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ABSTRACT The recent increasing demand of Silicon-on-Chip devices has triggered a significant impact
on the industrial processes of leading semiconductor companies. The semiconductor industry is redesigning
internal technology processes trying to optimize costs and production yield. To achieve this target a key
role is played by the intelligent early wafer defects identification task. The Electrical Wafer Sorting (EWS)
stage allows an efficient wafer defects analysis by processing the visual map associated to the wafer.
The goal of this contribution is to provide an effective solution to perform automatic evaluation of the
EWS defect maps. The proposed solution leverages recent approaches of deep learning both supervised
and unsupervised to perform a robust EWS defect patterns classification in different device technologies
including Silicon and Silicon Carbide. This method embeds an end-to-end pipeline for supervised EWS
defect patterns classification including a hierarchical unsupervised system to assess novel defects in the
production line. The implemented ““Unsupervised Learning Block™ embeds ad-hoc designed Dimensionality
Reduction combined with Clustering and a Metrics-driven Classification Sub-Systems. The proposed
“Supervised Learning Block” includes a Convolutional Neural Network trained to perform a supervised
classification of the Wafer Defect Maps (WDMs). The proposed system has been evaluated on several
datasets, showing effective performance in the classification of the defect patterns (average accuracy
about 97%).

INDEX TERMS Artificial intelligence, convolutional neural network, explainable architectures, hierarchical
clustering.

I. INTRODUCTION The wide application of semiconductor has enabled the

The semiconductor-based technological development pro-
cess has led to a revolution which has impacted all innovation
fields including communications, computing, artificial intel-
ligence, medical devices, and so on.

The associate editor coordinating the review of this manuscript and

approving it for publication was Okyay Kaynak
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emergence of new markets. The global chip shortage led
by automotive industry for vehicle electrification or a
supply-chain related issues caused by geopolitical crises in
the East countries for rare-earth elements management has
seriously questioned the value of semiconductor as a strategic
asset.

Framing the chip shortage as business problem brought
semiconductor industry to increase fab investments, but this
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FIGURE 1. 6" Silicon carbide wafer.

short term solution needs time frame to build new factories.
Therefore, industry needs to develop effective and efficient
solutions to properly satisfy this growing demand without
new investments and costs.

Furthermore, the optimization of Ultra Very Large Scale
Integration (UVLSI) process and the introduction of new
technologies, such as Silicon Carbide (in Fig. 1 a Silicon
Carbide Wafer is reported) that will replace current Silicon
technology in the high-power and high-temperature applica-
tions (thanks to its efficiency and switching properties given
by the physical behaviour [1]), generates new production
issues that makes defect patterns analysis more difficult.

The manufacturing of an integrated circuit goes through
two main steps, the Front-End and Back-End phases [2].

The first one is related to the manufacturing process
of the die (device), while the second one includes the
remaining part of the production process including the
packaging [2], [3], [4].

Wafers fabrication process requires several chip-probing
(CP) such as the front-side metallization, backside grinding
and metallization and so on [2], [3], [4].

Significant production-process drift can be generated in
all device manufacturing steps which consequently produces
defects in the wafers.

The wafer defect patterns identification (during the produc-
tion phase) is one of the key mode for improving production
performance of a semiconductor company [5].

To automate the wafer defects detection, a robust charac-
terization of the patterns embedded in the wafer surface is
needed. In particular, the analysis of the geometric morphol-
ogy of these defect patterns provides a sort of fingerprint that
can be efficiently used to retrieve the cause that generated
the manufacturing process-drift and consequently correlates
it with the production yield [6].

One of the most used approaches to characterize produc-
tion defects in semiconductor wafers is based on the visual
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FIGURE 2. Front-end pipeline description for binarized WDM generation.

analysis of the defect maps at Electrical Wafer Sorting (EWS)
stage in which a series of electrical conformance-tests will be
performed (short-circuit tests, leakage, parasitic capacitance,
and so on) [7].

Specifically, the EWS binarized Wafer Defects Maps
(WDMs) are considered as excellent tool for identifying pre-
dictive markers of production yield or issues in the upstream
manufacturing lines.

More in detail, the binarized WDMs are obtained at the
end of the Front-End manufacturing process (Fig. 2) where
designed devices are emebedded in disc-shaped wafers and
tested by a probing machine. The probing machine verifies
the device functionality through electrical tests, assigning a
test-outcome color to each device and by distinguish them
in fully, partially or not working devices thereby creating a
defect map. The binarization of WDMs consists in assigning
the white color (value *“1”’) to partially or not working devices
while the black color (value “0”’) is assigned to full working
devices and background.

The pipeline herein proposed is based on the wafer defects
analysis at the end of the Front-End manufacturing, i.e., when
the binarized WDM has been generated. Therefore, from a
careful monitoring of the so generated WDM, semiconductor
manufacturers will be able to build correlation models with
the issues upstream the production lines or to predict the
impact on the production yield of a specific defect pattern,
defining properly policies of recovery.

The main contribution of this work is the development of
a deep pipeline for a robust and intelligent classification of
defect patterns both in Silicon (Si) technology and in the
production of Silicon Carbide (SiC) devices. In subsequent
development (currently being designed) we will deal with the
correlation between the classified wafer defect patterns and
the issues upstream the production process and therefore with
the related yield.

This work is arranged into three main sections: related
works where several approaches to assess defect pattern
recognition problem are briefly described, materials and
methods where the proposed approach is discussed from
mathematical and computational perspectives, experiments
and results section in which the performance and benchmark
comparisons of the designed approach will be outlined. The
final section will also include a description of the deliv-
ered tool named STAI-EWS. This tool embeds the pipeline
described in this contribution and it is currently in use in
Silicon and Silicon Carbide technology production lines.
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Il. RELATED WORKS

Deep Learning solutions for addressing semiconductor appli-
cation issues related to pattern recognition, semantic seg-
mentation and classification have grown significantly in
the last few years. Several researchers investigated different
approaches of WDMs recognition by using deep learning
based on supervised, unsupervised and hybrid approaches.
Most of these works have been evaluated on public datasets
or by using internal data or synthetic ones.

A. SUPERVISED-LEARNING-BASED APPROACH

Several solutions based on deep architectures with a
supervised-learning paradigm have been proposed in scien-
tific literature. In [8] a basic 3-layers Convolutional Neu-
ral Network (CNN) has been designed in order to classify
22 different simulated WDM classes by using a Poisson Point
Process [9] approach with an overall accuracy of 98.20% in
test set.

In [10] leverage a novel Information Gain (IG)-based split-
ter with a spatial filtering to remove random noise over the
WDMs was proposed. The authors proposed a general regres-
sion network (RGRN) model to identify and classify both
single-defect and mixed-defect patterns. The latter method
showed very promising results with 99.51% of accuracy for
single defect patterns and 86.00% for mixed ones.

In [11] authors delivered a modified VGG-19 architecture
with ad-hoc drop-out system to classify out-of-distribution
data with WDMs rotated by 5 degree to match the pat-
tern distribution and maximize the correlation with reference
image. This method seems very effective with an accuracy
on test set (1, 311 Wafer Maps) of 97.71% while with out-of-
distribution accuracy of 97.18%.

An interesting approach has been proposed by [12] where
the authors combined four classification models: Each clas-
sifier involves a 3-layers CNN with a downstream stack of
two fully connected layers to classify a synthetic dataset
of WDMs virtually generated using real distribution based
approach [13]. The performance of the showed method con-
firmed the usefulness of using synthetic datasets to improve
the performance of the deep classifier, reaching 91.00% in
accuracy over a severely noisy dataset and 97.40% over a
moderately noisy one.

Other authors designed and evaluated pre-trained (on clas-
sical ImageNet or COCO or KITTI dataset) deep models such
as DenseNet-169 [14] or R-CNN [15] to leverage transfer
learning approach in order to improve the performance of the
underlying deep classifier in defect patterns assessment. The
performance of the analyzed methods showed that DenseNet-
169 reachs 87.70% in test set while R-CNN an overall accu-
racy of 97.73%.

An interesting approach has been presented in [16] by
proposing an Ensemble Convolutional Neural Network based
on LeNet, AlexNet and GoogleNet with a weighted majority
function based on models’ output weights. By multiple exper-
iments varying learning rates and optimizers they achieved an
overall accuracy of 98.57% on WM-811K dataset.
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B. UNSUPERVISED-LEARNING-BASED APPROACH

In [17] researchers proposed a Gaussian Mixture of Varia-
tional Autoencoder (GMVAE) where extracted visual fea-
tures from the source WDM and by means of an ad-hoc
Dirichlet process they were able to provide a robust WDMs
clustering. This approach has been benchmarked against tra-
ditional Bayesian non-parametric models using the adjusted
rand index (ARI) and adjusted mutual information (AMI)
as measure of similarity between clusters, obtaining 0.76 as
highest values in both ARI and AMI.

In [18] authors proposed a pre-processing statistical tech-
nique on a custom dataset containing 6 wafer lots, consisting
in a binarization of wafer maps, filling the inner testing
wafer points on the wafer using the around median value and
reducing the noise using a median filter. At the end of the pre-
processing stage, variational autoencoders are used as feature
extractors to decompose high-dimensional wafer maps to a
low-dimensional latent representation. Finally, a traditional
K-means or hieararchical clustering were involved and simi-
larity evaluated by Silhouette Score. Unfortunately, the men-
tioned authors provided only the 2D-latent plot representation
of their method without any performance metric.

In [19] authors proposed a Siamese CNN which learned
an embedding space based on similarities of WDM images.
A G-means clustering as hierarchical clustering pipeline has
been used as downstream block to find the optimal clusters
distribution. The authors applied and evaluated their solution
on classical public WM-811K dataset. The hybrid approach
confirmed a promising effectiveness of 91.20% in accuracy
with a corruption ratio of only 10% down to 64.20% with a
corruption of 40%.

C. HYBRID-LEARNING-BASED APPROACH

The authors of [20] proposed a combination of three tech-
niques based on distributed K-Means++ for clustering as
well as a statistical mining patterns by FPGrowth [21] and
finally a deep classifier based on a 5-layers CNN backbone
for making a robust defect maps classification of a custom
input wafer dataset. The method seems very promising as they
collected 95.00% in F1-score.

The authors of [22] proposed a Stacked Convolutional
Sparse Denoising Auto-Encoder (SCSDAE) in which the
designed convolutional layers were used to extract wafer
visual features. The so collected features will be processed by
the auto-encoder part of the architecture in order to retrieve an
internal unsupervised latent representation of those features
suitable to perform a robust features-related defects cluster-
ing. The method showed 95.13% of accuracy using a 5-fold
cross validation.

A promising approach has been showed in [23] in which
the authors proposed an approach based on dimensionality
reduction of the input defect maps distribution followed by an
autoencoder based processing. Specifically, the input defect
maps were fed to Principal Component Analysis (PCA) that
extracts features. The so collected features will be processed
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by the downstream auto-encoder which tried to reconstruct
the input embedded patterns from internal latent representa-
tion. This approach has been evaluated on WM-811K dataset
with an accuracy of 97.27% in a 5-fold cross validation
setting.

The authors of [24] proposed an Adaptive Balanced GAN
based approach to preliminary improve the source WDMs
class balancing. The authors trained the GAN embedded
discriminator to assess the differences between the synthetic
wafer maps with respect to the real ones. Further, the dis-
criminator will be used as deep classifier of both (synthetic
and real) WDMs, reaching an accuracy of 96.00% in all the
9 classes of WM-811K dataset.

A novel approach has been proposed in [25] in which
Hybrid Quantum Deep Learning is applied by transform-
ing WDMs of WM-811K dataset in feature maps using
self-proliferation and self-attention (SP&A) blocks and com-
pared the proposed approach against traditional Deep Learn-
ing approaches (i.e., CNN) reaching an overall accuracy
of 98.10%.

Authors in [26] proposed a self-supervised learning
approach based on Convolutional Auto-Encoders and Dirich-
let process. Convolutional Auto-encoders is used to extract
meaningful features from WDMs input based on WM-811K
dataset, these features are then clustered by the Dirichlet
process mixture model (DPMM) imposing pseudo-labels and
the previous CAE is fine-tuned in a self-supervised learning
fashion. With this approach they achieved a weighted-macro
accuracy of 96.10%.

Our proposed deep learning pipeline can be configured as
a hybrid deep learning approach for classification of defect
patterns related not only for devices Silicon (Si) technology
based but also for Silicon Carbide (SiC) ones. The aforemen-
tioned methods proposed in the last years by industry and
academy, are mainly based on WM-811K public dataset with
performance tricked by its class imbalance (a more detailed
description can be found in IV-B1). Our proposed approach
has been trained on multiple datasets. The related robustness
has been evaluated and compared by using Explainable Arti-
ficial Intelligence (XAI) methods between the designed CNN
and State-Of-The-Art architectures implemented for similar
applications. The implementation of the proposed pipeline
in the form of a Web-application represents a valid tool for
semiconductor manufacturing allowing a robust production
failures assessment.

IIl. MATERIALS AND METHODS

The authors propose in this contribution a hybrid deep
learning approach for WDMs assessment where the overall
scheme of the proposed full hybrid pipeline is reported in
Fig. 3.

The first part of the designed pipeline is the “Unsuper-
vised Learning Block” which embeds four sub-systems: The
Resize and Filter, Dimensionality Reduction followed by
Clustering and Metrics-driven Classification.
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The second part of the proposed pipeline is composed
by the “Supervised Learning Block™ structured with ad-hoc
designed Convolutional Neural Network trained to perform a
supervised classification of the resized input WDMs.

As introduced, in the common semiconductor production
lines there is a concrete need to correctly identify and classify
defect patterns as predictive markers of manufacturing issues
and production yield. Furthermore, it becomes necessary to
characterize novel and unknown defect patterns related to a
new issues in the upstream production process which needs
to be properly investigated.

The classical manufacturing issues which produces wafer
defects mainly concern to failures, impurities or degrada-
tion of the production lines [27], [28]. For the work herein
described, it is worth mentioning the case of Silicon Carbide
(SiC). The SiC-based manufacturing pipelines show defect
patterns which are usually significantly different with respect
to the silicon-based ones (a more detailed description about
datasets can be found in IV-A1 and IV-B1). For this reason,
an advanced ‘“unsupervised’’ pipeline suitable to identify new
defect patterns is investigated. In this way, the herein pro-
posed pipeline will be able to catch new issues in the upstream
production lines, through a hybrid approach (unsupervised /
supervised) that will be able to correctly characterize defect
patterns.

Each of the designed parts of the proposed full pipeline will
be described in the following sub-sections.

A. UNSUPERVISED LEARNING BLOCK

The designed Unsupervised Learning Block is composed by
four sub-systems: Resize and Filter, Dimensionality Reduc-
tion, Hierarchical Clustering and Metrics-driven Classifica-
tion. Each of the mentioned sub-systems will be described in
detail.

1) RESIZE AND FILTER SUB-SYSTEM
The input of this sub-system is the high-resolution bina-
rized WDMs (usually at classical wafer dimension, i.e.,
20, 000 x 20, 000 spatial resolution) resized (using bicubic
algorithm [29]) to ad-hoc reduced spatial dimension by the
resize block. From our internal investigation, an optimal
resolution for the herein analyzed application is 61 x 61.
However, the spatial resolution resizing does not have any
significant impact on the overall performance of the proposed
unsupervised pipeline to the extent that the defect patterns
information are preserved. Due to the adopted Resize Block,
each pixel of the processed WDM image no longer represents
a single die (device) but may represent a set of dies (devices)
according to the adopted photo-lithography process [30].
Before applying the dimensionality reduction and hierar-
chical clustering techniques as reported in Fig. 3, a Filter
Block is preliminary applied to the resized input WDM. This
filter discards defect maps whose patterns show a low-impact
in the upstream production issues. Specifically, a wafer map
showing few defective dies (i.e., the so called “Spot Wafer
Map” as in Fig. 4a or a defect map with no defective dies
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FIGURE 3. The overall scheme of the proposed pipeline.

(i.e., the so called “Empty Wafer Map™ as in Fig. 4b) will
be discarded as they do not produce any significant impact
in the production lines but only computational cost of the
pipeline. In order to characterize the defect maps as “Spot™
or “Empty”’ ad-hoc thresholds have been defined.

As reported in Fig. 3 the introduced Resize and Fil-
ter sub-system will enable dimensionality reduction and
clustering to speed up computation. The Resize and Filter
sub-system will update the WDMs to the internal database
accordingly.

2) DIMENSIONALITY REDUCTION SUB-SYSTEM

The target of this sub-system is to perform ad-hoc dimen-
tionality reduction of the visual features distribution extracted
from the WDM inputs.

After the Resize and Filter sub-system, defect map
images are fed as input in the ‘“Dimensionality Reduc-
tion Sub-System” which has the target to reduce the
dimensional-complexity of the pre-processed input wafer
maps. To perform the aforementioned dimensionality reduc-
tion, the proposed pipeline embeds an approach based on
Uniform Manifold Approximation and Projection (UMAP)
algorithm [31].

UMAP algorithm has the target to reduce an input
high-dimensional connected graph into a projected low-
dimensionality space. The goal of UMAP is to keep
the high-dimensionality space-features into the projected
low-dimensionality space by using the so called Riemannian
manifold [32].

More in detail, the pre-processed input WDM images
at 61 x 61 resolution will be flattened and reshaped to
3,721 dimensions. In order to fed this reshaped input vector
into UMAP, the authors have assumed that each sample (of
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(a) Spot
FIGURE 4. Spot and empty wafer maps.

(b) Empty

the so reshaped vector) will represent a specific dimension in
the related high-dimensional space as total of 3, 721 dimen-
sions. These samples are known as data-points. This dimen-
sional reduction approach is a key-process of the WDMs
unsupervised clustering. For this reason, the unsupervised
sub-system was designed to process batch of WDMs, specif-
ically, the whole set of wafers produced at each production
cycle (from our tests 350 wafer maps based on Silicon Car-
bide technology were processed - on average - per week
cycle).

The UMAP algorithm is based on the following main parts:
High-Dimensionality-to-Graph Block and Graph projection
Block.

B. HIGH-DIMENSIONALITY-TO-GRAPH BLOCK

The target of this block is to build a weighted graph associated
to the input set of WDMs (high-dimensional space). Let
introduce such mathematical assumptions needed to reduce
the dimensionality of the high-dimensional space associated
to wafer maps. Specifically, the authors have assumed that
data-points are uniformly distributed over the input high-
dimensional space. Considering that this assumption is not
always satisfied in a real application, we have applied a Rie-
mann’s metric (G,) that allows to consider input data-points
as uniformly distributed in the input space, thus making
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mathematical assumptions robust [32]. Further mathematical
assumptions are given below:

Assumption Aj: Given a set of data uniformly distributed
on the manifold M (respect to the related Riemann’s metric
G, ), for each point in M there exists a correlated point GY on
the tangent space T,M of the manifold M.

Assumption A,: The aforementioned Riemann’s metric is
locally constant, i.e., given a ball of fixed volume, it contains
the same number of points regardless the position on the
manifold M.

Assumption Aj3: If the assumption A| and A; are satisfied
then Riemann geometry theory confirmed that the manifold
M is locally connected.

In order to build the high-dimensional weighted graph from
the mentioned uniformly distributed data-points, we have
to introduce the concept of simplicial complex [33] and
K-Nearest Neighbour [34].

More in detail, the cited manifold M will be created by
using such elements of the simplicial complex such as: points
(Fig. 5a), line segments (Fig. 5b), triangles (Fig. 5c). Each
of the mentioned elements can be each combined and con-
nected together (like tetrahedron Fig. 5d) in order to create a
n-dimensional object.

In the input high-dimensional space the data-points are
connected along edges (through simplicial complex ele-
ments). An edge can be defined as topological structure after
data-points connection. The concept of “edge” is correlated
to the concept of “weight”, i.e., a measure of distance (in the
Riemann geometry meaning) between edges [31].

As introduced, K-Nearest Neighbour (KNN) [34] approach
was used to graph construction in the input high-dimensional
space. Specifically, by ad-hoc changing of “k’’ parameter of
KNN algorithm we are able to build a k-complexity depen-
dent and weighted graph by connecting the edges. A more
detailed graph-structure can be obtained by using small “k”
value where data-points are inside a dense region in the
manifold M. Otherwise, for large k™ value, a sparse-graph
structure will be generated.

More in detail, the graph is generated as follow: Assume
the parameter “k” as a circle radius around each data-point
in the input high-dimensional space. This circle radius can
be extended or shrinked in order to connect each data-point
with others. By changing the circle radius (k parameter) we
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FIGURE 6. An instance of 2D KNN generated graph.

are able to connect more or less data-points to the graph.
An instance of so generated 2D simple graph is reported in
Fig. 6.

After that, we normalize the measure of distance between
the edges in the graph (i.e., the weights) by associating a fuzzy
topology representation of the graph in which distance values
may change between zero and one [31].

The use of UMAP allows to obtain considerable
advantages (compared to classical dimensionality reduction
techniques such as Principal Component Analysis (PCA),
Singular Value Decomposition (SVD), t-Distributed Stochas-
tic Neighbor Embedding (t-SNE)) as it allows to preserve the
global and local features of the high-dimensional input space
into the projected low-dimensional space by optimizing the
degree of dimensionality for feature representation.!

C. GRAPH PROJECTION BLOCK

The second step of the UMAP algorithm is the input
high-dimensional graph projection into low-dimensional
ones. Basically, with this step the authors want to build a
new low-dimensional weighted graph by optimizing a cross-
entropy-based function that embeds the weights associated
to the edges of both graphs (the input high-dimensional and
the projected ones to be defined by the optimization process).
In Eq. 1 the adopted cross-entropy ®(u, v, A) function is
reported:

right group
(@)
w
O(u, v,A) = log(——) +
(1, v, A) aguw) Og(u(a))
1_
+<1—u(a))log<l—“(“)> 1)
—v(w)
right gap

where A is a reference set, i.e., the set of the input
high-dimensional wafer defect data-points, & and v are the
related weights defined in « — [0, 1] due to mentioned fuzzy
representation. In the so created low-dimensional space (due
to the previously optimization) a connected graph is associ-
ated. The output of UMAP processing is then a set of features

I This particular phenomenon is called Curse of dimensionality, the num-
ber of dimensions needed to represent features grows exponentially with the
increasing amount of data.
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FIGURE 7. An instance of 2D projected low-dimensional space of input
silicon carbide WDMs.

in low-dimensional space (with associated graph) retrieved
from the input WDMs (data-points). We have defined as ¢
this set of UMAP output data-points features.

An instance of 2D UMAP-projected space of an input
Silicon Carbide WDMs is reported in Fig. 7.

The so obtained low-dimensional data-points will be fed as
input to the “‘Hierarchical Clustering Sub-System”’.

1) HIERARCHICAL CLUSTERING SUB-SYSTEM

Lowered dimension input WDMs arranged as data-points
® are fed as input to the designed Hierarchical Clus-
tering Sub-System based on the usage of Hierarchical
Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN) [35]. The use of HDBSCAN allows to obtain
considerable advantages compared to classical parametric
clustering techniques such as K-Means and Gaussian Mix-
ture Models (GMM) or non-parametric clustering such as
DBSCAN [36] and Mean shift. HDBSCAN allows to create a
hierarchy of clusters based on density and not on heuristically
predefined parameters improving both cluster separation and
cohesion.

HDBSCAN is a clustering algorithm extending old
DBSCAN approach, where the key-part is the *““core-object™,
defined as follow.

The result of the previous Dimensionality Reduction
sub-system is a m X n matrix containing distances of m
data-points in the lowered n dimensional space. An object
ay is defined “core-object” with respect to a radius r and a
smoothing factor n,, if drawing a circumference with radius
r and centered in ay, it is possible to identify a minimal set
of data-points [37]) within the circumference. The circum-
ference is usually indicated with the term “‘r-neighborhood”
while the data-points outside the ‘‘r-neighborhood” are
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defined as ‘“noise”. After that, we leveraged the following
definitions related to core-object:

Definition D1: Two core-objects are considered r-reachable
if data-points in the related core objects are nested all
together;

Definition Dy: N core-objects are density-connected if they
are directly or transitively r-reachable;

Definition D3: A cluster (C) can be defined with respect to
its radius (r) and smoothing factor (,), as non-empty subset
of density-connected core-objects;

We can also define other properties related to distance
between core-objects:

Definition D4: The core distance d... of a core-object a,
(with reference to its radius r and smoothing factor m,) is the
distance between a,, to its nearest neighbor in m,;

Definition Ds: A core-object is considered r-core-object
if the correlated radius r is greater than or equal to the core
distance of ap.

After the core objects definition, HDBSCAN provides
an internal graph reconstruction starting from input low-
dimensional data-points and core-objects previously defined.

This graph is usually named as Mutual Reachability Graph
and it is defined as:

Definition Dg: Mutual Reachability Graph is a weighted
graph with the data-points configured as graph-vertices while
for each edge (data-points connection) ad-hoc weights are
defined as measure of the mutual reachability distance of
related data-points.

Definition D7: Mutual reachability distance d,,, is defined
as the maximum distance between core distance a,, core
distance a4 and the distance between the two core-objects aj
and ay. In Eq. 2 the mathematical representation of the d,.

dmr(apa aq) = max{(dcore(ap)s dcore(aq)a d(ap» aq)} )

At this point, HDBSCAN provides a mutual reachability
graph by connecting core-objects and by weighting the con-
nection through the mutual reachability distance d,; .

Through ad-hoc thresholding applied to the overlapping
edges of the mutual reachability graph, the mutual reach-
ability graph connection scheme can be re-configured by
optimizing the number connection-complexity. To do that,
HDBSCAN embeds the usage of Minimum Spanning Tree
(MST) approach [35], [38]. MST re-configures and reduces
in complexity the input densely connected graph by a classi-
cal graph-theory approach which provides a new graph with
a minimal set of edges that connects all the components.?
An instance of MST optimized graph associated to an input
Silicon Carbide WDMs is reported in Fig. 8.

The target of the unsupervised pipeline which embeds
UMAP and HDBSCAN is to provide a final hierarchical
structure which highlights the key group of clusters associ-
ated to the input set of similar wafer defect patterns. Based on
the performed analysis, we have obtained a non-hierarchical
MST optimized and densely connected weighted graph.

2 A more detailed explanation about HDBSCAN can be found at [35].
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FIGURE 9. An instance of dendrogram of input silicon carbide WDM:s.

Therefore it is necessary to construct from this graph a hier-
archical structure which specifically highlights the groups of
clusters associated with the patterns of the input wafer set.
For this reason graph edges sorting by their tree distance in
increasing order have been applied.

More in detail, hierarchical re-configuration of the graph
can be described with a traditional dendrogram representa-
tion [39] which highlights the number of clusters and the
distance between those clusters. An instance of dendrogram
is reported in Fig. 9. Anyway, dendrogram is not a suitable
visualization for the final assessment of the optimal number
of clusters and needs some heuristic assumptions to generate
the clusters distribution (for instance the cluster size parame-
ter has to be defined heuristically) [39].

To overcome this issue, HDBSCAN proposed the usage of
“excess of mass” as a method to extract an optimal number
of clusters.

Given the probability density function, components of the
dendrogram can be disconnected or connected accordingly to
the density function f (x).

Basically, by ad-hoc increasing or decreasing density A
parameter related to cluster’s density, computed as 1

d(f()fe i
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f(x)

Amin(cl) = Amin(CZ)
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FIGURE 10. Diagram of the “excess of mass” approach applied to
clustering.

clusters (C;) are split or merged according to the density value
Ai, where eligible clusters are the one that will survive at the
A density changes.

The Eq. 3 reports the mathematical integral equation
related to the “excess of mass™. In Fig. 10 we reported an
instance of excess of mass approach on the probability density
function of clusters.

Eqm(Ci) =/ C(f(X) — Amin(Ci))dx 3)

Through the approach described by Eq. 3 and in Fig. 10 the
authors were able to retrieve the optimized number of clus-
ters C; through density A;. For instance, the two meaningful
clusters C1 and C, are merged at the corresponding minimum
density level A,,;, related to C| and C; and create cluster Cs,
then merged cluster C3 will be merged with another cluster
C4 according to the minimum density level A;4 1, and so on.

Finally, the output of HDBSCAN sub-system is a set of
core-objects representing the final set of optimized clus-
ters. These defined clusters will be re-mapped back to the
UMAP block in order to associate them to source data-points.
In Fig.11 an instance of the mentioned UMAP re-mapping is
reported.

In Fig. 11 clusters related to input defect maps (in Silicon
Carbide technology) with significant similar features have
been highlighted and grouped by color.

At the end, the set of optimized clusters will be processed
by the following Metrics-driven Classification Sub-System.

2) METRICS-DRIVEN CLASSIFICATION SUB-SYSTEM
In details, the target of this sub-system is to assess the
matching between the identified defect map clusters (from
UMAP and HDBSCAN) with the well-classified defects
classes stored in the database available in the pipeline.

To do that, we have integrated the K-Means approach [40]
with the target to retrieve only one centroid for each cluster
(basically K=1). K-means is also applied to the well classified
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FIGURE 11. UMAP cluster-to-data-point plot related to silicon carbide
WDMs input.

wafer defect patterns stored in the internal database embed-
ded in the proposed pipeline (see Fig. 3). K-means centroids
represent the mean value of the WDMs in the clusters and
in well-classified WDMs stored in the database. In order to
compare them, a Cosine Similarity metric has been defined.
The following Eq. 4 showed the applied metric comparison:

cos@) — —VPMaen X WDMpp @
IWDMew || > | WDMpgl|

where WDM,,,,, is the computed K-means cluster centroid
related to the WDM clusters while WDMpp is the same
related to the well-classified WDMs stored in the Database.
The cosine similarity score ranges from —1 to 1, as —1 rep-
resents high dissimilarity of the centroids while, conversely,
1 represents high similarity of the input data.

We have defined ad-hoc threshold of 0.90 as good trade-off
to define the full similarity on the WDMs. Basically, in the
case of high similarity (similarity beyond the pre-determined
threshold) of the cluster-centroid with ones of the reference
well-classified centroids, the input defect maps will be con-
sidered similar to the compared class already stored in the
internal database and therefore they will be added to the
database and stored as belonging to that specific class. Other-
wise, in the case of dissimilarity with all the classes already
stored in the database, a new class will be created associated
with the defect maps from which the clusters were generated.

After the so described unsupervised processing of the
source defect maps (and the following update of the database
on the basis of the similarity check previously described) the
proposed pipeline enables the supervised classification of the
defect maps as described in the next section.
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D. SUPERVISED LEARNING BLOCK

The designed Supervised Learning Block takes as input
the defect patterns stored in the internal database possibly
updated by the Unsupervised Learning Block.

To perform the mentioned supervised classification, ad-
hoc designed Deep Convolutional Neural Network has been
implemented. It is composed by 5 convolutional layers having
a kernel size 3 x 3, padding and striding set to 1. For each
convolutional layer a ReLU activation function followed by
a Batch Normalization are applied. The number of kernels is
doubled at each layer, starting from 64 till to 512. Starting
from the second layer a Max-pooling of size 2 x 2 and
striding set to 2 is applied. The so designed Convolutional
Neural Network backbone is described in details in Table 1.
Specifically, we have designed two type of deep convolu-
tional network backbones (differentiating the input layer and
the final layers that embed the fully connected) in order to
validate the best of these in performance and to facilitate the
benchmark comparison phase. More details about the two
implemented backbones are now given.

The Big CNN. This first backbone embeds an input layers
at 224 x 224 x 3 as data resolution/channels while shows
a final stack of two fully connected layers which embeds
100, 352 and 1, 024 neurons respectively.

The Small CNN. This second backbone embeds a
single-channel input layer at 64 x 64 and a final set of two
fully connected layers is composed by 8, 192 and 1, 024 neu-
rons respectively. As introduced, the need to have two deep
architectures is mainly for performance validation as well as
in reference to a more robust benchmarking of the proposed
solution as some scientific literature solutions with which our
method has been compared have inputs of 224 x 224 x 3 or
single-channel. In Table 1, the details of the implemented
deep backbones.

As reported in Table 1, the final number of well defined
WDM classes has been defined to 45. Although this number
can vary significantly according to the new classes that may
emerge from the unsupervised clustering block. More details
about this defect map classes are reported in the next sections.

The experimental results we have collected were related
to this setup although similar considerations can be extended
to any number of defect map classes. However, an attempt
is made to minimize the number of defect pattern classes
in order to efficiently characterize production. Furthermore,
as new defect classes are identified, they are analyzed and
resolved in the upstream production line, thus contribut-
ing to the maintenance of a minimum number of defect
classes.

IV. EXPERIMENTS AND RESULTS

This section reports experimental results for Unsupervised
Learning and Supervised Learning approach and some details
about the STAI-EWS application we have developed to per-
form the test through an user-friendly tool.
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TABLE 1. Description of convolutional neural network.

Block Layer(s) Description | Kernel(s) Number | Output Size Big CNN | Output Size Small CNN
Input 224x224x3 64x64x1
k=3
s=1
Convolution p=1 64 224x224x64 64x64x64
ReLU
BatchNorm
k=3
s=1
Convolution RI;}U 128 112x112x128 32x32x128
BatchNorm
MaxPool (k=2, s=2)
Convolution [...] 256 56x56x256 16x16x256
Convolution [...] 512 28x28x512 8x8x512
Convolution [...] 512 14x14x512 4x4x512
Fully Connected Linear, ReLU 1 100,352 to 1,024 8,192 to 1,024
Fully Connected Linear 1 1,024 to 45 1,024 to 45

where k = kernel, s = striding and p = padding.

(d) SiC_3 (e) SiC_4

(f) SiC_5
FIGURE 12. A subset of silicon carbide defect map patterns.

A. UNSUPERVISED LEARNING APPROACH

In this sub-section the details about the training procedures,
dataset and experimental results related to unsupervised
learning approach, are reported.

1) UNSUPERVISED LEARNING BLOCK: SILICON CARBIDE
DATASET

STMicroelectronics Silicon Carbide is an internal dataset
recently created by failure engineers of STMicroelectronics
related to new production line issues in Silicon Carbide (SiC)
devices. The dataset contains 2, 238 WDMs related to Silicon
Carbide devices and stored as RGB images at 61 x 61 resolu-
tion, grouped in such imbalanced 54 new patterns and named
by a progressive number.

The Figs. 12, 13, 14 report such instances of the SiC defect
maps. Specifically: Fig. 12b reported a ring-like pattern with
multiple contiguous good dies at the center; Fig. 12f reported
an half-moon-like pattern with multiple contiguous good dies
at the center on the edge of the wafer; Fig. 13a reported a
checker-board like pattern with multiple contiguous defective
dies at the center; Fig. 13b reported a wafer full of defective
dies with several straight lines of good dies; Fig. 13e reported
an half-moon-like pattern but with longer and contiguous
defective dies along the edge; Fig. 13g reported a ring-like
pattern but with a scratch on the upper side of the wafer;
Fig. 13h reported defective dies at the bottom center part,
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good dies in straight horizontal lines; Fig. 13s reported defec-
tive dies at the center and straight vertical lines of good dies;
Fig. 13t reported an instance of split ring-like pattern on the
right side of the Wafer; Fig. 13u reported a straight horizontal
lines of good dies and defective dies arranged on the left
side; Fig. 14b reported such defective dies at the center with
straight vertical lines and spots of good dies; Fig. 14d reported
an amplified version of ring-like pattern; Fig. 14f reported an
amplified and inner half-moon-like pattern on the left side of
the wafer; Fig. 14g reported an amplified version of ring-like
pattern with good dies arranged vertically at the center of the
wafer similar to SiC_6 in Fig. 13a; Fig. 14v reported a wafer
full of good dies with a horizontal centered line and spots
arranged like a checkerboard of good dies; Fig. 14w reported
aright half side of the wafer with defective dies and a straight
horizontal line of good dies.

From this internal dataset, a subset of 225 unlabelled mixed
WDMs is randomly chosen and arranged in a 3D Surface
Plot as reported in Fig. 15. This plot allows to spot predomi-
nant patterns by visual inspection, due to the binarization of
WDMs where good dies have value “0” and defective dies
have value “1”. By stacking up binarized WDMs along pixel
coordinates (x and y axes) the sum of ““1” values (z axis)
will represent the spatial distribution of defective dies on the
wafer. A high value of z at a specific coordinate point will
represent a predominant defective pattern.

This dataset has been used to evaluate the unsupervised
block of the proposed pipeline. The defect maps embedded
in this dataset have been previously analyzed by engineers of
STMicroelectronics, in this way, we were able to better and
more accurately evaluate the outcomes of the unsupervised
analysis.

2) UNSUPERVISED LEARNING BLOCK: TRAINING
PROCEDURE

As introduced in the unsupervised learning block description,
dimensionality reduction and hierarchical clustering have
been applied. The adopted configuration of parameter-values
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(a) SiC_6 (b) SiC_7

(d) SiC_9 (e) SiC_10

(I SiC_17

(0) SiC_20

(q) SiC_22

(t) SiC_25

(v) SiC_27

(w) SiC_28
FIGURE 13. A subset of silicon carbide defect map patterns (part 2).

(x) SiC_29

are reported in Tables 2 and 3 for UMAP and HDBSCAN
respectively.
More in detail, referred to Table 2 related to UMAP:

- “Number of components” is the number of dimensions
of the embedded space;

- “Number of neighbors” is the number of neighboring
data-points suitable to preserve local density;

- “Minimum distance” is the minimum distance between
embedded data-points;
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(d) SiC_33 (e) SiC_34

(h) SiC_37

(k) SiC_40

(p) SiC_45

(s) SiC_48

(v) SiC_51
FIGURE 14. A subset of silicon carbide defect map patterns (part 3).

(w) SiC_52 (x) SiC_53

- “Distance metric” is the metric used to compute dis-
tances in high dimensional space.

While, referred to Table 3 related to HDBSCAN:

- “Minimum cluster” is a parameter suitable to determine
the minimum number of clusters;

- “Minimum number of samples” is the minimum num-
ber of data-points in a point’s neighborhood to be con-
sidered as core point;

- “Cluster selection (¢)” is the threshold applied to sepa-
rate or merge clusters;
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FIGURE 15. Silicon carbide stacked wafer bin maps plot.

- “Distance metric” is the metric used to compute dis-
tance inside HDBSCAN processing;
In both UMAP and HDBSCAN, the parameter-value ‘““Dis-
tance metric’” has been evaluated by using Euclidean (Eq. 5)
or Manhattan (Eq. 6) distances.

&)

dEucl idean =

n
dManhaltan = Z |xi - yi| (6)
i=1

where r is the number of dimensions.

The Distance metric applied affects how the embeddings in
UMAP and clusters in HDBSCAN are generated. Euclidean
distance computes the shortest distance between two data-
points x; and y; while Manhattan distance computes the abso-
lute distance between two data-points x; and y; in a grid-like
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TABLE 2. UMAP parameters.

Parameter Value
Number of components | 2 to 20
Number of neighbors 5,10, 15
Minimum distance 0.0,0.5, 1

Distance metric Euclidean or Manhattan

TABLE 3. HDBSCAN parameters.

Parameter Value
Minimum cluster size 5,10, 15
Minimum number of samples 1,2,3,5,10
Cluster selection (€) 0.0,0.5,1

Distance metric Euclidean or Manhattan

environment. According to [41] Manhattan distance should
be used in high-dimensional space scenario as it is more
robust to outliers but at the same time it is affected by the
curse of dimensionality drawbacks. While, Euclidean dis-
tance affects embeddings generation by squaring the distance
of far-way data-points x; and y;. In practical application, the
authors opted for a metric rather than another due to the
statistical distribution of the data.

The combination of the indicated parameters in Tables 2
and 3 enabled the evaluation of 30, 780 models for clus-
ters generation starting from input WDMs. For this rea-
son, we have used ad-hoc performance indexes to evalu-
ate the performance of each model. Specifically, we have
adopted the Silhouette Score, Calinski-Harabasz Index and
Davies-Bouldin Index defined as follow.

Silhouette Score (SS) [42], [43] provides a generic char-
acterization of the cluster. The score is computed over each
cluster as in Eq. 7

b—a
max(a, b)
where:

- a is the average distance between samples in the same
class;

- b is the average distance between samples in the nearest
clusters.

SS ranges from —1 to 41 where —1 represents incorrect clus-
tering while +1 represents highly dense clustering. SS around
zero indicates overlapping clusters.

Calinski-Harabasz Index (CHI) [43], [44] is the ratio of
the between-clusters dispersion and the within-cluster disper-
sion. The index is computed as in Eq. 8:

tr(By) sg—k
CHI = v < =T ®)
where:
k
W=D Y (—cx—cp'
q=1x€Ry
k
By =Y ng(rg — re)(rg — )’ ©)
q=1
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- tr(By) is the trace of the between cluster dispersion

matrix;

- tr(Wy) is the trace of the within-cluster dispersion

matrix;

- E is the dataset of clusters;

- sg is the size of the dataset;

- k is the number of clusters;

- Ry is the set of samples in cluster q;

- 14 is the center of cluster q;

- Rg is the center of E;

- ng is the number of samples in cluster q.

A higher value of the CHI means that clusters are dense and
well separated.

Davies-Bouldin Index (DBI) [43], [45] measures the aver-
age ‘similarity’ between clusters, i.e., it measures the distance
between clusters with the size of the clusters themselves. The
index is computed over each cluster as reported in Eq. 10

k

1 a. .
DBI = — max Gt
k = i d;;

(10)

where:

- djj is the distance between cluster centroids i and j;

- ¢; or ¢; are the average distances between each sample

in the cluster i orj and the centroid’s cluster.

A value of DBI close to zero indicates a better cluster
partition.

Now, the experimental results of the unsupervised learning
block are reported.

3) UNSUPERVISED LEARNING BLOCK: EXPERIMENTAL
RESULTS

Table 4 summarizes the best model according to the three
metrics involved. Specifically, according to:

Silhouette score: The best model is the 14,620th where
only 8 clusters are found and the fifth cluster is wrongly
grouped. Furthermore 4 WDMs were mistakenly excluded
from clustering.

Calinski-Harabasz Index: The best model is the 24,625th
where only 9 clusters are found and the ninth cluster is
wrongly grouped. Furthermore 7 WDMs were mistakenly
excluded from clustering.

Davies-Bouldin Index: The best model is the 1,643th
where only 2 clusters are found and they are wrongly
grouped. Furthermore 4 WDMs were mistakenly excluded
from clustering.

The summary of the performed tests and outcomes are
reported in Table 4.

Taking into account this preliminary and unsatisfactory
results, the authors tried to further optimize the UMAP and
HDBSCAN parameters selection (Tables 2 and 3). More in
detail, after careful tests the authors discovered that by only
using Euclidean distance in both UMAP and HDBSCAN
and a combination of: a lower number of components (i.e.,
4), a lower number of neighbors (i.e., 2), a lower minimum
cluster size (i.e., 2) and a minimum number of samples
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Cosine Similarity: 0.9068
K-Means Cluster 0

K-Means SiC_18

(a) Cluster 0 vs SiC_18

Cosine Similarity: 0.8046
K-Means Cluster 15

K-Means SiC_35

(b) Cluster 15 vs SiC_35
FIGURE 16. Cosine similarity between clusters.

(i.e., 1), allowed to preserve local density by obtaining a
better clustering performance despite the increasing number
of clusters. This allowed to find 41 clusters with a range
of cluster sample size from 2 to 8, with some bigger clus-
ter containing 15 or 25 WDMs. After the clustering was
performed as in the previous paragraph, we proceeded by
computing K-means centroids. Moreover, we have compared
the related centroids with the well-classified SiC dataset of
STMicroelectronics by applying a threshold of 90% with a
Cosine Similarity validation. Some of the collected outcomes
have been reported in Figs. 16, 17.

Although K-Means is a classical approach which often
shows limits in the determination of the centroids of clus-
ters, in the application herein proposed we noticed that the
combination with Cosine Similarity allowed a robust match
between unlabelled clusters. As introduced, the SiC dataset
have been previously annotated by engineers of STMicro-
electronics so that we have checked the similarity between
the clusters identified by the unsupervised pipeline with the
classes already identified. In our experiments only 7 clusters
have a lower value of Cosine Similarity between 70 and 80%
and only 2 clusters have been misclassified with classes from
SiC dataset (further inspection revealed a bad clustering and
a wrong centroid generation). Such instances are reported in
Figs. 16, 17.

B. SUPERVISED LEARNING APPROACH

In this section is reported details about training procedures,
dataset and experimental results related to supervised learn-
ing approach.

1) SUPERVISED LEARNING BLOCK: SILICON DATASET

For training and validation of the supervised block, three
datasets have been used: two public dataset WM-811K [4]
and MixedWM38 [46] as well as an internal dataset (based on
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TABLE 4. Unsupervised clustering benchmark performance.

UMAP HDBSCAN Silhouette Davies Calinski
Model — — .
.. Minimum  Minimum Cluster Score Bouldin | Harabasz
Number of  Number of Minimum . . .
. . Distance sample cluster selection Distance Index Index
components neighbors distance . . .
size size Epsilon
14,620 11 5 0.0 Euclidean 3 5 1.0 Euclidean 0.7704 0.2436 1704.05
24,625 17 5 0.5 Manhattan 5 5 0.0 Manhattan 0.6768 0.1998 539.64
1,643 3 5 0.0 Euclidean 2 5 1.0 Manhattan 0.2784 0.2784 2160.27
Cosine Similarity: 0.8129 10000
K-Means Cluster 23 Y K-Means Donut 9680
8000

(a) Cluster 23 vs Donut

Cosine Similarity: 0.9135

K-Means Cluster 26 K-Means SiC 5

(b) Cluster 26 vs SiC_5
Cosine Similarity: 0.8883

K-Means Cluster 37 K-Means SiC_29

(c¢) Cluster 37 vs SiC_29
Cosine Similarity: 0.8772

K-Means Cluster 38 K-Means SiC_2

(d) Cluster 38 vs SiC_2

Cosine Similarity: 0.9116
K-Means Cluster 40 K-Means SiC_4

(e) Cluster 40 vs SiC_4
FIGURE 17. Cosine similarity between clusters (cont.).

Silicon technology) collected by STMicroelectronics produc-

tion groups. In the following we describe the datasets used.
WM-811K [4] is a dataset created by TSMC (Taiwan

Semiconductor Manufacturing Company). The source
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FIGURE 18. WM-811K WDMs distribution.
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FIGURE 19. Binarized WDMs of WM-811K dataset.

dataset is composed by 811,457 samples, but only
172, 948 are properly labelled wafer maps, as RGB images
at different resolution (from minimum resolution of 15 x
3 to 212 x 84). The dataset contains a total of 9 different
wafer defect patterns with one classified as ‘“‘none”. The
dataset is imbalanced as the ““none” class contains more sam-
ples with normal production yield (about 150, 000 samples)
with respect the other ones. The following Fig. 18 shows
the defect pattern distribution in this subset for a total of
26, 519 samples.
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(h) Donut + Scratch (i) Edge-Loc + Loc

FIGURE 20. 2 mixed type WDMs of mixedWM38 dataset.

(a) Center + (b) Center + (c) Center +
Edge-Loc + Edge-Loc + Edge-Ring +
Loc Scratc Loc

(h) Donut + (i) Donut +
Edge-Loc + Edge-Ring + Edge-Ring +
Scratch Loc Scratch

(g) Donut +
FIGURE 21. 3 mixed type WDMs of mixedWM38 dataset.

As reported in Fig. 18 the dataset includes 9 differ-
ent patterns (including “‘none” with different morphology).
As shown in Fig. 19, where: 1) defective dies arranged at the
center; 2) defective dies arranged as a Donut-like shape; 3) a
group of defective dies located on the edge; 4) defective dies
along the edge; 5) a group of defective dies located anywhere;
6) a wafer full of defective dies; 7) random defective dies;
8) single circular scratch; 9) none (normal) Wafer Maps with
few defective dies.

To cover the mentioned imbalance issue, we significantly
reduced the “none” class only to 1,000 random samples.

MixedWM38 [46] dataset contains 38, 015 well-classified
wafer maps, including the so called “normal” pattern (the
“none” class in the WM-811K dataset) as well as 8 sin-
gle native defect patterns and 29 defect patterns grouped in
2 mixed type (Fig. 20), 3 mixed type (Fig. 21) and four mixed
type (Fig. 22), for a total amount of 38 defect patterns at
52 x 52 fixed resolution.

STMicroelectronics Silicon Dataset contains WDMs of
Silicon devices classified in 7 different patterns named by a
progressive number as shown in Fig. 23, where: (a) defective
dies at the bottom of the wafer with two straight lines of
good dies; (b) defective dies arranged like checker-board;
(c) double straight scratches; (d) full wafer of defective dies
with straight horizontal lines of good dies; (e) defective dies
grouped and arranged as circles along the edge; (f) defective
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(j) Edge-Loc + Scratch

(k) Edge-Ring + Loc (1) Edge-Ring + Scratch (m) Loc + Scratch

(d) Center + (e) Center + (f) Donut +
Edge-Ring + Scratch + Edge-Loc +
Scratch Loc Loc

(k) Edge-Loc +

(j) Donut + (1) Edge-Ring +
Loc + Loc + Loc +
Scratch Scratch Scratch

dies located at the bottom; (g) multiple circular scratches.
That dataset is imbalanced and composed by 6, 732 samples
at 61 x 61 fixed resolution.

As introduced, the final used dataset is a combination
of the previous ones containing a total of 71,266 WDMs
with 45 different classes re-arranged and grouped in a more
balanced way. This full dataset has been split into training,
validation and test sets according to a 80-10-10 hold-out
methodology.

2) SUPERVISED LEARNING BLOCK: TRAINING PROCEDURE
The designed supervised deep system has been trained by
using single datasets as well as combined ones. Preliminary,
ad-hoc data augmentation method has been employed includ-
ing random rotation, horizontal and vertical flip.

As introduced, we have implemented two deep network
backbones (Big CNN and Small CNN). Both models have
been trained for 100 epochs in PyTorch framework vers.
1.10 [47] with CUDA 11.4 running on a workstation based on
Intel Core i9-12900K with 64GB DDR4-3600MHz of RAM
coupled with NVIDIA RTX 3060 with 12GB of VRAM.
We have tested for benchmark comparison both pre-trained
(on ImageNet) State-Of-The-Art (SOTA) backbones as well
as the same trained from scratch [48]. The Adam algo-
rithm [49] has been used as optimizer with an initial learning
rate of le — 4 and, Cross Entropy function has been used as
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(b) Center + Loc +
Edge-Ring + Scratch

(a) Center + Loc +
Edge-Loc + Scratch

FIGURE 22. 4 mixed type WDMs of mixedWM38 dataset.
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(e) Si_40
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FIGURE 23. Binarized silicon WDMs provided by STMicroelectronics.
TABLE 5. Benchmark models training configuration.
Parameter Pre-trained SOTA [ SOTA trained from scratch CNN and ViT at 64x64
Input Wafer Defect Map Image Size 224x224 64x64
Color Space RGB Grayscale
Normalization mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] None
Data augmentation Random: rotation, horizontal and vertical flip
Batch size 128 16 128
Loss Type Cross Entropy Loss (with class weighting)
Optimizer Adam (with a learning rate of le-4)

performance Loss function with class weighting (Eq. 11)

Lx,y)=L={l,...,Ixn}T
¢ exp(x,.c)
b= = Y welog ety (1)
=1 =1 €xp(Xn,i)

where x is the input tensor, y is the target class label, w is
the weight (rescaled by weight given to each class), C is the
number of classes and N spans the minibatch.

In Table 5 the designed deep networks training configura-
tion is reported.

3) SUPERVISED LEARNING BLOCK: BASELINE BENCHMARK
Before evaluating the combination of the three previously
described datasets, we have validated our proposed solutions
against architectures proposed by authors of public datasets,
specifically WM-811K [4] and MixedWM38 [46].

More in detail, authors of WM-811K dataset produced
a confusion matrix ( [4], Fig. 13a) of the performance
obtained from their Dual-stage WMFPR method applied to
the WM-811K dataset. In [4] the mentioned confusion matrix
was reported while we reported in Table 6 the related con-
fusion matrix converted to overall accuracy, precision, recall,
F1-score indexes for benchmark comparison between the pro-
posed Dual-stage WMFPR [4] and our proposed solutions.

From Table 6 the overall accuracy of the Dual-stage
WMFPR seems slightly higher than ours. The related reason
is connected to the over-sampled class ““none’” which actually
allows the method proposed in [4] (which embeds about
110, 000 wafer samples of ““none’’) to apparently outperform
our method. In fact, from the details of the performances
for single classes reported in Table 6, it is evident how our
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architectures significantly outperform the method proposed
in [4] which it recovers with the only “none” class which is
strongly imbalanced and in any case not very significant for
the analyzed WDM s assessment. Therefore, the robustness of
the proposed method is evident in relation to the defect classes
that are most valid in the analysis of the defect patterns.
More details about Dual-stage WMFPR and our proposed
architectures can be found in Table 6.

About the MixedWM38 dataset the authors of [46]
described a split of their dataset (training and validation set)
as 80% and 20% providing a performance assessment of their
method based on the usage of precision and recall metrics.
In Table 7 we have reported the benchmarks comparison
between the method reported in [46] named DC-Net against
our proposed ones. As showed in Table 7 our proposed solu-
tions (in both the designed configurations) outperformed the
DC-Net approach designed in [46] by an average of 4% in
overall accuracy. The performances related to the classifica-
tion of single defect-classes (both native and mixed) showed
that our method outperforms the DC-Net approach [46]
on average, confirming the effectiveness of the proposed
approach. More details about DC-Net and our proposed archi-
tectures can be found in Table 7.

4) SUPERVISED LEARNING BLOCK: FULL DATASET
BENCHMARK

As applied for single datasets, the proposed deep network has
been validated with the full dataset embedding the previous
mentioned ones and split as follow: 57,012 wafer defect
samples as Training Set, 7, 127 samples for Validation Set
and 7, 127 samples for Testing Set. As benchmark indexes
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TABLE 6. Dual-stage WMFPR [4] versus proposed deep networks-WM-811K dataset.

Dual-stage WMFPR Proposed CNN at 64x64 Proposed CNN at 224x224
Failure Type | Precision Recall F1-Score | Support Precision Recall F1-Score | Precision Recall F1-Score | Support
Center 0.5928 0.8486 0.6980 832 0.9813 0.9545 0.9677 0.9750 0.9750 0.9750 440
Donut 0.5902 0.7397 0.6565 146 0.7564 0.9672 0.8489 0.8871 0.9016 0.8943 61
Edge-Loc 0.4761 0.8506 0.6105 2,772 0.9312 0.9189 0.9250 0.9123 0.9226 0.9174 530
Edge-Ring 0.9502 0.7966 0.8667 1,126 0.9853 0.9915 0.9884 0.9791 0.9936 0.9863 944
Loc 0.4201 0.6847 0.5207 1,973 0.9145 0.8470 0.8794 0.9012 0.8470 0.8732 366
Near-full 0.8455 0.9789 0.9073 95 0.9375 1.0000 0.9677 1.0000 0.6667 0.8000 15
Random 0.7045 0.7977 0.7482 257 0.9512 0.9398 0.9455 0.9487 0.8916 0.9193 83
Scratch 0.3943 0.8240 0.5334 693 0.8182 0.8926 0.8538 0.8833 0.8760 0.8797 121
none 0.9970 0.9570 0.9765 110,701 0.8077 0.9130 0.8571 0.8269 0.9348 0.8776 92
accuracy 0.9463 0.9463 0.9463 - 0.9416 0.9416 0.9416 0.9416 0.9416 0.9416 -
macro avg - - - 118,595 0.8981 0.9361 0.9148 0.9237 0.8899 0.9025 2,652
weighted avg - - - 118,595 0.9436 0.9416 0.9419 0.9417 0.9416 0.9412 2,652
TABLE 7. DC-Net [46] versus proposed deep networks-mixedWM38 dataset.
DC-Net Proposed CNN at 64x64 Proposed CNN at 224x224
Failure Type Precision Recall F1-Score Precision Recall F1-Score | Precision Recall F1-Score | Support
Center 0.9300 0.9700 0.9496 0.9778 1.0000 0.9888 0.9778 1.0000 0.9888 88
Center+Edge-Loc 0.9400 0.9400 0.9400 1.0000 0.9712 0.9854 1.0000 0.9712 0.9854 104
Center+Edge-Loc+Loc 0.9900 0.9600 0.9748 0.9895 0.9400 0.9641 0.9898 0.9700 0.9798 100
Center+Edge-Loc+Scratch 0.9200 1.0000 0.9583 0.9952 0.9764 0.9857 0.9951 0.9623 0.9784 212
Center+Edge-Ring 0.9200 0.9900 0.9537 0.9720 1.0000 0.9858 0.9720 1.0000 0.9858 104
Center+Edge-Ring+Loc 0.9300 0.9100 0.9199 0.9709 0.9709 0.9709 0.9626 1.0000 0.9810 103
Center+Edge-Ring+Scratch 0.9700 0.9700 0.9700 0.9882 1.0000 0.9941 0.9545 1.0000 0.9767 84
Center+Loc 0.9200 0.9600 0.9396 0.9813 0.9906 0.9859 0.9813 0.9906 0.9859 106
Center+Loc+Edge-Loc+S 0.9600 0.9900 0.9748 0.9278 0.9574 0.9424 0.9889 0.9468 0.9674 94
Center+Loc+Edge-Ring+S 0.9900 0.9600 0.9748 0.9612 0.9706 0.9659 0.9706 0.9706 0.9706 102
Center+Loc+Scratch 0.9700 0.9300 0.9496 0.9890 0.9783 0.9836 1.0000 0.9783 0.9890 92
Center+Scratch 0.9700 0.8900 0.9283 0.9794 1.0000 0.9896 0.9596 1.0000 0.9794 95
Donut 0.9500 0.9300 0.9399 0.9905 0.9905 0.9905 1.0000 1.0000 1.0000 105
Donut+Edge-Loc 0.9600 0.9200 0.9396 0.9714 0.9714 0.9714 0.9903 0.9714 0.9808 105
Donut+Edge-Loc+Loc 0.9500 0.9100 0.9296 1.0000 0.9892 0.9946 1.0000 1.0000 1.0000 93
Donut+Edge-Loc+Scratch 0.9800 0.9700 0.9750 0.9519 0.9340 0.9429 0.9528 0.9528 0.9528 106
Donut+Edge-Ring 0.9100 0.9800 0.9437 1.0000 1.0000 1.0000 1.0000 0.9898 0.9949 98
Donut+Edge-Ring+Loc 0.8900 1.0000 0.9418 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 94
Donut+Edge-Ring+Scratch 0.9000 0.9400 0.9196 0.9720 0.9905 0.9811 0.9722 1.0000 0.9859 105
Donut+Loc 0.9400 0.9700 0.9548 0.9783 1.0000 0.9890 1.0000 1.0000 1.0000 90
Donut+Loc+Edge-Loc+S 0.9500 0.8900 0.9190 0.9891 0.9579 0.9733 0.9890 0.9474 0.9677 95
Donut+Loc+Edge-Ring+S 0.9200 0.9200 0.9200 0.9817 1.0000 0.9907 0.9640 1.0000 0.9817 107
Donut+Loc+Scratch 0.9900 0.8800 0.9318 0.9894 0.9588 0.9738 0.9789 0.9588 0.9688 97
Donut+Scratch 0.9600 0.9400 0.9499 0.9652 0.9911 0.9780 0.9561 0.9732 0.9646 112
Edge-Loc 0.9600 0.9100 0.9343 0.9902 1.0000 0.9951 0.9899 0.9703 0.9800 101
Edge-Loc+Loc 0.9800 0.8900 0.9328 1.0000 0.9898 0.9949 1.0000 0.9388 0.9684 98
Edge-Loc+Loc+Scratch 0.9700 0.9300 0.9496 0.9899 1,0000 0.9949 0.9500 0.9694 0.9596 98
Edge-Loc+Scratch 0.9400 0.9100 0.9248 1.0000 0.9900 0.9950 0.9900 0.9900 0.9900 100
Edge-Ring 0.9300 0.9700 0.9496 0.9914 1.0000 0.9957 0.9661 0.9913 0.9785 115
Edge-Ring+Loc 0.9500 0.9100 0.9296 0.9717 0.9810 0.9763 0.9714 0.9714 0.9714 105
Edge-Ring+Loc+Scratch 0.9800 0.9400 0.9596 0.9889 0.9468 0.9674 0.9677 0.9574 0.9626 94
Edge-Ring+Scratch 0.9600 0.9200 0.9396 0.9811 1.0000 0.9905 0.9720 1.0000 0.9858 104
Loc 0.9900 1.0000 0.9950 0.9907 1.0000 0.9953 0.9904 0.9717 0.9810 106
Loc+Scratch 0.9800 0.8800 0.9273 0.9857 0.9718 0.9787 0.9459 0.9859 0.9655 71
Near-full 0.9000 0.9400 0.9196 1.0000 1.0000 1.0000 1.0000 0.9231 0.9600 13
Random 0.9700 0.9300 0.9496 1.0000 1.0000 1.0000 0.9897 1.0000 0.9948 96
Scratch 0.6000 0.8800 0.7135 0.9907 0.9907 0.9907 1.0000 1.0000 1.0000 107
Normal (none) 0.9400 0.9100 0.9248 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 103
accuracy 0.9400 0.9500 0.9450 0.9840 0.9840 0.9840 0.9811 0.9811 0.9811 -
macro avg - - - 0.9843 0.9844 0.9843 0.9813 0.9803 0.9806 3,802
weighted avg - - - 0.9841 0.9840 0.9839 0.9814 0.9811 0.9810 3,802

we have used the accuracy in training, validation and testing
phase. In Table 8 the collected performances for all the tested
deep backbones and related configurations (both pre-trained
on ImageNet and trained from scratch) are reported.

As expected, pre-trained models showed worse perfor-
mance than trained from scratch architectures as the features
related to defect maps are scarcely overlapped to those cor-
related to the ImageNet database and therefore the feature
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maps of a pre-trained network is more difficult to converge to
feature maps associated with WDMs. A network that builds
its own feature maps from scratch is able to learn better and
therefore perform better.

We also tested architecture based on Vision Trans-
former [50] (ViT RGB at 224 x 224 x 3 and ViT at 64 x
64 x 1 spatial resolutions) which however underperformed
compared to ours. We believe that this result is to be further
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TABLE 8. Full dataset(s) benchmark comparison.

Model Epoch | Training | Validation Test Runtime
resnet152_rgb_224 scratch 96 0.9727 0.9681 0.9672 1d 11h 17m
densenet161_rgb_224_scratch 95 0.9772 0.9680 0.9655 1d 16h 26m
cnn_l_64_scratch 75 0.9761 0.9649 0.9630 2h 11m
vggl9_rgb_224_scratch 76 0.9496 0.9560 0.9549 1d 2h 17m
cnn_rgb_224_scratch 36 0.9541 0.9502 0.9518 1d 34m
vit_rgb_224_scratch 83 0.9382 0.9430 0.9382 22h 1m
vit_l_64_scratch 100 0.9434 0.9473 0.9345 1h 29m
densenet_161_rgb_pretrained 81 0.7014 0.7110 0.7021 11h 7m
resnet152_rgb_pretrained 93 0.6616 0.6692 0.6709 9h 44m
vggl9_rgb_pretrained 71 0.4665 0.5203 0.5088 8h 40m
Test Accuracy

= densenet161_rgh_224_scratch = resnet152_rgb_224_scratch = vggl19_rgb_224_scratch ==vit_1_64_scratch = vit_rgb_224_scratch

== densenet161_rgb_224_pretrained == resnet152_rgb_224_pretrained == vggl19_rgh_224_pretrained = cnn_rgbh_224_scratch == cnn_l_64_scratch

Accuracy
o
=
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FIGURE 24. Test set accuracy curves.

Test Loss
= densenet161_rgh_224_scratch = resnet152_rgb_224_scratch = vggl19_rgb_224_scratch ==vit_1_64_scratch = vit_rgb_224_scratch
== densenet161_rgb_224_pretrained == resnet152_rgb_224 pretrained == vggl9_rgh_224 pretrained = cnn_rgbh_224_scratch ==cnn_l1_64_scratch

20 40 60 80 100

FIGURE 25. Test set loss curves.
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FIGURE 26. Loc WDM from WM-811K.

validated in a much larger dataset than the current one tak-
ing into consideration that transformer-based architectures
require a considerable amount of input data to build the
attention-based internal representation of the input data. From
Table 8 we noticed that the proposed solution based on CNN
Grayscale at 64 x 64 performed better than the CNN RGB
at 224 x 224 with a training accuracy of 97.61% as best
validation model and 96.30% as test-set accuracy.

Fig. 24 and 25 reported benchmarks related to accuracy and
the related loss curves in test set of all the tested architectures.

5) SUPERVISED LEARNING BLOCK: EXPLAINABILITY
Increasing the architecture’s complexity by adding residual
blocks (as ResNet and DenseNet architectures) and attention
blocks (as in Vision Transformer architectures), we contribute
to increase model’s predictive power and robustness by giv-
ing to architectures the ability to generalize on new exam-
ples [51], [52]. A more complex architecture should be able
to predict with a higher degree of confidence and to learn the
main features that characterize the inputs faster. Although,
model’s performance is still evaluated using traditional met-
rics like accuracy, precision and recall we do not have any
about what the model learned during training and what the
model is going to predict when new examples are given. With
these assumptions we need methods to explain what is really
happening inside the model instead of considering it as acting
like a black box.

The goal of Explainable Artificial Intelligence (XAI) is to
explain the internal layer activations on the basis of which
the deep model provides the desired solution. The methods
of XAI most used in scientific literature are based on Inte-
grated Gradients [53], Grad-CAM [54], [55] and Attention
Maps [56] methods. More details about these mentioned
approaches are now given.

Integrated Gradients [53] is a method to solve attribution
of the prediction in deep network. It is based on two axioms:
Sensitivity and Implementation Invariance.’

Formally, our deep network is represented by the function
F : R" — [0, 1], if we consider the straight-line path from
the baseline @' to the input a, and compute gradients at all
points along the path. Integrated gradients are obtained by
cumulating those gradients. Specifically, integrated gradients

3 A more detailed explanation can be found at [53].
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are defined as the integral-path of the gradients along the
straight-line path from the baseline @’ to the input a. The
integrated gradient along the i dimension for input a and
baseline @’ (with m, the number of steps in the Riemann
approximation of the integral) is defined by the following
Eq. 12:
m / k /
IG(a) = (a; — a) x Z OFa (i — ap) X !
da; m
k=1

Grad-CAM [54], [55] is a method to produce visual expla-
nation of underlying Convolutional Neural Network models
making them more explainable. Grad-CAM uses gradient
information flowing into the last convolutional layer of the
network to assign values to each neuron for a particular
outcome. Given a localization map related to the class C,
the Grad-CAM computes the gradient of the score of class
C (before the Softmax) with respect to the feature map of the
previous activated convolutional layer. This so computed gra-
dient is global-average pooled over the width (i) and height
(j) dimensions to obtain the neuron weighting.

Attention Maps As mentioned in [50], attention roll-out
mechanism [56] applied in Computer Vision problems is
defined as soft shading approach to focus learning on the
region of interest of the input image. From a mathematical
point of view, it is a recursive approach across all the weights
and layers of the deep network and where for each layer, the
corresponding attention map is multiplied by the previous
ones as per Eq. 13:

(12)

ADAUi—y)  ifi>]

Al = Ay ifi=j

(13)
where A(l;) is the corresponding attention weight-map at
layer i (for i to j, so from the first layer to the latest
ones).

In order to show the behaviour of models, XAI methods
aforementioned are now applied to an instance of “Loc”
wafer defect pattern (Fig.26). As reported in Figs. 27-36 for
each the tested deep backbones, we have computed explain-
ability methods in order to reconstruct the internal represen-
tation used by the network for performing the related wafer
patterns classification. The first aspect that is highlighted is
related to the fact that although the defect pattern is single,
the networks internally activate more similar classes such as
Center, Edge-Loc and Loc (as highlighted in the Prediction
plot showed in Fig. 27a, 28a). Anyway, the output of the
network is represented by the most representative class of this
internal map.

Starting from Fig. 27, our proposed deep network at 64 x
64 resolution (i.e., CNN at 64 x 64) predicted Center and
Loc and they are quite visible in the Integrated Gradients
but not in Grad-CAM. Instead, the proposed deep network
at 224 x 224 (i.e., CNN at 224 x 224) (Fig. 28) predicted
both Loc and Edge-Loc patterns with a higher confidence
and both Integrated Gradients and Grad-CAM confirmed the
corresponding patterns were activated. All the other models,
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FIGURE 27. Explainability analysis: CNN at 64 x 64 trained from scratch.
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FIGURE 28. Explainability analysis: CNN at 224 x 224 trained from scratch.
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FIGURE 29. Explainability analysis: VGG-19 pre-trained.
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FIGURE 30. Explainability analysis: VGG-19 trained from scratch.

both pre-trained (Fig. 29, 31, 33) and trained from scratch
(Fig. 30, 32, 34), showed the same behaviour, i.e., they were
not able to make right predictions as confirmed by XAl based
on Grad-CAM and integrated Gradients which not enabled
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(b) Integrated Gradients

(b) Integrated Gradients

B err

(b) Integrated Gradients

(¢) Grad-CAM

(b) Integrated Gradients

(¢) Grad-CAM

any significant activation maps. It is interesting to highlight
that the tested deep models trained from scratch were able
to make a better prediction referred to high significant acti-
vation maps such as VGG19, ResNet-152 and DenseNet-161
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FIGURE 31. Explainability analysis: ResNet-152 pre-trained.
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FIGURE 32. Explainability analysis: ResNet-152 trained from scratch.
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FIGURE 33. Explainability analysis: DenseNet-161 pre-trained.
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FIGURE 34. Explainability analysis: DenseNet-161 trained from scratch.

which were able to predict Loc and Edge-Loc patterns. Vision
Transformers (ViT) both at 64 x 64 (Fig. 35) and 224 x 224
(Fig. 36) performed quite well as confirmed by the Activation
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Maps (Grad-CAM can not be applied to ViT architecture) and
Integrated Gradients outcomes fairly consistent with the input

defect pattern Loc in Fig. 26.
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FIGURE 35. Explainability analysis: ViT at 64 x 64 trained from scratch.
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FIGURE 36. Explainability analysis: ViT at 224 x 224 trained from scratch.

C. THE STAI-EWS TOOL

The target of this sub-section is to introduce the developed
Al-boosted tool currently used in the STMicroelectronics lab-
oratories. We have developed a user-friendly solution which
covers both the implemented Unsupervised and Supervised
sub-systems. Specifically, we have released a deep learning
web-driven software application by using Python boosted by
the open source framework Streamlit [57] in combination
with Plotly [58] and PyTorch.

The released application was named “STAI-EWS” which
means ‘“‘STMicroelectronics Artificial Intelligence-based
Electrical Wafer Sorting assessment” (a video demonstration
can be found as supplementary material).

The STAI-EWS tool has been designed with an intuitive
user interface. More in details, the tool is composed by the
following parts: the sidebar and the main page.

e The sidebar shows the current version of the
STAI-EWS application and the navigation menu which
allows the user to select: Supervised Wafer Defect
Pattern Recognition, Unsupervised WDMs Clustering,
Manage Database and Manage Convolutional Neural
Network (CNN);

o The main page shows the current section configuration
of the STAI-EWS tool.

As introduced, the whole proposed pipeline has been
embedded in the STAI-EWS tool. Just more details about the
working-flow of the implemented options:

o The Supervised wafer defect pattern recognition

option. As described in IV-B with this option, the
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(b) Integrated Gradients

(c) Attention Map

user will be able to infer such input WDMs through
the well-trained Convolutional Neural Network. Feed-
forward inference can be done either as a single WDMs
as well as by group of defect maps. The related classifi-
cation of the input WDMs will be done with associated
reports.

o Unsupervised WDMs clustering option. As described
in IV-A this option allows the user to perform unsu-
pervised clustering of the input WDMs followed by a
downstream comparison with internal database looking
for new wafer defect pattern classes. The GUI of the
STAI-EWS tool shows the capability to change mul-
tiple parameters for UMAP and HDBSCAN such as
the dimensionality reduction factors, filtering param-
eters, thresholds configuration, and so on. A related
3D Surface plot will be created to have an overview
of the input WDMs against the adopted dimension-
ality reduction and hierarchical clustering configura-
tion. The STAI-EWS tool allows the user to enable
the K-Means centroids computation and related Cosine
similarity. As introduced, in case of novel defect patterns
the internal database will be automatically updated and
the related CNN re-trained accordingly (this option can
be disabled by the user). In Fig. 37 an instance of the
unsupervised sub-system embedded in the STAI-EWS
tool.

o The Configuration-Management of the Database.
This section allows the user to configure the STAI-EWS
tool internal defect maps database including the ability
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FIGURE 37. STAI-EWS tool: instance of the clustering report.
to backup of the current database. Moreover, the user can report of the current CNN performance (including
restore or update the database; curves, confusion matrix, and so on) is generated at
o The Configuration-Management of the Deep Net- the end of the usage of this option. In Fig. 38 an
work (CNN). In this section the user can validate or instance of this option embedded in the STAI-EWS

re-train the underlying deep CNN. A related benchmark tool.
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FIGURE 38. STAI-EWS tool: the configuration-management of the CNN.

V. CONCLUSION supervised deep pipelines we are able to early identify the
This work proposes an interesting hybrid approach to address defects in the production lines by means of a downstream
one of the key-issue of semiconductor industries, i.e., the analysis at EWS stage. By means of the investigated analysis
robust and effective defects assessment of the produc- of the associated binarized WDMs, we showed the ability of
tion lines. Through the combination of unsupervised and our proposed solution to provide a robust classification of the
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defect patterns as well as an effective ability to identify new
defect patterns which worth to be inspected in the upstream
production lines. This hybrid solution enabled an end-to-end
pipeline to be applied in the production lines of semicon-
ductor company embedding different technologies. In fact,
we have validated our solution in different environment both
with public dataset and by using internal ones provided by
STMicroelectronics. We have also validated our solution both
in Silicon technology as well as in Silicon Carbide confirming
the effectiveness of the proposed system both in unsupervised
analysis (for identifying novel defect patterns) as well as in
the supervised classification of the input well-known defect
patterns. Through the usage of innovative dimensionality
reduction and clustering features analysis (UMAP and HDB-
SCAN) we are able to build an internal robust representation
of the features associated to the input wafer defect maps.
Finally, by means of an XAI methods, we validated our
solution by analyzing the activation maps of the designed
deep network in order to check the internal representation of
the used deep networks.

Finally, the released STAI-EWS tool allows a simple
usage of the proposed pipeline by means of ad-hoc user-
friendly interface currently used in the STMicroelectronics
labs. Future works aim to extend the proposed architecture
embedding the sub-systems which allow to automatically
identify the upstream production issues associated to each of
the classified (and novel) defect maps as well as to retrieve a
robust assessment of the related production yield impact.
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