots were calculated using pixel
points and compared with the manual segmentation results of
Photoshop software to judge the accuracy and validity of the
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TABLE 6. Statistics of straw segmentation results.

Method Parcel 1 Parcel 2
Straw covered Parcel Straw coverage Straw covered Parcel Straw coverage
area area rate area area rate
Manual segmentation 2797/m? 3028m? 92.37% 2265m? 2536m? 89.31%
Algorithm 2729m? 3028m? 90.12% 2196m? 2536m? 86.59%
segmentation

information after the panoramic image segmentation, and the
results are statistically analyzed as shown in Table 6.

As shown in Figures 18, and 19, the segmentation result
was accurate, with obvious straw coverage, clear and com-
plete straw, no obvious mis-segmentation, and high image
quality.

From the results shown in Table 6, the generated panoramic
stitching map obtained by the method proposed herein has
high quality and complete image information, which can
provide data support for the subsequent segmentation and
straw coverage calculation. Furthermore, the straw coverage
calculation error after segmentation is within 3%, which can
meet the demand for large area detection of straw coverage
and provide a reference for straw coverage detection, which
has paramount practical significance.

V. CONCLUSION

The method used herein is based on remote sensing data
of straw farmlands collected by UAV. Such an approach
uses image-stitching technology to generate high-resolution
farmland area images, providing large-scale and large-area
image information for straw cover and geographic informa-
tion detection. Herein, a fast-stitching method based on an
improved SIFT algorithm for farmland aerial images was
proposed, which quickly and accurately extracts straw target
feature points from high-resolution images collected by the
UAV aerial photography under complex background condi-
tions. Furthermore, it distinguishes between straw and other
sources of interference such as clutter in the feature matching
stage for accurate matching of matching points, accurately
calculates the conversion model, enables a certain degree of
fusion improvement of the stitched images, and improves
image quality, thereby realizing panoramic stitching of straw
farmland images. The results of the experiments conducted
using this method are as follows:

(1) In the feature extraction stage, the algorithm down
samples the high-resolution image, reduces a large number
of feature points, uses MN-SIFT feature descriptors, and
effectively improves the efficiency of feature point detection,
compared with the traditional SIFT algorithm and SURF
algorithm, the number of feature points is reduced by 90%
and 58%; the running time is reduced by 97% and 25%,
achieving fast detection.

(2) In the feature matching stage, the algorithm recov-
ers feature point coordinates and scale parameters to ensure
image accuracy, and matches through MN-SIFT feature
descriptors with a matching efficiency of 22.18%, which is
significantly higher than the traditional SIFT algorithm and
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SURF algorithm. The PROSAC algorithm eliminates 5%
of mismatches and accurately calculates the transformation
model to improve the image stitching accuracy.

(3) The combination of the optimal stitching line and fade
in and out method effectively removes ghosting and misalign-
ment in the stitched images, avoids image information loss,
and preserves the integrity of image detail information. The
method in this paper achieves a good fusion effect and high
quality in the stitching of two images, and the performance of
the method is better than other widely used excellent methods
compared with other stitching methods.

(4) For multi-image stitching of high-resolution straw
images, a layered stitching strategy of multiple high-
resolution remote sensing images is designed to gener-
ate high-quality panoramic stitched images. The panoramic
image generated by this method is significantly better than
the traditional method by subjective and objective evaluation,
reduces the error accumulated by successive matrix multipli-
cation, eliminates the blurring and misplacing generated by
multi-image stitching, and improves the accuracy of image
stitching.

(5) The panoramic stitching map generated in this paper
has high quality, which can provide data support for the
subsequent segmentation and straw coverage calculation, and
the experimental error is less than 5%, which has accuracy
and validity.

Our fast stitching method can be used in the field of
remote sensing and agricultural monitoring. The further work
scope of the research includes extending the image stitching
function to UAVSs to achieve real-time automatic stitching of
UAVs and generation of real-time panoramic images for crop
assessment and prediction through Al and machine learning
techniques for analysis of large panoramic image datasets of
agricultural fields. The current UAV multispectral technology
is developing rapidly, and the application of image stitching
technology to the stitching of each frequency band of multi-
spectral is also very worth studying.
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