IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 17 August 2022, accepted 31 August 2022, date of publication 5 September 2022, date of current version 21 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3204388

== RESEARCH ARTICLE

Design and Development of Computational Tools
for Analyzing Elements of Hindi Poetry

KOMAL NAAZ™ AND NIRAJ KUMAR SINGH

Department of Computer Science and Engineering, Birla Institute of Technology Mesra, Mesra, Jharkhand 835215, India

Corresponding author: Komal Naaz (komalnaaz1209 @ gmail.com)

ABSTRACT Poetry writing is a qualitative subject and so is its analysis. Mapping of these poetic elements
onto a scale of real numbers is a lacking necessity. Albeit, Hindi literary heritage, being so huge and glorified,
there is remarkably very few computational works done exploring the underlying structures. Out of which
most of them is to detect a particular metre rather than a generalized approach. The state-of-art metadata
generator fails to provide any measures of underlying structural elements of poetry. There is no automated
system that generates rhyming pattern hidden in a poem for Hindi language or a system to detect and estimate
the extent of figure of speech in a given text of any language. In this article, to extract and evaluate elements
of poetry, three efficient tools, namely Text2Matra, RPaGen and FoSCal, have been designed and developed.
The Text2Matra tool provides the numeral scansion for any Hindi input text, which can serve as basis for
copious analytical and detection work. RPaGen detects the poem type of any input poem and outputs its
rhyming pattern. FoSCal gives a quantitative representation of detected figures of speech in any input text,
using the scoring scheme formulated using fuzzy approach and weighted analysis. These tools may find their
utility in various fields such as education, literary criticism, philology, authorship-attribution, etc. There have
been various computational activities done in the field of poetry analysis over the various languages across
the world. However, quantifying the extent of Figure of Speech in poetic compositions, in any language,
is entirely a novel approach. Mapping the aesthetic properties of a subjective idea (like poetry) onto a numeral
scale, to the best of our knowledge, is first of its kind for Hindi language.

INDEX TERMS Figure of speech, hindi poetry, metre, rhyme, style, tool, weighted analysis, fuzzy,
alliteration, pattern.

I. INTRODUCTION

Mammata, an eleventh-century rhetorician defines poetry as
flawless meaningful compositions possessing certain desir-
able qualities and adorned with aesthetic beauties so far as
possible. Poet Vishwanath defines poetry as sentence(s) with
aesthetic beauty. Later, a seventeenth-century savant Jagan-
nath defines poetry as words propounding amusable mean-
ings [7]. Although these and many other modern scholars
differ in their idea of defining poetry, they roughly agree on
certain elements like chanda or metre, tuka or rhyme, and
alankara or figure of speech desirable in any poetry [7]. The
poetic excellence in such literary pieces is highly attributed

The associate editor coordinating the review of this manuscript and

approving it for publication was Dongxiao Yu

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

to these elements. This research article is a very first attempt
towards mapping these agreed-upon considerable ingredients
of Hindi poetry onto a numerical scale to bring out its latent
qualities in the form of equivalent numeral value(s).

The regular structures contained in the intricacies of mathe-
matics have been a matter of curiosity. In this respect, the dis-
guised structures in poems are no different from mathematical
structures [13], [25]. Comparative study of ideas in various
forms is the basic instinct of human beings. The purpose
of any such study, along with a few others, is to analyse
the virtues and vices inherent in these ideas. Expression of
feelings by means of poetry is probably the utmost form of
communication of thoughts. In this sense, the mathematical
and statistical study of the aesthetic aspects contained in
literary works, especially poems, is an important justifiable

97733


https://orcid.org/0000-0002-5873-9217
https://orcid.org/0000-0001-5267-3547
https://orcid.org/0000-0001-6835-5981

IEEE Access

K. Naaz, N. K. Singh: Design and Development of Computational Tools for Analyzing Elements of Hindi Poetry

subject. The analysis of literary works is a common process.
These analyses are broadly of two types - literary analysis
and computational analysis. Literary analysis is subjective in
nature, and is mainly practiced by those who have a direct
association with literature. Whereas, computational analysis
is objective in nature. The people involved may be related to
literature, but they also have additional skills, through which
they are also able to study and analyze the various indirect
structures embedded in the poems.

This article focuses on the automation of various elements
of Hindi poetry namely, metre or chanda, rhyme or tuka,
and figure of speech or alanikara. A well-ordered and pre-
determined miscellany of morae or syllables is referred to
as chanda or metre. Matrika and varnika are the two most
common forms of metres. The chanda, which is determined
by the ordering and positioning of morae and syllables, is one
of the emphases of this article, which can be used as one of
the ways to get a numerical equivalent of a given text. For a
seamless analysis of the mathematical structures underlying
the words of the poetry, an equivalent numerical conversion
of the words is required. Any Hindi poem’s original text
form can alternatively be understood as a series of numeri-
cal values / and 2. Such a metamorphosis is governed by a
collection of well-defined rules spread throughout numerous
literatures concerning the laws of Hindi poetry, rather than
being a one-to-one function [7], [11], [19]. Moving on to
the next element, rhyme appears to be an undeclared but
important feature of contemporary poetry. Rhyming in a
poem is determined by a number of aspects, including the
position of the rhyming lines in the poem, as well as the words
inside the lines. These aspects made the automation process
of rhyme pattern generation a non-trivial task. Alankara,
or figure of speech (FoS), is a Hindi ornamentation that is
utilised to improve the elegance and influence of any poetry
text. It adds ingenuity to any phrase by making it obscure. The
use of rhetorical components enhances aesthetic beauty in
poetry. Ornate compositions especially impress the listeners.
Its correct use is also considered a sign of intelligence. FoS in
Hindi is huge and only a part (alliteration) of it is embraced
in this article. These elements are explained in detail in the
following sections.

Hindi is the third most spoken language in the world, yet
its literary compositions are very less explored computation-
ally [9], [33]. There are some computational works done in
modern Hindi [21], [24] but very few in ancient Hindi poetry
[5], [12], [15], [16], [17]. Kushwah and Joshi [12] proposed
an algorithm for automatic detection of rola chanda, but
their detection approach is confined to instants count, ignor-
ing the other important elements of poetry (mood, rhyme,
figure of speech). In a further work, Joshi and Kushwah
[5] proposed the automatic detection algorithm for caupar
chanda. Audichya and Saini [15] discusses a technique for
automatic metadata generation for Hindi poetry. Impressive
work is done by Audichya and Saini [17] in the taxonomic
listing of Hindi figures of speech, but insouciant work done
in automating it, and in a very similar fashion [16] explained

97734

the chanda rules in Hindi poetic composition. The aspects
of poetry stated above are not exhaustive. It varies greatly
from language to language, which implies that algorithms
designed for poetry analysis in one language more often may
not be equally applicable to another. In contrast to Hindi,
a significant amount of work has been done in computing
poetic elements of other languages, such as metre detection
and classification of Arabic [1], [4], [18] and Persian poetry
[28], a study of metre as a stylistic feature in Latin poetry
[6], an expert system for harmony test of Arabic poetry [3],
a statistical evaluation of Chinese Tang [2], [32] and English
[10] poetry, an emotion based classification for Marathi [26],
Punjabi [8], and Arabic [20] poetry, a study of rhythm of
Tibetan poetry [14]. One of the surprises of this study is that
none of the above languages has a computational system or
tool that recognises and quantifies figure of speech, a very
important component of poetry, which is one of the novelties
of this article.

From the literature reviwed, it is to note that, we do not
yet have any automated tool to detect the nature of rhymes
contained in Hindi poetry. It is clear that numerical transfor-
mation of text is desirable when analysis comes into picture.
One such text to numerical converter is a part of metadata
generator given by Audichya and Saini [15], but an insouciant
work done in automating it and lacking to provide an algo-
rithm or a caliber result set. Acting upon the identified gap we
created tool that can generate rhyme pattern(s) hidden in an
input poem and a tool which outputs a sequence of /s and 2s
tantamount to the input text. The use of rhetorical components
enhances aesthetic beauty in poetry. Ornate compositions
especially impress the listeners. Its correct use is also consid-
ered a sign of intelligence. Comparison of the aesthetic beauty
generated by ornamentation in two or more compositions is
absolutely expected. Such comparisons do happen in literary
analysis, but these comparisons are subjective. Therefore,
there is room for ambiguity in these analyses. However, this
skeptical situation can be avoided if the method of analysis
is made objective rather than subjective. There is no tool
or any automated system to the best of authors knowledge
that estimates the measure of aesthetic components of any
input Hindi text that can provide solution to the aforestated
problem.

In this article we propose a toolset that is probably the
most rigorous computational research done to the present in
the area of interest. Three efficient tools are offered, namely
Text2Matra, RPaGen and FoSCal. The Text2Matra tool pro-
vides the numeral scansion for any input text, which can
serve as the basis for copious analytical and detection (for
example, to detect chanda type, to detect thythm pattern,
verifying metrical correctness of a given verse, etc.) work.
In the current context, RPaGen is the first of its kind, it detects
the poem type of any input poem and outputs its rhyming
pattern. FoSCal is a tool in a class by itself that estimates
the extent of aesthetic components (alliteration) of any input
text. The proposed toolset (Text2Matra, RPaGen and FoSCal)
covers the gaps identified.

VOLUME 10, 2022



K. Naaz, N. K. Singh: Design and Development of Computational Tools for Analyzing Elements of Hindi Poetry

IEEE Access

The major contributions of the proposed work are:

« A Hindi poetry can be computationally analysed for the
various agreed upon elements of poetry. With respect to
the first two elements chanda and rhyme we created a
detection and pattern generating tools (Text2Matra and
RPaGen) that can help do the automated computational
analysis of any poetic piece.

« Using weighted analysis and fuzzy technique we for-
mulated a scoring scheme for the next element, that
is, figure of speech (alliteration). This scoring scheme
serves as key to the creation of tool (FoSCal) that gives
the quantitative estimation of the extent of aesthetic
components in any given input text.

The proposed toolset may help to spotlight the rich Indian
literary heritage and can act as an attestation of the vast,
highly-structured literary history of the nation. Philologists
may find its application in pursuing the study of literary
texts in order to establish their authenticity and their original
form, and determination of their meaning. Poems are an
ocean of emotions expressed in very few words that leave
anyone affected. Learning poems will help to grow intellect
and creativity. Poetry is a healthy way to let out the surging
emotions in a growing teen. It helps any learning child to
understand the impact of words. Owing to it, this work may
find its utility in the field of education and even intended poets
or lyricists may find these tools equally helpful. Apart from
the educational aspect, these tools are highly serviceable to
the community of literary critic. It not only helps them to
strengthen their observations but also helps them to create
one.

This article has been organized in the following order.
Section 2 provides an introduction to Hindi-alphabet and ele-
ments of Hindi-Poetry. Algorithms along with their method-
ology followed by their utility are discussed in section 3.
Section 4 talks over implementation and detailed result dis-
cussion. Finally, conclusions and future work are put in
section 5.

Il. A BRIEF INTRODUCTION TO THE HINDI ALPHABET
AND ELEMENTS OF HINDI POETRY

A. INTRODUCTION TO HINDI ALPHABET

Hindi-Alphabet is defined as a well-organized set of aksara
(letter). An aksara is a root sound that cannot be broken
anymore and can be pronounced by one effort of voice.
Aksara can be of two types, svara (vowels) and vyaiijana
(consonants). There is a total of eleven svara and thirty-
three basic vyaiijana in the Hindi-Alphabet (see Table 1)
[27], [31].

Svara are aksara that can be pronounced independently
whereas vyarijana can be pronounced only with the help of
svara. Svara can be further categorized as hrsva (short vowel)
and dirgha (long vowel) depending on the time required to
pronounce them. Dirgha svara requires twice the time needed
to pronounce a hrsva svara [29].

VOLUME 10, 2022

TABLE 1. Hindi-Alphabet.

Hindi-Alphabet Vowels

Hrsva svara Dirgha svara
El 3 3 ES Ell g EY T T

lal [ [u]l [r] al [ [a] [e] [a]
3 st
[o] [au]

Basic Hindi Consonants

Class Sub Consonants
Class
it E3 5 T q s
[ka] ~ [kha] [ga] [gha] [na]
it El B Ei El El
[ca]l [cha] [ja] [jha] [7id]
ot T 3 <3 7 o
Sparsa [ta] [tha]l [da] [dha] [na]
(Plosive) it a a g g il
[ta] [tha]l [da] [dha]l [na]
t T ® El q 7
[pa] [pha]l [ba] [bha] [ma]
Antahstha a T ?’f Kl
(Sonorant) va]l  [ra] [la] [va]
Usma B v g g
(Sibilant) [sa]l  [sa]l [sa]l [ha]

B. BASIC TERMINOLOGIES
There are some basic terminologies that one must know
before they dive into chandas.

1) SYLLABLE

A consonant along with a vowel or a vowel alone is consid-
ered as one syllable. Depending on the vowel (long or short)
type a syllable can be long (guru) or short (laghu).

2) LAGHU OR SHORT SYLLABLE

A short vowel (31 [a], R [i], 3 [u] or B [r]) with or without
consonant is called a short syllable or laghu. To represent
laghu, in the scansion and metrical analysis, a numerical
symbol / is used. For example, ® [hal, % [Ai] etc. are laghu.

3) GURU OR LONG SYLLABLE

A long vowel (37 [al, % [, & [a], € [e], Q [ai], 37 [o], 30
[au]) with or without consonant is called a long syllable or
guru. To represent guru, in the scansion and metrical analysis,

a numerical symbol 2 is used. For example, 63[ [At], % [hai],
etc. belong to guru.

4) MATRA OR MORA OR METRICAL UNIT
It is a unit of metrical quantity. It represents the time required
to utter a short vowel. Time required by a short vowel
is one mora and time required by a long vowel is two
morae [11], [29].

The terms discussed above are required for the understand-
ing of a set of rules discussed in section 3(A), which is used
for the creation of Algorithm 1.

97735



IEEE Access

K. Naaz, N. K. Singh: Design and Development of Computational Tools for Analyzing Elements of Hindi Poetry

Algorithm 1 Text_to_matra_converter (line)

Input: a line of text in Hindi
Qutput: a corresponding list of
and 2s

1: numerals <— empty_list

2: for i < 0, length(line) — 1 do

3:  forj < 0, length(word[i]) — 1 do

4: if word[i][j] in vyanjan or independent_hrsvaSwar

then

numerals 1s

numerals - addToList(1)
5 end if
6: if word[i][j] in laghu then
7: continue
8 end if
9 if word[i][j] in guru or word[i][j] is ’, then
numerals - removeElement
numerals - addToList(2)

10 end if

11: if word[i][j] in independent_dirghaSwar then
numerals - addToList(2)

12: end if

13:  end for

14: end for

15: return numerals

C. ELEMENTS OF POETRY

The emergence of poetry in the human development saga
is the result of human being continuously cultivating and
becoming deeper and deeper and more organized in the
course of communication. Scholars have defined poetry as
the verbal means of conveying emotion, which in the context
of the human intellect, expresses human feelings in a factual
manner [29]. A flat presentation of facts provides ease, but
such simplicity is often at the cost of the sensibility and aes-
thetic beauty of the composition. In this sense, the expression
of the feelings of the heart in beautiful, accurate and effective
words is called poetry. The elements mood or rasa, metre or
chanda, figure of speech or alarikara, and rhyme or tuka are
considered integral parts of poetry (Fig. 1) [7], [23].

Elements of Poetry

Rasa / Mood

Chanda [ Metre

Tuka / Rhyme

Alankara / Figure of Speech

FIGURE 1. Elements of Hindi poetry.

The present article is an attempt towards the design and
development of automation tools for analyzing three ele-
ments of Hindi poetry. These tools provide a way to identify

97736

and extract features (apparent or non-apparent) from among
elements that, in some form, are crucial to approximate a
subjective idea (such as poetry) into an objective form (such
as number(s)). The basics needed to understand the current
context is discussed below:

1) CHANDA OR METRE

In Sanskrit and languages (such as Hindi) derived from
Sanskrit, chanda refers to poetic compositions with a
well-ordered and predefined miscellany of morae or
syllables. Metres are chiefly of two types, namely, matrika
and varnika.

A matrika metre is characterized by having a fixed morae
count per metrical line, whereas, a varrnika metre is charac-
terized by the count and positions of syllables in each of its
metrical lines [11], [29].

2) TUKANTATA OR RHYMING

It would be surprising to know that at the beginning of such
a long history of chanda based poetry, there was no accepted
practice of rhyme but over a period it became inseparable.
Lack of rhyme in singable compositions imply non-elegance
and is often perceived as a hindrance to its production.

The presence of rhyme is definitely visible in the compo-
sitions of old or ancient Hindi, from where it spontaneously
came into the compositions of modern Hindi. At the same
time, we also accept that in modern times, many free verse
compositions are often free from rhyme. But such composi-
tions are certainly not lyrical.

Details concerning the design of algorithm (Algorithm 2)
to generate thyme pattern(s) for any input poem is discussed
in section 3(B).

3) ALANKARA OR FIGURE OF SPEECH

In Hindi, adornment that is used to enhance the elegance of
any poetic composition and makes it influential is alarikara
or figure of speech (FoS). It makes any expression abstruse
and brings ingenuity to it.

Concepts needed for the understanding of scoring scheme
which is used for designing Algorithm 3 (section 3(C)) are
stated below.

Alankara in Hindi can be broadly classified as
arthalalankara, sabdalankara and ubhayalankara. Sab-
dalankara can be further categorized as character-oriented
(varna miilaka) and word-oriented (sabda miilaka). The
first FoS tool for Hindi language, proposed in this arti-
cle, covers character-oriented sabdalankara or alliteration,
which is further categorized into four types: chekanuprasa,
vrttyanuprasa, srutyanuprasa and antyanuprasa (see Fig. 2).

a: Chekanuprasa
If a group of consonants is repeated once in both form
and sequence then Chekanuprasa is present. For example,

9Id Scft Tl GO, 3R T@ IW I [paig belr sikh
sukhada, ihi ritkhe rukha ghamal

VOLUME 10, 2022



K. Naaz, N. K. Singh: Design and Development of Computational Tools for Analyzing Elements of Hindi Poetry

IEEE Access

‘ Alankara or Figure of Speech |

I Ubhayalankar

Sabdalaitkdra

Arthalalonkara

Sabda mitlaka /
Word oriented

Varna milaka /
Character oriented

[
\ [ l |

Vrttyanuprasa

Chekanuprasa

FIGURE 2. Alankara: Types and Subtypes.

Here d, 9 in Wé?ﬁ 9, 9 in H;@ {:[@a, and ¥, 9 in
¥y have single repetition where order and form are
maintained, so chekanuprasa is present.

b: Vrttyanuprasa
If one consonant is repeated once or several times; a group
of consonants repeated once or several times in the form; a
group of consonants repeated several times in both form and
sequence then Vrttyanuprasa is present.

The above definition can be simplified into five cases:

Case 1: One consonant is repeated once. For example,
[ugharahim b ilama
bilocana hi ke
Here, d is repeated once.
Case 2: One consonant is repeated multiple times. For
example,

Ea-% BSNECIRSC fa dqd aﬂT [sabahi sulabha saba

dina saba desa)
Here, ¥ is repeated multiple times.

Case 3: A group of consonants is repeated once in the form.
For Example,
Y IRAT &g gb ARl [rasa sarita kaba
baka avagahahim]
Here, “XY X" and ‘P db” have single repetition
but the sequence in group of consonants is not main-
tained.

Case 4: A group of consonants is repeated multiple times in
the form. For example,

39 JHG & ddbal I Hlgdh PRI b

[usa pramada ke alakadama se madaka surabhi
nikalati]
Here, ‘H& @H HQ’, is a group of consonants
repeated multiple times in the form but without
order.

Case 5: A group of consonants is repeated multiple times in
the form and sequence.
For example,
W PIbll DI DADS DHBA [sva kakali ko
kalakanha kokila]

VOLUME 10, 2022

Here, “® & ¢” is a group of consonants repeated
multiple times in the form and with sequence.

If any of the five cases is established in a poem then
Vrttyanuprasa is present [7].

c: Srutyanuprasa
If sounds belonging to specific articulation point(s) dominate
then Srutyanuprasa is present. For example,

Jerftery Had R 7 <ad Rt F1gE (1a5i4-

asa sidata nisi dina dekhata tumhari nithurai)

In this line, letters belonging to the dental class,
in sequence, are A GHIGdTIGTCddA,
which make 16 out of total 23 letters, that is, 69.56 percent
of letters belong to the dental class. So, it is fair to say letters
from the dental class dominate and hence srutyanuprasa is
present [23].

d: Antyanuprasa
The presence of rhyme, to any extent, is realized by
antyanuprasa in the corresponding piece of literature. For
example,

d W 7 "’WEFﬁI ﬁ'_ﬁﬁ dare m [taim rahima
mana apuno, kinom caru cakora)

ARy SRR AN 36, U B MR [
lago rahai, krsnacandra ki ora)

Here, and 3R form rhyming between the two lines
and so we can say antyanuprasa is present.

basara

Ill. ALGORITHMS AND METHODOLOGY
This section contains the various algorithms designed by
referring to the rules specified across a number of sources
along with their methodology. This discussion is followed by
the utility of the proposed tools.

The asymptotic computational complexities, in terms of
space and time, of the tools are discussed just below the
algorithm specifications of the respective tools.

A. CONVERTING A HINDI METRICAL LINE INTO
EQUIVALENT NUMERICAL SCANSION

Algorithm Text_to_matra_converter converts a given line of
Hindi text into an equivalent sequence of /s and 2s. It assigns
Is and 2s for all laghus and gurus respectively except for a
few special cases where a laghu is assigned a weight of 2.
These special cases are [11], [29]-

1. If a vowel is followed by an anusvara. For example,
in the word b [karika] the syllable & [kari] has matra
value 2.

2. If a vowel is followed by a visarga. For example, d:
[tah] in the word 3Id: [atah] has matra value 2.

3. If a vowel is followed by a conjunct consonant. For
example, § [ba] in the word d®) [bandha] is to be
considered long, since it is followed by the conjunct
%] [ndhal.

97737



IEEE Access

K. Naaz, N. K. Singh: Design and Development of Computational Tools for Analyzing Elements of Hindi Poetry

Algorithm I converts the given input line into correseponding
list of numerals, numerals. Here vyanjan is a list of all conso-
nant sounds of Hindi Alphabet, laghu is a list of all short vow-
els, guru is a list of all long vowels, independent_hrsvaSwar
is a list of all hrsav svara and independent_dirghaSwar is a
list of all dirgha svara. addToList() is a function that inserts
the given item into the list. removeElement() is a function that
pops out element from the list.

Referring to Algorithm 1, for a

qe5c) ﬁ ﬁ&R—"T qq DY [dukha mem sumirana saba kare],
the corresponding output willbe [1 121111111 2].

The algorithm Text_to_matra_converter (line) takes a line
of text as input. Let m and k denote the length of line (in terms
of word count) and the maximum length of a word in that line
respectively. Line number 1 is a declaration statement. Line
number 2 is the beginning of a for loop, that executes m times.
Line numer 3 is an inner for loop having frequency count k.
All the lines in the algorithm from line 4 to 11 are statements
that requires constant time. Line 15 is a constant time return
statement. Thus the overall time required by the algorithm is
majorly determined by the time elapsed in the nested loop,
which is m - k, resulting in O(m - k) time complexity.

For all practical purposes the variables m and k may be
treated as constants rather as variables.

given input

B. DETERMINING THE RHYMING QUALITY IN HINDI
POETRY

In poetry, metrical or non-metrical, the end of their lines
should also be according to the rules. Rhymes are defined
to be of three types, namely, best, medium, and worst (see
Table 2) [29]. The rhyming type is defined as not-present
if none of the preceding types meet. Depending upon the
sequencing of lines contributing to thyming, a poem can be
of multiple types. The proposed algorithm detects the rhyme
pattern in a given input poem. The heterogeneity in poem
structure makes this algorithm a non-trivial one.

Rhyme is typically checked on the last words of concerned
poetic lines. If the last words happen to be the same, we pro-
ceed with the second last words and so on until we get a non-
identical word pair. We have categorized the rhyme pattern on
the line level into three classes, namely, RP/ (Rhyme Pattern
1), RP2 and RP3. If the last word of both lines is different,
they fall in class RPI. In case, the last words are identical
but the second last words are not, then they fall in class RP2,
else they fall in class RP3. To supplement this discussion,
in Table 3, rhyme-making words (or phrases) are underlined
for clarity.

As mentioned earlier in this section, based upon length of
each stanza and/ or position of lines participating in making
rhymes, poetry can be of numerous types. In this section,
we have proposed an algorithm Rhyme_pattern_generator to
recognize the three most common poem types named P77/
(Poem Type 1), PT2 and PT3. Rest of the poem types will
fall under unknown type.

97738

TABLE 2. Example of rhyming words (different categories).

Rhyming
Best Medium Worst Not
Present
ez ez ez
kaise], kaise], kaise],
[kaise] NA [kaise] [kaise]
EGl o B0
[jaise] [kise] [kat)
EoH & Eice)
[kat], NA [kaise], [asa],
=g T ST
[sacat) [hamase] liagata]
KIEK) el Gl EIEE]
[avata], [siacanal, [dekhiye], [sajana],
SIEE Eegl GlEE] ST
[javata] [bijhanal [socaye] [Jagata]
Eren) fordaa ITefaa gord
[barasata], [vihamsata], [arucita], [hulasata],
| Forad LESG) ST
[tarasata] [hulasata] [tadapata] [agamana)
TABLE 3. Examples of different rhyme patterns.
Class ] Line 1 Line 2
wﬁaﬁﬁ%@ﬁﬁw T T T, T, we, g et

[rahe na hala, pyala, saki,
tujhe milegi madhusala)

RP1  [adharom ki aturata
mem hi jaba abhasita

ho pyald)
q’(-a'{%:'@T%aTQT,ﬁ:‘Tsﬁg 'Wéw'mmm%%
H 30T ot @ ; o

s 1 g Wt @
[jala hi jala' jana-jana
ratatd hai, kantha-kantha

RP2 [ghara-ghara dekha
dhuam para, sund,
visva mem daga lagi

hail mem pyasa jagi hai)
& SRt TS S %
farw 3 weferra SR 2 59 FeL % fog

RP3  [maim bekarara hiim
avaja mem asara ke
lie]

T@, gEelist ¥ 18 T S0
arett

[dekha, dahalija se kat
nahim jane vali]

[ve ehatiyata jarirt hai
isa bahara ke lie]

q QAT HeTs A8t S ATt
[ve khataranaka sacar
nahim jane vali)

RP3

o Poem Type I: Poems in which rhyme is expected within
each consecutive pair of lines (couplets) come under
this type. If there are n lines in a poem then rhyme is
expected between line / & line 2, line 3 & line 4, line
5 & line 6, ..., and line n-1 & line n. Doha, Caupat,
Bhujamgaprayata are some of the common metre-based
poem types that fall under this class. Here, the number
of lines in the poem should be a multiple of two.

e Poem Type 2: Poems in which rhyme is expected
between even lines of each quadruplet come under this
type. If there are n lines in a poem then rhyme is expected

VOLUME 10, 2022



K. Naaz, N. K. Singh: Design and Development of Computational Tools for Analyzing Elements of Hindi Poetry

IEEE Access

POEM

?
2 N

b — e

2 )

PT1 PT2 PT3

m RP2
v ! ! '

Best | Medium ‘ I Worst ‘ | Not Present I

FIGURE 3. Overview of rhyme pattern extraction.

between line 2 & line 4, line 6 & line 8, ..., and line n-2
& line n. Here, the number of lines in the poem must be
a multiple of four.

e Poem Type 3: In this type, given a poem of length n,
rhyme is expected between lines / & 2, followed by lines
2 & 4, lines 2 & 6 up to lines 2 & n. Here, the number of
lines must be more than four and a multiple of two.

Altogether, given a poem as input, first its type (PT1, PT2,
PT3 or unknown) gets checked. Once we get the poem type,
we check the rhyme pattern (RPI, RP2 or RP3) on the desired
lines. Based on the rhyme pattern, it yields the words on
which rhyme will be checked and classified as best, medium,
worst or not present (Fig. 3).

Algorithm 2 takes poem as input and returns rhyme
pattern(s) of the poem. It checks the poem type and
invokes functions (checkPTI(lines), checkPT2(lines) and
checkPT3(lines)) to extract thyme out of it accordingly. Algo-
rithm for the invoked functions is presented as Algorithm 2.2,
2.3 and 2.4. Here, getRhyme(linel, line2) is a function that
returns the rhyme class. randomCheck(poem) is a function
that checks the poem type on the randomly picked lines of
the given poem.

To simplify, Algorithm 2 checks poem type and accord-
ingly calls one among Algorithm 2.2, 2.3 and 2.4, which in
turn calls Algorithm 2.1.

Algorithm 2.1 checks the rhyme pattern on the line level
and the rhyme class for the input lines (linel, line2). Here,
getRP() is a function that returns the rhyme pattern type,
getLastWord() is a function that returns the word from the
end of line on which rhyme will be checked and syllabifier()
is a function that returns the list of syllables of a word.

Algorithm 2.2 returns the rhyming pattern for the input
poem (lines) according to PT1. It calls checkRhyme(), Algo-
rithm 2. 1, to get the rhyme pattern on the line level.

VOLUME 10, 2022

Algorithm 2 Rhyme_pattern_generator (poem)

Input: Poem
Output:
poem

Rhyme pattern(s) of the input
1: lines < list_of lines(poem)
2: n < total_lines(poem)
3:if n % 2 == 0 then
lines[1])
y < checkRhyme(lines[2], lines[3])
z < checkRhyme(lines[1], lines[3])
p < checkRhyme(lines[0], lines[3])

x < checkRhyme(lines[0],

4:  if x then
5: if y = 0 and p then
decision < 3

6: else if y then decision < 1

7: else decision < randomCheck(lines)
8 end if

9:  elseif z and n %4==0 then decision < 2
10:  else decision < randomCheck(lines)
11:  endif
12:  ifdecision == 1 then checkPT1(lines)

13:  else if decision == 2 then checkPT2(lines)
14:  else ifdecision == 3 then checkPT3(lines)
15:  else return ’ UnknownType”
16:  end if

17: return ” Invalidlnput”

Algorithm 2.1 checkRhyme(linel, line2)
Input: lines on which rhyming is to check
Output: Rhyming pattern and rhyme class for the input
lines
RP < getRP (linel, line2)
wordl < syllabifier(getLastWord(linel, RP))
word2 < syllabifier(getLastWord(line2, RP))
for i < 0, min(3, length(word1), length( word2)) do
sylll <— wordl[length(wordl) —i]
syllI2 <— word2[length(word2) —i]
5. if sylll == syll2 then
score < score + 2
6: elseif sylll and syli2 have same vowel then
score < score + 1
7:  end if
8: end for
9: if score > 4 then
return[RP, ‘Best’]
10: else if score < 4 and score > 2 then
return[RP, ‘Medium’ |
11: else if score < 2 and score > 0 then
return[RP, ‘Worst’]
12: else
return[RP, ‘NotPresent’]

BN

Algorithm 2.3 returns the rhyming pattern for the input
poem (lines) according to PT2.

97739



IEEE Access

K. Naaz, N. K. Singh: Design and Development of Computational Tools for Analyzing Elements of Hindi Poetry

Algorithm 2.2 checkPT1(/ines)
Input: set of lines
Output: returns the rhyming sequence according to poem
pattern 1
1: for i <— 0, length(lines) — 1, by 2 do
x <— checkRhyme(lineli], line[i + 1])
addToList - result(x)
2: end for
3: return result

Algorithm 2.3 checkPT2(lines)
Input: set of lines
Output: returns the rhyming sequence according to poem
pattern 2
1: for i <— 0, length(lines) — 1, by 4 do
x < checkRhyme(line[i + 1], line[i + 3])
addToList - result(x)
2: end for
3: return result

Algorithm 2.4 checkPT3(lines)

Input: set of lines

Output: returns the rhyming sequence according to poem

pattern 3

. x < checkRhyme(lines[0], lines[1])

: ¥ < checkRhyme(lines[0], lines[3])

. addToList - result(x)

. addToList - result(y)

: for i < 3, length(lines) — 1, by 2 do
X < checkRhyme(line[i], line[i + 2])
addToList - result(x)

6: end for

7: return result

[ S N R S R

Algorithm 2.4 returns the rhyming pattern for the input
poem (lines) according to PT3.

The procedure of extraction of rhyme pattern for a given
input poem is depicted in Fig. 4.

The sub-algorithm checkRhyme(linel, line2) takes a pair
of lines as input. Line 1 is a call to constant time function
getRP(linel, line2). Lines 2 and 3 call the O(k) time com-
plexity function syllabifier(word). The for loop in line 4 runs
for constant time (maximum 3 iteration). All of the remain-
ing operations require constant time resulting in O(k) over-
all complexity. The sub-algorithm checkPTI(lines) receives
input consisting of / number of lines. The for loop at line 1
runs for (I/2) 4+ 1 times wherein checkRhyme(linel, line2)
is invoked. Remaining all operations here have constant
computational times resulting in O(/ - k) time complex-
ity for sub-algorithm checkPTI(lines). Following the sim-
ilar observations, the sub-algorithms checkPT2(lines) and
checkPT3(lines) result in O(/ - k) time complexity.

97740

The algotithm Rhyme_pattern_generator (poem) takes the
entire poem as its input. Lines 1 and 2 are constant time
assignment operations. The conditional statement at line
3 requires constant time and the assignment operations to
variable x, y, z and p invoke checkRhyme(linel, line2) seri-
ally, requiring O(k - /) time by each assignment operation.
All computation operations from line 4 to 11 require con-
stant times. Line 12 invokes checkPTI(lines), line 13 invokes
checkPT2(lines) and line 14 invokes checkPT3(lines) and
each of them have O(k - [) time complexity. Remaining
operations require constant time, resulting in overall O(k - [)
complexity for Rhyme_pattern_generator (poem).

C. DETERMINING PRESENCE AND EXTENT OF
RHETORICAL ELEMENTS IN HINDI POETRY

Figures of Speech (alarikara) make significant contribution to
the art of poetics and are recognized as a prominent element
of poetry. The presence of rhetorical elements very often
gets reflected in the enhanced suaveness of poetic composi-
tions. Measuring the extent of such elegance is an important
idea as literary compositions with a significant presence of
rhetorical elements tend to enthral their receiver. Mapping
this subjective property onto a numeral scale may help in
performing comparative analyses of such literary pieces. The
proposed tool provides a quantitative measure of the presence
and extent of rhetorical elements in any text, giving a score
ranging from zero to one, where zero and one correspond to
lowest and highest score respectively.

The tool focuses on alliteration, a type of alarikara that is
based on the repetition of one or more aksara. Alliteration
can be of four types (discussed in section 2); the score is
calculated for each type independently and then fused to get
the final score for the entire poem. Scoring methodology, pro-
pounded by authors of this article, for each type is discussed
below.

Antyanuprasa is present in the text if rhyming is present.
The algorithm for generating a rhyme pattern for a given
poem is discussed in section 3(B). Rhyming can be best,
medium, worst or not present. It is obvious that the best rhyme
in any poem will be more captivating than one with inferior
rhyme (medium, worst or not present). So, the best rhyme is
scored 7, which is the highest scoring value and not present
is scored 0, which is the lowest scoring value. Medium and
worst types are scored 2/3 and ! /3 respectively. This assignment
is justified by the fact that these weights are equidistant on the
number scale with extreme values zero and one (see Fig. 5).

Sounds in Hindi are classified into six classes based on
their place of articulation (see Table 4). Srutyanuprasa is
realized when sounds belonging to specific articulation points
dominate. The majority implies dominance, but in some
cases, even non-majoritarian may dominate. Based on con-
text, function checkShrutya(text,d) is supplied with a suit-
able value for dominance (i.e., d). Recommended dominance
value is forty percent or above.

For a particular d value setting (say forty percent), the
presence of srutyanuprasa may be acknowledged by the

VOLUME 10, 2022



K. Naaz, N. K. Singh: Design and Development of Computational Tools for Analyzing Elements of Hindi Poetry

IEEE Access

Pre-
processing
Poem

Check Poem Type

Acronyms

B — Best

M — hMedium

W — Woaorst

MNP — Mot Present

PTL l

PTZ2

PT3 1

Check rhyme for

Check rhyme for

Check rhyme for

1

Get Rhyme
pattern
(RPL/RP2,/RP3)

Check Rhyme

PT2

Get Rhyme
pattern
{RPL/RP2Z/RP3)

Check Rhyme

PT3

Get Rhyme
pattern
(RPL/RPZ/RP3])

Check Rhyme

(B /NN NP (BN MP) (B MW INP)
| ’ I !
Invalid Input Rhyme pattern Unknown type
FIGURE 4. Flow diagram for Rhyme_pattern_generator.
TABLE 4. Hindi-alphabet based on place of articulation.
Point of N
Articulation Hindi Alphabet
Vel B a1 B g T T 5 5 T T El af
elar _ .
[a] [a] [ka] [kha] [ga] [gha]  [na]  [ha]  [ai] [e] o] | [au]
B B E] B3 El El E 7 T q T
Palatal . - . . o . .
[] [7] [ca] [cha] [ja] [/ha] [Aa]  [ya] [$a] [ai] [e]
Retroflex ES z 3 s 5 ki T B
erroTe [[] _ [tal _[tha] _[da] _ [dha] _ [na] _ [ra] _[sa]
D : q o E o T a kS El
enta [ta]l [tha] [da] [dha]  [na] la]  [sa] [vd]
Bilabial 3 3 q % Ej 9 T El af St
abia _
- W] [a]  [pa]l [pha] _ [ba] _ [bha] [ma] _[va] _[o] [au]
Nasal 53 B e El q
s [ia] _[ia] _ [pa] _ [na] __ [ma]
Not Present Worst Medium *
1

FIGURE 5. Weight assignment for different rhyme types.

score value / if calculated dominance exceeds 0.4, and zero
otherwise. However, from a practical viewpoint, it is unfair
to assign a score of zero for the case where calculated dom-
inance is slightly lower than the required threshold. Hence,
scoring for srutyanuprasa is not crisp but a fuzzy problem and
for the same reason, the right degenerate trapezoidal function
(Fig. 6) is used to score the presence of siutyanuprasa in any
input text.

a d

FIGURE 6. Right degenerate trapezoidal function.

Let a and d represent x coordinates of membership func-
tion w. Then,

VOLUME 10, 2022 97741



IEEE Access

K. Naaz, N. K. Singh: Design and Development of Computational Tools for Analyzing Elements of Hindi Poetry

Right degenerate Trapezoidal (x; a, d ) = 0if x < a;
=@x-a)d-a)ifa<x <d,

=1ifx>d;
wx) = max(min(x —a/d — a, 1), 0) (1)

The p(x) value calculated using (1) yields the desired
grutyanuprﬁsaScore (sScore)

Here, d is the point of dominance set by the user and a is the
lower bound calculated by assuming the uniform distribution
of sounds across all the available classes.

a = 1/number of place of articulation classes

a=ceil(1/6 ) =0.17

Vrttyanuprasa is yet another prominent alarkara type, and
is further classified into five different subtypes (refer section
2); chekanuprasa is one of these five subtypes. Scoring
methodology for vrttyanuprasa and chekanuprasa goes as
follows [7]:

Let,

n1 = no. of words where first or last
consonant have multiple repetition

n> = no. of words where first or last
consonant have single repetition

n3 = no. of words where group of consonants
have multiple repetition

n4 = no. of words where group of consonants
have single repetition

ns = no. of words where ordered group of
consonants has multiple repetition

ne = no. of words where ordered group of
consonants have single repetition

tw = no. of words in the input text

Then,

Si = n;/tw,
vrttyanuprasaScore (vScore) = max{S;}

where1 <i <5

chekanuprasaScore(cScore) = ng/tw

antyanuprasaScore(aScore) € {0, /3, 2/3, 1}
Total figure of speech score for the poem is:

alankaraScore (alScore)
= [(($Score + vScore + cScore)/3) + aScore]/2 (2)

The final alanikara score for the input poem is given using (2).

Algorithm 3 gives the alankara score (poemScore) of any
input text ( poem). The algorithm invokes various functions
where, multiOdrdered(line) is a function that returns two lists,
first is the list of words having group of vyarijana with mup-
tiple repetition and second is the list of words having group
of vyarijana with only one repetition. And order of vyaiijana
is maintained in both cases. unordered(line) is a function that
returns two lists, first is the list of words having a group of

97742

Algorithm 3 Alankara_score(poem)
Input: Poem
Output:
poem
1: for i < 0, no_of _lines(poem) — 1 do
totalWords < total_Words(line[i])
tempResult < multiOrdered(line[i])
2:  if tempResult[0] # empty then
S5 <« length(tempResult[0])/totalWords
3:  endif
if tempResult[1] # empty then
chekanuprasaScore
< length(tempResult[1])/totalWords
50 endif
tempResult < unordered(linel[i])
6:  if tempResult[0] # empty then
S4 <« length(tempResult[0])/totalWords
7:  endif
8:  if tempResult[1] # empty then
S3 <« length(tempResult[1])/totalWords
9:  endif tempResult < firstLast(line[i])
10:  if tempResult[0] # empty then
S2 <« length(tempResult[0])/totalWords
11:  endif
12:  if tempResult[1] # empty then
S'1 <« length(tempResult[1])/totalWords
13:  endif
vrttyanuprasaScore <— max(S1, S2, S3, S4, S5)
tempResult < checkShrutya(line[i])
a < totalVyanjan x 0.4
b < totalVyanjan % 0.17

alankara score of the input

srutyanuprasaScore < max(min(((tempResult —
a)/(b — a)), 1), 0)
totalScore <« (chekanuprasaScore +

vrttyanuprasaScore + srutyanuprasaScore)/3
add - result(totalScore)
14: end for
15: tempResult <— Rhyme_pattern_generator(poem)
16: for i, tempResult[1] do

17: if i == "Best’ then
score[i] <1

18: else if i == "Medium’ then
scoreli] < 2/3

19: else if i == "Worst’ then
score[i] < 1/3

20: else
scoreli] < 0

21: end if

22: end for

23: antyanuprasa < sum(score)/length(Score)

24: poemScore <« ((sum(result)/length(poem)) +
antyanuprasa)/?2

25: return poemScore

VOLUME 10, 2022



K. Naaz, N. K. Singh: Design and Development of Computational Tools for Analyzing Elements of Hindi Poetry

IEEE Access

vyaiijana with multiple repetitions and second is the list of
words having a group of vyafijana with only one repetition.
firstLast(line) is a function that returns two lists. First list con-
tains words that have the first or last vyaiijana repeated more
than once and the second list contains words that have the first
or last vyafijana repeated only once. checkShrutya(text,d) is
a function that takes text and dominance value as parameter
and returns the highest number of consonants belonging to
one of the six points of the articulation class.

The algotithm Alankara_score(poem) takes an entire poem
as input. The loop at line 1 runs for / (the count of lines
in input poem) times. The assignement inside the loop to
the variable fotalWords requires constant time, whereas the
assignment to tfempResult is a call to O(m) time function,
multiOredered(line[i]). Lines from 2 to 5 are constant time
statements. tempResult assignment in line 5 is a call to O(m)
time function, unoredered(line[i]). All the statements from
line 6 to 9 require constant time. The assignment operation
in line 9 invokes the function firstLast(line[i]) and its timing
requirement is constant. Lines 10 to 14 are statements that
require constant time. Rhyme_pattern_generator (poem) is
invoked at line 15 and as analysed earlier the time com-
plexity of this function evaluates to O(k - /). Line 16 is
the beginning of an another loop that runs for maximum
/2 times. Lines 17 to 25 are all statements with constant
time. Thus, the overall time complexity of the algorithm
Alankara_score(poem) is maximum{O(l - m), O(k - [)}.

The process of alarikara score calculation for a given input
poem is depicted in Fig. 7.

A discussion on the utility of the proposed tools:

e Algorithm 1 converts a given text into equivalent
numeral scansion consisting of values /s and 2s only;
thereby opening scope for quantitative analysis of qual-
itative data.

o Poems employ aesthetic and rhythmic elements of lan-
guage, such as phonesthetics, sound symbolism, and
metre, to evoke meanings in addition to, or instead of,
a mundane apparent meaning. In the process of making
the poem, technicality or the rthythm can be missed, the
above algorithms can help to detect the flaw, if any, in the
poem.

o The numeral scansion produced by algorithm 1,
rhyming pattern by algorithm 2 and figure of speech
score by algorithm 3 automate and supplement the com-
parative study of style among a number of poetic com-
positions by different authors.

o These tools may serve as an early model for the auto-
mated literary critic.

IV. IMPLEMENTATION AND RESULT ANALYSIS

This section contains implementations of algorithms dis-
cussed in section 3. The robustness of these implementations
is ensured by subjecting them to a rigorous validation pro-
cess over an all-inclusive set of inputs. The implementations
are done using python programming language on Google
Colaboratory.

VOLUME 10, 2022

A. TOOL 1: Text2Matra

Text2Matra tool, an implementation of algorithm
Text_to_matra_converter, generates numeral scansion for a
given text in Hindi. As an illustration, the input-output for
four representative chanda types are given in
Table 5 [36].

The correctness of the output produced may be validated

against the rules for corresponding chanda type.

e Doha is a moraic metre with two metrical lines and
each line having two quarters, resulting in a total of
four quarters. First quarter of each line or odd quar-
ters have a total of thirteen instant (matrd) counts
and the second quarter of each line or even quarters
have a total of eleven instant (matra) counts; thereby
resulting in twenty-four instant counts per metrical
line. Input 1 from Table 5 is a doha chanda and
the output scansion clearly corroborates the aforestated
rules.

o Caupari is one of the very famed moraic metre consist-
ing of four quarters. Each quarter totals sixteen instant
counts and any quarter must not end with 121 [laghu,
guru, laghu] or 221 [guru, guru, laghu]. Input 2 from
Table 5 is a caupar and the output clearly stands for the
stated rules.

o Sloka is a well-known syllabic metre (profusely used in
vedic literature) consisting of two lines. A line has two
quarters and each quarter is formed of eight syllables.
Every odd quarter must have fifth, sixth and seventh
syllables as [laghu, guru, guru] i.e., 122 and every even
quarter must have fifth, sixth and seventh syllables as
[laghu, guru, laghu] i.e., 121. Input 3 from Table 5 is
a sloka and its output scansion follows the given
rules.

e Bhujamgaprayata is a syllabic metre where each line
is formed out of four repetitions of [laghu, guru, guru]
i.e., 122, resulting in twelve syllables for each line.
Input 4 from Table 5 is an example of bhujarigaprayata
chanda and the output scansion validates the pre-existent
rules.

B. TOOL 2: RPaGen (RHYME PATTERN GENERATOR)
RPaGen tool, an implementation of algorithm
Rhyme_pattern_generator extracts thyme pattern from given
Hindi poem. As an illustration, the input-output for a few
representative poems is given in Table 6. A sufficiently large
number of valid and invalid inputs were provided to check
the robustness of the tool and some of them are listed in
Table 6 [36].

Poem in example 1 (Table 6) belongs to class PT3. There-
fore, lines 1 and 2 should rhyme. Further, there are two ways
to get the thyme pattern of the input poem, first is when
line 1 rhymes with lines 4, 6 and 8 and the second is when
line 2 rhymes with lines 4, 6 and 8. The tool provides both
possible rhyming patterns. So, when you look at the output of
example input 1 (Table 6), it is a list of three elements. First
is the rhyming pattern and rhyme class between lines 1 and 2,

97743



IEEEACC@SS K. Naaz, N. K. Singh: Design and Development of Computational Tools for Analyzing Elements of Hindi Poetry

Pre- &
Poem processing & iy - -
Poem
Check multiOrdered unordered firstL.ast
Srutyanuprisa (lime) (line} (line)
Poem anup
line L
Rhyme_ - L k. .4
pattern_ _
. o . N Chekdnup- Frityanup-
generator Line wise iteration of Srutyanup- risa Score rifsa Score
(poem) pre-processed poem risa Score
r J
L
Partial Score for line ‘
Score for
poem I
r
¥ Score for a line
Antfydnuprdsa Temporary
Score for poem Score for poem

w

Alankidre Score
for poem

FIGURE 7. Flow diagram for alankaraScore.

TABLE 5. Sample input-output from Text2Matra tool.

SL No. Chanda type Example Input Output

1 Doha o ST A #, for et 71 | [1121212121212221]
[kabira khada bajara mem, liye lukatht hatha]
S R ST AT, T R a0 [211222121212221]
jo ghara jarai apano, calai hamare satha

2 Caupar BTAT BTAT HET BT | [22222222]
[chata chata kaisa chata |
e ST e B || [211222222]
[badala jaisa kala chata)
R s 4 | [2221122211]
[are badala kale badala]
ol g s e || [2221122211]

[garmi ditra bhagd re badala)
3 Sloka A oo @ 2, =l W g w6 | [2211122212221212]
[tera dila basera ho, gharaunda pyara bhava ka |

o TreermTeY &, e e feremrera ||

[dharma sarvasamahi ho, karma dhare visalata) [2121122221221212]
4 Bhujangaprayata EEECEERE RS [122122122122]
[vaham bhitkha se kauna jita kabht hail
forh it s, oier auft @ [122122122122]
[bike jo banaya, gharaunda tabhi hai)
eft i sstrer, ot & T [122122122122]
[tabht to ujala, tabht hai savera)
it T, A 2 [122122122122]
[tabhi balabacce, tabhi hatadera)
second is a rhyming pattern in poem corresponding to line 1 the output given by the RPaGen is unknown type, which is
and third is the rhyming pattern in the poem corresponding to correct as no such poem type is defined. Similarly, for the
line 2. poem in example 5 (Table 6), output given by the RPaGen
Poem in example 4 (Table 6) is a combination of PT2 is unknown type, which is valid as there is no rhyme in the

(example 2, Table 6) and PT1 (example 3, Table 6) for which poem.

97744 VOLUME 10, 2022



K. Naaz, N. K. Singh: Design and Development of Computational Tools for Analyzing Elements of Hindi Poetry

IEEE Access

TABLE 6. Sample input-output from RPaGen tool.

BH [mamgala-
ahvana)

TR H 98 T8 S
[svara strottom mem baha baha anajanal
U7 T A AT ST I B

[trna taru lata anila jala thala ko)
BT T T SR TH |

[cha lemge hama banakara gana 1]

SI. No. | Input Description Input Output
1 Poem by Dushyant | ¥@, sgeiist & &8 72 S areft Poem Rhyming type is
Kumar [dekha, dahalija se kai nahim jane vali) 3
T AT TS el 1 e [[‘RP3’,’Best’],
[ve khataranaka sacar nahim jane valr) [[‘RP3’,’Best’],
TeherT 3TeaT & fob @iet ST gam ot © [‘RP3’,’Best’],
[kitana accha hai ki samsom ki hava lagati hai) [‘RP3”,’Best’]],
T A T TS 78 ST At [[‘RP3’,’Medium’],
[aga aba unase bujhat nahim jane vali] [‘RP3’,’Best’.],
T ATeATSI-E S St & B s i [‘RP3’,’Medium’]]]
[eka talaba-st bhara jati hai hara barisa mem)|
EREECIERRCIEE G IS
[maim samajhata hiim ye khai nahim jane vali]
e forepeft o 2 et & W weH §
[cikha nikali to hai honthom se magara maddhama hai]
S0 R i GATE T S el
[banda kamarom ko sunai nahim jane vali)
2 A stanza from Fed 3 Y e Poem Rhyming type is
Dinkar’s poem w&- | [kahate ura ke bandha toda] 2

[[‘RP1’, Best’]]

A dohd by Rahim

T i T ST, FIE AT TR |
[taim rahima mana apuno, kinhom caru cakora |
Ffer smae T @, ForEE A

[nisi basara lago rahai, krsnacandra ki ora)

Poem Rhyming type is
1
[[‘RP1’,’Best’]]

Examples 2 and 3
combined

HEd L AT qIS

[kahate ura ke bandha toda]]

TR Gl H o8 78 IS,

[svara strottom mem baha baha anajana,]
U7 T A AT T I B

[trna taru lata anila jala thala ko)
BT A EW SR TH |

[cha lemge hama banakara gana 1]

T & 7 AT, FE = TR |
[taim rahima mana apuno, kinhom caru cakora]

Ffer sTe w8, FerEE R
[nisi basara lago rahai, krsnacandra ki ora)

Unknown Type

A doha without
rhyme

d W 7 A, FET A TR
[taim rahima mana apuno, kinhom caru]
oty smeR @ @, e Al

[nisi basara lago rahai, krsnacandra ki|

Unknown Type

Doha

A file containing 551 Dohda by Tulsidas

Poem Rhyming type is
1

[[‘RP1,’Best’],
[‘RP1’,’Best’], ...]

VOLUME 10, 2022

97745



IEEE Access

K. Naaz, N. K. Singh: Design and Development of Computational Tools for Analyzing Elements of Hindi Poetry

TABLE 6. (Continued.) Sample input-output from RPaGen tool.

7 Caupar A file containing 271 Caupai by Tulsidas Poem Rhyming type is
1
[[‘'RP1°,’Best’],
[‘RP1°,’Best’],
[‘RP1’,’Worst], ...]
8 Random one | ¥@, s&clist & 18 A2 S arelt Invalid Input
line input [dekha, dahalija se kai nahim jane vali|
TABLE 7. Sample input-output from FoSCal tool.
Input Hindi Text Sample Output (Alankara
(Poem) No. Input Score)
1 A file containmg 551 0733
doha
A . 5 Newspaper Text (Sports 0229286
Pre-processing section)
Newspaper Text
I Y 1 3 (Political Section) 0.251462
= Newspaper Text
Tool 1: Tool 2: . Tool 3: 4 (Editorial section) 0.233072
Text2Matra RPaGen FoSCal 5 Story 1 0.235400
6 Story 2 0.235650
l J l 7 Story 3 0.244879
Scansion Rhyme FoS Score

Pattern

Invalid
Input

FIGURE 8. Overall contribution of the conveyed research.

In case, the length of the poem supplied as input is not a
valid one, RPaGen outputs invalid input message (example
input 8, Table 6).

C. TOOL 3: FoSCal (FIGURE OF SPEECH CALCULATOR)
FoSCal tool, an implementation of algorithm Alarnkara_score,
measures various rhetoric properties. It then generates a
master score for the given input poem. A sufficiently wide
spectrum of input types was provided to check the robustness
of the tool and some of them are listed below [34], [36].

As discussed, alarnkara adds beauty and elegance to the
poem. A poem is expected to have more alarikara than any
plain text. FoSCal is tested on 194 stories from manasarovara
by Premchand [34] and stories from other authors, FoS score
for three of them is displayed in Table 7. Apart from stories,
it is tested on 50 newspaper articles, three of them are shown
in Table 7. The tool is then used to generate score for 551 doha
by Tulsidas (score shown in Table 7), 899 doha by Kabir and
poems by Dinkar, Dushyant Kumar & Bachchan. The FoS
score generated by the tool stands in favour of the fact stated
earlier. The overall contribution of the conveyed research can
be viewed in Fig. 8.

97746

There are tools developed for other languages such as
Sanskrit metre identifier [37]. This tool outputs the probable
metre for any input verse in Sanskrit. The tool is raw and
primitive but the work is under progress. Geet Gatiroop pro-
vides a tool that calculates the instant counts for lines of any
input verse in Hindi language [35]. The optimal automated
rhyme determining tool is a state of art for Russian poetry
[30]. RhymeDesign, is an open-source implementation tool
for detecting sonic device in poetry for English language [22].

V. CONCLUSION

The mathematical and statistical study of the aesthetic ele-
ments of poetic compositions is important for many rea-
sons. In this connection, in this research, we have proposed
some tools for the study and analysis of the elements of
Hindi poetry. The Text2Matra tool provides a scansion, which
can be the foundation for various observations related to
chanda, like chanda type detection and classification, rhythm
determination, correctness verification of chanda, etc. The
RPaGen tool provides a multifunctional output of rhyme pat-
tern(s) for an input Hindi poem. The salutary of the tool can
be seen in the very article, the pattern produced by RPaGen
is used by FoSCal for alankara scoring. The FoSCal, the
maiden tool for alankara score generation, engineered over
one of the so many types of alarikara, creates a space and
motivation for automation of the related works which are still
unexplored.

VOLUME 10, 2022



K. Naaz, N. K. Singh: Design and Development of Computational Tools for Analyzing Elements of Hindi Poetry

IEEE Access

Remark: The ‘International Alphabet of Sanskrit Translit-
eration’ (IAST) scheme is used in romanization of Hindi texts
used in this manuscript.

REFERENCES

[1]

[2]

[5]

[6]
[71
[8]

[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

A. Berkani, A. Holzer, and K. Stoffel, ‘Pattern matching in meter detection
of Arabic classical poetry,” in Proc. IEEE/ACS 17th Int. Conf. Comput.
Syst. Appl. (AICCSA), Nov. 2020, pp. 1-8.

A. Dong and X. Liu, “A statistical method for constructing tang poet
social networks,” in Proc. IEEE 14th Int. Conf. Semantic Comput. (ICSC),
Feb. 2020, pp. 101-107.

A. Ismail, “Expert system for testing the harmony of Arabic poetry,”
J. Eng. Sci., vol. 1, no. 1, pp. 401-411, 2010.

B. Abuata and A. Al-Omari, “A rule-based algorithm for the detection
of Arud meter in CLASSICAL Arabic poetry,” Int. Arab J. Inf. Technol.,
vol. 15, no. 4, pp. 1-5, 2018.

B. K. Joshi and K. K. Kushwah, “A novel approach to automatic detection
of Chaupai Chhand in Hindi poems,” in Proc. Int. Conf. Comput., Power
Commun. Technol. (GUCON), Sep. 2018, pp. 223-228.

B. Nagy, ““Metre as a stylometric feature in Latin hexameter poetry,” Digit.
Scholarship Humanities, vol. 36, no. 4, pp. 999-1012, Oct. 2021.

D. N. Sharma, ‘““Alankaar,” in Kavya Ke Tatva, 1st ed. Allahabad, India:
Lokbharti Prakashan, 2021.

J. Kaur and J. R. Saini, “Automatic classification of Punjabi poetries using
poetic features,” Int. J. Comput. Intell. Stud., vol. 7, no. 2, pp. 124-137,
2018.

J. Parakh, “The whole world is a family—Modern Hindi poetry and
the larger cause of humanity,” Proc. Social Behav. Sci., vol. 2, no. 5,
pp. 7435-7445, 2010.

J. Pradhan and S. Chakraborty, ““The road not taken’ statistically taken: A
probabilistic analysis of Frost’s poem,” J. Statist. Manage. Syst., vol. 24,
no. 8, pp. 1733-1752, Nov. 2021.

K. D. Dvivedi and S. L. Singh, “Chapter 1,” in The Prosody Pingala,
2nd ed. Varanasi, India: Vishwavidyalaya Prakashan, 2013.

K. K. Kushwah and B. K. Joshi, “Rola: An Equi-Matrik Chhand of Hindi
poems,” Int. J. Comput. Sci. Inf. Secur., vol. 15, no. 3, pp. 362-364, 2017.
L. Koss, “Differential equations in literature, poetry and film,” J. Math.
Arts, vol. 9, nos. 1-2, pp. 1-16, Apr. 2015.

H. Meirong, J. Huimin, and Y. Yangrui, ““Study on the rhythm of Tibetan
poems based on breathing signal,” in Proc. Int. Conf. Intell. Comput.
Technol. Autom., May 2010, pp. 618-621.

M. K. Audichya and J. R. Saini, “Computational linguistic prosody rule-
based unified technique for automatic metadata generation for Hindi
poetry,” in Proc. Ist Int. Conf. Adv. Inf. Technol. (ICAIT), Jul. 2019,
pp. 436-442.

M. K. Audichya and J. R. Saini, “Stanza type identification using system-
atization of versification system of Hindi poetry,” Int. J. Adv. Comput. Sci.
Appl., vol. 12, no. 1, pp. 142-153, 2021.

M. K. Audichya and J. R. Saini, “Towards natural language processing
with figures of speech in Hindi poetry,” Int. J. Adv. Comput. Sci. Appl.,
vol. 12, no. 3, pp. 128-133, 2021.

M. S. Al-Shaibani, Z. Alyafeai, and I. Ahmad, “Meter classification of
Arabic poems using deep bidirectional recurrent neural networks,” Pattern
Recognit. Lett., vol. 136, pp. 1-7, Aug. 2020.

N. Das, “Khanda-1: Samaanya chanda charcha,” in Hindi Chhandolak-
shan, 2nd ed. Delhi, India: Vani Prakashan, 2005.

N. Ghneim and O. Alsharif, ‘“Emotion classification in Arabic poetry using
machine learning,” Int. J. Comput. Appl., vol. 65, no. 16, pp. 10-15,2013.
N. K. Singh, S. Chakraborty, and M. Roy, “Analysing the poetic structure
of Jana-Gana-Mana in entirety: A statistical approach,” J. Appl. Math.
Comput., vol. 5, no. 4, pp. 264-272, Oct. 2021.

N. McCurdy, V. Srikumar, and M. Meyer, “RhymeDesign: A tool for ana-
lyzing sonic devices in poetry,” in Proc. 4th Workshop Comput. Linguistics
Literature, Jun. 2015, pp. 12-22.

N. Swami, “Alankaar,” in Alankaar Parijaat, 18th ed. Agra, India: Lak-
shmi Narayan Agrawal, 2022.

P. B. Bafna and J. R. Saini, “On exhaustive evaluation of eager machine
learning algorithms for classification of Hindi verses,” Int. J. Adv. Comput.
Sci. Appl., vol. 11, no. 2, pp. 181-185, 2020.

R. Aharoni, “Mathematics, poetry and beauty,” J. Math. Arts, vol. 8,
nos. 1-2, pp. 5-12, 2014.

VOLUME 10, 2022

(26]
(27]

(28]

(29]
(30]

(31]

(32]

(33]

(34]
[35]

(36]

(37]

R. Deshmukh, “Marathi poem classification using machine learning,” Int.
J. Recent Technol. Eng., vol. 8, no. 2, pp. 2723-2727, 2019.

R. K. Agnihotri, “Part VII: Sounds and script,” in Hindi: An Essential
Grammar, 1st ed. New York, NY, USA: Routledge, 2007.

S. Hamidi, F. Razzazi, and M. P. Ghaemmaghami, ‘‘Automatic meter
classification in Persian poetries using support vector machines,” in
Proc. IEEE Int. Symp. Signal Process. Inf. Technol. (ISSPIT), Dec. 2009,
pp. 563-567.

S. Pandey, Chanda Manjari. Allahabad, India: Anjuman Prakashan, 2015.
V. Barakhnin, I. Kuznetsova, O. Kozhemyakina, Y. Borzilova, and
1. Pastushkov, “Improvement of the algorithm of automated definition of
rhyme,” in Proc. VI Int. Conf. Inf. Technol. Nanotechnol. (ITNT), 2020,
pp. 36-41.

V. Kumar, “Varn-Vichaar,” in Vrihat Vyakarana Bhaskar, 2nd ed. Uttar
Pradesh, India: Bharati Bhawan, 2018.

Y. Xu, “Differentiated prosodic adaption of Chinese and English poetry:
An acoustic approach to reading of Chinese tang poetry and Shakespearean
sonnets,” in Proc. 12th Asia—Pacific Signal Inf. Process. Assoc. Annu.
Summit Conf. (APSIPA ASC), Virtual Mode, Dec. 2020, pp. 211-215.
(2011).  Census of India, Language: India, States and
Union Territories. Accessed: Feb. 2022. [Online]. Available:
https://censusindia.gov.in/2011Census/C-16_25062018_NEW.pdf

(2015). [Dataset] Gadyakosh. Accessed: Jan. 2022. [Online]. Available:
http://gadyakosh.org/

(Jun. 2022). Geet Gatiroop, Quantity Calculation. Consulted. [Online].
Available: https://geet-gatiroop.manaskriti.com/

(2018). [Dataset] Kavitakosh. Consulted. Accessed: Feb. 2022. [Online].
Available: http://kavitakosh.org/kk

(2018). Sanskrit Metres. Consulted. Accessed: Jun. 2022. [Online]. Avail-
able: http://sanskritmetres.appspot.com/

KOMAL NAAZ was born in Jharkhand, India,
in 1994. She received the B.Tech. degree in com-
puter science and engineering from the Kalinga
Institute of Technology, Bhubaneswar, India,
in 2017, and the M.Tech. degree in computer sci-
ence and engineering from the Birla Institute of
Technology Mesra, Mesra, India, in 2021, where
she is currently pursuing the Ph.D. degree in
engineering.

NIRAJ KUMAR SINGH was born in Jharkhand,
India, in 1981. He received the B.E. degree in
computer science and engineering from VTU,
Belgaum, India, in 2004, and the M.E. degree in
computer science and engineering and the Ph.D.
degree in engineering from the Birla Institute of
Technology Mesra, Mesra, India, in 2012 and
2017, respectively.

He is currently an Assistant Professor with the
Birla Institute of Technology Mesra, since 2016.

His research interests include design and analysis of computer experiments
and computational analysis of poetry.

97747



