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ABSTRACT With the prevalence of the Internet of Things (IoT) and microcontrollers (MCUs), the security
issues of IoT and MCUs have become increasingly important. Side-channel analysis (SCA) is a major threat
to such problems. One of the non-invasive SCAs is through electromagnetic information leakage (EM-leak)
analysis. The author has developed a machine-instruction-level EM-leak analysis by neural network (NN)
model. The NN model analysis needs a large dataset for training and validation. And the dataset should be
complete and sufficient. The dataset sufficiency can be achieved by acquiring more data from the already
proposed EM-leak measurement platform. However, the completeness issue becomes a challenge due to
the pipelined architecture in the target MCU. In this paper, the completeness issue of a NN model dataset
for the EM-leak analysis is addressed. Experiments show that the proposed algorithm can find an optimal
solution. The contributions of this paper include: it successfully reduces a complex and practical SCA
problem into a two-stage pipelined MCU individual EM-leak analysis sequence (2-EMAseq) description,
proves that the 2-EMAseq problem has at least one optimal solution, uses this proof to develop an algorithm,
and uses this algorithm to find a complete dataset is the target two-stage pipelined MCU dataset for NN
model training/validation. Currently, the algorithm can only generate the optimal EM-dataset for two-stage
pipelined MCUs. However, there are many MCUs with 4~8 pipeline stages. Whether there is an optimal
solution when the stages are more than two is still an open question. And it needs to find proofs or derive
heuristics in the future for such MCUs.

INDEX TERMS EM information leakage, NN dataset generation, directed graph Eulerian trail.

I. INTRODUCTION

Reverse engineering could be used to exploit vulnera-
bilities of digital systems. It has also become a critical
security concern [2] for embedded systems and the Inter-
net of Things (IoT). IoT envisions billions of wireless-
connected end-nodes [3] and is used in many applications
such as surveillance, health monitoring, agriculture, and
robotics, among others. The microcontroller (MCU) is the
heart of IoT. The primary task of an MCU is to per-
form predefined behaviors according to internal programs
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to acquire environment input or to provide output to net-
works or other devices. An MCU is a single-chip pro-
grammable sequential digital electronic component with
integrated peripherals. The MCU is pervasive [1], [3], [4]
in the contemporary information age because of the small size
with many input/output peripherals.

An MCU program is a carefully designed sequence of
machine instructions. Different instructions (load, store, addi-
tion, multiplication, comparison, jumps, etc.) control the
on/off states of the sub-functional blocks (network, IO inter-
face, bus arbitration, etc.) within the MCU and affect the tim-
ing, power consumption, and electromagnetic (EM) radiation
of these blocks. The observable EM behaviors are called the
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side-effects of the program. Although the side-effect signals
are subtle, the internal behaviors of an MCU can be detected
by the side-effect signal analysis. If these behaviors could be
analyzed for reverse engineering, the security issues of these
pervasive MCUs become important.

Some electronic attacks are based on the MCU’s side
effects. They are called side-channel attacks [1], [5]. The
secret information of a victim program executed inside an
MCU can be exposed by such attacks [5]. These side-effects
may include system execution time, transient power con-
sumption, or EM radiation of an MCU. The analysis of these
effects may increase the security concerns that stem from
such attacks.

In [5], Yuan designed a platform to analyze the EM radia-
tion side-channel information leakage (EM-leak) signals via
a neural network (NN) model (FIGURE 1). In [5], more
advanced models such as LSTM [6] or ResNet [7] are not
used but a fully connected NN (FCNN) model is adapted.
The reason is that the author has tried many advanced NN
models with different dataset types for SCA identification.
When trading off among different factors (such as the train-
ing cost, overfitting, training time, and dataset sizes), the
FCNN is determined. In FIGURE 1, the EM-leak within
the collective EM-leak (cEM-leak) guarded by two senten-
tial signals (begin/end-guard-signal) is called the individual
EM-leak (iEM-leak). The iEM-leak corresponds to an indi-
vidual machine instruction EM-leak of an MCU. Through the
measurement and NN analysis of [5], the program execution
sequence can be extracted from the EM-leak analysis.

mV

] ] ]
"l o b i
Y -
iEM-leak | |\ iEM-leak (Add]_]
i iEM-leak (Mov)

2r - - ~guard-signals 1
—— cEM-leak signals

L . . . . L

0 1 2 3 4 5 6 7 8

sec x107

FIGURE 1. Program context within a testing program.

However, the NN models require a lot of data for
NN training and validation. And these data, which are called
EM-dataset in this paper, should be measured by a special
EM-leak measurement platform [5].

There are many NN datasets, from small dataset (like
MNIST [6] or CIFAR-10 [7]) to large dataset (like Ima-
geNet [8], WebFace [9], or VoxPopuli [10]). An NN dataset
is a mapping or labeling of finite samples from an inter-
ested research field. And the fields generally contain infi-
nite samples. Taking the MNIST [6] dataset as an example,
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it is a database of handwritten digits that is used for image
processing systems. The database contains only 60,000 train-
ing images and 10,000 testing images. It is clear that the
handwriting digits of all people cannot be complete for the
undocumented or the unborn children. And the MNIST is just
a small group of handwriting samples. Generally, the com-
pleteness of these datasets is not important because NN mod-
els targeted to their problems are open questions and cannot
be fully elaborated.

However, it is not the case in the proposed EM-dataset. The
dataset is finite and should be complete because the DUT’s
SCA should be identified by the NN model even to the least
possible corner cases [11]. Currently, this paper proposes a
new problem to be solved due to the dataset completeness is
not met by other types of dataset.

Thus, generating a “sufficient and complete” EM-dataset
is very important for such studies. Here, sufficiency means
the dataset size should be large enough for the training and
validation of the NN models. And the completeness means
the dataset should cover all instruction sequence cases. The
sufficiency issue can be covered by iterating the measurement
to increase the dataset sizes. However, completeness can-
not be guaranteed by the iterations. The reason is described
below.

Although [5] can identify the EM-leak to some extent, the
dataset for the NN training/validation is far from complete-
ness. And only partial instruction can be identified in [5]. The
reason is detailed below.

If an MCU has n different instructions, all these instruc-
tions can be selected into a testing program at any sequence.
The testing program is then programmed (burnt) into a
target MCU (the device under test, DUT). Here, the verb
“programmed (burnt)” means an action to download the
compiled testing program into the DUT’s memory (flash
or RAM). After the programming, the DUT is powered up and
the collective EM-leak signals (cEM-leak) can be measured.
Some digital signal post-processing techniques [5] can be
applied to the cEM-leak signals and the iEM-leak target to
each instruction can be acquired. These iEM-leaks with their
corresponding instruction labels can be collected into the
EM-dataset. Since all of the n instructions’ iEM-leaks can be
measured and stored in the EM-dataset, the completeness is
guaranteed.

A possible EM-dataset collection and EM-leak analysis
of an unknown program procedure may have the following
steps.

1) A “program context” (FIGURE 2) within a testing
program is built. All the n instructions of a DUT are
selected into the program context for EM-leak fea-
ture extraction. The sequence of these instructions can
be randomly assigned. If the instructions are jump or
conditional jumps, they should be treated carefully.
Two ’guarded-signals’ are inserted at the beginning and
end of the program context. An empty delay loop is
inserted at the bottom of the end-guard-signal. These
blocks constitute the whole testing program. After the
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fixed time delay, the testing program executes from the
beginning repeatedly.

—
start

begin-guard-signal ~

program context

testing . .
program % DUT's instructions }for EM-leak analysis

end-guard-signal

empty DELAY

- loop
k infinite loop

FIGURE 2. Side-channel EM-leak (iEM-leak separated from the cEM-leak)
and the guard-signals.

2) The testing program is compiled into instructions
(machine codes). And these instructions are pro-
grammed into the target DUT.

3) The DUT is powered up and the cEM-leak is
repeatedly measured by EM-leak measurement setups
FIGURE 4).

4) After the cEM-leak is acquired, every iEM-leak can
be divided according to FIGURE 1. Every iEM-leak
represents its own individual instruction’s EM-leak
behavior. These iEM-leaks (with the corresponding
instruction labels) are collected as the EM-dataset. The
details are described in [5].

5) After the dataset is acquired, the NN model can
be trained and validated to identify the relation-
ships between the iEM-leaks and their corresponding
instructions.

6) Given any unknown program executed in the DUT,
by measuring its cEM-leaks and mapping each
EM-leak into the corresponding instruction through the
trained NN model, the execution sequence of the given
program can be restored. This means the context of any
program can be identified by the EM-leak.

It should be noticed that the iEM-leak acquisition proce-
dures are tedious and time-consuming. Generally, the num-
ber of instructions of an MCU is fixed and rather small
(43 for Intel 8051 MCU and 30~400 for different RISC-
type MCUs). It is estimated that an iEM-leak signal needs an
average of 0.5 seconds to be acquired from the measurement
platform [5] into the EM-dataset. And a dataset needs at
least n* 1000 iEM-leak samples for sufficient NN training and
validation.

It seems easy to acquire an EM-dataset. If the concep-
tual EM-dataset collection procedure above is feasible and
assuming a DUT has only 100 instructions (n=100), the
EM-dataset collection procedure may take only about
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FIGURE 4. EM-leak measurement platform (adapted from [5]).

13.9 hours (100*1000*0.5 seconds) to generate a suitable
EM-dataset.

However, the completeness of an EM-dataset cannot be
generated by such a naive procedure. The reason is that mod-
ern MCUs contain pipeline designs [12]. A pipelined MCU
design can increase the MCU’s throughput, clock frequency,
and thus, the overall MCU performance. However, this makes
the EM-dataset generation in [5] to be very difficult.

For the analysis simplicity, assuming an MCU contains
only 3 instructions A, B, and C; and assuming the MCU has
a 2-stage pipeline (stage 1 and stage 2), it means that the
MCU contains 2 consecutive instructions inside it to control
an iEM-leak signal in one execution cycle. Thus, there are
a total 3> = 9 different pairs of iEM-leak patterns. They
are A1Ap, A1B2, A1Cy, B1Ag, ..., C1B3, and C{C,. Without
loose of clearance, the combinations are abbreviated to AA,
AB, AC, BA,..., CB, and CC. If the program context is
designed as AA AB AC BA BB ...CC, the program needs
total 9*2 = 18 instructions. However, since the instructions
are pipelinedly executed, the first three pairs of instructions
(six instructions) selected could be AA BA CA (FIGURE 3,
orange). The six instructions not only generate the expected
AA, BA, and CA iEM-leaks (FIGURE 3, yellow) but are
also accompanied by an extra AA and new BA iEM-leaks
are generated (FIGURE 3, gray). Because the BA iEM-leak
is generated elsewhere, the dataset contains the extra AA and
BA iEM-leak makes the EM-dataset unbalanced [13]. Thus,
a more efficient instruction sequence may be re-arranged as
A A B A CB B C C (and loopback). It can be verified
that all the iEM-leaks are generated in the new sequence.
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Not only the completeness is guaranteed but also the dataset
is unbalanced. Since all the iEM-leaks can be acquired from
the new sequence, the total instructions within the program
context are reduced from 18 to 9 instructions.

The DUT used in this paper is dsPIC33EP64MC202 [16].
It is a mature and popular 16-bit 2-stage pipelined RISC-type
MCU produced by Microchip Technology. The total number
of instructions is 242 (not considering the DSP instructions).
If the EM-dataset generation is based on the naive concept,
it needs a total of 0.93 years (2422 % 1000 % 0.5 seconds =
0.9279 year)! Not only the generation takes a long time, but
the dataset is unbalanced [13] depending on the instruction
sequence order.

Thus, an efficient and balanced EM-dataset generation
algorithm with an optimal or nearly optimal complete instruc-
tion sequence for the NN model program context is very
important. If a near-optimal instruction sequence is devel-
oped, not only the dataset completeness can be guaranteed
but the collection time and the dataset unbalance can be both
reduced. Thus, the EM-dataset generation can be sufficient
and complete if the instruction sequence within the program
context is properly arranged.

In this paper, the author tries to find an optimal instruc-
tion sequencing algorithm to increase the dataset generation
efficiency. The paper is organized as follows. In section II,
the paper tries to define the optimality of the instruction
sequence of the program context. After the definition, the
author tries to prove that the optimal solution exists and,
eventually, proposes an algorithm for building the sequence.
In section III, the experiment results are conducted accord-
ing to the proposed algorithm. Section IV is the conclusion.
An abbreviation table is given after the Section I'V.

Il. PROPOSED METHOD

This paper tries to define the complete and balanced sequence
of a two-stage pipelined MCU instruction generation for
EM-dataset as a “two-stage pipelined MCU iEM-leak analy-
sis sequence’” problem (2-EMAseq) and map it to a directed
graph (digraph) Eulerian trail problem. This paper also claims
the proposed 2-EMAseq solution is optimal.

A. THE TWO-STAGE PIPELINED MCU IEM-LEAK ANALYSIS
SEQUENCE PROBLEM (2-EMASEQ) CAN BE MAPPED TO

A COMPLETE DIGRAPH

Assuming there are n instructions in a DUT, without loss
of generality, these instructions can be labeled by numbers
{0,1,...,n—1}. All the labeled numbers are mapped to
nodes of a graph. Every arc arc;; is the directed link from
node i to node j. Since the 2-EMAseq problem contains all
the instruction pairs (0,0), (0, 1), (0, 2),...,(n—1,0), (n—1,
1),....,(n—1,n— 1), itis trivial to map all the instruction

pair to the arc. The mapping is:
instruction pair (i, j) — arcjj, wherei,je{0, ..., n—1}

It is easy to find that the mapped n nodes digraph G
is a complete graph with n? arcs. In this paper, each arc
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has a number label from 1 to n2. The arc label represents
its corresponding line position (instruction sequence) in the
program context.

For example (FIGURE 5), if an MCU has only 3 instruc-
tions: load, store, and add, and they are labeled as {0 (load),
1 (store), 2 (add) }. Assuming the program context instruction
sequence is randomly assigned as FIGURE 5(a). The mapped
digraph G=(N, A) is defined as N being the node-set, and
A is the arc-set. The corresponding arcs can be shown in
FIGURE 5(b). It is described above that the total iEM-leak
count is 9. Thus, the arc labels are defined as the program
context’s line numbers (labeled as {1, 2, 3, ..., 9}). Here,
the 3 nodes are labeled as {a, b, c} corresponding to the
instruction {0, 1, 2} for clarity (not to be confused by the arc
label number 1...9) and called the node labels. The mapped
digraph G(N, A) is shown in FIGURE 5(c).

program context mapped arc mapped digraph
(lineNo: inst=>inst)  (label: arc) G(N, A)
1: store(b) => add(c); 1. arcy

2: store(b) => store(b); 2: arcyy

3: load(a) => load(a); 3: arc,,

4:add(c) => add(c); 4:  arce

5:load(a) => store(b); 5: arcy,

6:add(c) =>load(a); 6: arcg,

7:add(c) => store(b); 7: arce

8: store(b)=> load(a); 8: arcy,

9: load(a) => add(c); 9: arcy

(a) (b)

FIGURE 5. The (randomly assigned) two-stage pipelined MCU iEM-leak
analysis sequence problem (2-EMAseq) case is mapped to a complete
digraph: (a) the instruction sequence assigned by a program context,
(b) the mapped arcs and their labels, and (c) the mapped digraph.

B. REPRESENTATION OF THE MAPPED GRAPH AND
EXISTENCE OF THE OPTIMAL SOLUTION

The graphs in this paper follow the adjacency matrix [14]
representations. For example, if a complete digraph
is FIGURE 5 (c), the adjacency matrix can be represented
as FIGURE 6. The integer numbers inside the matrix are the
arc labels. If we order the arcs by their labels, the result is
shown in FIGURE 7 which shows the node travel sequence
according to the arc label. Here, we define:

from(axy) = X = the arc label a’s head node
to(axy) = Y = the arc label a’s tail node

We define two adjacent labels of arcs as an “‘arc-pair”.
For an arc-pair {arc;, arciy1}, if the node of to (arc;) and
from(arc;4 1) is the same, it means the adjacent arc-pair need
not change node when traveling from arc; to arciy1. This also
means the instruction can be reduced by 1 without losing any
completeness. In this paper, it is defined an “efficient” arc-
pair as: to (arc;) = from (arciy1). For example, in FIGURE 7,
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the arc-pair {5, 6} is not efficient because the to(arcs) =
b # ¢ = from (arcg). Arc-pair{8, 9} is efficient because
the to(arcg) = a = from(arcyg).

From/To a b ¢

a 3 5 9

b 8 2 1
6 9

C 6 7 4

FIGURE 6. Digraph of FIGURE 5(c) and its adjacency matrix
representation (matrix numbers are arc labels).

1 2 3 4 5 6 7
b—e¢,b—ba—a,c—c,a—bc— a,c—

8 9
b—a—c

FIGURE 7. The rearrangement of FIGURE 5(c) according to the arc-pair
labels.

If an arc pair (arc;, arciyp) is not efficient, we define
there is a ‘“redundant node” that happens in to(arc;) and
from(arcit+1). The node-redundancy is defined as the ratio
of the sum of redundant nodes to the number of arcs. From
FIGURE 7, there are many non-efficient arc-pairs: a total of
6 redundant nodes out of the 9 arcs are counted; the node-
redundancy is 6/9=0.67.

In this paper, the author tries to propose an algorithm
to find the most efficient (optimized) and complete arc-
pair sequence. It means the node-redundancy = 0 and all
edges are traveled (see FIGURE 8 as an example compared
to FIGURE 5).

1 2 3 4 5 6 7
a—a—b—a—c—b—b—s
8 9

c—rCc—ra

(b)

FIGURE 8. An optimal 2-EMAseq solution (node-redundancy = 0) of
FIGURE 6 and FIGURE 7: (a) the mapped graph and (b) rearranged
according to arc labels.

From the example above, it can be generalized into the
following lemmas.

96802

Lemma 1: If there exists an Eulerian trail [15], the node-
redundancy is zero.

Proof: By the redundant node definition, if an Eulerian
trail (a walk through the graph which uses every edge exactly
once) exists, it is trivial that there will be no redundant node
and the node-redundancy is zero.

Lemma 2: For a digraph G mapped by the 2-EMAseq
problem, if the node-redundancy of G is zero, it is an optimal
solution to the 2-EMAseq problem.

Proof: if the node-redundancy is zero, it implies no
redundant node of a given arc sequence. If there is no
redundant node, the efficiency is optimized by definition.
Since there is always an edge from node i to node j in the
2-EMAseq mapped diagraph, it is clear that G is connected.
If G is efficient and connected, the corresponding 2-EMAseq
problem is optimized.

Lemma 3: there is at least one optimal solution to the
2-EMAseq problem.

Proof: From [17], a digraph has an Eulerian trail if and
only if the 4 conditions exist:

1) At most one vertex has out-degree — in-degree = 1.

2) At most one vertex has in-degree — out-degree = 1.

3) Other vertex (in-degree) = (out-degree)

4) All of its vertices with nonzero degrees belong to a sin-
gle connected component of the underlying undirected
graph.

In the 2-EMAseq problem, the mapped digraph is a com-
plete digraph. Thus, all nodes’ (in-degree)=(out-degree)=
n (condition 3). No nodes have unbalanced in-degree and
out-degree (conditions 1 & 2). All the nodes are connected
to the same component (condition 4). It is clear that the
digraph mapped from 2-EMAseq problem meets all the
conditions. Thus, the Eulerian trail exists in the mapped
digraph.

Since the Eulerian trail exists, by Lemmal, the node-
redundancy is zero. Since at least one solution that the arc
sequence’s redundancy is zero, by Lemma?2, it is an optimal
solution. This means at least one optimal solution to the
2-EMAseq problem exists.

C. PROPOSED ALGORITHM
Because the optimal solution exists, the author tries to derive
an algorithm to find the solution.

The algorithm’s pseudo code is shown in FIGURE 9.

Theorem: Given a complete digraph G(N, A), where the
N = {0,1,...,n} is the node-set, |[IN| = n+ 1 > 3, and
A= {a1, S Ay } is the arc set. The proposed algo-
rithm can find an optimal solution to the 2-EMAseq problem
of G.

Proof: For |[N| < 2, itis trivial to find the Eulerian trail
in G.

Without loss of generality, the algorithm selects node
n and makes G'(N’, A’) as the sub-graph of G where
N = {0,1,...,n — 1}, A’ contains only the arcs within
node set N'. It is clear that G and G’ are all complete
digraphs.
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1 Input: A complete digraph G(N, A

2 where N={@, 1, .., n}, and A={1, .., (n+1)?}
3

4 labelSet, labelCnt) = Function label(G, labelCnt
5

6 Let G' = G\{n}, A'=A\{(i,j)|i==n or j==n
7 labelSet Labels =

8 for i in {0 n-2

9

10 Labels += (labelCnt n, i

11 labelCnt ++

12 Labels += (labelCnt i, n

13 labelCnt ++

14

15 Labels += (labelCnt n-2, n

16 labelCnt ++

17 Labels += (labelCnt n, n-1

18 labelCnt ++

19 1s, 1lc) = label(G', labelCnt

20 labelSet += 1s

21 labelCnt = 1lc ++

22 return (Labels, labelCnt

23

24

25 labelSet, _) = label(G, 1

FIGURE 9. The proposed algorithm (pseudo code) of the 2-stage
pipelined iEM-leak optimal solution.

According to the algorithm, the Labels of the arcs are:

1 2 3 4 5 6 7 8 9 .
n—0—n—1—n—2—n—3—n—4--- (line6)

2ht1l ) 2k+2  2k+3
n—k—n— - (line 8-14)

2n—2 2n—1
(n—2)—n—(n—1)— G (line 15-19)

2n—1+4n2+1
—

i i (line 20-21)

Since |N’| = n, the algorithm recursively calls the sub-
graph labeling algorithm to label all the arcs with the Eulerian
trail sequence of G’, where |A’| = n?. Before the subgraph
G’ traveling, the arc(n, n — 1) is labeled as 2n — 1. When the
G’ is travel completely, the outgoing arc is labeled as:

2n—1+4|A|+1=n*+2n
The final arc is n — n which is labeled as:
P 4+2n+1=m+1)>.

Thus, the Eulerian trail can be derived from the algorithm
by the mathematical induction (MI). Since the Eulerian trail
can be found by the proposed algorithm, the optimal solution
to the 2-EMAseq problem can be found following Lemma 3.

lll. EXPERIMENTAL RESULT

For the DUT’s 242 instructions (without DSP instructions),
all the instructions can be inserted into the program context
for acquiring the iEM-leak signals according to the proposed
algorithm. Currently, only partial iEM-leak signals are mea-
sured and used to train a DNN because of the time-consuming
measurements. Since the algorithm is now developed, the
author can derive all the instructions’ iEM-leak signals based
on the 2-EMAseq solution.
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(b)

FIGURE 10. A 10-instruction optimal tEMseq solution by the proposed
algorithm: (a) the digraph and (b) the arc sequence of (a).

The algorithm is designed by python. A 10-instruction
iEM-leaks are shown here for validation. The result is shown

in FIGURE

10. The algorithm can find an optimal iEM-

leak program context sequence (node-redundancy=0) as

expected.
About the

execution time of the algorithm, for the target

DUT’s instruction, the algorithm takes 0.49 seconds to derive

the Eulerian

trail and 0.2 seconds to prepare the program

context. However, the iEM-leak signal acquisition will take
a longer time. And the training time would be even longer.

However, the

completeness of the iEM-leak signal generation

is guaranteed. The detailed instructions [10] of the DUT
are skipped to save space. Currently, the algorithm can only
deal with the 2-stage pipelined iEM-leak program context
preparation. However, modern MCUs may have 4~7 pipeline
stages. It will be the future work to derive suitable algorithms
for such MCUs.

ABBREVIATIONS

2-EMAseq

digraph
DUT
EM-dataset

EM-leak
cEM-leak
iEM-leak
FCNN
IoT
LSTM
MCU

two-stage pipelined MCU individual
EM-leak analysis sequence problem
Directed graph

Design under test

Dataset used in 2-EMAseq problem
for the NN model training
Electromagnetic information leakage
collective EM-leak

individual EM-leak

fully connected NN

Internet of Things

Long Short-Term Memory
Microcontroller
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NN
program context

Neural network

Core testing program inside the test
program loop

Residual NN

Side-channel analysis

Signals indicating iEM-leak’s begin
and end

ResNet
SCA
sentential signals

IV. CONCLUSION

The Internet of Things (IoT) related microcontroller (MCU)
is now pervasive. The neural network (NN) models for the
electromagnet (EM) side-channel analysis of these MCU
needs a large training/validation dataset (EM-dataset).

The EM information leakage (EM-leak) EM-dataset com-
pleteness generation for a 2-stage pipelined MCU prob-
lem is firstly observed. The EM-dataset that can solve
the EM-leak analysis needs to be complete and sufficient.
Due to the pipeline architecture design, dataset genera-
tion becomes a difficult issue. The sufficiency issue can
be solved by increasing the EM-leak signal measurements.
But the completeness of the dataset cannot be solved
easily.

This paper proposes an efficient algorithm and implan-
tation for the EM-dataset generation. The generation of
EM-dataset is proved to be complete.

In this paper, the completeness of EM-dataset generation
is defined as a “‘two-stage pipelined MCU iEM-leak analysis
sequence’” problem (2-EMAseq) problem. The 2-EMAseq is
then proved that it can be mapped to a special directed graph
(digraph) Eulerian trail problem. The 2-EMAseq problem
is then proved through the special digraph that the optimal
solution exists. And an algorithm is proposed and proved
to solve the optimal 2-EMAseq problem which makes the
EM-dataset generation complete. The experiment result
shows the proposed algorithm can generate a complete EM-
dataset efficiently.

The contribution of this paper includes: it successfully
introduces a practical problem to a 2-EMAseq descrip-
tion, proves the 2-EMAseq problem has an optimal solution
through a special digraph, proposes an algorithm to find the
optimal solution, proves the algorithm’s correctness, and uses
the proposed algorithm to generate a complete EM-dataset for
a targeted MCU.

Currently, the algorithm can only generate the optimal
EM-dataset for two-stage pipelined MCUs. However, there
are many MCUs with 4~8 pipeline stages. Whether there
is an optimal solution when the stages are more than two is
still an open question. And it needs to find proofs or derive
heuristics. The author will continue to study these problems.
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