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ABSTRACT Nowadays, Artificial Intelligence (AI) is widely applied in every area of human being’s daily
life. Despite the AI benefits, its application suffers from the opacity of complex internal mechanisms and
doesn’t satisfy by design the principles of Explainable Artificial Intelligence (XAI). The lack of transparency
further exacerbates the problem in the field of CyberSecurity because entrusting crucial decisions to a system
that cannot explain itself presents obvious dangers. There are several methods in the literature capable of
providing explainability of AI results. Anyway, the application of XAI in CyberSecurity can be a double-
edged sword. It substantially improves the CyberSecurity practices but simultaneously leaves the system
vulnerable to adversary attacks. Therefore, there is a need to analyze the state-of-the-art of XAI methods in
CyberSecurity to provide a clear vision for future research. This study presents an in-depth examination of
the application of XAI in CyberSecurity. It considers more than 300 papers to comprehensively analyze the
main CyberSecurity application fields, like Intrusion Detection Systems, Malware detection, Phishing and
Spam detection, BotNets detection, Fraud detection, Zero-Day vulnerabilities, Digital Forensics and Crypto-
Jacking. Specifically, this study focuses on the explainability methods adopted or proposed in these fields,
pointing out promising works and new challenges.
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INDEX TERMS Artificial intelligence, cybersecurity, explainable artificial intelligence, security paradigm,
trust.

I. INTRODUCTION17

Context. Artificial Intelligence (AI) is becoming more and18

more prevalent in our daily lives. To quantify this phe-19

nomenon numerically, Grand View Research valued the20

global AI market size at USD 93.5 billion in 2021 and21

forecasts a compound annual growth rate (CAGR) of 38.1%22

from 2022 to 2030.1 Recently, AI finds widely application in23

many areas as well as in the CyberSecurity domain.24

Likewise, Mordor Intelligence valued the global CyberSe-25

curity market at $156.24 billion in 2020 with an expectation26

to be worth $352.25 billion, with an annual growth rate of27

The associate editor coordinating the review of this manuscript and

approving it for publication was Ilsun You .
1https://www.grandviewresearch.com/industry-analysis/artificial-

intelligence-ai-market

14.5%, by 2026.2 These numbers help convey the potential 28

of these two fields together and the need to find the proper 29

cohesion. Even if AI algorithms appear effective in outcomes 30

and predictions, they suffer from opacity, making it diffi- 31

cult to gain insight into their internal working mechanisms. 32

This aspect further exacerbates the problem in a field like 33

CyberSecurity because entrusting important decisions to a 34

system that cannot explain itself presents obvious dangers. 35

On the light of this scenario, Explainable Artificial Intelli- 36

gence (XAI) suggests a transition toward more interpretable 37

AI to overcome this issue. XAI principles intend to develop 38

strategies that will result in better explainable models while 39

keeping high-performance levels. 40

2https://www.mordorintelligence.com/industry-reports/cyber-security-
market
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Problems and Motivations. Identifying gaps in the litera-41

ture to solve the critical issue of CyberSecurity for future ICT42

systems is critical. The absence of transparency undermines43

confidence. Security practitioners may hesitate to trust the44

systems if they do not understand how crucial decisions are45

made. However, the application of XAI in CyberSecurity46

can be a double-edged sword: it can substantially improve47

CyberSecurity practices but it may also facilitate new attacks48

on the AI applications since it will also be Explainable to the49

attacker, which may pose severe security threats [1]. As with50

all innovations, there are pros and cons, but in this case,51

it seems that the pros outweigh the consmitigating the risks of52

AI adoption in analogy to other application domains, like in53

the Open Source context. Furthermore, the definition of AI54

models compliant with XAI principles, or the development55

of model agnostic XAI frameworks, will allow large-scale56

AI usage in industrial and human scenarios, increasing the57

capabilities to timely recognize vulnerabilities.58

This study aims to compensate for the lack of investigation59

in this area by focusing on the proposed techniques and60

how they achieve explainability in order to design a path of61

promising and appropriate future research directions, hoping62

that interested researchers will be able to quickly and effec-63

tively grasp the key features of the methods analyzed.64

Contribution. This paper collects and analizes the results65

of an in-depth survey on XAI in CyberSecurity. It aims to take66

a step back to get a complete picture of the current state of67

the art in this field of research, considering XAI applications68

in several areas of CyberSecurity. This work stands out from69

other works because it focuses on understanding explain-70

ability and on comparing explainable and non-explainable71

procedures used in the most studied areas of CyberSecurity.72

One of the main points is to provide a solid foundation for73

further discussion using the lens of the literature.74

The main contributions of this paper are:75

• A detailed discussion on the main concepts, objectives,76

and consequences of enabling Explainability in various77

CyberSecurity applications.78

• An organized overview of existing XAI approaches in79

CyberSecurity, based on a literature review of over80

300 papers (an outlook of surveys on XAI, AI in Cyber-81

Security, and XAI in CyberSecurity is also included).82

• A summary tables of the explainable methods analyzed83

and the most frequently used datasets for each field of84

application.85

• A discussion on past efforts, current trends and future86

challenges.87

Organization. Table 1 presents acronyms used in the88

document for clarity to be provided to the reader. The rest89

of the survey is structured as follows. Section II presents90

an Explainable Artificial Intelligence overview. Section III91

explores CyberSecurity Threats Foundations and AI applica-92

tions. Section IV analyzes related surveys, while Section V93

discusses XAI works in CyberSecurity. Section VI dis-94

cuss the findings and finally Section VII concludes this95

survey.96

TABLE 1. List of key acronyms.

II. BACKGROUND ON EXPLAINABLE ARTIFICIAL 97

INTELLIGENCE 98

DARPA, the Defense Advanced Research Projects Agency, 99

financed the ‘‘Explainable AI (XAI) Program’’ at the begin- 100

ning of 2017 [2]. XAI aims to develop more understandable 101

models while maintaining a high degree of learning perfor- 102

mance (prediction accuracy); and enable human users to com- 103

prehend, adequately trust, and manage the future generation 104

of artificially intelligent partners. 105

After the launch of the program, the scientific contribution 106

in the Explainable Artificial Intelligence field has grown 107

significantly, as shown in Figure 1. 108

A. XAI TAXONOMY 109

Throughout the presented literature, various terms have been 110

adopted, trying to cover all possible fields of application. 111

Following are just a few of the wide variety used: 112
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FIGURE 1. Evolution of the number of total publications whose title,
abstract and/or keywords refer to the field of XAI until 2021. Data
retrieved from Scopus using as search key [TITLE-ABS-KEY (Explainable
AND Artificial AND Intelligence)].

Trasparency: Do users grasp the format and language113

choices made by the model?114

Fairness: Can it be proven that model judgments are fair115

to protected groups?116

Trust: How comfortable are human users with using the117

system?118

Usability: How well-equipped is the system to give users a119

secure and productive environment in which to complete their120

tasks?121

Reliability: How resistant is the system to changes in122

parameters and inputs?123

Causality: Do the predicted changes in the output, result-124

ing from input perturbation, occur in the actual system?125

In the middle of 2020, the National Institute of Standards126

and Technology (NIST) presented four fundamental princi-127

ples for explainable AI systems [3] as shown in Figure 2.128

The Explanation principle obligates AI systems to supply129

evidence, support, or reasoning for each output. A system130

fulfils the Meaningful principle if the recipient understands131

the system’s explanations. The Explanation Accuracy princi-132

ple imposes accuracy on a system’s explanations and in the133

end Knowledge Limits principle states that systems identify134

cases they were not designed or approved to operate, or their135

answers are not reliable [3].136

Over the years, a vast taxonomy has been developed on137

the various ways and methods that can make an AI model138

explainable. The first distinction needed is between Inter-139

pretability and Explainability. Interpretability is all about140

understanding the cause and effect within an AI system.141

On the other hand, Explainability goes beyond interpretabil-142

ity in that it helps us understand how and why a model came143

up with a prediction in a human-readable form. Figure 3144

presents the current taxonomy and makes a crucial dis-145

tinction between true transparency (interpretable models)146

and post-hoc interpretations (additional techniques used to147

FIGURE 2. XAI Principles presented by NIST in [3].

shed transparency on complex black-box models). These 148

techniques include producing local explanations for spe- 149

cific inputs or the entire model globally. Following a quick 150

overview: 151

• Model Specific or Model Agnostic: This determines 152

whether or not the interpretation method is restricted 153

to a specific model. Model-specific methods and tools 154

are those that are specific to a model. Model agnos- 155

tic methods can be applied to any ML model to gain 156

interpretability. Internal model data such as weights and 157

structural details are not accessible to these models. 158

• Intrinsic or Extrinsic (post-hoc): This indicates 159

whether the model is interpretable on its own or whether 160

interpretability requires using methods that examine 161

models after training. Simple, comprehensible models, 162

like decision trees, are intrinsic. Utilizing an interpreta- 163

tion strategy after training to achieve interpretability is 164

extrinsic. 165

• Local or Global: Whether the interpretation method 166

describes a single data record or all of a model’s 167

behaviour depends on whether it is local or global. 168

Global methods and tools interpret the entire model, 169

whereas Local methods and tools only explain a single 170

prediction. 171

B. XAI FRAMEWORKS 172

An XAI framework is a tool that creates reports on model 173

activity and tries to explain how it works. The following are 174

the main ones encountered during the Survey. 175

LIME. Local Interpretable Model-agnostic Explana- 176

tions (LIME) is a framework that seeks to provide 177

an individual-level explanation of individual predictions 178

(Local) in an extrinsic (Post-hoc) manner and is able 179

to explain any model without needing to ‘peak’ into it 180
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FIGURE 3. A visual representation of XAI taxonomy.

(Model-Agnostic) [4]. In order to figure out what parts of the181

interpretable input are contributing to the prediction, it per-182

turbs the input around its neighbourhood and see how the183

model’s predictions behave. Then it generates a new dataset184

consisting of perturbed samples and the corresponding pre-185

dictions of the black box model. On this new dataset, LIME186

then trains an interpretable model, which is weighted by the187

proximity of the sampled instances to the instance of interest.188

SHAP. SHapley Additive exPlanations (SHAP) [5] is a189

framework with a clear goal, explaining the prediction of an190

instance x by computing the contribution of each feature to191

the prediction. Like LIME, it is a Local-based, Post-hoc, and192

Model-Agnostic paradigm. The SHAP explanation technique193

uses coalitional game theory to compute Shapley values.194

Adata instance’s feature values operate as coalitionmembers.195

Shapley values inform how fairly distributed the prediction is196

across the characteristics. A player might be a single feature197

value or a collection of feature values. It is not necessary198

to establish a local model in SHAP (as opposed to LIME),199

but rather the same function is used to calculate the Shapley200

values for each dimension.201

Anchors. The Anchors approach [6] locates a decision202

rule that ‘‘anchors’’ the prediction adequately and uses it to203

explain specific predictions of any black box classification204

model. If changes in other feature values do not affect the205

prediction, a rule anchors it. Anchors reduces the number206

of model calls by combining reinforcement learning tech-207

niques with a graph search algorithm. The ensuing expla-208

nations are expressed as simple IF-THEN rules known as209

anchors. This framework is Local-based, Post-hoc and then210

Model-Agnostic.211

LORE. LOcal Rule-based Explanations (LORE) [7] cre-212

ates an interpretable predictor for a given black box instance.213

Adecision tree is used to train the local interpretable predictor214

on a dense set of artificial cases. The decision tree allows215

for the extraction of a local explanation, which consists of a216

single choice rule and a collection of counterfactual rules for217

the reversed decision. This framework is Local-based, Post-218

hoc and thenModel-Agnostic.219

GRAD-CAM. Gradient-weighted Class Activation Map- 220

ping (GRAD-CAM) [8] is a technique for producing a 221

class-specific heat map from a single image. Grad-CAM 222

produces a class discriminative localization map as a result. 223

The framework makes use of the feature maps generated by 224

a CNN’s final convolutional layer. This is Local-based, Post- 225

hoc butModel-Specific. 226

CEM. Contrastive Explanation Method (CEM) [9] pro- 227

vides explanations for classification models. More in detail, 228

it retrieves the features that should be sufficiently present to 229

predict the same class for the input instance. It also iden- 230

tifies minimal features to change for associating the input 231

instance to a different class. This is Local-based, Post-hoc but 232

Model-Agnostic. 233

III. CYBERSECURITY THREATS FOUNDATIONS AND AI 234

APPLICATIONS 235

If it were measured as a country, Cybercrime, which inflicted 236

damages around $6 trillion globally in 2021, would be the 237

world’s third-largest economy after the U. S. and China. 238

CyberSecurity Ventures expects global cybercrime costs to 239

grow by 15% per year over the next five years, reaching 240

$10.5 trillion annually by 2025, up from $3 trillion in 2015. 241

In addition to being exponentially more considerable than 242

the damage caused by natural disasters in a year, this rep- 243

resents the most significant transfer of economic wealth in 244

history and poses a threat to the incentives for innovation and 245

investment [10]. 246

CyberSecurity is the process of defending ICT systems 247

against various cyber threats or attacks. A ‘‘cyber-attack’’ 248

is any criminal activity that preys on electronic information 249

systems, networks, or infrastructure. Information is primarily 250

intended to be stolen, altered, or destroyed. In the current 251

cyber-attack situation, attack vectors that take advantage of a 252

lack of readiness and (system as well as human) preparedness 253

to access sensitive data or compromise systems are frequent. 254

The main problems of CyberSecurity are the knowledge of 255

various cyber-attacks and the development of complementary 256

protection mechanisms. 257

The risks usually connected to any attack take into account 258

three security variables: threats, who is attacking; vulnerabil- 259

ities, or the holes they are attacking; and impacts, or what 260

the assault does. A security incident is an act that threatens 261

the confidentiality, integrity, or availability of information 262

assets and systems. Obtaining illegal access, destruction, and 263

alteration of information to harm possibly are just a few 264

examples of potential breaches and security violations on 265

a computer system or mobile device. Threats describe all 266

of the security mentioned above infractions’ potential risk 267

and hazard, and attacks describe any attempts to commit 268

a violation. 269

Measures to safeguard information and communication 270

technology, the unprocessed data and information it con- 271

tains, as well as their processing and transmission, associated 272

virtual and physical elements of the systems, the degree of 273

protection attained as a result of the application of those 274

93578 VOLUME 10, 2022



N. Capuano et al.: Explainable Artificial Intelligence in CyberSecurity: A Survey

measures, and ultimately the associated field of professional275

endeavour, are all associated with CyberSecurity.276

Cyber-attacks or intrusions require defence techniques to277

protect data or information, information systems, and net-278

works. They are in charge of preventing data breaches and279

security incidents, as well as monitoring and responding to280

intrusions, defined as any unauthorized action that causes281

damage to an information system.282

ENISA, the European Union Agency for CyberSecurity,283

provided a report with an analysis of the top 15 cyber threats,284

showed in Figure 4, that dominated the period between Jan-285

uary 2019 and April 2020 [11].286

Only some of these threats were addressed in this sur-287

vey, focusing on those application areas where Explainable288

Artificial Intelligence has been most explored. In particular,289

the world of Intrusion Detection Systems, Malware detec-290

tors, prevention against Spam and Phishing, and detection291

of BotNets was extensively explored. In addition, a shorter292

analysis was conducted on Fraud Detection, Zero-Day Vul-293

nerabilities, Digital Forensics, Cyber-Physical Systems and294

Crypto-Jacking.295

IV. RELATED WORKS296

The following sub-sections analyze the existing surveys297

related to this work. First, there is an analysis of existing298

surveys in the general field of Explainable Artificial Intel-299

ligence. Subsequently, attention will be focused on surveys300

about AI applications in CyberSecurity. To conclude, there301

is an investigation of the few existing works that attempt to302

clarify the applications of Explainable Artificial Intelligence303

in CyberSecurity.304

A. SURVEYS ON EXPLAINABLE ARTIFICIAL INTELLIGENCE305

High-performance AI systems, particularly those based306

on DL, behave similarly to black boxes that provide307

good results but can hardly justify a given output in a308

human-understandable way [12], [13]. It is essential to min-309

imize potential biases (e.g., algorithmic, racial, ideological310

and gender biases) during the ethical AI solution development311

stage [14], [15].312

Adadi and Berrada [16] conducted an exhaustive literature313

analysis, collecting and analyzing 381 different scientific314

papers between 2004 and 2018. They organized all of the315

scientific work in explainable AI along four primary axes and316

emphasized the importance of introducing more formalism317

in the field of XAI and more interaction between people and318

machines.319

Abdul et al. [17] evaluated a large corpus of explainable320

research based on 289 core papers and 12412 citing publica-321

tions and created a citation network to set an HCI (Human322

Computer Interaction) research agenda in Explainability.323

This work focused primarily on developing an HCI research324

agenda in Explainability and investigating how HCI research325

might aid in the development of existing explainable systems326

that are effective for end-users. Staying on the subject of visu-327

alization for XAI, [18] provides a comprehensive assessment328

FIGURE 4. Top 15 Cyber Threats presented by ENISA in [11].

of recent studies on visual interpretability of neural net- 329

works, covering visualization and diagnosis of CNN (Con- 330

volutional Neural Network) representations, techniques for 331

disentangling CNN representations into graphs or trees, and 332

learning of CNNs with disentangled and interpretable rep- 333

resentations ending with a middle-to-end learning based on 334

model interpretability. 335

The authors of [19] employed a loss for each filter in 336

high-level convolutional layers to force each filter to learn 337
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extremely particular object components to improve the inter-338

pretability of traditional CNNs. Also, Angelov et al. [20]339

cover the visualization technique; in particular, they proposed340

a broader taxonomy, considering whether the explanation341

is local or not, if the models are transparent or opaque,342

if the techniques are model-specific or model-agnostic, and343

whether explanations are created by simplification, conveyed344

through visualizations or based on feature relevance. In the345

same line, one of the works worthmentioning is that edited by346

Arrieta et al. [21], which developed a new style of organiza-347

tion that first distinguishes between transparent and post-hoc348

approaches and then creates sub-categories.349

A methodological approach for evaluating the inter-350

pretability of ML models is proposed in [22], based351

on a taxonomy that separates three forms of Explain-352

ability: imitate the processing, explain the representation,353

and explain-producing networks. Methods for describing354

black-box models on a wide scale, such as data mining and355

ML, were reviewed in [23]. They provided a full taxonomy356

of Explainability strategies based on the problem they were357

dealing with.358

In [24] are examined and presented several XAI359

approaches, validation measures, and the types of explana-360

tions that can be generated to improve the acceptance of361

expert systems among general users.362

The authors in [25] focus on machine interpretation in the363

medical industry and reveal the difficulty of reading a black364

box model’s choice.365

In philosophy and sociology, Mittelstadt et al. [26] pay366

attention to the differences between these models and367

explanations.368

Miller’s work [27] is likely the most important attempt to369

articulate the connection between human science and XAI.370

Miller gave an in-depth assessment of studies on the expla-371

nation problem in philosophy, psychology, and cognitive sci-372

ence in his paper. According to the author, the latter could be373

a vital resource for the advancement of the field of XAI.374

In [28], the attention is focused on the fidelity of work375

closely related to the explanation accuracy. The authors sur-376

veyed several studies that have evaluated explanation fidelity.377

Predictive accuracy, descriptive accuracy, and relevancy378

are three types of metrics presented by the Predictive,379

Descriptive, and Relevant (PDR) framework for evaluating380

interpretability methodologies [29]. They discussed trans-381

parent models and post-hoc interpretation, believing that382

post-hoc interpretability could improve a model’s predictive383

accuracy and that transparent models could expand their use384

cases by increasing predictive accuracy, demonstrating that385

the combination of the two methods is ideal in some cases.386

As presented in [30], an alternative perspective on hybrid387

XAI models entails augmenting black-box model expertise388

with that of transparent model.389

The stages are ante-hoc and post-hoc, according to Vilone390

and Longo [31], [32]. In general, ante-hoc methods consider391

generating the rationale for the decision from the very begin-392

ning of the data training to achieve optimal performance.393

An external or surrogate model and the base model are used 394

in post hoc approaches. The base model remains unmodified, 395

while the external model generates an explanation for the 396

users by mimicking the behavior of the base model. In addi- 397

tion, post hoc approaches are classified into two groups: 398

model-agnostic and model-specific. Model-agnostic meth- 399

ods can be used with any AI/ML model, but model-specific 400

approaches only apply to certain models. 401

Carvalho et al. [33] add a criterion on the stage of model 402

development, in-model interpretability that concerns ML 403

models that have inherent interpretability in it (through con- 404

straints or not). The need to consider the perspectives of 405

diverse stakeholders is highlighted in [34]. As a result, expla- 406

nations should be adapted to the particular audience for which 407

they are intended to deliver the relevant information. In [35] 408

a survey of XAI methods in deployment is made, and [36] 409

which considers the XAI for tabular data. To end this review 410

of works in Explainable Artificial Intelligence it is worth 411

considering also [37] where are identified future research 412

directions with Explainability as the starting component of 413

any AI system. 414

In this section, only works published in the last 5 years, 415

i.e., from 2018 to 2022, have been analysed. However, these 416

works are focused only on the survey of XAImethods empha- 417

sizing the most common ones and the general requirements 418

of explainability that are different in CyberSecurity context. 419

B. SURVEYS ON ARTIFICIAL INTELLIGENCE 420

APPLICATIONS IN CYBERSECURITY 421

This section presents works that survey the existing literature 422

on AI applications in the world of CyberSecurity. AI and 423

ML play a substantial role in the protection of computer 424

systems [13], [38], [39], [40], [41]. 425

The interaction of AI and CyberSecurity was discussed by 426

the author in [42]. The study looked, in particular, at ML, and 427

DL approaches to countering Cyber threats [43]. 428

There are various advantages and disadvantages to the use 429

of AI in this field, as briefly analyzed in [44] and [45], and 430

work like that done in [46], where all the existing literature 431

on the last decade is analyzed, can be of help to those who are 432

entering into the specific sector. 433

Sarker et al. [47] proposed a broad definition of Cyber- 434

Security that takes into account all relevant definitions. 435

Information Security, Network security, operational secu- 436

rity, application security, Internet of Things (IoT) Security, 437

Cloud security, and infrastructure Security are all covered by 438

CyberSecurity [48]. 439

In [46], more than 770 papers were analyzed, and an 440

overview of the challenges that ML techniques face in pro- 441

tecting Cyberspace against attacks was provided by present- 442

ing literature on ML techniques for CyberSecurity, including 443

intrusion detection, spam detection, and malware detection 444

on computer and mobile networks. 445

Related to this, Gupta et al. [49] provide a thorough exam- 446

ination of the various ML and DL models used in mobile 447

network electronic information Security. 448

93580 VOLUME 10, 2022



N. Capuano et al.: Explainable Artificial Intelligence in CyberSecurity: A Survey

The main distinction that came up when analyzing the449

literature on this subject is the use of ML or DL techniques.450

In [50] and [51], both cases are analyzed with an in-depth451

analysis of the various techniques used. Furthermore, both452

papers specify that only the last three years of literature have453

been considered, showing that it is a field that has been454

receiving attention for not very long.455

Shaukat et al. [52] examined the performance of various456

ML algorithms in terms of time complexity for identifying457

Cyber-attacks. The authors focused on fraud detection, intru-458

sion detection, spam detection, and virus detection during459

their investigation.460

Alabadi and Celik in [53] presented a comprehensive sur-461

vey about using CNN as a key solution for anomaly detection.462

Kim and Park [54] focus the attention on ML in463

Cyber-Physical Systems (CPS), which is the integration of464

a physical system into the real world and control applications465

in a computing system, interacting through a communica-466

tions network. They suggest a CPS structure that divides467

the system’s functions into three layers: physical, network,468

and software applications. In the sphere of CyberSecurity,469

researchers apply DL techniques for a variety of applications470

such as detecting network intrusions, malware traffic detec-471

tion and classification, and so on, as analyzed extensively472

in [55], [56], [57], and [58].473

The performance of seven DL models on the CSE-CIC-474

IDS2018 and Bot-IoT datasets is examined in [59]. The475

models are evaluated on two datasets in this benchmark, and476

three evaluation metrics are reported. The whole execution477

of the study is made public in order to facilitate objective478

comparisons and transparency in [60]. For the specific field479

of phishing interesting approach is defined in [61] and for480

ransomware attacks in [62].481

Also in this section, only works published in the last482

5 years, i.e., from 2018 to 2022, have been analysed. How-483

ever, these works are focused only on the survey of CyberSe-484

curity threats and methods.485

C. XAI SURVEYS IN CYBERSECURITY486

Compared to the previous two sections, few works focus on487

and survey XAI methods in CyberSecurity. Currently, only488

two work focus exclusively on this area, which are [63], [64].489

However, it must be pointed out that in [63], the authors490

provide a quick overview and, above all, do not pay attention491

on the different applications within CyberSecurity. In [64]492

the authors focus on application of XAI in CyberSecurity for493

specific vertical industry sectors, namely in smart healthcare,494

smart banking, smart agriculture, smart cities, smart gover-495

nance, etc..496

Exciting work is [65] where the authors made three con-497

tributions: a proposal and discussion of desiderata for the498

explanation of outputs generated by AI-based CyberSecu-499

rity systems; a comparative analysis of approaches in the500

literature on Explainable Artificial Intelligence (XAI), and a501

general architecture that can serve as a roadmap for guiding502

research efforts towards AI-based CyberSecurity systems.503

In [66] Vigano et al. presented Explainable Security (XSec), 504

a new security paradigm that involves several different stake- 505

holders and is multifaceted by nature. In [67] the authors 506

carried out a comprehensive literature review of various DL 507

architectures applied in CyberSecurity, including state-of- 508

the-art studies conducted with explainable AI. Indeed, [68] 509

focuses on Android Malware Defenses and XAI applications 510

in this field; they point out that nine out of ten primary sources 511

are proposed after 2019, indicating that Explainable Deep 512

Learning approaches for malware defenses are a current hot 513

research topic. 514

Works analysed in this section are in the last 3 years, 515

i.e., from 2020 to 2022. Although all of these publications 516

are outstanding, none demonstrate how explainability occurs 517

in key sectors of AI in CyberSecurity, which is the primary 518

focus of this survey. 519

V. LITERATURE REVIEW 520

In the following subsections, the works that seek to achieve 521

explainability in the field of CyberSecurity were reviewed. 522

In particular, the discussion focuses on the following appli- 523

cation fields: 524

• Intrusion Detection Systems 525

• Malware Detection 526

• Phishing and Spam Detection 527

• BotNet Detection 528

The template used for describing the results of the analysis 529

of the works falling in the above application fields is this: 530

• Brief Introduction, a small analysis of the specific topic; 531

• Why XAI, a motivation based mostly on data, for why 532

Explainable Artificial Intelligence is needed in that par- 533

ticular domain; 534

• State of art of AI methods, a quick look at applied AI 535

methods; 536

• State of the art of Explainable Artificial Intelligence, 537

an exhaustive analysis of existing XAI methods with a 538

specific focus on the explainability method; 539

• Consideration, a brief discussion of the analysis carried 540

out and an overview of the main directions explainable 541

methods are moving. 542

In addition to the CyberSecurity applications aforemen- 543

tioned above, other fields will be treated with lesser level of 544

detail, due to the availability of a fewer number of works, 545

focusing only on the review of works using XAI, that are: 546

Fraud Detection, Zero-Day Vulnerabilities, Digital Foren- 547

sics, and Crypto-Jacking. 548

All application fields were selected according to the rele- 549

vance and volume of literature to the current state of the art. 550

A. INTRUSION DETECTION SYSTEMS 551

Intrusion Detection Systems enable continuous security mon- 552

itoring of a cyber perimeter in order to timely identify attacks 553

on computers and computer networks. 554

IDSs can be implementedwith hardware appliances orwith 555

special software; sometimes, they combine both systems [69]. 556
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They do not replace firewalls but integrate them to provide557

more comprehensive protection. The purpose of the firewall558

is to selectively (and ‘‘mechanically’’) intercept data packets559

(according to a set of predefined rules that packets must fol-560

low in order to enter or leave the local network). Traditional561

firewalls operate on the lowest layers of network communi-562

cation, thus with filtering rules limited to IP addresses, ports,563

time of day and a few other criteria [70].564

IDSs, on the other hand, are placed ‘‘downstream’’ of the565

firewall and analyze data packets and the behaviour they566

generate. Therefore, if an attack originates within the local567

network, the firewall will not be able to block it. At the same568

time, the IDS can detect anomalous situations.569

IDS systems can be divided into two categories depending570

on where the intrusion-detection sensors are placed (on the571

network or a host/endpoint).572

Network-based IDS systems (NIDS) analyze IP packets,573

policing the entire network data traffic. This way, they can574

complement the firewall where it does not block packets575

due to misconfiguration or unrestrictive rules; they can also576

monitor the behaviour of users inside the network.577

Host-based intrusion detection systems (HIDS) are typ-578

ically tools that are installed on a machine (host) and579

are intended to protect a specific PC (a kind of ‘‘super-580

antivirus’’). They can also integrate firewall functions, sand-581

boxing, and so on.582

Another distinction can be made in detecting and alert-583

ing approaches, which are Signature-based and Anomaly-584

based. While Signature-based detection is used to detect585

known threats, Anomaly-based detection detects changes in586

behaviour. Signature-based detection is based on a predefined587

set of known Indicators Of Compromise (IOCs). Malicious588

network attack behaviour, email subject line content, file589

hashes, known byte sequences, or malicious domains are590

all examples of IOCs. Signatures may also include network591

traffic alerts, such as known malicious IP addresses attempt-592

ing to access a system. Unlike Signature-based detection,593

Anomaly-based detection can discover unknown suspicious594

behaviour. Anomaly detection begins by training the system595

with a normalized baseline and comparing activity to that596

baseline.597

1) WHY XAI IN IDSs?598

In BakerHostetler’s 2021 Data Security Incident Report,3599

some interesting numbers help to understand why the col-600

laboration of AI and humans is needed to combat an already601

huge problem. 58 % of detected incidents are attributable602

to Network Intrusion, the most significant cause among the603

top 5.604

On average, in 2020 were needed 92 days to discover the605

presence of an intrusion, 6 days to contain it, 42 days for606

forensic efforts to complete, and 90 days total from the date607

of discovery to notification to end-user. Figure 5 shows the608

3https://www.bakerlaw.com/webfiles/Privacy/2021/Alerts/2021-DSIR-
Report.pdf

FIGURE 5. IDS Publications from 2000 to 2021, retrieved from Scopus
using as search key [TITLE-ABS-KEY (intrusion AND detection AND
systems)].

increasing trend of publications in this area. Most of these 609

developed in recent years are based on Machine and Deep 610

Learning algorithms. 611

The approach based on ML and DL automates the analyti- 612

cal process to find intrusions. High performance, adaptability, 613

flexibility, and the capacity to identify zero-day assaults are 614

the significant benefits of the ML technique. However, there 615

are some drawbacks to ML-based IDS, including high bias 616

propensity, inability to manage outliers, difficulties handling 617

huge datasets, and complex data preprocessing. 618

The DL-based approach can handle dynamic data 619

that changes over time, recognize large-scale and multi- 620

dimensional data and identify anomalies in the data. Never- 621

theless, DL-based approaches have many drawbacks, such as 622

a lack of flow information, vulnerability to evasion attempts, 623

poor data knowledge required to design relevant features, and 624

a lack of qualified domain experts to review the implemen- 625

tation. These very latter two points lead back to the need for 626

explainability, a need shared by any agent attempting to give 627

an explanation for the model result and be able to improve it 628

consequently. 629

2) ARTIFICIAL INTELLIGENCE IN IDSs 630

Chawla et al. [71] propose a Host-based IDS that uses 631

sequences of system calls to identify the expected behaviour 632

of a system. The work describes an efficient Anomaly-based 633

intrusion detection system based on CNN layers to capture 634

local correlations of structures in the sequences and Gated 635

Recurrent Units layer to learn sequential correlations from 636

the higher level features. 637

By examining Linux kernel 5.7.0-rc1, the authors of [72] 638

bridge the gap between theoretical models and application 639

settings. This environment investigates the viability of HIDS 640

in modern operating systems and the constraints placed 641

on HIDS developers. Keeping the focus on HIDS in [73], 642

Gassais et al. propose a framework for intrusion detection in 643
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IoT which combines user and kernel space using AI tech-644

niques to automatically get devices behavior, process the645

data into numeric arrays to train several ML algorithms, and646

raise alerts whenever an intrusion is found. In [74] and [75]647

the authors focus the attention on Cloud Environment by648

detecting Anomalies while [76] propose a Siamese-CNN to649

determine the attack type converting it to an image.650

Analyzing the Network-based approaches, in [77], the651

authors present a NIDSmodel that employs a non-symmetric652

deep AutoEncoder and a Random Forest classifier. Using a653

non-symmetric deep Auto Encoder for efficient feature selec-654

tion reduces the model’s complexity, similar to [78] and [79]655

where the classifier is the Support Vector Machine.656

Ali et al. in [80] use a Fast Learning Network with a657

Swarm optimization algorithm, similar to the works in [81]658

and [82]. The most recent work brings the spotlight on the use659

of Neural Networks [83], [84] and Adversarial Methods [85],660

[86], [87].661

3) EXPLAINABLE ARTIFICIAL INTELLIGENCE IN IDSs662

In [88], a system is proposed that is based on rules dictated663

by experts. It isHybrid in the sense that it is a combination of664

human work and ML. The Explainability comes from Rule-665

based; the model behind it is a Decision Tree, a white-box666

model.667

Szczepanski et al. in [89] propose a combination of oracle668

(ML model, in this case, tested ANN with a PCA) and an669

explainer module that would explain why a given classifica-670

tion is made. In the explainer module, one compares the dis-671

tance from the clusters created on the training data. Then, the672

cluster closest to the test set instance is used for explanation.673

In [90], the idea is to use an adversarial approach in order674

to be able to account for the minimal changes necessary for a675

classifier to arrive at an incorrect classification. The method676

thus makes it possible to visualize the features responsible for677

misclassification. For example, regular connections with low678

duration and low login success are misclassified as attacks.679

In contrast, attack connections with a low error rate and680

higher login success are misclassified as regular, demonstrat-681

ing that relevant features significantly affect the final result.682

A new way of interpreting an Intrusion Detection System683

is presented in [91]. The authors propose the use of SHAP for684

both local and global explanations. SHAP, by its nature, is a685

local method; they propose combining all local explanations686

to obtain a global explanation of the model. Almost equal687

work, with some less experimentation, is proposed in [92].688

Le et al. [93] propose similar work through SHAP with an689

ensemble Tree model given a Decision Tree and a Random690

Forest model. Specifically, at the global level, they use a691

Heatmap for visualizing the impact of individual features on692

the classification of the overall model. At the local level,693

they use a Decision Plot to explain decisions on individual694

instances of the datasets. Another similar work is the frame-695

work proposed by [94], consisting of a Random Forest model696

using SHAP. The model can assess the credibility of the pre-697

dicted results and ensure a high level of accuracy in detecting698

modern Cyber threats. The strategy adopted makes the final 699

decision after cross-validation of the local explanation of the 700

predicted outcome with the global explanation of SHAP. 701

The general idea proposed in [95] against adversarial 702

attacks is divided into two parts, initialization and detection. 703

During initialization, the model is trained with an SVM and 704

features and characteristics that make a Normal classification 705

are deduced via LIME. During detection, the Intrusion Detec- 706

tion System goes to compare. If it does not find the data as 707

Normal, it classifies as an attack. On the other hand, if it is 708

classified as Normal, there is a risk of an adversarial attack 709

that is fooling themodel. So a further check is done by reusing 710

LIME. After that, the final result is reached. 711

FAIXID [96] is a new proposed framework that uses data 712

cleaning techniques. They used four algorithms in the exper- 713

iment to make the results explainable. They use the Boolean 714

Rule Column Generation (BRCG) algorithm [97], which pro- 715

vides a directly interpretable supervised learning method for 716

binary classification. Logistic Rule Regression (LogRR) [98] 717

is a directly interpretable supervised learning method that can 718

perform logistic regression on rule-based functions. The Pro- 719

toDash algorithm [99] provides example-based explanations 720

to summarize datasets and explain the predictions of an AI 721

model. Finally, the Contrastive Explanations Method (CEM) 722

is used to compute explanations that highlight both relevant 723

positives (PP) and relevant negatives (NP). Their proposal is 724

not static but involves the use of algorithms depending on the 725

specific case. 726

The work proposed in [100] defines a method to make 727

rules for accessing the network dynamically and not statically 728

as, for example, the rules set in a firewall may be. Thus, 729

Explainability is the focus of the proposal. The explanation 730

of the results consists of two main steps: i) training a model to 731

approximate the local decision boundary of the target predic- 732

tive model, and ii) reasoning about the trained model and the 733

given input based on an explanation logic. The explanation is 734

Local-based. They are inspired by LEMNA [101]. 735

The aim in [102] is to increase transparency in an IDS 736

based on a Deep Neural Network. Feedback is presented by 737

computing the input features most relevant to the predictions 738

made by the system. The model adopted is an MLP. Two 739

forms of feedback are generated: 1) offline feedback (after 740

training, before deployment) and 2) online feedback (during 741

deployment). In offline feedback, the user is given the most 742

relevant input features for each concept learned from the sys- 743

tem. This information allows the user to evaluate whether the 744

input characteristics that guide the IDS’s decision toward a 745

particular class (i.e., the type of attack) align with the domain 746

experts’ knowledge. On the other hand, the user is given the 747

most relevant input characteristics for each prediction in the 748

online feedback. 749

In [103], the authors focus on the possibilities of analyzing 750

encrypted traffic, particularly for accurate detection of DoH 751

(DNS Over HTTPS) attacks. They implement an explainable 752

AI through the use of SHAP that allows visualizing the 753

contribution of individual features to the model classification 754
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decision. Similarly, EXPLAIN-IT [104] is applied to the755

YouTube video quality classification problem in encrypted756

traffic scenarios. The work is based on a methodology that757

deals with unlabeled data, create meaningful clusters and758

proposes an explanation of the clustering results to the end-759

user. They use LIME interpreting clusters that are associated760

with a Local-based strategy then. Alike, ROULETTE [105]761

focuses on Network traffic. Specifically, attention is coupled762

with a multi-output DL strategy that helps better discriminate763

between network intrusions categories. As Post-hoc expla-764

nations, they consider visual explanation maps produced765

through Grad-CAM.766

A two-stageML-basedWireless Network IDS (WNIDS) is767

implemented in [106] to improve the detection of imperson-768

ation and injection attacks in a Wi-Fi network. The XAI was769

implemented to gain insight into the decisions made by the770

first-stageMLmodel, especially for cases where recordswere771

predicted as impersonation or injection. The features that772

contribute significantly to their prediction were determined.773

This set of features almost corresponds to those identified by774

the feature selection method for the second-stage ML model.775

They use SHAP.776

In [107], the authors create a framework with a Deep777

Neural Network at its base and apply an XAI method depend-778

ing on who benefits from it. For data scientists, SHAP779

and BRCG [97] are proposed, while for analysts Protodash780

is used. For end-users where an explanation on the sin-781

gle instance is required, they suggest SHAP, LIME, and782

CEM. Saran et al. [108] propose a comparison between the783

NetFlow-based feature set4 and the feature set designed by784

the CICFlowMeter tool.5 This reliable comparison demon-785

strates the importance and need for standard feature sets786

among NIDS datasets, such as evaluating the generalizability787

of MLmodel performance in different network environments788

and attack scenarios. The SHAPmethod is used to explain the789

prediction results ofMLmodels bymeasuring the importance790

of features. For each dataset, key features that influence791

model predictions were identified.792

In conclusion, this work mentions [109], where an explain-793

able automotive intrusion detection system is proposed,794

and [110] where a new general method is presented and tested795

on an IDS dataset. In [111] instead, the authors emphasize the796

importance of trust but do not use XAI methods.797

4) CONSIDERATIONS ABOUT IDS AND XAI798

It is interesting to note that most of the methods analyzed use799

already developed methods to make the results explainable,800

so the explanation is post-hoc. In particular, in the case of801

methods already in the research landscape, SHAP is the most802

adopted method. LIME, on the other hand, has been adopted803

in only one case. Some frameworks are white-box in nature;804

most are based on a decision tree.805

4https://en.wikipedia.org/wiki/NetFlow
5https://github.com/CanadianInstituteForCyberSecurity/CICFlowMeter

It would be good to consider frameworks with intrinsic 806

interpretability and not the application of methods for a 807

post-hoc explanation. Furthermore, the final output should 808

be aimed at precise figures and not just any user, such as 809

analysts and defenders. To be explored for future research 810

is the topic of adversarial attacks where the collaboration 811

between humans and machines is necessary and explanations 812

are fundamental to combat this type of intrusion. 813

B. MALWARE DETECTION 814

The term malware refers to programs potentially harmful to 815

the user, which are aimed at stealing sensitive data, control- 816

ling the PC, or stealing user identity. The term malware origi- 817

nates from the contraction of the words ‘‘malicious software’’ 818

and stands for a program (an executable, a dynamic library, 819

a script, an HTML page, a document with macros, etc.) 820

having unwanted and potentially dangerous effects on the 821

user such as stealing sensitive data, controlling activity at the 822

PC, identity theft, encrypting the hard disk with subsequent 823

ransom demands, and so on. 824

Malware is usually classified according to its behaviour as 825

Botnet, Backdoor, Information Stealer, Downloaders, Scare- 826

ware, Rootkit, Worm, Virus, Ransomware or Trojans. 827

Some of the most common methods an attacker uses 828

are Spam, Phishing, Hacking, Banner advertising, Search 829

page rank, Expired domains or Domain Name Server (DNS) 830

hijacking. 831

Malware detection techniques can be classified into 832

three main categories (although other classifications 833

exist): (i) Signature-based, (ii) Anomaly-based, and 834

(iii) Heuristic-based. 835

When using a Signature-based approach, programmers 836

scan a file for malware, compare the information with a 837

database of virus signatures, and then verify the results. If the 838

information matches the information in the database, the file 839

is infected with viruses. This approach limits the detection 840

of unknown malware, but its main advantage is that it works 841

well for known malware. 842

Anomaly-based methods mitigate the limitations of 843

signature-based techniques, allowing detection of any known 844

or unknown malware by applying classification techniques 845

to the actions of a system for malware detection. Detec- 846

tion of malware activity is improved by moving from 847

pattern-based to classification-based detection to identify 848

normal or anomalous behaviour. Applying AI to Signature- 849

based and Anomaly-based detection systems improves the 850

efficiency of malware detection. Heuristic-basedmethod use 851

data mining and ML techniques to learn the behavior of an 852

executable file. 853

1) WHY XAI IN MALWARE DETECTION? 854

According to AV-Test Institute,6 more than 1 billion malware 855

programs are out there, and 560, 000 new pieces of mal- 856

ware are detected every day. Statista detected that 68.5% of 857

6https://www.av-test.org/en/statistics/malware/
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FIGURE 6. Malware Detection Publications from 2001 to 2021, retrieved
from Scopus using as search key [TITLE-ABS-KEY (malware AND
detection)].

businesses were victimized by ransomware in 2021, a con-858

siderable increase from the previous three years. Overall, the859

number of detected malware types stood at 28.84 million860

in 2010; by 2020, this had reached nearly 678 million.7861

Figure 6 shows the increasing trend of publications in this862

area, reflecting its considerable attention. XAI can assist863

with risk identification and prioritization, incident response864

coordination, and malware threat detection. XAI appears to865

be a good answer in situations demanding explainability,866

interpretability, and accountability, where humans require867

assistance in fighting a massive number of attacks.868

2) ARTIFICIAL INTELLIGENCE IN MALWARE DETECTION869

In [112], the authors propose an Anomaly-based approach870

where the system employs significant features of activ-871

ity to model normal and malicious behaviour of users in872

Cloud-based environments. Similar are the works in [113]873

and [114] where extreme surveillance through malware hunt-874

ing is delivered. Keeping with Anomaly-based approaches,875

Alaeiyan et al. introduce [115] VECG, a tool for exploring876

and supplying required environmental conditions at runtime,877

while in [116] Stiborek et al. propose a novel tool that detects878

malware observing the interactions between the operating879

systems and network resources.880

ASSCA [117] is a system architecture that combines the881

DL model based on sequence data and the ML model based882

on API statistical features, similar to what happens in [118]883

where the API call relation is extracted, the ordered cycle884

graph is constructed based on Markov chain and then the885

graph convolution neural network (GCN) detects malware.886

Other exciting works based on DL of Behavior Graphs887

are [119], [120] where for the detection are used file content888

and file relations.889

7https://www.statista.com/topics/8338/malware/dossierKeyfigures

Staying on the use of graphs but moving to Signature- 890

based systems, HLES-MMI [121] is a method that iden- 891

tifies metamorphic malware families based on computing 892

the similarities among the higher-level engine signatures. 893

Khan et al. [122] analyzed ResNet and GoogleNet models 894

while [123], [124] focus the attention on private cloud envi- 895

ronments and detection for non-domain experts. 896

A Hybrid-based approach method is proposed in [125] 897

where the framework use more than one complementary filter 898

and a wrapper feature selection approach to identify the most 899

significant runtime behavioural characteristics of malware. 900

An approach where AI is proliferating is the detection 901

by image visualization. For example, Baptista et al. [126] 902

designed an image-based malware detection tool based on 903

unsupervised learning testing to determine if malicious files 904

could be differentiated from benign ones by focusing on 905

features extracted from their visual representation. In [127], 906

the defined architecture consists of three main components: 907

image generation from malware samples, image augmenta- 908

tion, and classification in a malware family using CNN mod- 909

els. Other similar works are [128], [129], [130], [131]. In the 910

Android world it is worth considering DL-DROID, an auto- 911

mated dynamic analysis framework for Android malware 912

detection. In [132] and [133] satisfying results are obtained 913

using ML and DL techniques. However, the main problem 914

remains the non-Explainability and the subsequent lack of 915

trust in model outcomes, so the next section will explore 916

works that somehow attempt to solve this problem. 917

3) EXPLAINABLE ARTIFICIAL INTELLIGENCE IN MALWARE 918

DETECTION 919

One of the main works in this area is Drebin [134]; how- 920

ever, for consistency, it will not be analyzed in-depth as 921

it is a pre-2018 work. Drebin explains his decisions by 922

reporting, for each application, the most influential features, 923

i.e., those present in the application and to which the clas- 924

sifier assigns the highest absolute weights. Melis et al. [135] 925

provide an approach for the Explainability of malware detec- 926

tion in Android systems with an extension of the conceptual 927

approach provided by Drebin on non linear models. Stay- 928

ing focused on Mobile, the authors of [136] use LIME in 929

a method to identify locations deemed important by CNN 930

in the opcode sequence of an Android application to help 931

detect malware, while Kumar et al. [137] propose a static 932

methodology for malware detection in Android where Fea- 933

ture Extraction provides transparency. 934

XMal [138] is an MLP-based approach with an attention 935

mechanism to detect when an Android App is malware. The 936

interpretation phase aims to automatically produce neural 937

language descriptions to interpret key malicious behaviours 938

within apps. Although the method is not so clear, the authors 939

say they achieve better performance in interpretation than 940

LIME and DREBIN. 941

The authors in [139] propose a backtrackingmethod to pro- 942

vide a high-fidelity explanation of the DL detection method. 943

The backtracking method selects the most important features 944
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contributing to the classification decision, thus resulting in a945

transparent and multimodal framework.946

Feichtner et al. [140] designed a Convolutional Neu-947

ral Network (CNN) to identify sample-based correlations948

between parts of the description text and the permission949

groups an app requests. They employ LIME to calculate a950

score for each word that shows the output’s significance and951

visualize it as a heatmap.952

As analyzed in the previous section, several methods focus953

on malware detection as an image; in [141], the authors954

propose a method relying on application representation in955

terms of images used to input an Explainable Deep Learning956

model. They represent a mobile application in terms of image957

and localize the salient parts useful to the model to output958

a certain precision by exploiting the Grad-CAM algorithm.959

In this way, the analyst can acquire knowledge about the areas960

of the image symptomatic of a specific prediction.961

Shifting the focus from mobile applications to more gen-962

eral ones, LEMNA [101] is one of the main methods in963

the landscape of Explainability techniques. It was developed964

specifically for DL-Based Security Applications and is, there-965

fore, one of the references in the general field of CyberSe-966

curity. It was included in this section because the authors’967

primary experimentation is conducted on a Malware Detec-968

tion Dataset. Given a sample of input data, LEMNAgenerates969

a small set of interpretable features to explain how the input970

sample is classified. The central idea is to approximate a local971

area of the complex DL decision boundary using a simple972

interpretable model. LEMNA uses a fused lasso-enhanced973

mixed regression model to generate high-fidelity explanation974

results for a range of DL models, including RNN.975

DENAS [142] is a rule generation approach that extracts976

knowledge from software-based DNNs. It approximates the977

nonlinear decision boundary of DNNs, iteratively superim-978

posing a linearized optimization function.979

CADE [143] is designed to detect drifting samples that980

deviate from the original training distribution and provide the981

corresponding explanations to reason themeaning of the drift.982

The authors derive explanations based on distance changes,983

i.e., features that cause the most significant changes to the984

distance between the drifting sample and its nearest class.985

It was included in this paragraph because it is tested on a986

Malware detection dataset.987

Pan et al. [144], [145] in two related works propose a988

hardware-assisted malware detection framework developing989

a regression-based Explainable Machine Learning algorithm.990

They apply a Decision Tree or Linear Regression to interpret991

the final result.992

In order to understand how a Deep Network architecture993

generalizes to samples that are not in the training set and994

explains the outcomes of deep networks in real-world test-995

ing, the authors of [146] propose a framework that interpo-996

lates between samples of different classes at different layers.997

By examining the weights and gradients of various levels998

in the MalConv architecture [147] and figuring out what999

the architecture discovers by examining raw bytes from the1000

binary, they try to use this framework to demystify the work- 1001

ings of the MalConv architecture. As a result, they can better 1002

explain the workings of ML algorithms and the decisions 1003

they make using the proposed framework. Additionally, the 1004

analysis will enable network inspection without starting from 1005

scratch. 1006

Hsupeng et al. [148] introduce an explainable flow-data 1007

classification model for hacker attacks and malware detec- 1008

tion. The flow data used for training the model is converted 1009

from packets by CICFlowMeter. This process significantly 1010

shrank the data size, reducing the requirement for data stor- 1011

age. For Explainability, they utilize SHAP further to inves- 1012

tigate the relation between cyberattacks and network flow 1013

features. 1014

MalDAE [149] is a framework that explores the dif- 1015

ference and relation between the dynamic and static API 1016

call sequences, which are correlated and fused by seman- 1017

tics mapping. MalDAE provides a practical and explainable 1018

framework for detecting and understandingmalware based on 1019

correlation and fusion of the static and dynamic characteris- 1020

tics. The explainable theoretical framework divides all API 1021

calls into several types of malicious behaviours according to 1022

their impact on security and builds a hierarchical malware 1023

explanation architecture. 1024

Several works in the literature attempt to interpret malware 1025

detection by generating Adversarial attacks. The authors 1026

in [150] discovered that MalConv neural network does not 1027

learn any useful characteristics for malware detection from 1028

the data and text sections of executable files but instead has 1029

a tendency to learn to distinguish between benign and mali- 1030

cious samples based on the characteristics found in the file 1031

header. Based on this discovery, they devised a novel attack 1032

method that creates adversarial malware binaries by altering 1033

a small number of file header bytes. For the explanation, 1034

they use Feature Attribution to identify the most influential 1035

input features contributing to each decision and adapt it 1036

to provide meaningful explanations for classifying malware 1037

binaries. Other such works are [151], [152] employing SHAP 1038

and [153] proposing a new explanation algorithm to identify 1039

the root cause of evasive samples. It identifies the minimum 1040

number of features that must be modified to alter the decision 1041

of a malware detector, using Action Sequence Minimizer and 1042

Feature Interpreter. 1043

To conclude the section, it is necessary to analyze the 1044

work of Fan et al. [154]. They designed principled guide- 1045

lines to assess the quality of five explanation approaches by 1046

designing three critical quantitative metrics to measure their 1047

Stability, Robustness, and Effectiveness. The five explanation 1048

approaches are SHAP, LIME, Anchors, LEMNA and LORE. 1049

Based on the generated explanation results, they conducted a 1050

sanity check of such explanation approaches in terms of the 1051

three metrics mentioned. Based on their analysis, the ranking 1052

of the five explaining approaches in terms of the Stability 1053

metric is LIME≥ SHAP > Anchors > LORE > LEMNA. The 1054

ranking of the five explaining approaches in the Robustness 1055

metric is LIME > SHAP > Anchors > LORE > LEMNA. 1056

93586 VOLUME 10, 2022



N. Capuano et al.: Explainable Artificial Intelligence in CyberSecurity: A Survey

FIGURE 7. Phishing attacks grouped per Quarter9.

In the Effectiveness metric is LIME > LORE > Anchors ≥1057

SHAP > LEMNA.1058

4) CONSIDERATIONS ABOUT MALWARE DETECTION1059

AND XAI1060

Several recent publications attempting to explain the results1061

of a malware detector have been reviewed. The signifi-1062

cantly smaller number of algorithms that perform detection1063

using images stands out compared to DL, and black-box1064

ML approaches. Another factor to note is the significant1065

effort put into developing Explainable methods in Mobile1066

environments, particularly on Android platforms. Comparing1067

the Black-box and Explainable methods, it is surprising how1068

fewer graph-based methods are used in the latter than in the1069

former; using these for greater transparency might be a good1070

starting point. Several articles use established techniques with1071

Post-hoc Explainability that can help the analyst understand1072

the basis on which the model is categorized, particularly1073

SHAP and LIME. Another widely used technique is Feature1074

Attribution, which works similarly to the above approaches.1075

What appears to be obvious is the necessity for applications1076

created with Intrinsic Explanation rather than Post-hoc, as is1077

usually the case. The Explanation in these cases is built during1078

data training. Themodel should be aHybrid of Signature- and1079

Anomaly-based methodologies that, when applied together,1080

can give significant benefits. However, it should be recog-1081

nized that significant progress is being made in this area.1082

C. PHISHING AND SPAM DETECTION1083

Phishing refers to a particular type of Internet fraud; the1084

purpose of the malicious attackers, in this circumstance, is to1085

get hold of users’ personal and confidential data.More specif-1086

ically, phishers practice the theft of logins and passwords,1087

credit card and bank account numbers, and additional con-1088

fidential data.1089

Spam is also called junk mail. It has existed almost as 1090

long as the internet as a means of selling products or services 1091

to a larger market of buyers than have ever expressed inter- 1092

est in those products or services. After obtaining the email 1093

addresses of a considerable number of individuals, spammers 1094

bulk send their offers hundreds or thousands at a time. Spam 1095

can be very dangerous if it is part of a phishing attempt. 1096

1) WHY XAI IN PHISHING AND SPAM DETECTION ? 1097

According to the IC3 report,8 Phishing (including vishing, 1098

SMiShing, and pharming) was the most common threat in the 1099

United States in 2020, with 241, 342 victims. Following that 1100

were nonpayment/non-delivery (108, 869 victims), extortion 1101

(76, 741 victims), personal data breach (45, 330 victims), and 1102

identity theft (43, 330 victims). These data show how huge 1103

this problem directly affects the population, which, if not well 1104

educated, can easily fall into the trap. The Figure 8 proves the 1105

dizzying amount of attention that Phishing attack detection 1106

is attracting from academics in recent years. Explaining to a 1107

user why a particular email is a phishing attempt or why it 1108

has been classified as Spam is no slight advantage. XAI in 1109

this field is directly connected to the population that could 1110

benefit from it to prevent a threat that is now constant. 1111

2) ARTIFICIAL INTELLIGENCE IN PHISHING AND SPAM 1112

DETECTION 1113

Phishing. State of the art on the application of AI in Phishing 1114

Detection is substantial, so only recent works with the most 1115

significant impact in terms of citations have been analyzed. 1116

Hybrid Ensemble Feature Selection (HEFS) is an 1117

interesting approach proposed in [155] with a new feature 1118

selection framework. In the first phase of HEFS, a novel 1119

Cumulative Distribution Function gradient (CDF-g) algo- 1120

rithm is exploited to produce primary feature subsets, which 1121

are then fed into a data perturbation ensemble to yield sec- 1122

ondary feature subsets. The second phase derives a set of 1123

baseline features from the secondary feature subsets using 1124

a function perturbation ensemble. The best performance is 1125

achieved with Random Forest. The latter is one of the seven 1126

implemented and compared models for the real-time detec- 1127

tion of phishing web pages by investigating the URL of the 1128

web page explored in [156]. In [157], Yerima et al. propose 1129

an approach based on a Convolutional Neural Network tested 1130

on a dataset obtained from 6, 157 genuine and 4, 898 phishing 1131

websites; a small dataset instead is used in [158] where the 1132

authors introduce a Deep Belief Network (DBN). Jain et al. 1133

propose a ML-based novel Anti-Phishing approach that 1134

extracts the features from the client-side only. They examined 1135

the various attributes of Phishing and legitimate websites 1136

in-depth. As a result, they identified nineteen outstanding 1137

features to distinguish Phishing websites from legitimate 1138

ones. DTOF-ANN (Decision Tree and Optimal Features 1139

based Artificial Neural Network) [159] is a Neural-Network 1140

8https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf
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FIGURE 8. Phishing Detection Publications from 2004 to 2021, retrieved from Scopus using as search key [TITLE-ABS-KEY (phishing AND
detection)].

Phishing detection model based on a Decision Tree and1141

Optimal feature selection.1142

The authors of [160] propose Jail-Phish, a Heuristic tech-1143

nique which uses Search Engine results and Similarity-based1144

features to detect Phishing sites.1145

The last work to be highlighted for Phishing Detection is1146

PhishBench [161], a benchmarking framework that can help1147

researchers by providing a template to develop new methods1148

and features as well as a platform to compare their proposed1149

techniques with previous works.1150

Spam. Shifting to Spam Detection, an intelligent system1151

that is based on Genetic Algorithm (GA) and RandomWeight1152

Network (RWN) is proposed in [162]. A similar proposal1153

is given by [163] where the authors propose a combina-1154

tion of the Word Embedding technique and Neural Network1155

algorithm.1156

Barushka et al. [164] propose a Spam filter integrating an1157

N-gram tf-idf feature selection, a modified distribution-based1158

balancing algorithm and a regularized Deep multi-layer per-1159

ceptron NN model with rectified linear units (DBB-RDNN-1160

ReL). In the same wake Douzi et al. [165] present a Hybrid1161

approach based on the Neural Network model Paragraph1162

Vector-Distributed Memory (PV-DM).1163

In [166], the authors propose Spam detection in social1164

media with a DL architecture based on Convolutional Neu-1165

ral Network (CNN) and Long Short Term Neural Network1166

(LSTM).1167

DeepCapture is an image spam email detection tool based1168

on a Convolutional Neural Network (CNN). The key idea1169

is built on a CNN-XGBoost framework consisting of eight1170

layers only with a large number of training samples using data1171

augmentation techniques tailored towards the image Spam1172

9Source: https://apwg.org/trendsreports/

detection task. The evaluation is done on available datasets 1173

comprising 6, 000 spam and 2, 313 non-spam image samples. 1174

Other interesting works are [167], [168]. 1175

These works are mostly based on Deep Neural Networks 1176

in which Interpretability and Explainability of the final detec- 1177

tion are challenging, so the next section will analyze the 1178

state of the art of explainable models in Phishing and Spam 1179

Detection. 1180

3) EXPLAINABLE ARTIFICIAL INTELLIGENCE IN PHISHING 1181

AND SPAM DETECTION 1182

The current state of the art for Phishing and Spam detection 1183

with explainable methodologies is relatively poor. Therefore, 1184

techniques that are not created on-demand for Phishing and 1185

Spam Detection but use datasets targeted at these application 1186

domains were also considered. 1187

Phishing. Phishpedia [169] is a Hybrid DL system that 1188

addresses two prominent technical challenges in phishing 1189

identification, (i) accurate recognition of identity logos on 1190

webpage screenshots and (ii) matching logo variants of the 1191

same brand. The authors compare the identity logo and input 1192

box providing Explainable annotations on webpage screen- 1193

shots for the Phishing report. 1194

Two works where the goal is not Phishing detection, but 1195

a dataset of this type is used for tests are [170], [171]. 1196

The first is based on a Deep embedded Neural Network 1197

expert system (DeNNeS) with a rule extraction algorithm 1198

for Explainability. The second is based on the Multi-Modal 1199

Hierarchical Attention mechanism (MMHAM) that permits 1200

the Explainability thanks to the hierarchical system. 1201

Kluge et al. [172] propose a framework to convey to the 1202

user which words and phrases in an e-mail influenced a 1203

Phishing detector’s classification of the e-mail as suspicious. 1204
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They do it by locally perturbing inspiring to Anchors. The1205

last analyzed work is [173], where the authors use LIME and1206

Explainable Boosting Machine (EBM) [174].1207

Spam. The authors of [175] looked into how different1208

ML explanations, ML model’s accuracy, and user confidence1209

in the ML model affect user performance in a simulated1210

Spam detection task. According to their findings, a user’s1211

confidence level in the model significantly influences the1212

decision process. Users performed better when using an accu-1213

rate model. Participants were more likely to spot false alarms1214

generated by the more accurate model and more willing to1215

follow through on a model ‘‘miss’’ when an additional model1216

explanation was given.1217

FreshGraph [176] is a two-step system for recommending1218

new products to target people that is Spam-aware. First, use1219

item-user Meta-Path similarity and then entropy encoding1220

measurements on a heterogeneous information network struc-1221

ture to identify false positives from candidate lists and avoid1222

potential Spam. The suggested approach takes advantage of1223

the semantic data stored within the graph structure, which1224

considers user activity in addition to item content aspects1225

for more precise audience targeting. Graph structure provides1226

Explainability.1227

Gu et al. [177] examine the use of DL models to predict1228

the effectiveness of outbound telemarketing for insurance1229

policy loans to decrease Spam problems created by phon-1230

ing non-potential customers. They propose an Explainable1231

multiple-filter Convolutional Neural Network (XmCNN) to1232

reduce overfitting. Explainability is calculated using feature1233

importance by including a CancelOut layer after the input1234

layer.1235

These two methods avoid getting into spam and are not1236

spam detector methods. However, they still use Explainable1237

methods of AI to avoid spam; that is why they were analyzed1238

in this section.1239

The following analysis will focus on techniques that were1240

not created to avoid Spam but instead use Spam datasets1241

as testing. GRACE [178] generates contrastive samples that1242

are concise, informative and faithful to the neural network1243

model’s specific prediction. SLISEMAP [179] finds local1244

Explanations for all data items and builds a (typically) two-1245

dimensional global visualization of the black box model such1246

that data items with similar Local Explanations are projected1247

nearby. [180], [181] are two works focused on text classifica-1248

tion that use Spam datasets.1249

4) CONSIDERATIONS ABOUT PHISHING AND SPAM1250

DETECTION AND XAI1251

As anticipated earlier, state of the art of Explainable Artificial1252

Intelligence in Phishing and Spam detection is very meagre.1253

From the analysis, very few methods are built Ad-hoc for1254

detecting these two types of Cyber-attacks. Phishing and1255

Spam are themain threats affecting anyone using a technolog-1256

ical device, so using AI for prevention and detection is nec-1257

essary. AI that simultaneously conveys assurance about the1258

decision made and provides awareness is required to prevent1259

the decision-making process from becoming less effective for 1260

the business and the individual user. As seen in the analysis 1261

conducted in [175], the user accepts AI makes mistakes, 1262

as long as it is explained how andwhy so that it can improve in 1263

the case of a false negative above all. A consideration beyond 1264

XAI in CyberSecurity is the education that must be provided 1265

to everyone with a technological device which happens to be 1266

surfing the internet where Phishing and Spam are continually 1267

around the corner. Similar to how one trains models, one 1268

might devise strategies to teach individuals to avoid falling 1269

victim to these scams. These strategies need to be Explainable 1270

so that anyone can comprehend why certain decisions are 1271

taken. 1272

D. BOT (Net) DETECTION 1273

A ‘‘Bot’’ or Robot, is a software program that performs 1274

automatic, repetitive, preset operations. Bots often mimic 1275

or replace the behaviour of human users. Since they are 1276

automated, they work considerably more quickly than actual 1277

individuals [182]. 1278

Malware and Internet bots can be programmed/hacked 1279

to access users’ accounts, search the Internet for contact 1280

information, transmit Spam, and execute other dangerous 1281

operations. Attackers may use malicious Bots in a Botnet, 1282

or network of Bots, to launch these attacks and conceal their 1283

source. A Botnet is a collection of online-connected devices 1284

running one or more Bots, frequently without the owners’ 1285

knowledge. Since each device has a unique IP address, Botnet 1286

activity comprises many IP addresses, making it more chal- 1287

lenging to locate and stop the source of malicious Bot traf- 1288

fic. When used to infect additional computers, Spam e-mail 1289

recipients’ devices can help Botnets grow larger. They are 1290

commanded by hackers known as Botmasters or Bot herders. 1291

Botnets are hard to spot since they consume very few 1292

computer resources. This keeps them from interfering with 1293

applications’ regular operation and does not make the user 1294

suspicious. However, the most sophisticated Botnets can also 1295

alter their behaviour by the CyberSecurity systems of the PCs 1296

to evade detection. Most of the time, users are unaware that 1297

their devices are part of a Botnet and are under the control of 1298

online criminals [183]. 1299

1) WHY XAI IN BOT (Net) DETECTION? 1300

Spamhaus monitors both IP addresses and domain names 1301

used by threat actors to run botnet Command & Con- 1302

trol (C&C) servers. As a result, Spamhaus Malware Labs 1303

researchers found and blacklisted 17, 602 botnet C&C servers 1304

hosted on 1, 210 distinct networks.10 This represents a mas- 1305

sive 71.5% increase over the number of botnet C&Cs wit- 1306

nessed in 2018. Since 2017, the number of newly discovered 1307

botnet C&Cs has nearly doubled, rising from 9, 500 to 17, 1308

602 in 2019. The figure 9 shows the increasing attention of 1309

researchers in this area. 1310

10https://www.spamhaus.org/news/article/793/spamhaus-botnet-threat-
report-2019
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FIGURE 9. BotNet Detection Publications from 2005 to 2021, retrieved
from Scopus using as search key [TITLE-ABS-KEY (botnet AND detection)].

AI, applied with Explainable methods, is certainly among1311

the best methods to counter this phenomenon in which a huge1312

number of resources have to be vanquished.1313

2) ARTIFICIAL INTELLIGENCE IN BOT (Net) DETECTION1314

This section quickly reviews the newest and most cited meth-1315

ods in BotNet Detection. For Bot Detection, refer to the1316

comprehensive survey by Cresci et al. [182].1317

Fast-flux hunter (FFH) [184] is a framework that can1318

improve the performance level in detecting and predicting1319

unknown and Zero-day fast-flux Botnets. FFH distinguishes1320

the fast-flux Botnets domain from legitimate domains in1321

an online mode based on new rules, features, or classes to1322

enhance learning using the EFuNN algorithm.1323

TS-ASRCAPS [185] is a framework based on double-1324

stream networks, which uses multimodal information to1325

reflect the characteristics of Domain Generation Algorithms,1326

and an attention-sliced recurrent neural network to automati-1327

cally mine the underlying semantics.1328

The authors of [186] propose a memory-efficient DL1329

method, named LS-DRNN, for Botnets attack detection1330

in IoT networks. S-DRNN method employs SMOTE and1331

DRNN algorithms only. However, LS-DRNN combines Long1332

Short-Term Memory Autoencoder (LAE), SMOTE, and1333

DRNN algorithms.1334

The framework proposed in [187] uses ML combined with1335

a honeynet-based detection method for predicting if an IoT1336

device can be a part of a Botnet.1337

In [188], the authors use a CNN to perceive subtle differ-1338

ences in power consumption and detect Anomalies.1339

In [189], the authors point out one of their proposal’s main1340

cons, the framework’s non-Explainability. They emphasize1341

that this is a problem with DL models and that this implies1342

a lack of confidence. The following section will analyze1343

frameworks that try to explain why a particular classification1344

is made. Other interesting works are [190], [191].1345

3) EXPLAINABLE ARTIFICIAL INTELLIGENCE IN BOT (Net) 1346

DETECTION 1347

BotStop [192] is a Packet-based Botnet detection system 1348

that examines incoming and outgoing network traffic in an 1349

IoT device to prevent infections from Botnets. The proposed 1350

system is founded on Explainable ML algorithms thanks to 1351

SHAP use with features extracted from network packets. 1352

Once an attack is detected, the source is blocked. Always 1353

SHAP is used in [193] to determine the relevant traffic fea- 1354

tures in a framework to detect traffic generated by a Bot and 1355

then determine the type of Bots using a Convolutional Neural 1356

Network. 1357

Suryotrisongko et al. [194] propose the XAI and OSINT 1358

combination for Cyber Threat Intelligence Sharing in pre- 1359

venting Botnet DGA. This research applied four existing XAI 1360

techniques: Anchors, SHAP, Counterfactual Explanation and 1361

LIME. This latter is also used in [195] and [196] where the 1362

final goal is the detection in IoT Networks. 1363

BD-GNNExplainer [197] is a Botnet Detection Model 1364

based on Graph Neural Network. The explanation is 1365

attributable to subgraph decomposition theory [198], where 1366

it is feasible to determine whether the learned model is inter- 1367

pretable by identifying the subgraph with the most significant 1368

influence on prediction and judging whether the subgraph is 1369

faithful to general knowledge. 1370

Reference [199], [200], [201], three explainable studies 1371

focused on DGA-based botnet detection, are also worth 1372

mentioning, as is [202], in which the authors created a 1373

Gradient-based Explainable Variational Autoencoder forNet- 1374

work Anomaly Detection utilizing a BotNet dataset as a test. 1375

Bot-Detective [203] is an explainable Twitter bot detection 1376

service with crowdsourcing functionalities that uses LIME. 1377

LIME is also used in JITBot [204], An Explainable Just-In- 1378

Time Defect Prediction Bot, and in [205], a bot-type classifi- 1379

cation schema. 1380

SHAP and LIME are used in [206] for game BOT detec- 1381

tion, while in [207], the authors used a Decision Tree model, 1382

Explainable by definition, for automatic detection on Twitter 1383

with a particular case study on posts about COVID-19. 1384

4) CONSIDERATIONS ABOUT BOT (Net) DETECTION 1385

AND XAI 1386

As noted in the previous sections, almost all of the frame- 1387

works declared Explainable use existing methods for Post- 1388

hoc Explanation, SHAP and LIME above all. In BotNet 1389

Detection, the almost total focus on IoT networks and devices 1390

should be especially noted, demonstrating that these occupy 1391

a very important slice of the Net. As in the case of Spam and 1392

Phishing, it is critical to alert if you have entered a BotNet 1393

and are feeding it unknowingly, and even more important 1394

to Explain what you have inferred and how you got into 1395

it, so that you can avoid falling into it again in the future. 1396

It is moving in this direction, as evidenced by the increasing 1397

number of publications on the subject, however, one must 1398

consider that also improving is the malicious part of the 1399
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fight. That is why it is increasingly important that supporting1400

human decisions is AI, which can counter a considerable part1401

of these attacks in an automated way. For there to be the1402

right cooperation between human and AI, Explainability of1403

the latter is necessary to build trust in the former.1404

E. OTHER CYBERSECURITY TREATS1405

TheMacro Categories considered up to this point are those in1406

which the greatest effort has been spent with the purpose of1407

applying Explaining Artificial Intelligence in CyberSecurity.1408

Fraud Detection. The financial sector is one of the ones1409

most frequently targeted by cyberattacks. Frauds are frequent1410

Cyber-attacks linked to money and reputation issues in this1411

field. Data leaks and illegal credit losses may be the root of1412

such attacks.1413

xFraud, an Explainable fraud transaction detection frame-1414

work based on Graph Neural Networks (GNN), is presented1415

in [208]. The authors designed a Learnable Hybrid Explainer1416

that leverages GNNExplainer and centralitymeasures to learn1417

node- and edge-level Explanations simultaneously.1418

Srinath et al. [209] present an ExplainableMachine Learn-1419

ing framework for identifying credit card defaulters using1420

DALEX [210].1421

Zero-Day Vulnerabilities. The term ‘‘Zero-day’’ refers1422

to recently identified security flaws that hackers utilize to1423

attack systems. The expression ‘‘Zero-day’’ alludes to the1424

notion that the vendor or developer has ‘‘Zero days’’ to repair1425

the defect because they have just become aware of it. When1426

hackers use a vulnerability before developers have a chance1427

to fix it, a Zero-day assault is launched.1428

The authors of [211] propose a new visualization technique1429

using similarity matrices of features depicting behaviour1430

patterns of malware and displaying them in image form1431

for faster analysis for detection of Zero-day malware.1432

Kumar et al. [212] use Shapley Ensemble Boosting and Bag-1433

ging Approach instead for the same goal.1434

The authors in [213] propose a method for Zero-Day Web1435

Attacks delivering outlier explanations. The method shows1436

that Explanations can be backwards transformed through1437

n-gram encoding and dimensionality reduction.1438

In [214], Zhou et al. define a Zero-day artificial immune1439

system driven by XAI for intrusion detection in telecommu-1440

nications. The central part of the artificial immune system is1441

extracting strict rules for benign traffic. It uses a Decision1442

Tree that is, by definition, a white-box model.1443

Digital Forensics. Digital Forensics or Computer Foren-1444

sics finds its place in Forensic Science or Criminalistics. It is,1445

therefore, that branch of Forensic science that deals with1446

investigating the contents of digital devices, during investi-1447

gation and trial, for evidentiary purposes. The collected data1448

are identified, acquired, analyzed, and a technical report is1449

written.1450

Hall et al. [215] assert that the application of AI in dig-1451

ital/network forensics is still a ‘‘Black box’’ at this time,1452

requiring verification by digital/network Forensic investi-1453

gators, and is therefore unlikely to be justified in court.1454

Furthermore, the admissibility of digital/network analysis 1455

performed by XAI in court is still debatable as it would 1456

necessitate a review of applicable laws (e.g., evidence law). 1457

However, XAI can be used efficiently and legally in the 1458

future to support the digital/network forensic profession if it 1459

is not viewed as a replacement for a digital/network forensic 1460

examiner but rather as a reliable tool to aid in investigations. 1461

ATLE2FC [216] is a model for IoT Forensics using Ensem- 1462

ble Classification with an Explainable layer consisting of 1463

FPGrowth with GRU-based RNN classifier for rule estima- 1464

tion and severity classification. 1465

For media forensic investigations focusing on media foren- 1466

sic object modification detection, such as DeepFake detec- 1467

tion, a domain-adapted forensic data model is introduced 1468

in [217] and [218]. 1469

Cyber Physical Systems. When an adversary gains access 1470

to a computer system that controls equipment in a manufac- 1471

turing facility, oil pipeline, refinery, electric generating plant, 1472

or other similar infrastructure, they can control the operations 1473

of that equipment to harm those assets or other property. This 1474

is known as a Cyber-Physical attack on critical infrastructure. 1475

Cyber-Physical attacks pose a risk not only to the owners and 1476

operators of those assets but also to their suppliers, clients, 1477

enterprises, and people nearby the targeted asset, as well as 1478

to any individual or entity they could negatively impact. For 1479

example, a Cyber-Physical attacker may take down cameras, 1480

switch off the lights in a building, cause a car to wander off 1481

the road, or make a drone land in the hands of adversaries. 1482

Wickramasinghe et al. [219] propose a Desiderata on 1483

Explainability of unsupervised approaches in Cyber-Physical 1484

Systems since they generate a large amount of unlabeled 1485

data. These are potential solutions for meaningfully mining 1486

these data, maintaining and improving desired functions, and 1487

improving the safety of these systems. 1488

An Explainable Cyber-Physical Systems based on Knowl- 1489

edge Graph is proposed in [220] for Energy Systems while 1490

in [221] the authors propose a framework to build Self- 1491

Explainable Cyber-Physical System. 1492

Crypto-Jacking. Crypto-jacking, a new Malware that 1493

resides on a computer or mobile device and uses its resources 1494

to ‘‘mine’’ Cryptocurrencies, is a severe online threat. In addi- 1495

tion to compromising various devices, including PCs, laptops, 1496

cellphones, and even network servers, Crypto-Jacking can 1497

take control of web browsers. Using Crypto-Jacking, crim- 1498

inals compete with sophisticated Crypto mining operations 1499

without the high overhead costs by stealing computational 1500

power from victims’ devices. 1501

It is a threat comparable to BotNets, where unknowingly 1502

the user feeds activities with malicious purposes through their 1503

device. 1504

There are no works that make Explainable Artificial 1505

Intelligence methods in the detection of Cryptojacking, 1506

one that goes in this direction in the detection of Cryp- 1507

tomining is that of Karn et al. [222]. They designed and 1508

implementated an automated cryptomining pod (manage- 1509

ment of applications inside containers) detection in a 1510
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TABLE 2. Summary of methods.

Kubernetes cluster. Explainability is provided using SHAP,1511

LIME, and a novel auto-encoding-based scheme for LSTM1512

models.1513

VI. DISCUSSION AND CHALLENGES1514

Due to the broad spectrum of XAI approaches, analyzing1515

the different surveys involving these works were preferred to1516

better orient the reader. It is also unthinkable to include all 1517

studied papers; hence only a selection of works was discussed 1518

in this survey for synthesis and relevancy considerations, 1519

prioritizing all work that proposed XAI methods with appli- 1520

cation in CyberSecurity. 1521

Table 2 summarizes the principal works of XAI for each 1522

CyberSecurity application analyzed with a focus on the 1523
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TABLE 3. Summary of most used cyber dataset in main cyber application fields.

ML/DL model, the type of explanation and a summary con-1524

cerning the taxonomy presented in section II-A.1525

Table 3 presents themain datasets for each application field1526

encountered during the survey, highlighting the use of aged1527

datasets. Methods and datasets are ordered by year for each1528

application field.1529

The selection criteria were based mainly on a backward1530

and forward snowballing strategy that consists of using the1531

reference list of the selected papers and the citations to these1532

papers to identify additional papers [241]. The proposed1533

review was founded on a solid foundation that included1534

the most critical areas of XAI and CyberSecurity subjects.1535

Because of the investigated domains’ importance and rapid1536

growth, it has been determined that non-traditional sources1537

are also necessary to analyze since they are essential and1538

impactful in the field. In the following the main challenges1539

emerged after the review conducted.1540

More formalism is needed. XAI is a multidimensional1541

target that a single theoretical approach cannot achieve. How-1542

ever, the synergistic employment of techniques from diverse1543

study horizons must be done in a well-integrated manner.1544

In other words, for the area to advance, it needs to be1545

supported by a separate research community, which, at this1546

point of development, should primarily focus on increased1547

formalism. The reference is mainly to works that apply1548

Explainable Artificial Intelligence methods in CyberSecurity1549

without specifying in what and how, at what level, with output1550

reported to whom (whether users, analysts or developers)1551

and especially with what techniques. In the same field of1552

application (e.g., Malware Detection), it would be good to1553

unify the work in terms of Explainability so that those in1554

charge of analyzing and preventing cyber-attacks can have a1555

unified and more understandable view.1556

Human in the loop. It is not enough to explain the1557

model; the user must comprehend it. Furthermore, even with1558

an appropriate explanation, establishing such an understand-1559

ing may necessitate supplementary responses to queries that1560

users are likely to ask. Thus, explainability can only occur 1561

through human-machine interaction. In [242], the authors 1562

present an example and approach for creating a concept for 1563

an XAI-driven junior cyber analyst based on understanding 1564

the information needs of both humans and AI components in 1565

terms of the work context and workflow. This method may 1566

be required to design future systems that people can use, par- 1567

ticularly for critical systems where human stakeholders can- 1568

not interact with black-box outputs from intelligent agents, 1569

as is the case in many CyberSecurity applications. Therefore, 1570

the idea and proposal are to think about and build frame- 1571

works that have human-machine interaction at their core for 1572

CyberSecurity applications, which is vital in many cases. The 1573

only way to get there is to build models understandable to 1574

humans. 1575

How to achieve Explainability. In the current state of 1576

the art, as shown in the Table 2, the proposed methods use 1577

post-hoc explanation in most cases. Developing models that 1578

provide an intrinsic explanation is a priority; an explana- 1579

tion method developed ad-hoc for that particular type of 1580

application is necessary for a field such as CyberSecurity, 1581

where one risks providing an assist to the attacker. Moreover, 1582

the problem may be precisely in terms of explanation, and 1583

the risk is to provide an untruthful output. As pointed out 1584

several times in [101], LIME, one of the most widely used 1585

methods, assumes that the decision boundary is locally linear. 1586

However, when the local decision boundary is non-linear, 1587

as it is in the majority of complex networks, those expla- 1588

nation approaches cause significant inaccuracies. In some 1589

cases, the linear portion is severely constrained to a relatively 1590

tiny region. The artificial data points beyond the linear zone 1591

are easily struck by standard sampling methods, making it 1592

hard for a linear model to estimate the decision boundary 1593

near x. The challenge then is not easy, the inverse correlation 1594

between model opacity and performance is well known, but 1595

an effort is needed to develop increasingly high-performing 1596

but transparent models. 1597
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Adversial Attacks. An in-depth investigation of how pat-1598

tern explanations can provide new attack surfaces for the1599

underlying systems is needed. A motivated attacker can use1600

the information offered by the explanations to perform mem-1601

bership inference and pattern mining attacks, damaging over-1602

all system privacy. Regular adversarial attacks are predicated1603

on the assumption that an adversary may inject a perturbation1604

into an input sample that is undetectable to humans, and, as a1605

result, the ground-truth class of the perturbed input does not1606

change. The second issue is that a ML model’s projected1607

class changes. Attackers have developed several techniques1608

to exploit weaknesses in XAI-enabled CyberSecurity frame-1609

works. Adversary attacks circumvent authentication systems,1610

such as the XAI-enabled facial authentication system, while1611

poisoning attacks were used to alter or damage training1612

data [243]. To combat these attacks, a solution could be to1613

analyze ‘‘Desiderata for adversarial attacks in different sce-1614

narios involving explainable MLmodels’’ presented in [244].1615

VII. CONCLUSION1616

XAI is a framework to help understand and interpret the1617

predictions of AI algorithms. CyberSecurity is an area where1618

AI can analyze datasets and track a wide range of security1619

threats and malicious behaviors. The only way to address the1620

many CyberSecurity challenges, with an increasing number1621

of attacks, is through the integration of human and AI. This1622

paper reviews work proposed in the past five years that seeks1623

to bridge human and machine through explainability. After1624

a careful analysis of the two ecosystems, XAI and Cyber-1625

Security, an analysis was conducted of the areas of Cyber-1626

Security most affected by the use of AI. What distinguishes1627

this work is the exploration of how each method provides1628

explainability for different application areas, highlighting the1629

lack of formalism and the need to move toward a standard.1630

The final analysis explored the most relevant problems and1631

open challenges. Considerable effort is needed to ensure that1632

ad hoc frameworks and models are built for safety and not the1633

application of general models for post-hoc explanation.1634
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