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ABSTRACT Most current few-shot action recognition methods model temporal relationships on the basis of
image classification and achieve satisfactory results. However, they focus on the extra temporal information
of video data compared to images and use the frame tuple embedding representation of the query video
for matching, but ignore the important information of ‘“‘action changing feature” in action recognition.
To use this information, we propose the Temporal Relational CrossTransformers Based on Image Difference
Pyramid (TRX-IDP) method for few-shot action recognition. Based on TRX, we perform high-order image
difference, sigmoid enhancement, resizing on the frame tuples which are directly used for query, and use
the frame tuples to calculate the Motion History Image (MHI). Combined with the two, we construct the
Image Difference Pyramid containing motion feature information. We also develop CrossTransformers query
representation for IDP and restructure the linear mapping function of the model. We evaluate our model
using four commonly used few-shot action recognition benchmark datasets. TRX-IDP achieves state-of-the-
art performance on partial SSv2, HMDBS51, and UCF101, while slightly lagging behind the current best
models on Kinetics and SSv2. In addition, we perform detailed ablation experiments on TRX-IDP to prove
the importance of each part of the model and to give the best hyperparameters of TRX-IDP.

INDEX TERMS Few-shot learning, action recognition, image difference pyramid, action feature
representation.

I. INTRODUCTION

Few-shot learning has a history of decades, and its main aim
is to learn a new class using only a few examples with labels,
and to successfully classify the corresponding unlabeled sam-
ples. In addition, as deep learning has evolved in the field
of action recognition [1], [2], [3], [4], it has been found that
the video samples data set needed to collect deep learning
is too large and the cost of labeling is very expensive [5].
To solve the problem of insufficient data with labeled sam-
ples, few-shot learning has been applied to the field of action
recognition, and the recently proposed few-shot action recog-
nition method [6], [7], [8], [9], [10] has achieved satisfactory
results.
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Before few-shot action recognition, few-shot image classi-
fication methods had achieved significant success, and these
methods inspired Zhang et al. [8] to implement action recog-
nition using a matching approach that searches a single sup-
port set of samples. Similarly, there are methods [7], [9]
to search the average representation of support classes to
realize action recognition. However, these methods ignore the
temporal information between frames when using multiple
frames to represent a video for matching. i.e., they do not
use the temporal information of the video when modeling.
In addition, a complete action requires two, three or more
frames to represent, so using individual frames in the video to
match one by one during the matching process is not the best
method. Further, an action may occur anywhere in the video
sample, i.e., the effect of temporal offset needs to be offset
in the matching process. Moreover, the same type of action
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may consume different lengths of time in different videos,
offsetting the degree of stretching of the action during the
matching process is also necessary.

Perrett er al. [10] conducted a specific study on the above
problems and proposed Temporal-Relational CrossTrans-
formers. TRX uses a part-to-part query comparison approach,
using all frame tuples from the query video and all frame
tuples in the support set to match one by one and calculate
the average Euclidean distance, which solved the problem of
action representation, speed and offset very well. However, all
the few-shot action recognition methods mentioned above are
implemented from the perspective of few-shot learning, atten-
tion mechanism matching, and embedding representation of
frames or frame tuples, etc. These methods ignore an impor-
tant piece of information in action recognition, i.e., action
changing feature. Action changing features are different
from temporal features. Consider the two action categories in
the few-shot action recognition: “‘throw something out” and
“catch the flying thing”. In TRX’s view, the two are the same,
so adding IDP structure can effectively solve such problems
of fine-grained classification.

In this paper, we give full consideration to the problems
mentioned above regarding the few-shot action recognition
and propose a novel method for the recognition of new-shot
actions: Temporal Relational CrossTransformers Based on
Image Difference Pyramids(TRX-IDP). In TRX-IDP, we pro-
pose the Image Difference Pyramid (IDP) in order to con-
struct a representation of action changing feature. In IDP, the
first layer is a set of ordered original images in the video,
we perform a differential operation on the adjacent images
in the first layer in order to highlight the changes in the
action, and then perform contrast enhancement and pooling
operations on the resulting differential image. Based on this,
IDP creatively treats the image of the first layer as a complete
video and calculates its Motion History Image(MHI) [11].
After building the IDP, we apply IDP to TRX and design
embedding representations of different dimensions of the
differential feature images of each layer in IDP, as well
as design embedding representations of the MHI. In the
CrossTransformer of TRX, we redesign the query, key, and
value linear mapping for IDP. Finally, combining multiple
TRX-IDPs of different length frame tuple, the query video
is classified into the support class closest to its IDP query
representation.

Our contribution can be summarized as follows:

« We propose a novel few-shot action recognition method,
called Temporal Relational CrossTransformers Based on
Image Difference Pyramids(TRX-IDP).

o Our proposed TRX-IDP allows for better fine-grained
classification in few-shot action recognition.

« We achieve state-of-the-art results on three commonly
used benchmark datasets (partial SSv2 [12], HMDBS51
[13], and UCF101 [14]) for few-shot action recognition.

o We perform detailed ablation experiments on TRX-IDP
to prove the importance of each part of the model and to
give the best hyperparameters of model.
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Il. RELATED WORK

In this section, we introduce the following three areas of
research that are relevant to this paper, including few-shot
classification, few-shot image classification and few-shot
action recognition.

A. FEW-SHOT CLASSIFICATION

In order to quickly build cognitive ability for new con-
cepts with just one or a few examples, few-shot learning
was created. So far, few-shot learning has become increas-
ingly mature, and according to different realizing method,
we broadly classify few-shot learning into three categories.
Munkhdalai ef al. [15] and Santoro et al. [16] proposed
model-based methods. Finn ef al. [17] and Ravi et al. [18]
proposed optimization-based methods. Vinyals et al. [19] and
Snell et al. [20] proposed metric-based methods. Among the
three methods mentioned above, the metric-based learning
method outperforms the other two methods in the classifi-
cation of few-shot videos. The metric-based method aims
to find a feature representation of the sample and calculates
the distance between the query sample and the support set,
and classifies the query sample to its nearest support set at
the time of classification. The metric-based method is most
relevant to this paper.

B. FEW-SHOT IMAGE CLASSIFICATION

In recent years, more and more people have researched
numerous methods for few-shot image classification on the
basis of few-shot learning. Similar to the classification of
few shot learning, few-shot images classification can be
classified into three categories: data-enhanced, optimization-
based, and metric-based. Data augmentation is a method of
expanding the sample data using spatial deformation [21]
or semantic feature augmentation [22], etc. However, these
operations may perform well on specific data sets and are
not generalizable. Optimization-based methods learn a meta-
learner model, aiming at fast convergence of model parame-
ters and adaptation to new tasks, so that the model can classify
unseen tasks in a limited number of steps. These methods
include learning better model initialization parameters [23],
[24]and faster gradient descent optimizer [25].The metric-
based methods [26], [27], [28], [29] solve the few-shot image
classification problem from the perspective of learning ““how
to compare”. The network computes the Euclidean distance
[20], [30] between the query image and the class in the sup-
port set, and classifies the query sample by the nearest neigh-
bor method. In the metric-based methods, Doersch et al. [29]
use an attention mechanism for their query image and support
set, which inspire Perrett et al. [10] to propose the TRX
method.

C. FEW-SHOT ACTION RECOGNITION

Unlike few-shot image classification, the difficulty of
few-shot action recognition is that it needs to deal with 3D
video data. In the above discussion, it has been shown that the
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metric-based method is currently the best method, so most of
the few-shot action recognition mainly uses the metric-based
method. Compound Memory Network (CMN) [6] encodes
the video using a composite embedding algorithm and pre-
dicts it through the memory of the CMN structure. Temporal
Attentive Relation Network (TARN) [7] uses a self-attentive
module to align query samples and support sets. Action Rela-
tionship Network (ARN) [8] uses a self-supervised permuta-
tion invariant method and spatial-temporal attention. Ordered
Temporal Alignment Module (OTAM) [9] performs temporal
alignment while using temporal features in the video data and
gives a score using a distance matrix. Hybrid Relation guided
Set Matching (HyRSM) [31] uses hybrid relation module
and set matching metric to overcome problems in mis-
aligned instances and loss of relevant information. Temporal-
Relational CrossTransformers (TRX) [10] uses CrossTrans-
former to match the action feature subsequences of each
query video with all subsequences in the support set and
calculate the average Euclidean distance.

In the above few-shot action recognition methods, we note
that the existing methods basically inherit the methods of
few-shot learning and few-shot image classification. For
video data, these methods use a set of video frames to rep-
resent the video, and then perform computation or matching
through the embedding representation of frames or frame
tuples to achieve matching at the video level. However, these
methods ignore a feature inherent to action recognition: the
action changing feature. In other words, these methods are
robust enough to classify any video and can match even when
the frames of the video itself are arranged in a disordered
order, but if the action changing feature of action recognition
is introduced, the performance of few-shot action recognition
will be improved.

lll. METHOD

We propose a novel action recognition method called Tempo-
ral Relational CrossTransformers Based on Image Difference
Pyramid (TRX-IDP). In our method, firstly, key frames are
extracted from video samples, and key frame sets are used
to represent video samples. The subsequence of frames is
extracted from the keyframe set, and we construct an Image
Difference Pyramid for the subsequence of keyframes con-
sidering the changing features of the action, and combine it
with Motion History Image (MHI) to construct a query rep-
resentation for multi-CrossTransformer use. We also develop
CrossTransformers query representation for IDP and rewrite
and optimize the linear mapping function of the model.

‘We start with a special case of a triplet and proceed to build
our complete approach in terms of complexity and robust-
ness. The construction of the Image Difference Pyramid is
introduced in Section III-A. Next, in Section III-B, we con-
struct the query representation by combining the image pyra-
mid with MHI, extracting a representation of a triplet from the
query video and comparing it with the triplet representation
in the support set. In Section III-C, we generalize this to
multivariate representations and model a CrossTransformer
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for each tuple, and finally combine the matching similarity
of each CrossTransformer output for classification.

A. IMAGE DIFFERENCE PYRAMID

We consider a video V and perform a keyframe extraction
operation on V. Then we use the obtained keyframe sequence
torepresent V,i.e.,V : {vy, ..., vr}, where v; is the keyframe
extracted from V and for i < j, v; appears earlier in the video
V than v;, and F is the number of keyframes extracted from V.
We define the triplet consisting of three frames selected from
V as P = {vo1, Vo2, vo3}.

We perform the difference operation on vo; and vo+1) to
get the first-order difference image diffi; = [voi — Vou+n)l-
Then we use the TemperatureSigmoid function to enhance
the contrast of the differential image and finally rescale the
differential image TS(diff1;), the purpose of rescaling is not
only to reduce the complexity to linearity, but also to reduce
the number of invalid features. where the rescaling operation
is like the average pooling of 2 x 2, the stride is 2, and the T'S
function is:

TS(x) = 255/(1 4 ¢~ 0056:=127.9)) )

where the hyperparameters are selected based on common
image contrast enhancement functions.

Thus we get the i-th image of the first-order differential of
the pyramid:

vi; = rescale(TS(|voi — Voi+1)l))- )

For a difference of order k, 1 < k < F,k < K, K is the
highest layer number of the pyamid, there are:

Vii = rescale(TS(|V—1)i — Vk—1)i+11))s 3)

where i satisfies i < F —k. For the case where F = 3, K = 3,
is shown in Fig 1.

MHI [11] represents the target motion as image brightness
by calculating the pixel changes at the same location during
the time period. We creatively treat the sequence of a few
frames as video and calculate its MHI. Let H be the inten-
sity value of the motion history pixel and H(x,y, t) can be
calculated from the update function as:

T ifYx,y,t)=1

H:(x,y,t) = .
o3, 1) {max(O,Hf(x,y,t—l)—(S) otherwise,

where (x, y) and ¢ are the positions and times of the pixel
points, ¢t > 1, H;(x,y,0) = 0; t is the duration, which
determines the time range of the motion from the perspective
of the number of frames, and here T = 250; § is the recession
parameter, and here § = 100. W(x, y, ¢) is the update function,
defined using the inter-frame difference method:

‘IJ(x,y,t)z{l it D(x,y, 1) > £ )

0 otherwise,

where:
D(xvyat)z|I(-xay?t)_l(xayat_1)|v (6)
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FIGURE 1. Example for an Image Difference Pyramid, when K = 3, @ = {3)}. The original images in the first layer are selected from the SSv2
dataset, and its class is “Letting something (a battery) roll along a flat surface.’ The three original images are ordered from left to right
with the size of 224 x 224 x 3, and the adjacent images are differenced, sigmoid enhanced, and resized to obtain the two images of the
second layer with the size of 112 x 112 x 3, and the third layer with the size of 56 x 56 x 3. In addition, IDP includes MHI characteristic
map, which is calculated from three images on the first layer. The size of MHI is 224 x 224 x 1.

where I(x, y, t) is the intensity value of the pixel point at
the coordinate (x,y) of the t-th frame of the video image
sequence, £ is the artificially given difference threshold, and
here & = 75.

B. TEMPORAL CrossTransformer BASED ON IMAGE
DIFFERENCE PYRAMID

1) PROBLEM FORMULATION

In few-shot action recognition, the purpose of the task is to
train a neural network. It can classify an unlabeled query
video into one of several classes, each class consisting of sam-
ples that are labeled and not used in training, called ‘“‘support
sets”. In this paper, we draw few-shot action recognition tasks
from the training set, and for each task, we focus on its C-way,
N-shot classification problem.

We consider three frames sampled from the query video
0 :{q1, ..., qr]} torepresent an action feature, and we define
the index of these three frames as p = (p1, p2, p3), Where
1 < p1 < p2 < p3 < F. According to the definition in
section III-A, we construct an Image Difference Pyramid for
the sequence of these three frames, and the pyramid has three
layers in total, where first layer is the original three frames.
Then we use the pyramid to construct the query representation
O, for use by the CrossTransformer. for the first layer of
the pyramid, i.e., the original image, we define its query
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representation as:

Opo = [Po(qo1) + PE(p1), Po(g02) + PE(p2),

®0(q03) + PE(p3)] € R¥*P, )
where @ RExWx3 5 RP is a convolutional neu-
ral network layer that transforms the input frame into a
D-dimensional embedding, PE(-) is position encoding based
on the index of the frame, and gq; is the i-th image of the
0-th order difference layer (the first layer is the O-th order
difference layer) of the Image Difference Pyramid formed by
the extracted frame tuple (gp1, gp2, gp3).

The TRX method pioneeringly uses ordered frame tuples
to represent actions, but ignored the changing features of the
actions themselves. Our proposed Image Difference Pyramid
highlights the action features that are missed during frame
tuple matching, and we define the query representation of the
k layers of the pyramid as:

Opic = [Di(qr1). - .., Di(qua)] € RXP/ ®)

where i =3 —k,i > 1,k < 3, @y : REXWx3/40 | RpD/4
For MHI images gypy there are Qpypr queries expressed as:

Opmar = [Pmar(gman], )
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FIGURE 2. Example for TRX-IDP on a 2-way 2-shot problem, where @ = {2, 3}, K = 3. Firstly, extract the key frames of the query video Q
(extract 8 frames, i.e. f=8), then arrange and combine the key frames to obtain different pair frames and triplet frames, and then calculate
the IDP of different tuples. (@} is used to embed and encode different IDPs to get the query embedded representation Q,“,’ of video Q.
Similarly, calculate the embedded representation S¢“ of the support set, match S¢“ and Q;‘,’ through different Tom, get the Euclidean

distance from Q to class c, and finally classify Q as the nearest class.

where @y @ ROV s RP3. gppy is the MHI feature
figure generated from the three images of the pyramid first
layer.

In summary, we define the query representation of Q, as
follows:

Qp = [QpO, Qp] s QpZy QpMHI]

ER(3+1)><D+2><D/4+1><D/42_ (10)
We compare the query representation Q,, with all the triplet
representations in the support set, allowing to match actions
with different speeds or appearing in different locations in the
video.We define the set of all triples as:

M= {(m,m,m3) e N[l <7 <m <73 <F}. (11)

Using the same method as for (7)-(10), we define the repre-
sentation of a triplet indexed by m = (my, mp, m3) € Il in
video n of class c as:

Srfm = [ limO’ rL;ml’ Sr(imZ’ SzmMHI]
GR<3+1)xD+2xD/4+1xD/42 (12)
The set of all triplet representations in the support set of
class cis:
S ={8¢

€11 <n<N,meIll}. (13)

We apply the query representation generated using the
image pyramid to the Temporal CrossTransformer. The
CrossTransformer includes the query representation mapping
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Wo, key representation mapping Ws and value representation
mapping Wy, which are shared across classes:

Wo. Ws : R(3+1)xD+2xD/4+1><D/42 s RY%  and

Wy :R(3+1)XD+ZXD/4+1><D/42 s R (14)

c
The correspondence between Q,, and Sy, can be expressed
as:

Ay = L(Ws - S5,) - LWg - Op), (15)
where L is a layer normalisation. Normalize aj:
- exp (aftmp) /N dk
— - : (16)
S exp (a5, ) IV

Value embeddings of the support set and of the query are as
follows:

eflm = WV . Srclm and tp = WV . Qp- (17)

C

We combining normalized correspondence ,,,,

] C .
set embedding e},
c __ ~C c
u, = E TZ
nm

Then we can calculate the distance between the query repre-
sentation Q), and the support set S:

and support
(18)

distance (Q,. S°) = Hu; - t,,” . (19)
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Obviously a frame triplet does not represent an action very
well. Therefore it is necessary to use multiple query represen-
tations for comparison. We define all queries to be represented
as:

Q={Qlp € I}. (20)

So far, the distance between the query Q and the support
set S¢ is defined as:

Distance(Q, S€) = Z distance(Q,, S°). 21
pell

C. TEMPORAL-RELATIONAL CrossTransformers BASED
ON IMAGE DIFFERENCE PYRAMID

Considering that a frame triplet may not be the best rep-
resentation of an action, the using of higher-order tuples is
necessary. We use w to represent the length of the tuple as

TRX does. Rewrite IT in (11):
n° ={(r,....m) e N°NVi(l < <miy1 <F)}. (22)

Generalize the query representation Q, with index p =
®1, ..., Ppw) € I?:

Q;) = [Qp07 Qpl, .

where:

oy Opw—1)» Qpmr] € RPM@ID (33

g0
- —. 24
5 5 (24)
We define the set of tuple lengths w as 2. For instance,
Q = {2, 4} represents pairs and quadruples of frames tuples.
For different w, query representation mapping Wy, key repre-
sentation mapping Ws and value representation mapping Wy
in (14) are rewritten as:

Dim(w) = ga) +

Wé” LW RPm(@)D\  Rdc apd
W : RPM@D Ry, (25)

Combining the Temporal CrossTransformer based on Image
Difference Pyramid(TX-IDP) corresponding to the different
, we obtain the distance between the query Q and the support
set §¢ in general form, i.e. Temporal-Relational CrossTrans-
former based on Image Difference Pyramid(TRX-IDP):
TPR(Q. S — Z Distance®(Q%, SC‘“). 26)

)
we |H |

We classify the query Q as class ¢ which is closest to it:

¢ = argmin TP% (Q, SC) . 27

1) SUMMARY OF METHOD

TRX-IDP considers frame tuple representations of different
lengths, and for different w, it needs to train different linear
mappings. For different difference orders k, model also needs
to train different input frame embeddings {®;}. The network
uses a single cross-entropy loss and back-propagates the
TRX-IDP network corresponding to each different om using
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the gradient of the sum distance. TRX-IDP is trained end-to-
end using all w € Q, different differential orders k and shared

backbone parameters for all tuples. Fig. 2 shows an example
of TRX-IDP.

IV. EXPERIMENTS

In this section, we first introduce the data sets used in
the experiment and the experimental details such as model
parameters. Then, we compare our model with other state-of-
the-art models. Finally, we perform a detailed ablation study
of the model to demonstrate the validity of our proposed
method.

A. DATASETS AND EXPERIMENTAL SETUP

1) DATASETS

In our experiments, we use four datasets commonly used in
the field of action recognition to evaluate our model, which
are Kinetics-400 [32], Something-Something V2 (SSv2)
[33], HMDBS51 [13], and UCF101 [14], where SSv2 has two
versions, full [9] and partial [12]. In the above four data sets,
SSv2 has proven to be the most challenging in [34], [35]. For
Kinetics-400 and SSv2 datasets, we used the same split as
[6] and [9], i.e. select 100 classes from the data set, and then
select 64 classes from these 100 classes as the training set,
12 classes as the verification set and 24 classes as the test set.
For UCF101 and HMDB51, we evaluate our model using the
splitting method from [8] and [10].

2) IMPLEMENTATION DETAILS

As in the previous works [9], [10], we use Resnet-50 [36] as
the backbone and pre-train the weights using ImageNet [37].
We randomly initialize the parameters of the model (for
@i,k # 0 we initialize it to 0) and set D = 2048, d, =
1152 = di. We extract 8 keyframes from the video, i.e.,
F =8, and then resize the resulting keyframes to 224 x 224.
In addition, TRX-IPD selects SGD as the optimizer and sets
the learning rate to 10~3(when the data set is partial SSv2,
the learning rate is set to 10™%).

B. COMPARISON WITH STATE-OF-THE-ART METHODS

1) BASELINES AND EVALUATION

We compare TRX-IDP with several recent few-shot action
recognition methods [6], [7], [8], [9], [10], [12], [31], which
were introduced in Section II. The TRX-IDP method inherits
the characteristics of the TRX method and performs better
on the few-shot task than on the one-shot task, and to facil-
itate comparison with the other methods mentioned above,
we evaluate our method using the standard 5-way 5-shot
benchmark.

We present the results of TRX-IDP and other model perfor-
mance in Table 1. The models in Table 1 all use ResNet-50
as the backbone to extract features. On Kinetics, the accuracy
of OTAM has been as high as 85.8%, and TRX has improved
0.1% compared to the next, while the best model HyRSM
now reaches 86.1%, our TRX-IDP has only 86.0% accuracy
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TABLE 1. Results on 5-way 5-shot benchmarks of Kinetics [32], SSv2 [33], HMDB51 [13] and UCF101 [14]. In the table, we have bolded the highest

accuracy values on each data set.

Method Kinetics-400 full SSv2 [9] partial SSv2 [32] HMDBS51 UCF101
CMN [6] 78.9
CMN-J [12] 78.9 48.8 - -
TARN [7] 78.5
ARN [8] 82.4 60.6 83.1
OTAM [9] 85.8 523 - - -
TRX [10] 85.9 64.6 59.1 75.6 96.1
HyRSM [31] 86.1 69.0 56.1 76.0 94.7
TRX-IDP(Ours) 86.0 67.1 59.8 76.5 96.3

and does not surpass HyRSM, This is due to the fact that when
Kinetics is used as a few-shot benchmark, it is similar to some
image classification tasks, as the video data the temporal
information and action features are not important. On SSv2
dataset, where temporal information is extremely important,
OTAM achieves a performance of 52.3% for the full SSv2
dataset, TRX models the temporal relationships in compari-
son and thus achieves an accuracy of 64.6%, HyRSM further
improves to 69.0%, and TRX-IDP achieves 67.1%, which is
1.9% behind HyRSM in comparison. In contrast, on partial
SSv2, there are different results, with TRX reaching 59.1%,
while HyRSM lags 3.0%, and our TRX-IDP outperforms the
existing method with a performance of 59.8%. In addition,
our model also achieves the highest classification accuracy on
HMDB51 and UCF101, reaching 76.5%, and 96.3%, respec-
tively. where since UCF101 and Kinetics are similar and both
belong to appearance-based datasets, the improvements we
make in terms of action features compared to TRX do not
result in significant performance gains. Overall, the perfor-
mance of our proposed TRX-IDP outperforms the original
TRX on all datasets, and achieves outperformance on some
SSv2, HMDB51 and UCF101 compared to HyRSM, while
slightly underperforming HyRSM on full SSv2 and Kinetics.

C. ABLATION STUDY

In this section, we perform a detailed ablation study of
TRX-IDP to derive the optimal hyperparameters of the model
while showing the effect of each module of the model.
We will evaluate the Impact of MHI on TRX in section IV-C1,
the Impact of the highest pyramid layer number K on the
model performance in section IV-C2, and the Impact of the
model parameter 2 on TRX-IDP classification accuracy in
section IV-C3.

1) IMPACT OF MHI ON TRX AND LENGTH OF TUPLE

We evaluate the impact of the separate MHI module in
TRX-IDP on TRX using partial SSv2. Our comparison results
are reported in Fig. 3, where we selected four cases: 2 =
{1}, {2}, {3}, and {4}. Since the MHI feature map requires at
least two frames to be generated, the MHI is a zero matrix
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FIGURE 3. The comparison results of TRX+MHI and TRX, as the tuple
length becomes longer, MHI gradually has a positive effect on the model,
and the longer the tuple, the greater the effect.

when the frame tuple length is 1. The MHI feature figure
plays a positive impact when the tuple length reaches 3 and
a negative impact when the tuple length Less than or equal
to 2, and the performance gain is higher as the tuple length
gets longer. When the tuple length equals 4, the performance
improvement reaches 0.4%. Therefore, when introducing the
MH]I, it should be ensured that the tuple length is greater
than 1, and the larger the number of tuples, the greater the
amount of information contained in the MHI. In addition,
when the tuple length is larger than 4, the performance of the
model decreases instead. Therefore, in section IV-C3, we will
not discuss the case where the tuple length is greater than 4.

2) IMPACT OF K: THE HIGHEST LAYER NUMBER

OF THE PYRAMID

Similar to the method used to evaluate the impact of MHI on
the model, we use Kinetics and partial SSv2 to evaluate the
impact of independent differential images on TRX. Since the
number of pyramid layers is necessarily less than or equal to
the tuple length, we choose the case where Q2 = {4} to exper-
iment on K. Fig. 4 demonstrates the effect of K on the image
difference-based TRX. When k£ = 1, the model degenerates
to TRX, and it can be seen that the classification accuracy
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TABLE 2. Comparing all values of 2for TRX-IDP. In the table, we have bolded the highest accuracy values on each data set.

set of tuple length Kinetics(TRX-IDP) SSVQ?’;Il?;l—IDP) Kinetics(TRX) partial SSv2(TRX)

Q={1} 85.0 529 85.2 533
Q={2} 85.0 58.1 85.0 57.8
Q={3} 85.8 59.2 85.6 58.8
Q= {4} 84.8 59.6 84.5 58.9
Q={2,3} 86.0 59.8 85.9 59.1
Q={2,4} 84.6 58.9 84.4 58.4
Q= {3,4} 85.6 59.7 85.3 59.1
Q={2,3,4} 85.5 59.7 85.3 58.9

84.8 59.6

84.75 59.5

84.7 59.4
84.65 x 593
84.6 59.2

1 2 3 4

— Kinetics partial SSv2

FIGURE 4. Impact of the highest pyramid layer number K on the model
at © = 4. The model performs best for K = 3 on both data sets.

of the model is lowest in this case, while when k > 1, the
performance of the model is higher than the original TRX
in all cases, which proves that the differential feature images
can bring a positive impact on the matching process of TRX.
Notice that the accuracy of the model decreases when K rises
to 4, which is caused by the reduction of effective information
in the higher-order differential images and the loss of motion
features during successive differencing. We can see in Fig. 4
that on Kinetic, the performance of the model is 84.7% when
K =2, 3, while on SSv2, the model has the highest accuracy
when K = 3: 59.5%. Therefore, we consider that the most
suitable K for TRX-IDP is 3.

3) IMPACT OF : THE SET OF TUPLE LENGTH

We have discussed the impact of HMI and the highest layer
number K on the model and the optimal value of K in the
above two subsubsections, In this part, we continue to study
the impact of tuple length set on the model. In Table 2,
the highest layer number K is set to 3. We can find that
when using ssv2 data set for evaluation, the performance is
significantly improved by 5.2% from single frame Q = {1}
to pair frames 2 = {2}. When using triplet frames, the
performance is further improved by 1.1%, while the growth of
quadruple frames is slowed down (increase by 0.4%). When
combining the two CrossTransformers, the overall accuracy
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has been improved, and the combination of pair frames and
triplet frames has achieved the best result: 59.8%. Combining
pair frames and quadruples is not a good choice, because
its performance (58.9%) is even inferior to that of a sin-
gle CrossTransformer (triplets and quadruples). When using
three CrossTransformers 2 = {2, 3, 4}, the performance is
reduced (-0.1%). When K is used for evaluation, the overall
difference is small, but the same conclusion can be obtained
as when SSv2 is used: the combination of pair frame and
triplet frame i.e. Q = {2, 3, 4} is the best choice. Compared
with TRX, IDP has improved the overall performance of
TRX.

V. CONCLUSION

In this paper, we propose the Temporal Relational
CrossTransformers Based on Image Difference Pyramid
(TRX-IDP) method for few-shot action recognition. Our
method is based on TRX. On this basis, the frame tuples
used for query are subjected to high-order image difference,
sigmoid enhancement and resizing. Combined with Motion
History Image (MHI), the Image Difference Pyramid (IDP)
containing motion feature information is constructed. We also
develop the CrossTransformers query representation for IDP
and rewrite and optimize the linear mapping function of the
model. the TRX-IDP method outperforms TRX on few-shot
benchmarks for all four datasets and achieves state-of-the-art
performance on partial SSv2, HMDBS51, and UCF101, while
slightly lagging behind HyRSM on Kinetics-400 and full
SSv2. In the future, we will try to combine the IDP module
with other metric-based few-shot action recognition methods
and explore them.
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