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ABSTRACT The recent increasing demand of Silicon-on-Chip devices has triggered a significant impact
on the industrial processes of leading semiconductor companies. The semiconductor industry is redesigning
internal technology processes trying to optimize costs and production yield. To achieve this target a key
role is played by the intelligent early wafer defects identification task. The Electrical Wafer Sorting (EWS)
stage allows an efficient wafer defects analysis by processing the visual map associated to the wafer.
The goal of this contribution is to provide an effective solution to perform automatic evaluation of the
EWS defect maps. The proposed solution leverages recent approaches of deep learning both supervised
and unsupervised to perform a robust EWS defect patterns classification in different device technologies
including Silicon and Silicon Carbide. This method embeds an end-to-end pipeline for supervised EWS
defect patterns classification including a hierarchical unsupervised system to assess novel defects in the
production line. The implemented ‘‘Unsupervised Learning Block’’ embeds ad-hoc designedDimensionality
Reduction combined with Clustering and a Metrics-driven Classification Sub-Systems. The proposed
‘‘Supervised Learning Block’’ includes a Convolutional Neural Network trained to perform a supervised
classification of the Wafer Defect Maps (WDMs). The proposed system has been evaluated on several
datasets, showing effective performance in the classification of the defect patterns (average accuracy
about 97%).
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INDEX TERMS Artificial intelligence, convolutional neural network, explainable architectures, hierarchical
clustering.

I. INTRODUCTION19

The semiconductor-based technological development pro-20

cess has led to a revolution which has impacted all innovation21

fields including communications, computing, artificial intel-22

ligence, medical devices, and so on.23

The associate editor coordinating the review of this manuscript and

approving it for publication was Okyay Kaynak .

The wide application of semiconductor has enabled the 24

emergence of new markets. The global chip shortage led 25

by automotive industry for vehicle electrification or a 26

supply-chain related issues caused by geopolitical crises in 27

the East countries for rare-earth elements management has 28

seriously questioned the value of semiconductor as a strategic 29

asset. 30

Framing the chip shortage as business problem brought 31

semiconductor industry to increase fab investments, but this 32
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FIGURE 1. 6’’ Silicon carbide wafer.

short term solution needs time frame to build new factories.33

Therefore, industry needs to develop effective and efficient34

solutions to properly satisfy this growing demand without35

new investments and costs.36

Furthermore, the optimization of Ultra Very Large Scale37

Integration (UVLSI) process and the introduction of new38

technologies, such as Silicon Carbide (in Fig. 1 a Silicon39

Carbide Wafer is reported) that will replace current Silicon40

technology in the high-power and high-temperature applica-41

tions (thanks to its efficiency and switching properties given42

by the physical behaviour [1]), generates new production43

issues that makes defect patterns analysis more difficult.44

The manufacturing of an integrated circuit goes through45

two main steps, the Front-End and Back-End phases [2].46

The first one is related to the manufacturing process47

of the die (device), while the second one includes the48

remaining part of the production process including the49

packaging [2], [3], [4].50

Wafers fabrication process requires several chip-probing51

(CP) such as the front-side metallization, backside grinding52

and metallization and so on [2], [3], [4].53

Significant production-process drift can be generated in54

all device manufacturing steps which consequently produces55

defects in the wafers.56

Thewafer defect patterns identification (during the produc-57

tion phase) is one of the key mode for improving production58

performance of a semiconductor company [5].59

To automate the wafer defects detection, a robust charac-60

terization of the patterns embedded in the wafer surface is61

needed. In particular, the analysis of the geometric morphol-62

ogy of these defect patterns provides a sort of fingerprint that63

can be efficiently used to retrieve the cause that generated64

the manufacturing process-drift and consequently correlates65

it with the production yield [6].66

One of the most used approaches to characterize produc-67

tion defects in semiconductor wafers is based on the visual68

FIGURE 2. Front-end pipeline description for binarized WDM generation.

analysis of the defect maps at ElectricalWafer Sorting (EWS) 69

stage in which a series of electrical conformance-tests will be 70

performed (short-circuit tests, leakage, parasitic capacitance, 71

and so on) [7]. 72

Specifically, the EWS binarized Wafer Defects Maps 73

(WDMs) are considered as excellent tool for identifying pre- 74

dictive markers of production yield or issues in the upstream 75

manufacturing lines. 76

More in detail, the binarized WDMs are obtained at the 77

end of the Front-End manufacturing process (Fig. 2) where 78

designed devices are emebedded in disc-shaped wafers and 79

tested by a probing machine. The probing machine verifies 80

the device functionality through electrical tests, assigning a 81

test-outcome color to each device and by distinguish them 82

in fully, partially or not working devices thereby creating a 83

defect map. The binarization of WDMs consists in assigning 84

thewhite color (value ‘‘1’’) to partially or not working devices 85

while the black color (value ‘‘0’’) is assigned to full working 86

devices and background. 87

The pipeline herein proposed is based on the wafer defects 88

analysis at the end of the Front-End manufacturing, i.e., when 89

the binarized WDM has been generated. Therefore, from a 90

careful monitoring of the so generated WDM, semiconductor 91

manufacturers will be able to build correlation models with 92

the issues upstream the production lines or to predict the 93

impact on the production yield of a specific defect pattern, 94

defining properly policies of recovery. 95

The main contribution of this work is the development of 96

a deep pipeline for a robust and intelligent classification of 97

defect patterns both in Silicon (Si) technology and in the 98

production of Silicon Carbide (SiC) devices. In subsequent 99

development (currently being designed) we will deal with the 100

correlation between the classified wafer defect patterns and 101

the issues upstream the production process and therefore with 102

the related yield. 103

This work is arranged into three main sections: related 104

works where several approaches to assess defect pattern 105

recognition problem are briefly described, materials and 106

methods where the proposed approach is discussed from 107

mathematical and computational perspectives, experiments 108

and results section in which the performance and benchmark 109

comparisons of the designed approach will be outlined. The 110

final section will also include a description of the deliv- 111

ered tool named STAI-EWS. This tool embeds the pipeline 112

described in this contribution and it is currently in use in 113

Silicon and Silicon Carbide technology production lines. 114
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II. RELATED WORKS115

Deep Learning solutions for addressing semiconductor appli-116

cation issues related to pattern recognition, semantic seg-117

mentation and classification have grown significantly in118

the last few years. Several researchers investigated different119

approaches of WDMs recognition by using deep learning120

based on supervised, unsupervised and hybrid approaches.121

Most of these works have been evaluated on public datasets122

or by using internal data or synthetic ones.123

A. SUPERVISED-LEARNING-BASED APPROACH124

Several solutions based on deep architectures with a125

supervised-learning paradigm have been proposed in scien-126

tific literature. In [8] a basic 3-layers Convolutional Neu-127

ral Network (CNN) has been designed in order to classify128

22 different simulatedWDM classes by using a Poisson Point129

Process [9] approach with an overall accuracy of 98.20% in130

test set.131

In [10] leverage a novel Information Gain (IG)-based split-132

ter with a spatial filtering to remove random noise over the133

WDMswas proposed. The authors proposed a general regres-134

sion network (RGRN) model to identify and classify both135

single-defect and mixed-defect patterns. The latter method136

showed very promising results with 99.51% of accuracy for137

single defect patterns and 86.00% for mixed ones.138

In [11] authors delivered a modified VGG-19 architecture139

with ad-hoc drop-out system to classify out-of-distribution140

data with WDMs rotated by 5 degree to match the pat-141

tern distribution and maximize the correlation with reference142

image. This method seems very effective with an accuracy143

on test set (1, 311 Wafer Maps) of 97.71% while with out-of-144

distribution accuracy of 97.18%.145

An interesting approach has been proposed by [12] where146

the authors combined four classification models: Each clas-147

sifier involves a 3-layers CNN with a downstream stack of148

two fully connected layers to classify a synthetic dataset149

of WDMs virtually generated using real distribution based150

approach [13]. The performance of the showed method con-151

firmed the usefulness of using synthetic datasets to improve152

the performance of the deep classifier, reaching 91.00% in153

accuracy over a severely noisy dataset and 97.40% over a154

moderately noisy one.155

Other authors designed and evaluated pre-trained (on clas-156

sical ImageNet or COCO or KITTI dataset) deepmodels such157

as DenseNet-169 [14] or R-CNN [15] to leverage transfer158

learning approach in order to improve the performance of the159

underlying deep classifier in defect patterns assessment. The160

performance of the analyzed methods showed that DenseNet-161

169 reachs 87.70% in test set while R-CNN an overall accu-162

racy of 97.73%.163

An interesting approach has been presented in [16] by164

proposing an Ensemble Convolutional Neural Network based165

on LeNet, AlexNet and GoogleNet with a weighted majority166

function based onmodels’ output weights. Bymultiple exper-167

iments varying learning rates and optimizers they achieved an168

overall accuracy of 98.57% on WM-811K dataset.169

B. UNSUPERVISED-LEARNING-BASED APPROACH 170

In [17] researchers proposed a Gaussian Mixture of Varia- 171

tional Autoencoder (GMVAE) where extracted visual fea- 172

tures from the source WDM and by means of an ad-hoc 173

Dirichlet process they were able to provide a robust WDMs 174

clustering. This approach has been benchmarked against tra- 175

ditional Bayesian non-parametric models using the adjusted 176

rand index (ARI) and adjusted mutual information (AMI) 177

as measure of similarity between clusters, obtaining 0.76 as 178

highest values in both ARI and AMI. 179

In [18] authors proposed a pre-processing statistical tech- 180

nique on a custom dataset containing 6 wafer lots, consisting 181

in a binarization of wafer maps, filling the inner testing 182

wafer points on the wafer using the around median value and 183

reducing the noise using a median filter. At the end of the pre- 184

processing stage, variational autoencoders are used as feature 185

extractors to decompose high-dimensional wafer maps to a 186

low-dimensional latent representation. Finally, a traditional 187

K-means or hieararchical clustering were involved and simi- 188

larity evaluated by Silhouette Score. Unfortunately, the men- 189

tioned authors provided only the 2D-latent plot representation 190

of their method without any performance metric. 191

In [19] authors proposed a Siamese CNN which learned 192

an embedding space based on similarities of WDM images. 193

A G-means clustering as hierarchical clustering pipeline has 194

been used as downstream block to find the optimal clusters 195

distribution. The authors applied and evaluated their solution 196

on classical public WM-811K dataset. The hybrid approach 197

confirmed a promising effectiveness of 91.20% in accuracy 198

with a corruption ratio of only 10% down to 64.20% with a 199

corruption of 40%. 200

C. HYBRID-LEARNING-BASED APPROACH 201

The authors of [20] proposed a combination of three tech- 202

niques based on distributed K-Means++ for clustering as 203

well as a statistical mining patterns by FPGrowth [21] and 204

finally a deep classifier based on a 5-layers CNN backbone 205

for making a robust defect maps classification of a custom 206

input wafer dataset. Themethod seems very promising as they 207

collected 95.00% in F1-score. 208

The authors of [22] proposed a Stacked Convolutional 209

Sparse Denoising Auto-Encoder (SCSDAE) in which the 210

designed convolutional layers were used to extract wafer 211

visual features. The so collected features will be processed by 212

the auto-encoder part of the architecture in order to retrieve an 213

internal unsupervised latent representation of those features 214

suitable to perform a robust features-related defects cluster- 215

ing. The method showed 95.13% of accuracy using a 5-fold 216

cross validation. 217

A promising approach has been showed in [23] in which 218

the authors proposed an approach based on dimensionality 219

reduction of the input defect maps distribution followed by an 220

autoencoder based processing. Specifically, the input defect 221

maps were fed to Principal Component Analysis (PCA) that 222

extracts features. The so collected features will be processed 223

99104 VOLUME 10, 2022



R. E. Sarpietro et al.: Explainable Deep Learning System for Advanced Si and SiC Electrical WDM Assessment

by the downstream auto-encoder which tried to reconstruct224

the input embedded patterns from internal latent representa-225

tion. This approach has been evaluated on WM-811K dataset226

with an accuracy of 97.27% in a 5-fold cross validation227

setting.228

The authors of [24] proposed an Adaptive Balanced GAN229

based approach to preliminary improve the source WDMs230

class balancing. The authors trained the GAN embedded231

discriminator to assess the differences between the synthetic232

wafer maps with respect to the real ones. Further, the dis-233

criminator will be used as deep classifier of both (synthetic234

and real) WDMs, reaching an accuracy of 96.00% in all the235

9 classes of WM-811K dataset.236

A novel approach has been proposed in [25] in which237

Hybrid Quantum Deep Learning is applied by transform-238

ing WDMs of WM-811K dataset in feature maps using239

self-proliferation and self-attention (SP&A) blocks and com-240

pared the proposed approach against traditional Deep Learn-241

ing approaches (i.e., CNN) reaching an overall accuracy242

of 98.10%.243

Authors in [26] proposed a self-supervised learning244

approach based on Convolutional Auto-Encoders and Dirich-245

let process. Convolutional Auto-encoders is used to extract246

meaningful features from WDMs input based on WM-811K247

dataset, these features are then clustered by the Dirichlet248

process mixture model (DPMM) imposing pseudo-labels and249

the previous CAE is fine-tuned in a self-supervised learning250

fashion. With this approach they achieved a weighted-macro251

accuracy of 96.10%.252

253

Our proposed deep learning pipeline can be configured as254

a hybrid deep learning approach for classification of defect255

patterns related not only for devices Silicon (Si) technology256

based but also for Silicon Carbide (SiC) ones. The aforemen-257

tioned methods proposed in the last years by industry and258

academy, are mainly based on WM-811K public dataset with259

performance tricked by its class imbalance (a more detailed260

description can be found in IV-B1). Our proposed approach261

has been trained on multiple datasets. The related robustness262

has been evaluated and compared by using Explainable Arti-263

ficial Intelligence (XAI) methods between the designed CNN264

and State-Of-The-Art architectures implemented for similar265

applications. The implementation of the proposed pipeline266

in the form of a Web-application represents a valid tool for267

semiconductor manufacturing allowing a robust production268

failures assessment.269

III. MATERIALS AND METHODS270

The authors propose in this contribution a hybrid deep271

learning approach for WDMs assessment where the overall272

scheme of the proposed full hybrid pipeline is reported in273

Fig. 3.274

The first part of the designed pipeline is the ‘‘Unsuper-275

vised Learning Block’’ which embeds four sub-systems: The276

Resize and Filter, Dimensionality Reduction followed by277

Clustering and Metrics-driven Classification.278

The second part of the proposed pipeline is composed 279

by the ‘‘Supervised Learning Block’’ structured with ad-hoc 280

designed Convolutional Neural Network trained to perform a 281

supervised classification of the resized input WDMs. 282

As introduced, in the common semiconductor production 283

lines there is a concrete need to correctly identify and classify 284

defect patterns as predictive markers of manufacturing issues 285

and production yield. Furthermore, it becomes necessary to 286

characterize novel and unknown defect patterns related to a 287

new issues in the upstream production process which needs 288

to be properly investigated. 289

The classical manufacturing issues which produces wafer 290

defects mainly concern to failures, impurities or degrada- 291

tion of the production lines [27], [28]. For the work herein 292

described, it is worth mentioning the case of Silicon Carbide 293

(SiC). The SiC-based manufacturing pipelines show defect 294

patterns which are usually significantly different with respect 295

to the silicon-based ones (a more detailed description about 296

datasets can be found in IV-A1 and IV-B1). For this reason, 297

an advanced ‘‘unsupervised’’ pipeline suitable to identify new 298

defect patterns is investigated. In this way, the herein pro- 299

posed pipeline will be able to catch new issues in the upstream 300

production lines, through a hybrid approach (unsupervised / 301

supervised) that will be able to correctly characterize defect 302

patterns. 303

Each of the designed parts of the proposed full pipeline will 304

be described in the following sub-sections. 305

A. UNSUPERVISED LEARNING BLOCK 306

The designed Unsupervised Learning Block is composed by 307

four sub-systems: Resize and Filter, Dimensionality Reduc- 308

tion, Hierarchical Clustering and Metrics-driven Classifica- 309

tion. Each of the mentioned sub-systems will be described in 310

detail. 311

1) RESIZE AND FILTER SUB-SYSTEM 312

The input of this sub-system is the high-resolution bina- 313

rized WDMs (usually at classical wafer dimension, i.e., 314

20, 000 × 20, 000 spatial resolution) resized (using bicubic 315

algorithm [29]) to ad-hoc reduced spatial dimension by the 316

resize block. From our internal investigation, an optimal 317

resolution for the herein analyzed application is 61 × 61. 318

However, the spatial resolution resizing does not have any 319

significant impact on the overall performance of the proposed 320

unsupervised pipeline to the extent that the defect patterns 321

information are preserved. Due to the adopted Resize Block, 322

each pixel of the processedWDM image no longer represents 323

a single die (device) but may represent a set of dies (devices) 324

according to the adopted photo-lithography process [30]. 325

Before applying the dimensionality reduction and hierar- 326

chical clustering techniques as reported in Fig. 3, a Filter 327

Block is preliminary applied to the resized input WDM. This 328

filter discards defect maps whose patterns show a low-impact 329

in the upstream production issues. Specifically, a wafer map 330

showing few defective dies (i.e., the so called ‘‘Spot Wafer 331

Map’’ as in Fig. 4a or a defect map with no defective dies 332
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FIGURE 3. The overall scheme of the proposed pipeline.

(i.e., the so called ‘‘Empty Wafer Map’’ as in Fig. 4b) will333

be discarded as they do not produce any significant impact334

in the production lines but only computational cost of the335

pipeline. In order to characterize the defect maps as ‘‘Spot’’336

or ‘‘Empty’’ ad-hoc thresholds have been defined.337

As reported in Fig. 3 the introduced Resize and Fil-338

ter sub-system will enable dimensionality reduction and339

clustering to speed up computation. The Resize and Filter340

sub-system will update the WDMs to the internal database341

accordingly.342

2) DIMENSIONALITY REDUCTION SUB-SYSTEM343

The target of this sub-system is to perform ad-hoc dimen-344

tionality reduction of the visual features distribution extracted345

from the WDM inputs.346

After the Resize and Filter sub-system, defect map347

images are fed as input in the ‘‘Dimensionality Reduc-348

tion Sub-System’’ which has the target to reduce the349

dimensional-complexity of the pre-processed input wafer350

maps. To perform the aforementioned dimensionality reduc-351

tion, the proposed pipeline embeds an approach based on352

Uniform Manifold Approximation and Projection (UMAP)353

algorithm [31].354

UMAP algorithm has the target to reduce an input355

high-dimensional connected graph into a projected low-356

dimensionality space. The goal of UMAP is to keep357

the high-dimensionality space-features into the projected358

low-dimensionality space by using the so called Riemannian359

manifold [32].360

More in detail, the pre-processed input WDM images361

at 61 × 61 resolution will be flattened and reshaped to362

3, 721 dimensions. In order to fed this reshaped input vector363

into UMAP, the authors have assumed that each sample (of364

FIGURE 4. Spot and empty wafer maps.

the so reshaped vector) will represent a specific dimension in 365

the related high-dimensional space as total of 3, 721 dimen- 366

sions. These samples are known as data-points. This dimen- 367

sional reduction approach is a key-process of the WDMs 368

unsupervised clustering. For this reason, the unsupervised 369

sub-system was designed to process batch of WDMs, specif- 370

ically, the whole set of wafers produced at each production 371

cycle (from our tests 350 wafer maps based on Silicon Car- 372

bide technology were processed - on average - per week 373

cycle). 374

TheUMAP algorithm is based on the followingmain parts: 375

High-Dimensionality-to-Graph Block and Graph projection 376

Block. 377

B. HIGH-DIMENSIONALITY-TO-GRAPH BLOCK 378

The target of this block is to build a weighted graph associated 379

to the input set of WDMs (high-dimensional space). Let 380

introduce such mathematical assumptions needed to reduce 381

the dimensionality of the high-dimensional space associated 382

to wafer maps. Specifically, the authors have assumed that 383

data-points are uniformly distributed over the input high- 384

dimensional space. Considering that this assumption is not 385

always satisfied in a real application, we have applied a Rie- 386

mann’s metric (Gr ) that allows to consider input data-points 387

as uniformly distributed in the input space, thus making 388
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FIGURE 5. Low dimensional simplices.

mathematical assumptions robust [32]. Further mathematical389

assumptions are given below:390

Assumption A1: Given a set of data uniformly distributed391

on the manifold M (respect to the related Riemann’s metric392

Gr ), for each point inM there exists a correlated point Gpr on393

the tangent space TpM of the manifoldM .394

Assumption A2: The aforementioned Riemann’s metric is395

locally constant, i.e., given a ball of fixed volume, it contains396

the same number of points regardless the position on the397

manifoldM .398

Assumption A3: If the assumption A1 and A2 are satisfied399

then Riemann geometry theory confirmed that the manifold400

M is locally connected.401

In order to build the high-dimensional weighted graph from402

the mentioned uniformly distributed data-points, we have403

to introduce the concept of simplicial complex [33] and404

K-Nearest Neighbour [34].405

More in detail, the cited manifold M will be created by406

using such elements of the simplicial complex such as: points407

(Fig. 5a), line segments (Fig. 5b), triangles (Fig. 5c). Each408

of the mentioned elements can be each combined and con-409

nected together (like tetrahedron Fig. 5d) in order to create a410

n-dimensional object.411

In the input high-dimensional space the data-points are412

connected along edges (through simplicial complex ele-413

ments). An edge can be defined as topological structure after414

data-points connection. The concept of ‘‘edge’’ is correlated415

to the concept of ‘‘weight’’, i.e., a measure of distance (in the416

Riemann geometry meaning) between edges [31].417

As introduced, K-Nearest Neighbour (KNN) [34] approach418

was used to graph construction in the input high-dimensional419

space. Specifically, by ad-hoc changing of ‘‘k’’ parameter of420

KNN algorithm we are able to build a k-complexity depen-421

dent and weighted graph by connecting the edges. A more422

detailed graph-structure can be obtained by using small ‘‘k’’423

value where data-points are inside a dense region in the424

manifold M . Otherwise, for large ‘‘k’’ value, a sparse-graph425

structure will be generated.426

More in detail, the graph is generated as follow: Assume427

the parameter ‘‘k’’ as a circle radius around each data-point428

in the input high-dimensional space. This circle radius can429

be extended or shrinked in order to connect each data-point430

with others. By changing the circle radius (k parameter) we431

FIGURE 6. An instance of 2D KNN generated graph.

are able to connect more or less data-points to the graph. 432

An instance of so generated 2D simple graph is reported in 433

Fig. 6. 434

After that, we normalize the measure of distance between 435

the edges in the graph (i.e., theweights) by associating a fuzzy 436

topology representation of the graph in which distance values 437

may change between zero and one [31]. 438

The use of UMAP allows to obtain considerable 439

advantages (compared to classical dimensionality reduction 440

techniques such as Principal Component Analysis (PCA), 441

Singular Value Decomposition (SVD), t-Distributed Stochas- 442

tic Neighbor Embedding (t-SNE)) as it allows to preserve the 443

global and local features of the high-dimensional input space 444

into the projected low-dimensional space by optimizing the 445

degree of dimensionality for feature representation.1 446

C. GRAPH PROJECTION BLOCK 447

The second step of the UMAP algorithm is the input 448

high-dimensional graph projection into low-dimensional 449

ones. Basically, with this step the authors want to build a 450

new low-dimensional weighted graph by optimizing a cross- 451

entropy-based function that embeds the weights associated 452

to the edges of both graphs (the input high-dimensional and 453

the projected ones to be defined by the optimization process). 454

In Eq. 1 the adopted cross-entropy 2(µ, υ,A) function is 455

reported: 456

2(µ, υ,A) =
∑
α∈A

right group︷ ︸︸ ︷
µ(α) log(

µ(α)
υ(α)

)+ 457

+ (1− µ(α)) log(
1− µ(α)
1− υ(α)

)︸ ︷︷ ︸
right gap

(1) 458

where A is a reference set, i.e., the set of the input 459

high-dimensional wafer defect data-points, µ and υ are the 460

related weights defined in α→ [0, 1] due to mentioned fuzzy 461

representation. In the so created low-dimensional space (due 462

to the previously optimization) a connected graph is associ- 463

ated. The output of UMAP processing is then a set of features 464

1This particular phenomenon is called Curse of dimensionality, the num-
ber of dimensions needed to represent features grows exponentially with the
increasing amount of data.
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FIGURE 7. An instance of 2D projected low-dimensional space of input
silicon carbide WDMs.

in low-dimensional space (with associated graph) retrieved465

from the input WDMs (data-points). We have defined as 8466

this set of UMAP output data-points features.467

An instance of 2D UMAP-projected space of an input468

Silicon Carbide WDMs is reported in Fig. 7.469

The so obtained low-dimensional data-points will be fed as470

input to the ‘‘Hierarchical Clustering Sub-System’’.471

1) HIERARCHICAL CLUSTERING SUB-SYSTEM472

Lowered dimension input WDMs arranged as data-points473

8 are fed as input to the designed Hierarchical Clus-474

tering Sub-System based on the usage of Hierarchical475

Density-Based Spatial Clustering of Applications with Noise476

(HDBSCAN) [35]. The use of HDBSCAN allows to obtain477

considerable advantages compared to classical parametric478

clustering techniques such as K-Means and Gaussian Mix-479

ture Models (GMM) or non-parametric clustering such as480

DBSCAN [36] andMean shift. HDBSCAN allows to create a481

hierarchy of clusters based on density and not on heuristically482

predefined parameters improving both cluster separation and483

cohesion.484

HDBSCAN is a clustering algorithm extending old485

DBSCAN approach, where the key-part is the ‘‘core-object’’,486

defined as follow.487

The result of the previous Dimensionality Reduction488

sub-system is a m × n matrix containing distances of m489

data-points in the lowered n dimensional space. An object490

ap is defined ‘‘core-object’’ with respect to a radius r and a491

smoothing factor mp, if drawing a circumference with radius492

r and centered in ap, it is possible to identify a minimal set493

of data-points [37]) within the circumference. The circum-494

ference is usually indicated with the term ‘‘r-neighborhood’’495

while the data-points outside the ‘‘r-neighborhood’’ are496

defined as ‘‘noise’’. After that, we leveraged the following 497

definitions related to core-object: 498

DefinitionD1:Two core-objects are considered r-reachable 499

if data-points in the related core objects are nested all 500

together; 501

Definition D2:N core-objects are density-connected if they 502

are directly or transitively r-reachable; 503

Definition D3:A cluster (C) can be defined with respect to 504

its radius (r) and smoothing factor (mp), as non-empty subset 505

of density-connected core-objects; 506

We can also define other properties related to distance 507

between core-objects: 508

Definition D4: The core distance dcore of a core-object ap 509

(with reference to its radius r and smoothing factormp) is the 510

distance between ap to its nearest neighbor in mp; 511

Definition D5: A core-object is considered r-core-object 512

if the correlated radius r is greater than or equal to the core 513

distance of ap. 514

After the core objects definition, HDBSCAN provides 515

an internal graph reconstruction starting from input low- 516

dimensional data-points and core-objects previously defined. 517

This graph is usually named as Mutual Reachability Graph 518

and it is defined as: 519

Definition D6: Mutual Reachability Graph is a weighted 520

graph with the data-points configured as graph-vertices while 521

for each edge (data-points connection) ad-hoc weights are 522

defined as measure of the mutual reachability distance of 523

related data-points. 524

Definition D7:Mutual reachability distance dmr is defined 525

as the maximum distance between core distance ap, core 526

distance aq and the distance between the two core-objects ap 527

and aq. In Eq. 2 the mathematical representation of the dmr . 528

dmr (ap, aq) = max{(dcore(ap), dcore(aq), d(ap, aq)} (2) 529

At this point, HDBSCAN provides a mutual reachability 530

graph by connecting core-objects and by weighting the con- 531

nection through the mutual reachability distance dmr . 532

Through ad-hoc thresholding applied to the overlapping 533

edges of the mutual reachability graph, the mutual reach- 534

ability graph connection scheme can be re-configured by 535

optimizing the number connection-complexity. To do that, 536

HDBSCAN embeds the usage of Minimum Spanning Tree 537

(MST) approach [35], [38]. MST re-configures and reduces 538

in complexity the input densely connected graph by a classi- 539

cal graph-theory approach which provides a new graph with 540

a minimal set of edges that connects all the components.2 541

An instance of MST optimized graph associated to an input 542

Silicon Carbide WDMs is reported in Fig. 8. 543

The target of the unsupervised pipeline which embeds 544

UMAP and HDBSCAN is to provide a final hierarchical 545

structure which highlights the key group of clusters associ- 546

ated to the input set of similar wafer defect patterns. Based on 547

the performed analysis, we have obtained a non-hierarchical 548

MST optimized and densely connected weighted graph. 549

2A more detailed explanation about HDBSCAN can be found at [35].
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FIGURE 8. An instance of minimum spanning tree optimized graph.

FIGURE 9. An instance of dendrogram of input silicon carbide WDMs.

Therefore it is necessary to construct from this graph a hier-550

archical structure which specifically highlights the groups of551

clusters associated with the patterns of the input wafer set.552

For this reason graph edges sorting by their tree distance in553

increasing order have been applied.554

More in detail, hierarchical re-configuration of the graph555

can be described with a traditional dendrogram representa-556

tion [39] which highlights the number of clusters and the557

distance between those clusters. An instance of dendrogram558

is reported in Fig. 9. Anyway, dendrogram is not a suitable559

visualization for the final assessment of the optimal number560

of clusters and needs some heuristic assumptions to generate561

the clusters distribution (for instance the cluster size parame-562

ter has to be defined heuristically) [39].563

To overcome this issue, HDBSCAN proposed the usage of564

‘‘excess of mass’’ as a method to extract an optimal number565

of clusters.566

Given the probability density function, components of the567

dendrogram can be disconnected or connected accordingly to568

the density function f (x).569

Basically, by ad-hoc increasing or decreasing density λ570

parameter related to cluster’s density, computed as 1
dcore

,571

FIGURE 10. Diagram of the ‘‘excess of mass’’ approach applied to
clustering.

clusters (Ci) are split or merged according to the density value 572

λi, where eligible clusters are the one that will survive at the 573

λ density changes. 574

The Eq. 3 reports the mathematical integral equation 575

related to the ‘‘excess of mass’’. In Fig. 10 we reported an 576

instance of excess ofmass approach on the probability density 577

function of clusters. 578

Edm(Ci) =
∫
x∈Ci

(f (x)− λmin(Ci))dx (3) 579

Through the approach described by Eq. 3 and in Fig. 10 the 580

authors were able to retrieve the optimized number of clus- 581

ters Ci through density λi. For instance, the two meaningful 582

clustersC1 andC2 are merged at the corresponding minimum 583

density level λmin related to C1 and C2 and create cluster C3, 584

then merged cluster C3 will be merged with another cluster 585

C4 according to the minimum density level λi+1, and so on. 586

Finally, the output of HDBSCAN sub-system is a set of 587

core-objects representing the final set of optimized clus- 588

ters. These defined clusters will be re-mapped back to the 589

UMAP block in order to associate them to source data-points. 590

In Fig.11 an instance of the mentioned UMAP re-mapping is 591

reported. 592

In Fig. 11 clusters related to input defect maps (in Silicon 593

Carbide technology) with significant similar features have 594

been highlighted and grouped by color. 595

At the end, the set of optimized clusters will be processed 596

by the following Metrics-driven Classification Sub-System. 597

2) METRICS-DRIVEN CLASSIFICATION SUB-SYSTEM 598

In details, the target of this sub-system is to assess the 599

matching between the identified defect map clusters (from 600

UMAP and HDBSCAN) with the well-classified defects 601

classes stored in the database available in the pipeline. 602

To do that, we have integrated the K-Means approach [40] 603

with the target to retrieve only one centroid for each cluster 604

(basically K=1). K-means is also applied to the well classified 605
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FIGURE 11. UMAP cluster-to-data-point plot related to silicon carbide
WDMs input.

wafer defect patterns stored in the internal database embed-606

ded in the proposed pipeline (see Fig. 3). K-means centroids607

represent the mean value of the WDMs in the clusters and608

in well-classified WDMs stored in the database. In order to609

compare them, a Cosine Similarity metric has been defined.610

The following Eq. 4 showed the applied metric comparison:611

cos(θ ) =
WDMnew ×WDMDB

‖WDMnew‖ × ‖WDMDB‖
(4)612

where WDMnew is the computed K-means cluster centroid613

related to the WDM clusters while WDMDB is the same614

related to the well-classified WDMs stored in the Database.615

The cosine similarity score ranges from −1 to 1, as −1 rep-616

resents high dissimilarity of the centroids while, conversely,617

1 represents high similarity of the input data.618

We have defined ad-hoc threshold of 0.90 as good trade-off619

to define the full similarity on the WDMs. Basically, in the620

case of high similarity (similarity beyond the pre-determined621

threshold) of the cluster-centroid with ones of the reference622

well-classified centroids, the input defect maps will be con-623

sidered similar to the compared class already stored in the624

internal database and therefore they will be added to the625

database and stored as belonging to that specific class. Other-626

wise, in the case of dissimilarity with all the classes already627

stored in the database, a new class will be created associated628

with the defect maps from which the clusters were generated.629

After the so described unsupervised processing of the630

source defect maps (and the following update of the database631

on the basis of the similarity check previously described) the632

proposed pipeline enables the supervised classification of the633

defect maps as described in the next section.634

D. SUPERVISED LEARNING BLOCK 635

The designed Supervised Learning Block takes as input 636

the defect patterns stored in the internal database possibly 637

updated by the Unsupervised Learning Block. 638

To perform the mentioned supervised classification, ad- 639

hoc designed Deep Convolutional Neural Network has been 640

implemented. It is composed by 5 convolutional layers having 641

a kernel size 3 × 3, padding and striding set to 1. For each 642

convolutional layer a ReLU activation function followed by 643

a Batch Normalization are applied. The number of kernels is 644

doubled at each layer, starting from 64 till to 512. Starting 645

from the second layer a Max-pooling of size 2 × 2 and 646

striding set to 2 is applied. The so designed Convolutional 647

Neural Network backbone is described in details in Table 1. 648

Specifically, we have designed two type of deep convolu- 649

tional network backbones (differentiating the input layer and 650

the final layers that embed the fully connected) in order to 651

validate the best of these in performance and to facilitate the 652

benchmark comparison phase. More details about the two 653

implemented backbones are now given. 654

The Big CNN. This first backbone embeds an input layers 655

at 224 × 224 × 3 as data resolution/channels while shows 656

a final stack of two fully connected layers which embeds 657

100, 352 and 1, 024 neurons respectively. 658

The Small CNN. This second backbone embeds a 659

single-channel input layer at 64 × 64 and a final set of two 660

fully connected layers is composed by 8, 192 and 1, 024 neu- 661

rons respectively. As introduced, the need to have two deep 662

architectures is mainly for performance validation as well as 663

in reference to a more robust benchmarking of the proposed 664

solution as some scientific literature solutions with which our 665

method has been compared have inputs of 224× 224× 3 or 666

single-channel. In Table 1, the details of the implemented 667

deep backbones. 668

As reported in Table 1, the final number of well defined 669

WDM classes has been defined to 45. Although this number 670

can vary significantly according to the new classes that may 671

emerge from the unsupervised clustering block. More details 672

about this defect map classes are reported in the next sections. 673

The experimental results we have collected were related 674

to this setup although similar considerations can be extended 675

to any number of defect map classes. However, an attempt 676

is made to minimize the number of defect pattern classes 677

in order to efficiently characterize production. Furthermore, 678

as new defect classes are identified, they are analyzed and 679

resolved in the upstream production line, thus contribut- 680

ing to the maintenance of a minimum number of defect 681

classes. 682

IV. EXPERIMENTS AND RESULTS 683

This section reports experimental results for Unsupervised 684

Learning and Supervised Learning approach and some details 685

about the STAI-EWS application we have developed to per- 686

form the test through an user-friendly tool. 687
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TABLE 1. Description of convolutional neural network.

FIGURE 12. A subset of silicon carbide defect map patterns.

A. UNSUPERVISED LEARNING APPROACH688

In this sub-section the details about the training procedures,689

dataset and experimental results related to unsupervised690

learning approach, are reported.691

1) UNSUPERVISED LEARNING BLOCK: SILICON CARBIDE692

DATASET693

STMicroelectronics Silicon Carbide is an internal dataset694

recently created by failure engineers of STMicroelectronics695

related to new production line issues in Silicon Carbide (SiC)696

devices. The dataset contains 2, 238WDMs related to Silicon697

Carbide devices and stored as RGB images at 61×61 resolu-698

tion, grouped in such imbalanced 54 new patterns and named699

by a progressive number.700

The Figs. 12, 13, 14 report such instances of the SiC defect701

maps. Specifically: Fig. 12b reported a ring-like pattern with702

multiple contiguous good dies at the center; Fig. 12f reported703

an half-moon-like pattern with multiple contiguous good dies704

at the center on the edge of the wafer; Fig. 13a reported a705

checker-board like pattern with multiple contiguous defective706

dies at the center; Fig. 13b reported a wafer full of defective707

dies with several straight lines of good dies; Fig. 13e reported708

an half-moon-like pattern but with longer and contiguous709

defective dies along the edge; Fig. 13g reported a ring-like710

pattern but with a scratch on the upper side of the wafer;711

Fig. 13h reported defective dies at the bottom center part,712

good dies in straight horizontal lines; Fig. 13s reported defec- 713

tive dies at the center and straight vertical lines of good dies; 714

Fig. 13t reported an instance of split ring-like pattern on the 715

right side of theWafer; Fig. 13u reported a straight horizontal 716

lines of good dies and defective dies arranged on the left 717

side; Fig. 14b reported such defective dies at the center with 718

straight vertical lines and spots of good dies; Fig. 14d reported 719

an amplified version of ring-like pattern; Fig. 14f reported an 720

amplified and inner half-moon-like pattern on the left side of 721

the wafer; Fig. 14g reported an amplified version of ring-like 722

pattern with good dies arranged vertically at the center of the 723

wafer similar to SiC_6 in Fig. 13a; Fig. 14v reported a wafer 724

full of good dies with a horizontal centered line and spots 725

arranged like a checkerboard of good dies; Fig. 14w reported 726

a right half side of the wafer with defective dies and a straight 727

horizontal line of good dies. 728

From this internal dataset, a subset of 225 unlabelledmixed 729

WDMs is randomly chosen and arranged in a 3D Surface 730

Plot as reported in Fig. 15. This plot allows to spot predomi- 731

nant patterns by visual inspection, due to the binarization of 732

WDMs where good dies have value ‘‘0’’ and defective dies 733

have value ‘‘1’’. By stacking up binarizedWDMs along pixel 734

coordinates (x and y axes) the sum of ‘‘1’’ values (z axis) 735

will represent the spatial distribution of defective dies on the 736

wafer. A high value of z at a specific coordinate point will 737

represent a predominant defective pattern. 738

This dataset has been used to evaluate the unsupervised 739

block of the proposed pipeline. The defect maps embedded 740

in this dataset have been previously analyzed by engineers of 741

STMicroelectronics, in this way, we were able to better and 742

more accurately evaluate the outcomes of the unsupervised 743

analysis. 744

2) UNSUPERVISED LEARNING BLOCK: TRAINING 745

PROCEDURE 746

As introduced in the unsupervised learning block description, 747

dimensionality reduction and hierarchical clustering have 748

been applied. The adopted configuration of parameter-values 749
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FIGURE 13. A subset of silicon carbide defect map patterns (part 2).

are reported in Tables 2 and 3 for UMAP and HDBSCAN750

respectively.751

More in detail, referred to Table 2 related to UMAP:752

- ‘‘Number of components’’ is the number of dimensions753

of the embedded space;754

- ‘‘Number of neighbors’’ is the number of neighboring755

data-points suitable to preserve local density;756

- ‘‘Minimum distance’’ is the minimum distance between757

embedded data-points;758

FIGURE 14. A subset of silicon carbide defect map patterns (part 3).

- ‘‘Distance metric’’ is the metric used to compute dis- 759

tances in high dimensional space. 760

While, referred to Table 3 related to HDBSCAN: 761

- ‘‘Minimum cluster’’ is a parameter suitable to determine 762

the minimum number of clusters; 763

- ‘‘Minimum number of samples’’ is the minimum num- 764

ber of data-points in a point’s neighborhood to be con- 765

sidered as core point; 766

- ‘‘Cluster selection (ε)’’ is the threshold applied to sepa- 767

rate or merge clusters; 768
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FIGURE 15. Silicon carbide stacked wafer bin maps plot.

- ‘‘Distance metric’’ is the metric used to compute dis-769

tance inside HDBSCAN processing;770

In both UMAP andHDBSCAN, the parameter-value ‘‘Dis-771

tance metric’’ has been evaluated by using Euclidean (Eq. 5)772

or Manhattan (Eq. 6) distances.773

dEuclidean =

√√√√ n∑
i=1

(xi − yi)2 (5)774

dManhattan =
n∑
i=1

|xi − yi| (6)775

where n is the number of dimensions.776

The Distance metric applied affects how the embeddings in777

UMAP and clusters in HDBSCAN are generated. Euclidean778

distance computes the shortest distance between two data-779

points xi and yi while Manhattan distance computes the abso-780

lute distance between two data-points xi and yi in a grid-like781

TABLE 2. UMAP parameters.

TABLE 3. HDBSCAN parameters.

environment. According to [41] Manhattan distance should 782

be used in high-dimensional space scenario as it is more 783

robust to outliers but at the same time it is affected by the 784

curse of dimensionality drawbacks. While, Euclidean dis- 785

tance affects embeddings generation by squaring the distance 786

of far-way data-points xi and yi. In practical application, the 787

authors opted for a metric rather than another due to the 788

statistical distribution of the data. 789

The combination of the indicated parameters in Tables 2 790

and 3 enabled the evaluation of 30, 780 models for clus- 791

ters generation starting from input WDMs. For this rea- 792

son, we have used ad-hoc performance indexes to evalu- 793

ate the performance of each model. Specifically, we have 794

adopted the Silhouette Score, Calinski-Harabasz Index and 795

Davies-Bouldin Index defined as follow. 796

Silhouette Score (SS) [42], [43] provides a generic char- 797

acterization of the cluster. The score is computed over each 798

cluster as in Eq. 7 799

SS =
b̄− ā

max(ā, b̄)
(7) 800

where: 801

- ā is the average distance between samples in the same 802

class; 803

- b̄ is the average distance between samples in the nearest 804

clusters. 805

SS ranges from−1 to+1 where−1 represents incorrect clus- 806

teringwhile+1 represents highly dense clustering. SS around 807

zero indicates overlapping clusters. 808

Calinski-Harabasz Index (CHI) [43], [44] is the ratio of 809

the between-clusters dispersion and the within-cluster disper- 810

sion. The index is computed as in Eq. 8: 811

CHI =
tr(Bk )
tr(Wk )

×
sE − k
k − 1

(8) 812

where: 813

Wk =

k∑
q=1

∑
x∈Rq

(x − cq)(x − cq)T 814

Bk =
k∑

q=1

nq(rq − rE )(rq − rE )T (9) 815
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- tr(Bk ) is the trace of the between cluster dispersion816

matrix;817

- tr(Wk ) is the trace of the within-cluster dispersion818

matrix;819

- E is the dataset of clusters;820

- sE is the size of the dataset;821

- k is the number of clusters;822

- Rq is the set of samples in cluster q;823

- rq is the center of cluster q;824

- RE is the center of E;825

- nq is the number of samples in cluster q.826

A higher value of the CHI means that clusters are dense and827

well separated.828

Davies-Bouldin Index (DBI) [43], [45]measures the aver-829

age ‘similarity’ between clusters, i.e., it measures the distance830

between clusters with the size of the clusters themselves. The831

index is computed over each cluster as reported in Eq. 10832

DBI =
1
k

k∑
i=1

max
i6=j

ci + cj
dij

(10)833

where:834

- dij is the distance between cluster centroids i and j;835

- ci or cj are the average distances between each sample836

in the cluster i orj and the centroid’s cluster.837

A value of DBI close to zero indicates a better cluster838

partition.839

Now, the experimental results of the unsupervised learning840

block are reported.841

3) UNSUPERVISED LEARNING BLOCK: EXPERIMENTAL842

RESULTS843

Table 4 summarizes the best model according to the three844

metrics involved. Specifically, according to:845

Silhouette score: The best model is the 14,620th where846

only 8 clusters are found and the fifth cluster is wrongly847

grouped. Furthermore 4 WDMs were mistakenly excluded848

from clustering.849

Calinski-Harabasz Index: The best model is the 24,625th850

where only 9 clusters are found and the ninth cluster is851

wrongly grouped. Furthermore 7 WDMs were mistakenly852

excluded from clustering.853

Davies-Bouldin Index: The best model is the 1,643th854

where only 2 clusters are found and they are wrongly855

grouped. Furthermore 4 WDMs were mistakenly excluded856

from clustering.857

The summary of the performed tests and outcomes are858

reported in Table 4.859

Taking into account this preliminary and unsatisfactory860

results, the authors tried to further optimize the UMAP and861

HDBSCAN parameters selection (Tables 2 and 3). More in862

detail, after careful tests the authors discovered that by only863

using Euclidean distance in both UMAP and HDBSCAN864

and a combination of: a lower number of components (i.e.,865

4), a lower number of neighbors (i.e., 2), a lower minimum866

cluster size (i.e., 2) and a minimum number of samples867

FIGURE 16. Cosine similarity between clusters.

(i.e., 1), allowed to preserve local density by obtaining a 868

better clustering performance despite the increasing number 869

of clusters. This allowed to find 41 clusters with a range 870

of cluster sample size from 2 to 8, with some bigger clus- 871

ter containing 15 or 25 WDMs. After the clustering was 872

performed as in the previous paragraph, we proceeded by 873

computing K-means centroids. Moreover, we have compared 874

the related centroids with the well-classified SiC dataset of 875

STMicroelectronics by applying a threshold of 90% with a 876

Cosine Similarity validation. Some of the collected outcomes 877

have been reported in Figs. 16, 17. 878

Although K-Means is a classical approach which often 879

shows limits in the determination of the centroids of clus- 880

ters, in the application herein proposed we noticed that the 881

combination with Cosine Similarity allowed a robust match 882

between unlabelled clusters. As introduced, the SiC dataset 883

have been previously annotated by engineers of STMicro- 884

electronics so that we have checked the similarity between 885

the clusters identified by the unsupervised pipeline with the 886

classes already identified. In our experiments only 7 clusters 887

have a lower value of Cosine Similarity between 70 and 80% 888

and only 2 clusters have been misclassified with classes from 889

SiC dataset (further inspection revealed a bad clustering and 890

a wrong centroid generation). Such instances are reported in 891

Figs. 16, 17. 892

B. SUPERVISED LEARNING APPROACH 893

In this section is reported details about training procedures, 894

dataset and experimental results related to supervised learn- 895

ing approach. 896

1) SUPERVISED LEARNING BLOCK: SILICON DATASET 897

For training and validation of the supervised block, three 898

datasets have been used: two public dataset WM-811K [4] 899

andMixedWM38 [46] as well as an internal dataset (based on 900
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TABLE 4. Unsupervised clustering benchmark performance.

FIGURE 17. Cosine similarity between clusters (cont.).

Silicon technology) collected by STMicroelectronics produc-901

tion groups. In the following we describe the datasets used.902

WM-811K [4] is a dataset created by TSMC (Taiwan903

Semiconductor Manufacturing Company). The source904

FIGURE 18. WM-811K WDMs distribution.

FIGURE 19. Binarized WDMs of WM-811K dataset.

dataset is composed by 811, 457 samples, but only 905

172, 948 are properly labelled wafer maps, as RGB images 906

at different resolution (from minimum resolution of 15 × 907

3 to 212 × 84). The dataset contains a total of 9 different 908

wafer defect patterns with one classified as ‘‘none’’. The 909

dataset is imbalanced as the ‘‘none’’ class contains more sam- 910

ples with normal production yield (about 150, 000 samples) 911

with respect the other ones. The following Fig. 18 shows 912

the defect pattern distribution in this subset for a total of 913

26, 519 samples. 914
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FIGURE 20. 2 mixed type WDMs of mixedWM38 dataset.

FIGURE 21. 3 mixed type WDMs of mixedWM38 dataset.

As reported in Fig. 18 the dataset includes 9 differ-915

ent patterns (including ‘‘none’’ with different morphology).916

As shown in Fig. 19, where: 1) defective dies arranged at the917

center; 2) defective dies arranged as a Donut-like shape; 3) a918

group of defective dies located on the edge; 4) defective dies919

along the edge; 5) a group of defective dies located anywhere;920

6) a wafer full of defective dies; 7) random defective dies;921

8) single circular scratch; 9) none (normal) Wafer Maps with922

few defective dies.923

To cover the mentioned imbalance issue, we significantly924

reduced the ‘‘none’’ class only to 1,000 random samples.925

MixedWM38 [46] dataset contains 38, 015 well-classified926

wafer maps, including the so called ‘‘normal’’ pattern (the927

‘‘none’’ class in the WM-811K dataset) as well as 8 sin-928

gle native defect patterns and 29 defect patterns grouped in929

2 mixed type (Fig. 20), 3 mixed type (Fig. 21) and four mixed930

type (Fig. 22), for a total amount of 38 defect patterns at931

52× 52 fixed resolution.932

STMicroelectronics Silicon Dataset contains WDMs of933

Silicon devices classified in 7 different patterns named by a934

progressive number as shown in Fig. 23, where: (a) defective935

dies at the bottom of the wafer with two straight lines of936

good dies; (b) defective dies arranged like checker-board;937

(c) double straight scratches; (d) full wafer of defective dies938

with straight horizontal lines of good dies; (e) defective dies939

grouped and arranged as circles along the edge; (f) defective940

dies located at the bottom; (g) multiple circular scratches. 941

That dataset is imbalanced and composed by 6, 732 samples 942

at 61× 61 fixed resolution. 943

As introduced, the final used dataset is a combination 944

of the previous ones containing a total of 71, 266 WDMs 945

with 45 different classes re-arranged and grouped in a more 946

balanced way. This full dataset has been split into training, 947

validation and test sets according to a 80-10-10 hold-out 948

methodology. 949

2) SUPERVISED LEARNING BLOCK: TRAINING PROCEDURE 950

The designed supervised deep system has been trained by 951

using single datasets as well as combined ones. Preliminary, 952

ad-hoc data augmentation method has been employed includ- 953

ing random rotation, horizontal and vertical flip. 954

As introduced, we have implemented two deep network 955

backbones (Big CNN and Small CNN). Both models have 956

been trained for 100 epochs in PyTorch framework vers. 957

1.10 [47] with CUDA 11.4 running on a workstation based on 958

Intel Core i9-12900K with 64GB DDR4-3600MHz of RAM 959

coupled with NVIDIA RTX 3060 with 12GB of VRAM. 960

We have tested for benchmark comparison both pre-trained 961

(on ImageNet) State-Of-The-Art (SOTA) backbones as well 962

as the same trained from scratch [48]. The Adam algo- 963

rithm [49] has been used as optimizer with an initial learning 964

rate of 1e − 4 and, Cross Entropy function has been used as 965
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FIGURE 22. 4 mixed type WDMs of mixedWM38 dataset.

FIGURE 23. Binarized silicon WDMs provided by STMicroelectronics.

TABLE 5. Benchmark models training configuration.

performance Loss function with class weighting (Eq. 11)966

`(x, y) = L = {l1, . . . , lN }T967

ln = −
C∑
c=1

wclog
exp(xn,c)∑C
i=1 exp(xn,i)

yn,c (11)968

where x is the input tensor, y is the target class label, w is969

the weight (rescaled by weight given to each class), C is the970

number of classes and N spans the minibatch.971

In Table 5 the designed deep networks training configura-972

tion is reported.973

3) SUPERVISED LEARNING BLOCK: BASELINE BENCHMARK974

Before evaluating the combination of the three previously975

described datasets, we have validated our proposed solutions976

against architectures proposed by authors of public datasets,977

specifically WM-811K [4] and MixedWM38 [46].978

More in detail, authors of WM-811K dataset produced979

a confusion matrix ( [4], Fig. 13a) of the performance980

obtained from their Dual-stage WMFPR method applied to981

theWM-811K dataset. In [4] the mentioned confusion matrix982

was reported while we reported in Table 6 the related con-983

fusion matrix converted to overall accuracy, precision, recall,984

F1-score indexes for benchmark comparison between the pro-985

posed Dual-stage WMFPR [4] and our proposed solutions.986

From Table 6 the overall accuracy of the Dual-stage987

WMFPR seems slightly higher than ours. The related reason988

is connected to the over-sampled class ‘‘none’’ which actually989

allows the method proposed in [4] (which embeds about990

110, 000 wafer samples of ‘‘none’’) to apparently outperform991

our method. In fact, from the details of the performances992

for single classes reported in Table 6, it is evident how our993

architectures significantly outperform the method proposed 994

in [4] which it recovers with the only ‘‘none’’ class which is 995

strongly imbalanced and in any case not very significant for 996

the analyzedWDMs assessment. Therefore, the robustness of 997

the proposedmethod is evident in relation to the defect classes 998

that are most valid in the analysis of the defect patterns. 999

More details about Dual-stage WMFPR and our proposed 1000

architectures can be found in Table 6. 1001

About the MixedWM38 dataset the authors of [46] 1002

described a split of their dataset (training and validation set) 1003

as 80% and 20% providing a performance assessment of their 1004

method based on the usage of precision and recall metrics. 1005

In Table 7 we have reported the benchmarks comparison 1006

between the method reported in [46] named DC-Net against 1007

our proposed ones. As showed in Table 7 our proposed solu- 1008

tions (in both the designed configurations) outperformed the 1009

DC-Net approach designed in [46] by an average of 4% in 1010

overall accuracy. The performances related to the classifica- 1011

tion of single defect-classes (both native and mixed) showed 1012

that our method outperforms the DC-Net approach [46] 1013

on average, confirming the effectiveness of the proposed 1014

approach.More details about DC-Net and our proposed archi- 1015

tectures can be found in Table 7. 1016

4) SUPERVISED LEARNING BLOCK: FULL DATASET 1017

BENCHMARK 1018

As applied for single datasets, the proposed deep network has 1019

been validated with the full dataset embedding the previous 1020

mentioned ones and split as follow: 57, 012 wafer defect 1021

samples as Training Set, 7, 127 samples for Validation Set 1022

and 7, 127 samples for Testing Set. As benchmark indexes 1023
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TABLE 6. Dual-stage WMFPR [4] versus proposed deep networks-WM-811K dataset.

TABLE 7. DC-Net [46] versus proposed deep networks-mixedWM38 dataset.

we have used the accuracy in training, validation and testing1024

phase. In Table 8 the collected performances for all the tested1025

deep backbones and related configurations (both pre-trained1026

on ImageNet and trained from scratch) are reported.1027

As expected, pre-trained models showed worse perfor-1028

mance than trained from scratch architectures as the features1029

related to defect maps are scarcely overlapped to those cor-1030

related to the ImageNet database and therefore the feature1031

maps of a pre-trained network is more difficult to converge to 1032

feature maps associated with WDMs. A network that builds 1033

its own feature maps from scratch is able to learn better and 1034

therefore perform better. 1035

We also tested architecture based on Vision Trans- 1036

former [50] (ViT RGB at 224 × 224 × 3 and ViT at 64 × 1037

64 × 1 spatial resolutions) which however underperformed 1038

compared to ours. We believe that this result is to be further 1039
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TABLE 8. Full dataset(s) benchmark comparison.

FIGURE 24. Test set accuracy curves.

FIGURE 25. Test set loss curves.
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FIGURE 26. Loc WDM from WM-811K.

validated in a much larger dataset than the current one tak-1040

ing into consideration that transformer-based architectures1041

require a considerable amount of input data to build the1042

attention-based internal representation of the input data. From1043

Table 8 we noticed that the proposed solution based on CNN1044

Grayscale at 64 × 64 performed better than the CNN RGB1045

at 224 × 224 with a training accuracy of 97.61% as best1046

validation model and 96.30% as test-set accuracy.1047

Fig. 24 and 25 reported benchmarks related to accuracy and1048

the related loss curves in test set of all the tested architectures.1049

5) SUPERVISED LEARNING BLOCK: EXPLAINABILITY1050

Increasing the architecture’s complexity by adding residual1051

blocks (as ResNet and DenseNet architectures) and attention1052

blocks (as inVision Transformer architectures), we contribute1053

to increase model’s predictive power and robustness by giv-1054

ing to architectures the ability to generalize on new exam-1055

ples [51], [52]. A more complex architecture should be able1056

to predict with a higher degree of confidence and to learn the1057

main features that characterize the inputs faster. Although,1058

model’s performance is still evaluated using traditional met-1059

rics like accuracy, precision and recall we do not have any1060

about what the model learned during training and what the1061

model is going to predict when new examples are given. With1062

these assumptions we need methods to explain what is really1063

happening inside the model instead of considering it as acting1064

like a black box.1065

The goal of Explainable Artificial Intelligence (XAI) is to1066

explain the internal layer activations on the basis of which1067

the deep model provides the desired solution. The methods1068

of XAI most used in scientific literature are based on Inte-1069

grated Gradients [53], Grad-CAM [54], [55] and Attention1070

Maps [56] methods. More details about these mentioned1071

approaches are now given.1072

Integrated Gradients [53] is a method to solve attribution1073

of the prediction in deep network. It is based on two axioms:1074

Sensitivity and Implementation Invariance.31075

Formally, our deep network is represented by the function1076

F : Rn −→ [0, 1], if we consider the straight-line path from1077

the baseline a′ to the input a, and compute gradients at all1078

points along the path. Integrated gradients are obtained by1079

cumulating those gradients. Specifically, integrated gradients1080

3A more detailed explanation can be found at [53].

are defined as the integral-path of the gradients along the 1081

straight-line path from the baseline a′ to the input a. The 1082

integrated gradient along the ith dimension for input a and 1083

baseline a′ (with m, the number of steps in the Riemann 1084

approximation of the integral) is defined by the following 1085

Eq. 12: 1086

IG(a) = (ai − a′i)×
m∑
k=1

δF(a′ + k
m × (ai − a′i))

δai
×

1
m

(12) 1087

Grad-CAM [54], [55] is a method to produce visual expla- 1088

nation of underlying Convolutional Neural Network models 1089

making them more explainable. Grad-CAM uses gradient 1090

information flowing into the last convolutional layer of the 1091

network to assign values to each neuron for a particular 1092

outcome. Given a localization map related to the class C , 1093

the Grad-CAM computes the gradient of the score of class 1094

C (before the Softmax) with respect to the feature map of the 1095

previous activated convolutional layer. This so computed gra- 1096

dient is global-average pooled over the width (i) and height 1097

(j) dimensions to obtain the neuron weighting. 1098

Attention Maps As mentioned in [50], attention roll-out 1099

mechanism [56] applied in Computer Vision problems is 1100

defined as soft shading approach to focus learning on the 1101

region of interest of the input image. From a mathematical 1102

point of view, it is a recursive approach across all the weights 1103

and layers of the deep network and where for each layer, the 1104

corresponding attention map is multiplied by the previous 1105

ones as per Eq. 13: 1106

Ā(li) =

{
A(li)Ā(li−1) if i > j
A(li) if i = j

(13) 1107

where A(li) is the corresponding attention weight-map at 1108

layer ith (for i to j, so from the first layer to the latest 1109

ones). 1110

In order to show the behaviour of models, XAI methods 1111

aforementioned are now applied to an instance of ‘‘Loc’’ 1112

wafer defect pattern (Fig.26). As reported in Figs. 27-36 for 1113

each the tested deep backbones, we have computed explain- 1114

ability methods in order to reconstruct the internal represen- 1115

tation used by the network for performing the related wafer 1116

patterns classification. The first aspect that is highlighted is 1117

related to the fact that although the defect pattern is single, 1118

the networks internally activate more similar classes such as 1119

Center, Edge-Loc and Loc (as highlighted in the Prediction 1120

plot showed in Fig. 27a, 28a). Anyway, the output of the 1121

network is represented by the most representative class of this 1122

internal map. 1123

Starting from Fig. 27, our proposed deep network at 64× 1124

64 resolution (i.e., CNN at 64 × 64) predicted Center and 1125

Loc and they are quite visible in the Integrated Gradients 1126

but not in Grad-CAM. Instead, the proposed deep network 1127

at 224 × 224 (i.e., CNN at 224 × 224) (Fig. 28) predicted 1128

both Loc and Edge-Loc patterns with a higher confidence 1129

and both Integrated Gradients and Grad-CAM confirmed the 1130

corresponding patterns were activated. All the other models, 1131
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FIGURE 27. Explainability analysis: CNN at 64 × 64 trained from scratch.

FIGURE 28. Explainability analysis: CNN at 224 × 224 trained from scratch.

FIGURE 29. Explainability analysis: VGG-19 pre-trained.

FIGURE 30. Explainability analysis: VGG-19 trained from scratch.

both pre-trained (Fig. 29, 31, 33) and trained from scratch1132

(Fig. 30, 32, 34), showed the same behaviour, i.e., they were1133

not able to make right predictions as confirmed by XAI based1134

on Grad-CAM and integrated Gradients which not enabled1135

any significant activation maps. It is interesting to highlight 1136

that the tested deep models trained from scratch were able 1137

to make a better prediction referred to high significant acti- 1138

vation maps such as VGG19, ResNet-152 and DenseNet-161 1139
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FIGURE 31. Explainability analysis: ResNet-152 pre-trained.

FIGURE 32. Explainability analysis: ResNet-152 trained from scratch.

FIGURE 33. Explainability analysis: DenseNet-161 pre-trained.

FIGURE 34. Explainability analysis: DenseNet-161 trained from scratch.

which were able to predict Loc and Edge-Loc patterns. Vision1140

Transformers (ViT) both at 64× 64 (Fig. 35) and 224× 2241141

(Fig. 36) performed quite well as confirmed by the Activation1142

Maps (Grad-CAM can not be applied to ViT architecture) and 1143

Integrated Gradients outcomes fairly consistent with the input 1144

defect pattern Loc in Fig. 26. 1145
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FIGURE 35. Explainability analysis: ViT at 64 × 64 trained from scratch.

FIGURE 36. Explainability analysis: ViT at 224 × 224 trained from scratch.

C. THE STAI-EWS TOOL1146

The target of this sub-section is to introduce the developed1147

AI-boosted tool currently used in the STMicroelectronics lab-1148

oratories. We have developed a user-friendly solution which1149

covers both the implemented Unsupervised and Supervised1150

sub-systems. Specifically, we have released a deep learning1151

web-driven software application by using Python boosted by1152

the open source framework Streamlit [57] in combination1153

with Plotly [58] and PyTorch.1154

The released application was named ‘‘STAI-EWS’’ which1155

means ‘‘STMicroelectronics Artificial Intelligence-based1156

Electrical Wafer Sorting assessment’’ (a video demonstration1157

can be found as supplementary material).1158

The STAI-EWS tool has been designed with an intuitive1159

user interface. More in details, the tool is composed by the1160

following parts: the sidebar and the main page.1161

• The sidebar shows the current version of the1162

STAI-EWS application and the navigation menu which1163

allows the user to select: Supervised Wafer Defect1164

Pattern Recognition, Unsupervised WDMs Clustering,1165

Manage Database and Manage Convolutional Neural1166

Network (CNN);1167

• The main page shows the current section configuration1168

of the STAI-EWS tool.1169

As introduced, the whole proposed pipeline has been1170

embedded in the STAI-EWS tool. Just more details about the1171

working-flow of the implemented options:1172

• The Supervised wafer defect pattern recognition1173

option. As described in IV-B with this option, the1174

user will be able to infer such input WDMs through 1175

the well-trained Convolutional Neural Network. Feed- 1176

forward inference can be done either as a single WDMs 1177

as well as by group of defect maps. The related classifi- 1178

cation of the input WDMs will be done with associated 1179

reports. 1180

• Unsupervised WDMs clustering option. As described 1181

in IV-A this option allows the user to perform unsu- 1182

pervised clustering of the input WDMs followed by a 1183

downstream comparison with internal database looking 1184

for new wafer defect pattern classes. The GUI of the 1185

STAI-EWS tool shows the capability to change mul- 1186

tiple parameters for UMAP and HDBSCAN such as 1187

the dimensionality reduction factors, filtering param- 1188

eters, thresholds configuration, and so on. A related 1189

3D Surface plot will be created to have an overview 1190

of the input WDMs against the adopted dimension- 1191

ality reduction and hierarchical clustering configura- 1192

tion. The STAI-EWS tool allows the user to enable 1193

the K-Means centroids computation and related Cosine 1194

similarity. As introduced, in case of novel defect patterns 1195

the internal database will be automatically updated and 1196

the related CNN re-trained accordingly (this option can 1197

be disabled by the user). In Fig. 37 an instance of the 1198

unsupervised sub-system embedded in the STAI-EWS 1199

tool. 1200

• The Configuration-Management of the Database. 1201

This section allows the user to configure the STAI-EWS 1202

tool internal defect maps database including the ability 1203
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FIGURE 37. STAI-EWS tool: instance of the clustering report.

to backup of the current database.Moreover, the user can1204

restore or update the database;1205

• The Configuration-Management of the Deep Net-1206

work (CNN). In this section the user can validate or1207

re-train the underlying deep CNN. A related benchmark1208

report of the current CNN performance (including 1209

curves, confusion matrix, and so on) is generated at 1210

the end of the usage of this option. In Fig. 38 an 1211

instance of this option embedded in the STAI-EWS 1212

tool. 1213
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FIGURE 38. STAI-EWS tool: the configuration-management of the CNN.

V. CONCLUSION1214

This work proposes an interesting hybrid approach to address1215

one of the key-issue of semiconductor industries, i.e., the1216

robust and effective defects assessment of the produc-1217

tion lines. Through the combination of unsupervised and1218

supervised deep pipelines we are able to early identify the 1219

defects in the production lines by means of a downstream 1220

analysis at EWS stage. By means of the investigated analysis 1221

of the associated binarized WDMs, we showed the ability of 1222

our proposed solution to provide a robust classification of the 1223
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defect patterns as well as an effective ability to identify new1224

defect patterns which worth to be inspected in the upstream1225

production lines. This hybrid solution enabled an end-to-end1226

pipeline to be applied in the production lines of semicon-1227

ductor company embedding different technologies. In fact,1228

we have validated our solution in different environment both1229

with public dataset and by using internal ones provided by1230

STMicroelectronics.We have also validated our solution both1231

in Silicon technology aswell as in Silicon Carbide confirming1232

the effectiveness of the proposed system both in unsupervised1233

analysis (for identifying novel defect patterns) as well as in1234

the supervised classification of the input well-known defect1235

patterns. Through the usage of innovative dimensionality1236

reduction and clustering features analysis (UMAP and HDB-1237

SCAN) we are able to build an internal robust representation1238

of the features associated to the input wafer defect maps.1239

Finally, by means of an XAI methods, we validated our1240

solution by analyzing the activation maps of the designed1241

deep network in order to check the internal representation of1242

the used deep networks.1243

Finally, the released STAI-EWS tool allows a simple1244

usage of the proposed pipeline by means of ad-hoc user-1245

friendly interface currently used in the STMicroelectronics1246

labs. Future works aim to extend the proposed architecture1247

embedding the sub-systems which allow to automatically1248

identify the upstream production issues associated to each of1249

the classified (and novel) defect maps as well as to retrieve a1250

robust assessment of the related production yield impact.1251
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