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ABSTRACT Most current few-shot action recognition methods model temporal relationships on the basis of
image classification and achieve satisfactory results. However, they focus on the extra temporal information
of video data compared to images and use the frame tuple embedding representation of the query video
for matching, but ignore the important information of ‘‘action changing feature’’ in action recognition.
To use this information, we propose the Temporal Relational CrossTransformers Based on Image Difference
Pyramid (TRX-IDP) method for few-shot action recognition. Based on TRX, we perform high-order image
difference, sigmoid enhancement, resizing on the frame tuples which are directly used for query, and use
the frame tuples to calculate the Motion History Image (MHI). Combined with the two, we construct the
ImageDifference Pyramid containingmotion feature information.We also develop CrossTransformers query
representation for IDP and restructure the linear mapping function of the model. We evaluate our model
using four commonly used few-shot action recognition benchmark datasets. TRX-IDP achieves state-of-the-
art performance on partial SSv2, HMDB51, and UCF101, while slightly lagging behind the current best
models on Kinetics and SSv2. In addition, we perform detailed ablation experiments on TRX-IDP to prove
the importance of each part of the model and to give the best hyperparameters of TRX-IDP.
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INDEX TERMS Few-shot learning, action recognition, image difference pyramid, action feature
representation.

I. INTRODUCTION17

Few-shot learning has a history of decades, and its main aim18

is to learn a new class using only a few examples with labels,19

and to successfully classify the corresponding unlabeled sam-20

ples. In addition, as deep learning has evolved in the field21

of action recognition [1], [2], [3], [4], it has been found that22

the video samples data set needed to collect deep learning23

is too large and the cost of labeling is very expensive [5].24

To solve the problem of insufficient data with labeled sam-25

ples, few-shot learning has been applied to the field of action26

recognition, and the recently proposed few-shot action recog-27

nition method [6], [7], [8], [9], [10] has achieved satisfactory28

results.29

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

Before few-shot action recognition, few-shot image classi- 30

fication methods had achieved significant success, and these 31

methods inspired Zhang et al. [8] to implement action recog- 32

nition using a matching approach that searches a single sup- 33

port set of samples. Similarly, there are methods [7], [9] 34

to search the average representation of support classes to 35

realize action recognition. However, these methods ignore the 36

temporal information between frames when using multiple 37

frames to represent a video for matching. i.e., they do not 38

use the temporal information of the video when modeling. 39

In addition, a complete action requires two, three or more 40

frames to represent, so using individual frames in the video to 41

match one by one during the matching process is not the best 42

method. Further, an action may occur anywhere in the video 43

sample, i.e., the effect of temporal offset needs to be offset 44

in the matching process. Moreover, the same type of action 45
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may consume different lengths of time in different videos,46

offsetting the degree of stretching of the action during the47

matching process is also necessary.48

Perrett et al. [10] conducted a specific study on the above49

problems and proposed Temporal-Relational CrossTrans-50

formers. TRX uses a part-to-part query comparison approach,51

using all frame tuples from the query video and all frame52

tuples in the support set to match one by one and calculate53

the average Euclidean distance, which solved the problem of54

action representation, speed and offset verywell. However, all55

the few-shot action recognition methods mentioned above are56

implemented from the perspective of few-shot learning, atten-57

tion mechanism matching, and embedding representation of58

frames or frame tuples, etc. These methods ignore an impor-59

tant piece of information in action recognition, i.e., action60

changing feature. Action changing features are different61

from temporal features. Consider the two action categories in62

the few-shot action recognition: ‘‘throw something out’’ and63

‘‘catch the flying thing’’. In TRX’s view, the two are the same,64

so adding IDP structure can effectively solve such problems65

of fine-grained classification.66

In this paper, we give full consideration to the problems67

mentioned above regarding the few-shot action recognition68

and propose a novel method for the recognition of new-shot69

actions: Temporal Relational CrossTransformers Based on70

ImageDifference Pyramids(TRX-IDP). In TRX-IDP, we pro-71

pose the Image Difference Pyramid (IDP) in order to con-72

struct a representation of action changing feature. In IDP, the73

first layer is a set of ordered original images in the video,74

we perform a differential operation on the adjacent images75

in the first layer in order to highlight the changes in the76

action, and then perform contrast enhancement and pooling77

operations on the resulting differential image. Based on this,78

IDP creatively treats the image of the first layer as a complete79

video and calculates its Motion History Image(MHI) [11].80

After building the IDP, we apply IDP to TRX and design81

embedding representations of different dimensions of the82

differential feature images of each layer in IDP, as well83

as design embedding representations of the MHI. In the84

CrossTransformer of TRX, we redesign the query, key, and85

value linear mapping for IDP. Finally, combining multiple86

TRX-IDPs of different length frame tuple, the query video87

is classified into the support class closest to its IDP query88

representation.89

Our contribution can be summarized as follows:90

• We propose a novel few-shot action recognition method,91

called Temporal Relational CrossTransformers Based on92

Image Difference Pyramids(TRX-IDP).93

• Our proposed TRX-IDP allows for better fine-grained94

classification in few-shot action recognition.95

• We achieve state-of-the-art results on three commonly96

used benchmark datasets (partial SSv2 [12], HMDB5197

[13], and UCF101 [14]) for few-shot action recognition.98

• We perform detailed ablation experiments on TRX-IDP99

to prove the importance of each part of the model and to100

give the best hyperparameters of model.101

II. RELATED WORK 102

In this section, we introduce the following three areas of 103

research that are relevant to this paper, including few-shot 104

classification, few-shot image classification and few-shot 105

action recognition. 106

A. FEW-SHOT CLASSIFICATION 107

In order to quickly build cognitive ability for new con- 108

cepts with just one or a few examples, few-shot learning 109

was created. So far, few-shot learning has become increas- 110

ingly mature, and according to different realizing method, 111

we broadly classify few-shot learning into three categories. 112

Munkhdalai et al. [15] and Santoro et al. [16] proposed 113

model-based methods. Finn et al. [17] and Ravi et al. [18] 114

proposed optimization-based methods. Vinyals et al. [19] and 115

Snell et al. [20] proposed metric-based methods. Among the 116

three methods mentioned above, the metric-based learning 117

method outperforms the other two methods in the classifi- 118

cation of few-shot videos. The metric-based method aims 119

to find a feature representation of the sample and calculates 120

the distance between the query sample and the support set, 121

and classifies the query sample to its nearest support set at 122

the time of classification. The metric-based method is most 123

relevant to this paper. 124

B. FEW-SHOT IMAGE CLASSIFICATION 125

In recent years, more and more people have researched 126

numerous methods for few-shot image classification on the 127

basis of few-shot learning. Similar to the classification of 128

few shot learning, few-shot images classification can be 129

classified into three categories: data-enhanced, optimization- 130

based, and metric-based. Data augmentation is a method of 131

expanding the sample data using spatial deformation [21] 132

or semantic feature augmentation [22], etc. However, these 133

operations may perform well on specific data sets and are 134

not generalizable. Optimization-based methods learn a meta- 135

learner model, aiming at fast convergence of model parame- 136

ters and adaptation to new tasks, so that themodel can classify 137

unseen tasks in a limited number of steps. These methods 138

include learning better model initialization parameters [23], 139

[24]and faster gradient descent optimizer [25].The metric- 140

based methods [26], [27], [28], [29] solve the few-shot image 141

classification problem from the perspective of learning ‘‘how 142

to compare’’. The network computes the Euclidean distance 143

[20], [30] between the query image and the class in the sup- 144

port set, and classifies the query sample by the nearest neigh- 145

bor method. In the metric-based methods, Doersch et al. [29] 146

use an attention mechanism for their query image and support 147

set, which inspire Perrett et al. [10] to propose the TRX 148

method. 149

C. FEW-SHOT ACTION RECOGNITION 150

Unlike few-shot image classification, the difficulty of 151

few-shot action recognition is that it needs to deal with 3D 152

video data. In the above discussion, it has been shown that the 153
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metric-based method is currently the best method, so most of154

the few-shot action recognition mainly uses the metric-based155

method. Compound Memory Network (CMN) [6] encodes156

the video using a composite embedding algorithm and pre-157

dicts it through the memory of the CMN structure. Temporal158

Attentive Relation Network (TARN) [7] uses a self-attentive159

module to align query samples and support sets. Action Rela-160

tionship Network (ARN) [8] uses a self-supervised permuta-161

tion invariant method and spatial-temporal attention. Ordered162

Temporal Alignment Module (OTAM) [9] performs temporal163

alignment while using temporal features in the video data and164

gives a score using a distance matrix. Hybrid Relation guided165

Set Matching (HyRSM) [31] uses hybrid relation module166

and set matching metric to overcome problems in mis-167

aligned instances and loss of relevant information. Temporal-168

Relational CrossTransformers (TRX) [10] uses CrossTrans-169

former to match the action feature subsequences of each170

query video with all subsequences in the support set and171

calculate the average Euclidean distance.172

In the above few-shot action recognition methods, we note173

that the existing methods basically inherit the methods of174

few-shot learning and few-shot image classification. For175

video data, these methods use a set of video frames to rep-176

resent the video, and then perform computation or matching177

through the embedding representation of frames or frame178

tuples to achieve matching at the video level. However, these179

methods ignore a feature inherent to action recognition: the180

action changing feature. In other words, these methods are181

robust enough to classify any video and can match even when182

the frames of the video itself are arranged in a disordered183

order, but if the action changing feature of action recognition184

is introduced, the performance of few-shot action recognition185

will be improved.186

III. METHOD187

We propose a novel action recognition method called Tempo-188

ral Relational CrossTransformers Based on Image Difference189

Pyramid (TRX-IDP). In our method, firstly, key frames are190

extracted from video samples, and key frame sets are used191

to represent video samples. The subsequence of frames is192

extracted from the keyframe set, and we construct an Image193

Difference Pyramid for the subsequence of keyframes con-194

sidering the changing features of the action, and combine it195

with Motion History Image (MHI) to construct a query rep-196

resentation for multi-CrossTransformer use. We also develop197

CrossTransformers query representation for IDP and rewrite198

and optimize the linear mapping function of the model.199

We start with a special case of a triplet and proceed to build200

our complete approach in terms of complexity and robust-201

ness. The construction of the Image Difference Pyramid is202

introduced in Section III-A. Next, in Section III-B, we con-203

struct the query representation by combining the image pyra-204

midwithMHI, extracting a representation of a triplet from the205

query video and comparing it with the triplet representation206

in the support set. In Section III-C, we generalize this to207

multivariate representations and model a CrossTransformer208

for each tuple, and finally combine the matching similarity 209

of each CrossTransformer output for classification. 210

A. IMAGE DIFFERENCE PYRAMID 211

We consider a video V and perform a keyframe extraction 212

operation on V . Then we use the obtained keyframe sequence 213

to representV , i.e.,V : {v1, . . . , vF }, where vi is the keyframe 214

extracted from V and for i < j, vi appears earlier in the video 215

V than vj, andF is the number of keyframes extracted fromV . 216

We define the triplet consisting of three frames selected from 217

V as P = {v01, v02, v03}. 218

We perform the difference operation on v0i and v0(i+1) to 219

get the first-order difference image diff1i = |v0i − v0(i+1)|. 220

Then we use the TemperatureSigmoid function to enhance 221

the contrast of the differential image and finally rescale the 222

differential image TS(diff1i), the purpose of rescaling is not 223

only to reduce the complexity to linearity, but also to reduce 224

the number of invalid features. where the rescaling operation 225

is like the average pooling of 2×2, the stride is 2, and the TS 226

function is: 227

TS(x) = 255/(1+ e−0.05(x−127.5)), (1) 228

where the hyperparameters are selected based on common 229

image contrast enhancement functions. 230

Thus we get the i-th image of the first-order differential of 231

the pyramid: 232

v1i = rescale(TS(|v0i − v0(i+1)|)). (2) 233

For a difference of order k , 1 < k < F, k < K , K is the 234

highest layer number of the pyamid, there are: 235

vki = rescale(TS(|v(k−1)i − v(k−1)(i+1)|)), (3) 236

where i satisfies i ≤ F−k . For the case where F = 3,K = 3, 237

is shown in Fig 1. 238

MHI [11] represents the target motion as image brightness 239

by calculating the pixel changes at the same location during 240

the time period. We creatively treat the sequence of a few 241

frames as video and calculate its MHI. Let H be the inten- 242

sity value of the motion history pixel and H (x, y, t) can be 243

calculated from the update function as: 244

Hτ (x, y, t) =

{
τ if 9(x, y, t) = 1
max (0,Hτ (x, y, t − 1)− δ) otherwise,

(4) 245

where (x, y) and t are the positions and times of the pixel 246

points, t ≥ 1, Hτ (x, y, 0) = 0; τ is the duration, which 247

determines the time range of the motion from the perspective 248

of the number of frames, and here τ = 250; δ is the recession 249

parameter, and here δ = 100.9(x, y, t) is the update function, 250

defined using the inter-frame difference method: 251

9(x, y, t) =

{
1 if D(x, y, t) ≥ ξ
0 otherwise,

(5) 252

where: 253

D(x, y, t) = |I (x, y, t)− I (x, y, t − 1)|, (6) 254
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FIGURE 1. Example for an Image Difference Pyramid, when K = 3, � = {3}. The original images in the first layer are selected from the SSv2
dataset, and its class is ‘‘Letting something (a battery) roll along a flat surface.’’ The three original images are ordered from left to right
with the size of 224× 224× 3, and the adjacent images are differenced, sigmoid enhanced, and resized to obtain the two images of the
second layer with the size of 112× 112× 3, and the third layer with the size of 56× 56× 3. In addition, IDP includes MHI characteristic
map, which is calculated from three images on the first layer. The size of MHI is 224× 224× 1.

where I (x, y, t) is the intensity value of the pixel point at255

the coordinate (x, y) of the t-th frame of the video image256

sequence, ξ is the artificially given difference threshold, and257

here ξ = 75.258

B. TEMPORAL CrossTransformer BASED ON IMAGE259

DIFFERENCE PYRAMID260

1) PROBLEM FORMULATION261

In few-shot action recognition, the purpose of the task is to262

train a neural network. It can classify an unlabeled query263

video into one of several classes, each class consisting of sam-264

ples that are labeled and not used in training, called ‘‘support265

sets’’. In this paper, we draw few-shot action recognition tasks266

from the training set, and for each task, we focus on its C-way,267

N-shot classification problem.268

We consider three frames sampled from the query video269

Q : {q1, . . . , qF } to represent an action feature, and we define270

the index of these three frames as p = (p1, p2, p3), where271

1 ≤ p1 < p2 < p3 ≤ F . According to the definition in272

section III-A, we construct an Image Difference Pyramid for273

the sequence of these three frames, and the pyramid has three274

layers in total, where first layer is the original three frames.275

Thenwe use the pyramid to construct the query representation276

Qp for use by the CrossTransformer. for the first layer of277

the pyramid, i.e., the original image, we define its query278

representation as: 279

Qp0 = [80(q01)+ PE(p1),80(q02)+ PE(p2), 280

80(q03)+ PE(p3)] ∈ R3×D, (7) 281

where 80 : RH×W×3
7→ RD is a convolutional neu- 282

ral network layer that transforms the input frame into a 283

D-dimensional embedding, PE(·) is position encoding based 284

on the index of the frame, and q0i is the i-th image of the 285

0-th order difference layer (the first layer is the 0-th order 286

difference layer) of the Image Difference Pyramid formed by 287

the extracted frame tuple (qp1, qp2, qp3). 288

The TRX method pioneeringly uses ordered frame tuples 289

to represent actions, but ignored the changing features of the 290

actions themselves. Our proposed Image Difference Pyramid 291

highlights the action features that are missed during frame 292

tuple matching, and we define the query representation of the 293

k layers of the pyramid as: 294

Qpk = [8k (qk1), . . . , 8k (qki)] ∈ Ri×D/4i , (8) 295

where i = 3 − k, i ≥ 1, k < 3,8k : RH×W×3/4k
7→ RD/4k . 296

For MHI images qMHI there are QpMHI queries expressed as: 297

QpMHI = [8MHI (qMHI )], (9) 298
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FIGURE 2. Example for TRX-IDP on a 2-way 2-shot problem, where � = {2, 3}, K = 3. Firstly, extract the key frames of the query video Q
(extract 8 frames, i.e. f=8), then arrange and combine the key frames to obtain different pair frames and triplet frames, and then calculate
the IDP of different tuples. {8k } is used to embed and encode different IDPs to get the query embedded representation Qω

p of video Q.
Similarly, calculate the embedded representation Scω of the support set, match Scω and Qω

p through different Tom, get the Euclidean
distance from Q to class c , and finally classify Q as the nearest class.

where 8MHI : RH×W
7→ RD/3. qMHI is the MHI feature299

figure generated from the three images of the pyramid first300

layer.301

In summary, we define the query representation of Qp as302

follows:303

Qp = [Qp0,Qp1,Qp2,QpMHI ]304

∈ R(3+1)×D+2×D/4+1×D/42 . (10)305

We compare the query representation Qp with all the triplet306

representations in the support set, allowing to match actions307

with different speeds or appearing in different locations in the308

video.We define the set of all triples as:309

5 = {(π1, π2, π3) ∈ N3
|1 ≤ π1 < π2 < π3 ≤ F}. (11)310

Using the same method as for (7)-(10), we define the repre-311

sentation of a triplet indexed by m = (m1,m2,m3) ∈ 5 in312

video n of class c as:313

Scnm = [Scnm0, S
c
nm1, S

c
nm2, S

c
nmMHI ]314

∈ R(3+1)×D+2×D/4+1×D/42 . (12)315

The set of all triplet representations in the support set of316

class c is:317

Sc = {Scnm|1 ≤ n ≤ N ,m ∈ 5}. (13)318

We apply the query representation generated using the319

image pyramid to the Temporal CrossTransformer. The320

CrossTransformer includes the query representation mapping321

WQ, key representation mappingWS and value representation 322

mappingWV , which are shared across classes: 323

WQ,WS : R(3+1)×D+2×D/4+1×D/42
7→ Rdk and 324

WV : R(3+1)×D+2×D/4+1×D/42
7→ Rdv . (14) 325

The correspondence between Qp and Scnm can be expressed 326

as: 327

acnmp = L(WS · Scnm) · L(WQ · Qp), (15) 328

where L is a layer normalisation. Normalize anmp: 329

ãcnmp =
exp

(
acnmp

)
/
√
dk∑

α,β exp
(
acαβp

)
/
√
dk
. (16) 330

Value embeddings of the support set and of the query are as 331

follows: 332

ecnm = WV · Scnm and tp = WV · Qp. (17) 333

We combining normalized correspondence ãcnmp and support 334

set embedding ecnm: 335

ucp =
∑
nm

ãcnmpe
c
nm. (18) 336

Then we can calculate the distance between the query repre- 337

sentation Qp and the support set Sc: 338

distance
(
Qp,Sc

)
=

∥∥∥ucp − tp
∥∥∥ . (19) 339
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Obviously a frame triplet does not represent an action very340

well.Therefore it is necessary to use multiple query represen-341

tations for comparison.We define all queries to be represented342

as:343

Q = {Qp|p ∈ 5}. (20)344

So far, the distance between the query Q and the support345

set Sc is defined as:346

Distance(Q,Sc) =
∑
p∈5

distance(Qp,Sc). (21)347

C. TEMPORAL-RELATIONAL CrossTransformers BASED348

ON IMAGE DIFFERENCE PYRAMID349

Considering that a frame triplet may not be the best rep-350

resentation of an action, the using of higher-order tuples is351

necessary. We use ω to represent the length of the tuple as352

TRX does. Rewrite 5 in (11):353

5ω =
{
(π1, . . . , πω) ∈ Nω|∀i (1 ≤ πi < πi+1 ≤ F)

}
. (22)354

Generalize the query representation Qp with index p =355

(p1, . . . , pω) ∈ 5ω:356

Qωp = [Qp0,Qp1, . . . ,Qp(ω−1),QpMHI ] ∈ RDim(ω)·D, (23)357

where:358

Dim(ω) =
4
3
ω +

4(1−ω)

9
−

1
9
. (24)359

We define the set of tuple lengths ω as �. For instance,360

� = {2, 4} represents pairs and quadruples of frames tuples.361

For differentω, query representation mappingWQ, key repre-362

sentation mappingWS and value representation mappingWV363

in (14) are rewritten as:364

Wω
Q ,W

ω
S : R

Dim(ω)·D
7→ Rdk and365

Wω
V : R

Dim(ω)·D
7→ Rdv . (25)366

Combining the Temporal CrossTransformer based on Image367

Difference Pyramid(TX-IDP) corresponding to the different368

ω, we obtain the distance between the queryQ and the support369

set Sc in general form, i.e. Temporal-Relational CrossTrans-370

former based on Image Difference Pyramid(TRX-IDP):371

TP�(Q,Sc) =
∑
ω∈�

Distanceω(Qω,Scω)
|5ω|

. (26)372

We classify the query Q as class c which is closest to it:373

c = argmincTP�
(
Q,Sc

)
. (27)374

1) SUMMARY OF METHOD375

TRX-IDP considers frame tuple representations of different376

lengths, and for different ω, it needs to train different linear377

mappings. For different difference orders k, model also needs378

to train different input frame embeddings {8k}. The network379

uses a single cross-entropy loss and back-propagates the380

TRX-IDP network corresponding to each different om using381

the gradient of the sum distance. TRX-IDP is trained end-to- 382

end using all ω ∈ �, different differential orders k and shared 383

backbone parameters for all tuples. Fig. 2 shows an example 384

of TRX-IDP. 385

IV. EXPERIMENTS 386

In this section, we first introduce the data sets used in 387

the experiment and the experimental details such as model 388

parameters. Then, we compare our model with other state-of- 389

the-art models. Finally, we perform a detailed ablation study 390

of the model to demonstrate the validity of our proposed 391

method. 392

A. DATASETS AND EXPERIMENTAL SETUP 393

1) DATASETS 394

In our experiments, we use four datasets commonly used in 395

the field of action recognition to evaluate our model, which 396

are Kinetics-400 [32], Something-Something V2 (SSv2) 397

[33], HMDB51 [13], and UCF101 [14], where SSv2 has two 398

versions, full [9] and partial [12]. In the above four data sets, 399

SSv2 has proven to be the most challenging in [34], [35]. For 400

Kinetics-400 and SSv2 datasets, we used the same split as 401

[6] and [9], i.e. select 100 classes from the data set, and then 402

select 64 classes from these 100 classes as the training set, 403

12 classes as the verification set and 24 classes as the test set. 404

For UCF101 and HMDB51, we evaluate our model using the 405

splitting method from [8] and [10]. 406

2) IMPLEMENTATION DETAILS 407

As in the previous works [9], [10], we use Resnet-50 [36] as 408

the backbone and pre-train the weights using ImageNet [37]. 409

We randomly initialize the parameters of the model (for 410

8k , k 6= 0 we initialize it to 0) and set D = 2048, dv = 411

1152 = dk . We extract 8 keyframes from the video, i.e., 412

F = 8, and then resize the resulting keyframes to 224× 224. 413

In addition, TRX-IPD selects SGD as the optimizer and sets 414

the learning rate to 10−3(when the data set is partial SSv2, 415

the learning rate is set to 10−4). 416

B. COMPARISON WITH STATE-OF-THE-ART METHODS 417

1) BASELINES AND EVALUATION 418

We compare TRX-IDP with several recent few-shot action 419

recognition methods [6], [7], [8], [9], [10], [12], [31], which 420

were introduced in Section II. The TRX-IDP method inherits 421

the characteristics of the TRX method and performs better 422

on the few-shot task than on the one-shot task, and to facil- 423

itate comparison with the other methods mentioned above, 424

we evaluate our method using the standard 5-way 5-shot 425

benchmark. 426

We present the results of TRX-IDP and other model perfor- 427

mance in Table 1. The models in Table 1 all use ResNet-50 428

as the backbone to extract features. On Kinetics, the accuracy 429

of OTAM has been as high as 85.8%, and TRX has improved 430

0.1% compared to the next, while the best model HyRSM 431

now reaches 86.1%, our TRX-IDP has only 86.0% accuracy 432
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TABLE 1. Results on 5-way 5-shot benchmarks of Kinetics [32], SSv2 [33], HMDB51 [13] and UCF101 [14]. In the table, we have bolded the highest
accuracy values on each data set.

and does not surpass HyRSM, This is due to the fact that when433

Kinetics is used as a few-shot benchmark, it is similar to some434

image classification tasks, as the video data the temporal435

information and action features are not important. On SSv2436

dataset, where temporal information is extremely important,437

OTAM achieves a performance of 52.3% for the full SSv2438

dataset, TRX models the temporal relationships in compari-439

son and thus achieves an accuracy of 64.6%, HyRSM further440

improves to 69.0%, and TRX-IDP achieves 67.1%, which is441

1.9% behind HyRSM in comparison. In contrast, on partial442

SSv2, there are different results, with TRX reaching 59.1%,443

while HyRSM lags 3.0%, and our TRX-IDP outperforms the444

existing method with a performance of 59.8%. In addition,445

our model also achieves the highest classification accuracy on446

HMDB51 and UCF101, reaching 76.5%, and 96.3%, respec-447

tively. where since UCF101 and Kinetics are similar and both448

belong to appearance-based datasets, the improvements we449

make in terms of action features compared to TRX do not450

result in significant performance gains. Overall, the perfor-451

mance of our proposed TRX-IDP outperforms the original452

TRX on all datasets, and achieves outperformance on some453

SSv2, HMDB51 and UCF101 compared to HyRSM, while454

slightly underperforming HyRSM on full SSv2 and Kinetics.455

C. ABLATION STUDY456

In this section, we perform a detailed ablation study of457

TRX-IDP to derive the optimal hyperparameters of the model458

while showing the effect of each module of the model.459

Wewill evaluate the Impact ofMHI on TRX in section IV-C1,460

the Impact of the highest pyramid layer number K on the461

model performance in section IV-C2, and the Impact of the462

model parameter � on TRX-IDP classification accuracy in463

section IV-C3.464

1) IMPACT OF MHI ON TRX AND LENGTH OF TUPLE465

We evaluate the impact of the separate MHI module in466

TRX-IDP onTRXusing partial SSv2. Our comparison results467

are reported in Fig. 3, where we selected four cases: � =468

{1}, {2}, {3}, and {4}. Since the MHI feature map requires at469

least two frames to be generated, the MHI is a zero matrix470

FIGURE 3. The comparison results of TRX+MHI and TRX, as the tuple
length becomes longer, MHI gradually has a positive effect on the model,
and the longer the tuple, the greater the effect.

when the frame tuple length is 1. The MHI feature figure 471

plays a positive impact when the tuple length reaches 3 and 472

a negative impact when the tuple length Less than or equal 473

to 2, and the performance gain is higher as the tuple length 474

gets longer. When the tuple length equals 4, the performance 475

improvement reaches 0.4%. Therefore, when introducing the 476

MHI, it should be ensured that the tuple length is greater 477

than 1, and the larger the number of tuples, the greater the 478

amount of information contained in the MHI. In addition, 479

when the tuple length is larger than 4, the performance of the 480

model decreases instead. Therefore, in section IV-C3, we will 481

not discuss the case where the tuple length is greater than 4. 482

2) IMPACT OF K : THE HIGHEST LAYER NUMBER 483

OF THE PYRAMID 484

Similar to the method used to evaluate the impact of MHI on 485

the model, we use Kinetics and partial SSv2 to evaluate the 486

impact of independent differential images on TRX. Since the 487

number of pyramid layers is necessarily less than or equal to 488

the tuple length, we choose the case where� = {4} to exper- 489

iment on K . Fig. 4 demonstrates the effect of K on the image 490

difference-based TRX. When k = 1, the model degenerates 491

to TRX, and it can be seen that the classification accuracy 492

94542 VOLUME 10, 2022



Y. Ding, Y. Liu: Novel Few-Shot Action Recognition Method: TRX-IDP

TABLE 2. Comparing all values of �for TRX-IDP. In the table, we have bolded the highest accuracy values on each data set.

FIGURE 4. Impact of the highest pyramid layer number K on the model
at � = 4. The model performs best for K = 3 on both data sets.

of the model is lowest in this case, while when k > 1, the493

performance of the model is higher than the original TRX494

in all cases, which proves that the differential feature images495

can bring a positive impact on the matching process of TRX.496

Notice that the accuracy of the model decreases when K rises497

to 4, which is caused by the reduction of effective information498

in the higher-order differential images and the loss of motion499

features during successive differencing. We can see in Fig. 4500

that on Kinetic, the performance of the model is 84.7% when501

K = 2, 3, while on SSv2, the model has the highest accuracy502

when K = 3: 59.5%. Therefore, we consider that the most503

suitable K for TRX-IDP is 3.504

3) IMPACT OF �: THE SET OF TUPLE LENGTH505

We have discussed the impact of HMI and the highest layer506

number K on the model and the optimal value of K in the507

above two subsubsections, In this part, we continue to study508

the impact of tuple length set on the model. In Table 2,509

the highest layer number K is set to 3. We can find that510

when using ssv2 data set for evaluation, the performance is511

significantly improved by 5.2% from single frame � = {1}512

to pair frames � = {2}. When using triplet frames, the513

performance is further improved by 1.1%,while the growth of514

quadruple frames is slowed down (increase by 0.4%). When515

combining the two CrossTransformers, the overall accuracy516

has been improved, and the combination of pair frames and 517

triplet frames has achieved the best result: 59.8%. Combining 518

pair frames and quadruples is not a good choice, because 519

its performance (58.9%) is even inferior to that of a sin- 520

gle CrossTransformer (triplets and quadruples). When using 521

three CrossTransformers � = {2, 3, 4}, the performance is 522

reduced (-0.1%). When K is used for evaluation, the overall 523

difference is small, but the same conclusion can be obtained 524

as when SSv2 is used: the combination of pair frame and 525

triplet frame i.e. � = {2, 3, 4} is the best choice. Compared 526

with TRX, IDP has improved the overall performance of 527

TRX. 528

V. CONCLUSION 529

In this paper, we propose the Temporal Relational 530

CrossTransformers Based on Image Difference Pyramid 531

(TRX-IDP) method for few-shot action recognition. Our 532

method is based on TRX. On this basis, the frame tuples 533

used for query are subjected to high-order image difference, 534

sigmoid enhancement and resizing. Combined with Motion 535

History Image (MHI), the Image Difference Pyramid (IDP) 536

containingmotion feature information is constructed.We also 537

develop the CrossTransformers query representation for IDP 538

and rewrite and optimize the linear mapping function of the 539

model. the TRX-IDP method outperforms TRX on few-shot 540

benchmarks for all four datasets and achieves state-of-the-art 541

performance on partial SSv2, HMDB51, and UCF101, while 542

slightly lagging behind HyRSM on Kinetics-400 and full 543

SSv2. In the future, we will try to combine the IDP module 544

with other metric-based few-shot action recognition methods 545

and explore them. 546
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