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ABSTRACT With the prevalence of the Internet of Things (IoT) and microcontrollers (MCUs), the security
issues of IoT and MCUs have become increasingly important. Side-channel analysis (SCA) is a major threat
to such problems. One of the non-invasive SCAs is through electromagnetic information leakage (EM-leak)
analysis. The author has developed a machine-instruction-level EM-leak analysis by neural network (NN)
model. The NN model analysis needs a large dataset for training and validation. And the dataset should be
complete and sufficient. The dataset sufficiency can be achieved by acquiring more data from the already
proposed EM-leak measurement platform. However, the completeness issue becomes a challenge due to
the pipelined architecture in the target MCU. In this paper, the completeness issue of a NN model dataset
for the EM-leak analysis is addressed. Experiments show that the proposed algorithm can find an optimal
solution. The contributions of this paper include: it successfully reduces a complex and practical SCA
problem into a two-stage pipelined MCU individual EM-leak analysis sequence (2-EMAseq) description,
proves that the 2-EMAseq problem has at least one optimal solution, uses this proof to develop an algorithm,
and uses this algorithm to find a complete dataset is the target two-stage pipelined MCU dataset for NN
model training/validation. Currently, the algorithm can only generate the optimal EM-dataset for two-stage
pipelined MCUs. However, there are many MCUs with 4∼8 pipeline stages. Whether there is an optimal
solution when the stages are more than two is still an open question. And it needs to find proofs or derive
heuristics in the future for such MCUs.

18 INDEX TERMS EM information leakage, NN dataset generation, directed graph Eulerian trail.

I. INTRODUCTION19

Reverse engineering could be used to exploit vulnera-20

bilities of digital systems. It has also become a critical21

security concern [2] for embedded systems and the Inter-22

net of Things (IoT). IoT envisions billions of wireless-23

connected end-nodes [3] and is used in many applications24

such as surveillance, health monitoring, agriculture, and25

robotics, among others. The microcontroller (MCU) is the26

heart of IoT. The primary task of an MCU is to per-27

form predefined behaviors according to internal programs28
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approving it for publication was Su Yan .

to acquire environment input or to provide output to net- 29

works or other devices. An MCU is a single-chip pro- 30

grammable sequential digital electronic component with 31

integrated peripherals. The MCU is pervasive [1], [3], [4] 32

in the contemporary information age because of the small size 33

with many input/output peripherals. 34

An MCU program is a carefully designed sequence of 35

machine instructions. Different instructions (load, store, addi- 36

tion, multiplication, comparison, jumps, etc.) control the 37

on/off states of the sub-functional blocks (network, IO inter- 38

face, bus arbitration, etc.) within the MCU and affect the tim- 39

ing, power consumption, and electromagnetic (EM) radiation 40

of these blocks. The observable EM behaviors are called the 41

96798 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0002-3704-0917
https://orcid.org/0000-0002-7376-3493


S.-Y. Yuan: Optimized Sequence Dataset Generation

side-effects of the program. Although the side-effect signals42

are subtle, the internal behaviors of an MCU can be detected43

by the side-effect signal analysis. If these behaviors could be44

analyzed for reverse engineering, the security issues of these45

pervasive MCUs become important.46

Some electronic attacks are based on the MCU’s side47

effects. They are called side-channel attacks [1], [5]. The48

secret information of a victim program executed inside an49

MCU can be exposed by such attacks [5]. These side-effects50

may include system execution time, transient power con-51

sumption, or EM radiation of an MCU. The analysis of these52

effects may increase the security concerns that stem from53

such attacks.54

In [5], Yuan designed a platform to analyze the EM radia-55

tion side-channel information leakage (EM-leak) signals via56

a neural network (NN) model (FIGURE 1). In [5], more57

advanced models such as LSTM [6] or ResNet [7] are not58

used but a fully connected NN (FCNN) model is adapted.59

The reason is that the author has tried many advanced NN60

models with different dataset types for SCA identification.61

When trading off among different factors (such as the train-62

ing cost, overfitting, training time, and dataset sizes), the63

FCNN is determined. In FIGURE 1, the EM-leak within64

the collective EM-leak (cEM-leak) guarded by two senten-65

tial signals (begin/end-guard-signal) is called the individual66

EM-leak (iEM-leak). The iEM-leak corresponds to an indi-67

vidual machine instruction EM-leak of anMCU. Through the68

measurement and NN analysis of [5], the program execution69

sequence can be extracted from the EM-leak analysis.70

FIGURE 1. Program context within a testing program.

However, the NN models require a lot of data for71

NN training and validation. And these data, which are called72

EM-dataset in this paper, should be measured by a special73

EM-leak measurement platform [5].74

There are many NN datasets, from small dataset (like75

MNIST [6] or CIFAR-10 [7]) to large dataset (like Ima-76

geNet [8], WebFace [9], or VoxPopuli [10]). An NN dataset77

is a mapping or labeling of finite samples from an inter-78

ested research field. And the fields generally contain infi-79

nite samples. Taking the MNIST [6] dataset as an example,80

it is a database of handwritten digits that is used for image 81

processing systems. The database contains only 60,000 train- 82

ing images and 10,000 testing images. It is clear that the 83

handwriting digits of all people cannot be complete for the 84

undocumented or the unborn children. And theMNIST is just 85

a small group of handwriting samples. Generally, the com- 86

pleteness of these datasets is not important because NN mod- 87

els targeted to their problems are open questions and cannot 88

be fully elaborated. 89

However, it is not the case in the proposed EM-dataset. The 90

dataset is finite and should be complete because the DUT’s 91

SCA should be identified by the NN model even to the least 92

possible corner cases [11]. Currently, this paper proposes a 93

new problem to be solved due to the dataset completeness is 94

not met by other types of dataset. 95

Thus, generating a ‘‘sufficient and complete’’ EM-dataset 96

is very important for such studies. Here, sufficiency means 97

the dataset size should be large enough for the training and 98

validation of the NN models. And the completeness means 99

the dataset should cover all instruction sequence cases. The 100

sufficiency issue can be covered by iterating themeasurement 101

to increase the dataset sizes. However, completeness can- 102

not be guaranteed by the iterations. The reason is described 103

below. 104

Although [5] can identify the EM-leak to some extent, the 105

dataset for the NN training/validation is far from complete- 106

ness. And only partial instruction can be identified in [5]. The 107

reason is detailed below. 108

If an MCU has n different instructions, all these instruc- 109

tions can be selected into a testing program at any sequence. 110

The testing program is then programmed (burnt) into a 111

target MCU (the device under test, DUT). Here, the verb 112

‘‘programmed (burnt)’’ means an action to download the 113

compiled testing program into the DUT’s memory (flash 114

or RAM).After the programming, theDUT is powered up and 115

the collective EM-leak signals (cEM-leak) can be measured. 116

Some digital signal post-processing techniques [5] can be 117

applied to the cEM-leak signals and the iEM-leak target to 118

each instruction can be acquired. These iEM-leaks with their 119

corresponding instruction labels can be collected into the 120

EM-dataset. Since all of the n instructions’ iEM-leaks can be 121

measured and stored in the EM-dataset, the completeness is 122

guaranteed. 123

A possible EM-dataset collection and EM-leak analysis 124

of an unknown program procedure may have the following 125

steps. 126

1) A ‘‘program context’’ (FIGURE 2) within a testing 127

program is built. All the n instructions of a DUT are 128

selected into the program context for EM-leak fea- 129

ture extraction. The sequence of these instructions can 130

be randomly assigned. If the instructions are jump or 131

conditional jumps, they should be treated carefully. 132

Two ’guarded-signals’ are inserted at the beginning and 133

end of the program context. An empty delay loop is 134

inserted at the bottom of the end-guard-signal. These 135

blocks constitute the whole testing program. After the 136
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fixed time delay, the testing program executes from the137

beginning repeatedly.138

FIGURE 2. Side-channel EM-leak (iEM-leak separated from the cEM-leak)
and the guard-signals.

2) The testing program is compiled into instructions139

(machine codes). And these instructions are pro-140

grammed into the target DUT.141

3) The DUT is powered up and the cEM-leak is142

repeatedly measured by EM-leak measurement setups143

FIGURE 4).144

4) After the cEM-leak is acquired, every iEM-leak can145

be divided according to FIGURE 1. Every iEM-leak146

represents its own individual instruction’s EM-leak147

behavior. These iEM-leaks (with the corresponding148

instruction labels) are collected as the EM-dataset. The149

details are described in [5].150

5) After the dataset is acquired, the NN model can151

be trained and validated to identify the relation-152

ships between the iEM-leaks and their corresponding153

instructions.154

6) Given any unknown program executed in the DUT,155

by measuring its cEM-leaks and mapping each156

EM-leak into the corresponding instruction through the157

trained NN model, the execution sequence of the given158

program can be restored. This means the context of any159

program can be identified by the EM-leak.160

It should be noticed that the iEM-leak acquisition proce-161

dures are tedious and time-consuming. Generally, the num-162

ber of instructions of an MCU is fixed and rather small163

(43 for Intel 8051 MCU and 30∼400 for different RISC-164

type MCUs). It is estimated that an iEM-leak signal needs an165

average of 0.5 seconds to be acquired from the measurement166

platform [5] into the EM-dataset. And a dataset needs at167

least n∗1000 iEM-leak samples for sufficient NN training and168

validation.169

It seems easy to acquire an EM-dataset. If the concep-170

tual EM-dataset collection procedure above is feasible and171

assuming a DUT has only 100 instructions (n=100), the172

EM-dataset collection procedure may take only about173

FIGURE 3. 2-stage Pipelined instruction cycle vs. iEM-leak signals (yellow:
naïvely expected, gray: accompany generated). PX: pipeline stage X.

FIGURE 4. EM-leak measurement platform (adapted from [5]).

13.9 hours (100∗1000∗0.5 seconds) to generate a suitable 174

EM-dataset. 175

However, the completeness of an EM-dataset cannot be 176

generated by such a naïve procedure. The reason is that mod- 177

ern MCUs contain pipeline designs [12]. A pipelined MCU 178

design can increase the MCU’s throughput, clock frequency, 179

and thus, the overall MCU performance. However, this makes 180

the EM-dataset generation in [5] to be very difficult. 181

For the analysis simplicity, assuming an MCU contains 182

only 3 instructions A, B, and C; and assuming the MCU has 183

a 2-stage pipeline (stage 1 and stage 2), it means that the 184

MCU contains 2 consecutive instructions inside it to control 185

an iEM-leak signal in one execution cycle. Thus, there are 186

a total 32 = 9 different pairs of iEM-leak patterns. They 187

are A1A2, A1B2, A1C2, B1A2, . . . , C1B2, and C1C2. Without 188

loose of clearance, the combinations are abbreviated to AA, 189

AB, AC, BA,. . . , CB, and CC. If the program context is 190

designed as AA AB AC BA BB . . .CC, the program needs 191

total 9∗2 = 18 instructions. However, since the instructions 192

are pipelinedly executed, the first three pairs of instructions 193

(six instructions) selected could be AA BA CA (FIGURE 3, 194

orange). The six instructions not only generate the expected 195

AA, BA, and CA iEM-leaks (FIGURE 3, yellow) but are 196

also accompanied by an extra AA and new BA iEM-leaks 197

are generated (FIGURE 3, gray). Because the BA iEM-leak 198

is generated elsewhere, the dataset contains the extra AA and 199

BA iEM-leak makes the EM-dataset unbalanced [13]. Thus, 200

a more efficient instruction sequence may be re-arranged as 201

A A B A C B B C C (and loopback). It can be verified 202

that all the iEM-leaks are generated in the new sequence. 203
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Not only the completeness is guaranteed but also the dataset204

is unbalanced. Since all the iEM-leaks can be acquired from205

the new sequence, the total instructions within the program206

context are reduced from 18 to 9 instructions.207

The DUT used in this paper is dsPIC33EP64MC202 [16].208

It is a mature and popular 16-bit 2-stage pipelined RISC-type209

MCU produced by Microchip Technology. The total number210

of instructions is 242 (not considering the DSP instructions).211

If the EM-dataset generation is based on the naïve concept,212

it needs a total of 0.93 years (2422 ∗ 1000 ∗ 0.5 seconds =213

0.9279 year)! Not only the generation takes a long time, but214

the dataset is unbalanced [13] depending on the instruction215

sequence order.216

Thus, an efficient and balanced EM-dataset generation217

algorithmwith an optimal or nearly optimal complete instruc-218

tion sequence for the NN model program context is very219

important. If a near-optimal instruction sequence is devel-220

oped, not only the dataset completeness can be guaranteed221

but the collection time and the dataset unbalance can be both222

reduced. Thus, the EM-dataset generation can be sufficient223

and complete if the instruction sequence within the program224

context is properly arranged.225

In this paper, the author tries to find an optimal instruc-226

tion sequencing algorithm to increase the dataset generation227

efficiency. The paper is organized as follows. In section II,228

the paper tries to define the optimality of the instruction229

sequence of the program context. After the definition, the230

author tries to prove that the optimal solution exists and,231

eventually, proposes an algorithm for building the sequence.232

In section III, the experiment results are conducted accord-233

ing to the proposed algorithm. Section IV is the conclusion.234

An abbreviation table is given after the Section IV.235

II. PROPOSED METHOD236

This paper tries to define the complete and balanced sequence237

of a two-stage pipelined MCU instruction generation for238

EM-dataset as a ‘‘two-stage pipelined MCU iEM-leak analy-239

sis sequence’’ problem (2-EMAseq) and map it to a directed240

graph (digraph) Eulerian trail problem. This paper also claims241

the proposed 2-EMAseq solution is optimal.242

A. THE TWO-STAGE PIPELINED MCU IEM-LEAK ANALYSIS243

SEQUENCE PROBLEM (2-EMASEQ) CAN BE MAPPED TO244

A COMPLETE DIGRAPH245

Assuming there are n instructions in a DUT, without loss246

of generality, these instructions can be labeled by numbers247

{0, 1, . . . , n− 1}. All the labeled numbers are mapped to248

nodes of a graph. Every arc arcij is the directed link from249

node i to node j. Since the 2-EMAseq problem contains all250

the instruction pairs (0,0), (0, 1), (0, 2), . . . , (n− 1, 0), (n− 1,251

1), . . . , (n − 1, n − 1), it is trivial to map all the instruction252

pair to the arc. The mapping is:253

instruction pair (i, j) 7−→ arcij, where i, j∈{0, . . . , n−1}254

It is easy to find that the mapped n nodes digraph G255

is a complete graph with n2 arcs. In this paper, each arc256

has a number label from 1 to n2. The arc label represents 257

its corresponding line position (instruction sequence) in the 258

program context. 259

For example (FIGURE 5), if an MCU has only 3 instruc- 260

tions: load, store, and add, and they are labeled as {0 (load), 261

1 (store), 2 (add)}. Assuming the program context instruction 262

sequence is randomly assigned as FIGURE 5(a). The mapped 263

digraph G=(N, A) is defined as N being the node-set, and 264

A is the arc-set. The corresponding arcs can be shown in 265

FIGURE 5(b). It is described above that the total iEM-leak 266

count is 9. Thus, the arc labels are defined as the program 267

context’s line numbers (labeled as {1, 2, 3, . . . , 9}). Here, 268

the 3 nodes are labeled as {a, b, c} corresponding to the 269

instruction {0, 1, 2} for clarity (not to be confused by the arc 270

label number 1. . . 9) and called the node labels. The mapped 271

digraph G(N, A) is shown in FIGURE 5(c). 272

FIGURE 5. The (randomly assigned) two-stage pipelined MCU iEM-leak
analysis sequence problem (2-EMAseq) case is mapped to a complete
digraph: (a) the instruction sequence assigned by a program context,
(b) the mapped arcs and their labels, and (c) the mapped digraph.

B. REPRESENTATION OF THE MAPPED GRAPH AND 273

EXISTENCE OF THE OPTIMAL SOLUTION 274

The graphs in this paper follow the adjacency matrix [14] 275

representations. For example, if a complete digraph 276

is FIGURE 5 (c), the adjacency matrix can be represented 277

as FIGURE 6. The integer numbers inside the matrix are the 278

arc labels. If we order the arcs by their labels, the result is 279

shown in FIGURE 7 which shows the node travel sequence 280

according to the arc label. Here, we define: 281{
from(aXY ) ≡ X ≡ the arc label a’s head node
to(aXY ) ≡ Y ≡ the arc label a’s tail node

282

We define two adjacent labels of arcs as an ‘‘arc-pair’’. 283

For an arc-pair {arci, arci+1}, if the node of to (arci) and 284

from(arci+1) is the same, it means the adjacent arc-pair need 285

not change node when traveling from arci to arci+1. This also 286

means the instruction can be reduced by 1 without losing any 287

completeness. In this paper, it is defined an ‘‘efficient’’ arc- 288

pair as: to (arci) = from (arci+1). For example, in FIGURE 7, 289
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the arc-pair {5, 6} is not efficient because the to(arc5) =290

b 6= c = from (arc6). Arc-pair{8, 9} is efficient because291

the to(arc8) = a = from(arc9).292

FIGURE 6. Digraph of FIGURE 5(c) and its adjacency matrix
representation (matrix numbers are arc labels).

FIGURE 7. The rearrangement of FIGURE 5(c) according to the arc-pair
labels.

If an arc pair (arci, arci+1) is not efficient, we define293

there is a ‘‘redundant node’’ that happens in to(arci) and294

from(arci+1). The node-redundancy is defined as the ratio295

of the sum of redundant nodes to the number of arcs. From296

FIGURE 7, there are many non-efficient arc-pairs: a total of297

6 redundant nodes out of the 9 arcs are counted; the node-298

redundancy is 6/9=0.67.299

In this paper, the author tries to propose an algorithm300

to find the most efficient (optimized) and complete arc-301

pair sequence. It means the node-redundancy = 0 and all302

edges are traveled (see FIGURE 8 as an example compared303

to FIGURE 5).304

FIGURE 8. An optimal 2-EMAseq solution (node-redundancy = 0) of
FIGURE 6 and FIGURE 7: (a) the mapped graph and (b) rearranged
according to arc labels.

From the example above, it can be generalized into the305

following lemmas.306

Lemma 1: If there exists an Eulerian trail [15], the node- 307

redundancy is zero. 308

Proof: By the redundant node definition, if an Eulerian 309

trail (a walk through the graph which uses every edge exactly 310

once) exists, it is trivial that there will be no redundant node 311

and the node-redundancy is zero. 312

Lemma 2: For a digraph G mapped by the 2-EMAseq 313

problem, if the node-redundancy of G is zero, it is an optimal 314

solution to the 2-EMAseq problem. 315

Proof: if the node-redundancy is zero, it implies no 316

redundant node of a given arc sequence. If there is no 317

redundant node, the efficiency is optimized by definition. 318

Since there is always an edge from node i to node j in the 319

2-EMAseq mapped diagraph, it is clear that G is connected. 320

If G is efficient and connected, the corresponding 2-EMAseq 321

problem is optimized. 322

Lemma 3: there is at least one optimal solution to the 323

2-EMAseq problem. 324

Proof: From [17], a digraph has an Eulerian trail if and 325

only if the 4 conditions exist: 326

1) At most one vertex has out-degree − in-degree = 1. 327

2) At most one vertex has in-degree − out-degree = 1. 328

3) Other vertex (in-degree) = (out-degree) 329

4) All of its vertices with nonzero degrees belong to a sin- 330

gle connected component of the underlying undirected 331

graph. 332

In the 2-EMAseq problem, the mapped digraph is a com- 333

plete digraph. Thus, all nodes’ (in-degree)=(out-degree)= 334

n (condition 3). No nodes have unbalanced in-degree and 335

out-degree (conditions 1 & 2). All the nodes are connected 336

to the same component (condition 4). It is clear that the 337

digraph mapped from 2-EMAseq problem meets all the 338

conditions. Thus, the Eulerian trail exists in the mapped 339

digraph. 340

Since the Eulerian trail exists, by Lemma1, the node- 341

redundancy is zero. Since at least one solution that the arc 342

sequence’s redundancy is zero, by Lemma2, it is an optimal 343

solution. This means at least one optimal solution to the 344

2-EMAseq problem exists. 345

C. PROPOSED ALGORITHM 346

Because the optimal solution exists, the author tries to derive 347

an algorithm to find the solution. 348

The algorithm’s pseudo code is shown in FIGURE 9. 349

Theorem: Given a complete digraph G(N , A), where the 350

N = {0, 1, . . . , n} is the node-set, |N | = n + 1 ≥ 3, and 351

A =
{
a1, · · · , a(n+1)2

}
is the arc set. The proposed algo- 352

rithm can find an optimal solution to the 2-EMAseq problem 353

of G. 354

Proof: For |N | ≤ 2, it is trivial to find the Eulerian trail 355

in G. 356

Without loss of generality, the algorithm selects node 357

n and makes G′(N′,A′) as the sub-graph of G where 358

N′ = {0, 1, . . . , n − 1}, A′ contains only the arcs within 359

node set N′. It is clear that G and G′ are all complete 360

digraphs. 361
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FIGURE 9. The proposed algorithm (pseudo code) of the 2-stage
pipelined iEM-leak optimal solution.

According to the algorithm, the Labels of the arcs are:362

363

Since |N′| = n, the algorithm recursively calls the sub-364

graph labeling algorithm to label all the arcs with the Eulerian365

trail sequence of G’, where |A′| = n2. Before the subgraph366

G’ traveling, the arc(n, n− 1) is labeled as 2n− 1. When the367

G’ is travel completely, the outgoing arc is labeled as:368

2n− 1+
∣∣A′∣∣+ 1 = n2 + 2n369

The final arc is n→ n which is labeled as:370

n2 + 2n+ 1 = (n+ 1)2 .371

Thus, the Eulerian trail can be derived from the algorithm372

by the mathematical induction (MI). Since the Eulerian trail373

can be found by the proposed algorithm, the optimal solution374

to the 2-EMAseq problem can be found following Lemma 3.375

III. EXPERIMENTAL RESULT376

For the DUT’s 242 instructions (without DSP instructions),377

all the instructions can be inserted into the program context378

for acquiring the iEM-leak signals according to the proposed379

algorithm. Currently, only partial iEM-leak signals are mea-380

sured and used to train a DNN because of the time-consuming381

measurements. Since the algorithm is now developed, the382

author can derive all the instructions’ iEM-leak signals based383

on the 2-EMAseq solution.384

FIGURE 10. A 10-instruction optimal tEMseq solution by the proposed
algorithm: (a) the digraph and (b) the arc sequence of (a).

The algorithm is designed by python. A 10-instruction 385

iEM-leaks are shown here for validation. The result is shown 386

in FIGURE 10. The algorithm can find an optimal iEM- 387

leak program context sequence (node-redundancy=0) as 388

expected. 389

About the execution time of the algorithm, for the target 390

DUT’s instruction, the algorithm takes 0.49 seconds to derive 391

the Eulerian trail and 0.2 seconds to prepare the program 392

context. However, the iEM-leak signal acquisition will take 393

a longer time. And the training time would be even longer. 394

However, the completeness of the iEM-leak signal generation 395

is guaranteed. The detailed instructions [10] of the DUT 396

are skipped to save space. Currently, the algorithm can only 397

deal with the 2-stage pipelined iEM-leak program context 398

preparation. However, modernMCUsmay have 4∼7 pipeline 399

stages. It will be the future work to derive suitable algorithms 400

for such MCUs. 401

ABBREVIATIONS 402

2-EMAseq two-stage pipelined MCU individual
EM-leak analysis sequence problem

digraph Directed graph
DUT Design under test
EM-dataset Dataset used in 2-EMAseq problem

for the NN model training
EM-leak Electromagnetic information leakage
cEM-leak collective EM-leak
iEM-leak individual EM-leak
FCNN fully connected NN
IoT Internet of Things
LSTM Long Short-Term Memory
MCU Microcontroller

403
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NN Neural network
program context Core testing program inside the test

program loop
ResNet Residual NN
SCA Side-channel analysis
sentential signals Signals indicating iEM-leak’s begin

and end

404

IV. CONCLUSION405

The Internet of Things (IoT) related microcontroller (MCU)406

is now pervasive. The neural network (NN) models for the407

electromagnet (EM) side-channel analysis of these MCU408

needs a large training/validation dataset (EM-dataset).409

The EM information leakage (EM-leak) EM-dataset com-410

pleteness generation for a 2-stage pipelined MCU prob-411

lem is firstly observed. The EM-dataset that can solve412

the EM-leak analysis needs to be complete and sufficient.413

Due to the pipeline architecture design, dataset genera-414

tion becomes a difficult issue. The sufficiency issue can415

be solved by increasing the EM-leak signal measurements.416

But the completeness of the dataset cannot be solved417

easily.418

This paper proposes an efficient algorithm and implan-419

tation for the EM-dataset generation. The generation of420

EM-dataset is proved to be complete.421

In this paper, the completeness of EM-dataset generation422

is defined as a ‘‘two-stage pipelined MCU iEM-leak analysis423

sequence’’ problem (2-EMAseq) problem. The 2-EMAseq is424

then proved that it can be mapped to a special directed graph425

(digraph) Eulerian trail problem. The 2-EMAseq problem426

is then proved through the special digraph that the optimal427

solution exists. And an algorithm is proposed and proved428

to solve the optimal 2-EMAseq problem which makes the429

EM-dataset generation complete. The experiment result430

shows the proposed algorithm can generate a complete EM-431

dataset efficiently.432

The contribution of this paper includes: it successfully433

introduces a practical problem to a 2-EMAseq descrip-434

tion, proves the 2-EMAseq problem has an optimal solution435

through a special digraph, proposes an algorithm to find the436

optimal solution, proves the algorithm’s correctness, and uses437

the proposed algorithm to generate a complete EM-dataset for438

a targeted MCU.439

Currently, the algorithm can only generate the optimal440

EM-dataset for two-stage pipelined MCUs. However, there441

are many MCUs with 4∼8 pipeline stages. Whether there442

is an optimal solution when the stages are more than two is443

still an open question. And it needs to find proofs or derive444

heuristics. The author will continue to study these problems.445
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