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ABSTRACT Alzheimer’s Disease (AD) is a neurological brain disorder marked by dementia and neurologi-
cal dysfunction that affects memory, behavioral patterns, and reasoning. Alzheimer’s disease is an incurable
disease that primarily affects people over 40. Alzheimer’s disease is diagnosed through a manual evaluation
of a patient’s MRI scan and neuro-psychological examinations. Deep Learning (DL), a type of Artificial
Intelligence (AI), has pioneered new approaches to automate medical image diagnosis. This study aims to
create a reliable and efficient system for classifying AD using MRI by applying the deep Convolutional
Neural Network (CNN). In this paper, we propose a new CNN architecture for detecting AD with relatively
few parameters, and the proposed solution is ideal for training a smaller dataset. This proposed model
successfully distinguishes the early stages of Alzheimer’s disease and shows class activation maps as a heat
map on the brain. The proposed Alzheimer’s Disease Detection Network (ADD-Net) is built from scratch to
precisely classify the stages of AD by decreasing parameters and calculation costs. The Kaggle MRI image
dataset has a significant class imbalance problem, and we exploited a synthetic oversampling technique to
evenly distribute the image among the classes to prevent the problem of class imbalance. The proposed
ADD-Net is extensively evaluated against DenseNet169, VGG19, and InceptionResNet V2 using precision,
recall, F1-score, Area Under the Curve (AUC), and loss. The ADD-Net achieved the following values for
evaluation metrics: 98.63%, 99.76%, 98.61%, 98.63%, 98.58%, and 0.0549% accuracy, AUC, F1-score,
precision, recall, and loss, respectively. The simulation results show that the proposed ADD-Net outperforms
other state-of-the-art models in all the evaluation metrics.
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INDEX TERMS Deep learning, image classification, supervised learning, transfer learning, imbalanced
data-set, MRI data-set, computer-aided diagnosis, SMOTETOMEK, class activation.

I. INTRODUCTION21

Alzheimer’s Disease (AD) is the most frequent kind of22

dementia that needs substantial medical attention. Early23

and precise analysis of AD prognosis is required to start24

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenming Cao .

therapeutic progress, and efficient patient therapy [1]. 25

According to a study, 10 million new cases of dementia are 26

registered every year [2]. The World Health Organization 27

(WHO) reported that AD had surpassed cancer as the fifth 28

most significant cause of death, with the number of AD 29

patients expected to reach 152 million by 2050 [2]. AD is a 30

long-term neurological brain disease that gradually destroys 31
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brain cells, causing memory loss and cognitive problems and32

finally accelerating the loss of ability to perform day-to-day33

activities of real-life [3].34

AD is a brain-neurological degeneration disorder [4]. It is35

categorized as dementia, atrophy of the human brain affecting36

memory, and causes loss of behavioral, social, and reasoning37

faculties. It is caused by the accumulation of protein frag-38

ments in the brain [5], [6], [7]. Plaques and tangles are formed39

around the neurons inside the human brain, which results in40

abnormal shrinking of lobes and hippocampus, and enlarged41

ventricles [8]. It is an incurable fatal disease [9], [10] with a42

lifetime of agony for the patient and a severe mental, phys-43

ical, and financial toll of suffering for the patient’s family.44

The cause of AD is unknown, and there are no effective45

medications or therapies to reverse dementia. Mild Cognitive46

Impairment (MCI), a pre-clinical stage of AD, is a transitory47

state between normal ageing and AD.48

Detecting the risk and severity of AD at its early stages is49

very critical [11], [12]. However, Doctors can classify AD in50

its early stages using neuro-imaging and computer-assisted51

diagnostic approaches with less accuracy. Neuro-imaging,52

including Computed Tomography (CT) scan, Positron Emis-53

sion Tomography (PET) scan, and specifically Magnetic54

Resonance Imaging (MRI) scan, play a vital role in med-55

ical diagnosis [4]. It is an effective non-invasive method56

that provides information about the human body. The57

advancement of the medical diagnosis process has cre-58

ated tremendous research trends in computer-aided diagnosis59

nowadays [5], [6].60

Over the years, numerous Machine Learning (ML) [13]61

and Deep Learning (DL) [14] algorithms have been devel-62

oped by many researchers around the globe for AD detection63

and classification. Many researchers have achieved remark-64

able results using the DL algorithms. However, there is still65

room for improvement. In this series of DL models, a hybrid66

Convolutional Neural Network (CNN), a CNN model with67

slice selection, and a CNN model with histogram stretching68

are introduced in [15], [16], and [17]. Others proposed a69

CNNmodel with skull striping [18] and a CNN model which70

utilized the slicing samples for pre-processing is introduced71

in [19]. However, the focus of these deep models is primarily72

biased towards classification due to the black-box nature of73

CNN.74

In the literature on AD, some researchers have devel-75

oped miscellaneous tools and applications for automated76

segmentation of neuro-images [20]. These applications77

are Vol-Brain [21], and Fusion of neuro-imaging Pre-78

processing [22]. Although these applications are practical79

tools for segmenting neuro-image, the research focused on80

visualizing the classification process through CNN layers is81

scarce. The feature map of each convolution layer reveals var-82

ious filters being applied to the image, and it provides a hint as83

to what sort of filters the model uses to the image for feature84

extraction [23]. This approach supports grad-CAM [24] heat-85

map, which shows class activation via gradient-based local-86

ization map.87

The proposed CNN model uses a series of conventional 88

blocks consisting of different deep layers to accomplish out- 89

standing classification results. The proposed ADD-Net aims 90

to obtain an accurate classification result for detecting AD in 91

its earlier stages with better accuracy. The main contributions 92

of the research study are: 93

• We propose a new convolutional neural network archi- 94

tecture for detecting AD with relatively few parameters, 95

and the proposed solution is ideal for training a smaller 96

dataset. 97

• The previous methods [22], [23], [25] accuracy com- 98

promised on Alzheimer’s data-set due to an imbalanced 99

number of classes. To handle the imbalance problem 100

of the Alzheimer’s data set, we exploited the SMOTE- 101

TOMEK oversampling algorithm, which interpolates 102

new images to balance the class samples. 103

• In our proposed model, we used the Grad-CAM to show 104

and highlight the infected part of the brain for different 105

stages of Alzheimer’s disease, and the generated heat 106

map intensities highlight each stage’s severity. 107

• The proposed model is extensively compared with sev- 108

eral other approaches using various evaluation parame- 109

ters: Accuracy, AUC, Precision, Recall, F1-score, and 110

size of trainable parameters. It is observed that our 111

approach outperforms other state-of-the-art models. 112

The rest of the paper is arranged in the following way: The 113

related studies of the proposed model are briefed in section II. 114

The methodology and proposed ADD-Net model for AD 115

classification details are presented with the description of 116

the dataset, and model components are shown in section III. 117

The visualization process and the ADD-Net model evaluation 118

with the state-of-the-art models are presented in section IV. 119

The ADD-Net’s limitations and the conclusion with future 120

goals are described in section V and section VI, respectively. 121

II. RELATED WORK 122

Precise classification of medical images is a strenuous task 123

because of the complicated procedure of obtaining med- 124

ical data sets [25]. Unlike other data sets, medical data 125

sets are prepared by expert specialists and contain sensi- 126

tive and private information about patients, which cannot 127

be publicly disclosed to anyone. That is why organizations 128

and institutions like Alzheimer’s Disease Neuroimaging Ini- 129

tiative (ADNI) [26] and Open Access Series of Imaging 130

Studies (OASIS) [27] providing medical data-sets have a 131

screening process for accessing their data-sets which requires 132

an application to be filled and terms to be agreed by the 133

researcher, constraining them from using it for research pur- 134

poses only [28], [29], [30], [31]. Medical data sets are inher- 135

ently highly imbalanced because it is impossible to compile 136

a data set with an equal number of patients with health and 137

ailment samples. The techniques to tackle this problem are 138

pretty challenging themselves [32], [33], [34], [35]. OASIS 139

data-set containing 416 3D samples is used by Islam and 140

Zhang [36] to create a CNN model with the convolution 141
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TABLE 1. Literature evaluation of numerous recent cutting-edge approaches used in AD detection and classification.

layer, batch normalization layer, pooling layer, and Adam142

optimizer.143

To evaluate their model accuracy, the authors compared144

their model with two different pre-trained architectures like145

InceptionV4 [37] and ResNet [37]. To overcome the data-set146

imbalance problem, a cost-sensitive training technique is147

discussed in [38]. The cost matrix modified the result of148

the output layer to give more importance to classes with149

fewer samples, and the experiments achieved a precision of150

75%. A comparative analysis of state-of-the-art Alzheimer’s151

disease classification models is depicted in Table 1; we can152

note that the traditional deep and transfer learning models153

achieve good accuracy on the imbalanced datasets.154

A similar approach is adopted by Khan et al. [38] for the155

same OASIS data set. They used a 12-layer CNN archi-156

tecture, including convolution and pooling operations. They157

used Leaky ReLU [39] in combination with MaxPooling as158

activation function instead of ReLU [40] to avoid gradient159

vanishing issue [41]. The authors compared their model with160

four different pre-trained models like InceptionV3, Xcep-161

tion [42], MobileNetV2 [43], and VGG19 [25] to analyze the162

performance of themodel. Themodel achieves an accuracy of163

97.75% during experiments compared to pre-trained models.164

The same data set from Kaggle is used by165

Ebrahimighahnavieh et al. [14] to implement a hybrid frame-166

work using ResNet V2 with Inception V4. In this model, the167

ResNet V2 integrates residual connections to the pre-trained168

Inception V4 model [38]. In the experiments, the model169

is assessed by varying learning rates and optimizers, pro-170

ducing the highest accuracy of 79.12%. Pradhan et al. [31]171

perform a simple comparative study using two state-of-the-172

art pre-trained models like VGG19 and DenseNet169 [44].173

These two models are selected due to the ability of VGG19174

to train on many classes with remarkable accuracy, and 175

the DenseNet169 can handle vanishing gradient issues and 176

reduce the number of training parameters. The data set from 177

Kaggle was fed to both models via Image Data Genera- 178

tor (IDG) with different augmentation parameters. Through 179

the augmentation, the pre-trained models like VGG19 and 180

DenseNet169 achieved an accuracy of 88% and 87%, respec- 181

tively. Battineni et al. [33] employed anOASIS-3 data set and 182

created a five-layer CNN model to classify three different 183

early stages of Alzheimer’s disease [45]. 184

Not all the features extracted by a deep model are helpful 185

in accurately predicting the correct class of a sample, and 186

some hinder a model from reaching desired results [46], [47]. 187

This issue of deep models was tackled by El-Aal et al. [29] 188

and presented a novel approach to selecting specific fea- 189

tures from the feature map of deep models, which ultimately 190

improves the classification results and reduces the train- 191

ing time of the model. The ResNet101 and DenseNet201 192

for feature extraction, while the Rival Genetic Algorithm 193

(RGA) [48] and Probability Binary Particle SwarmOptimiza- 194

tion (PBPSO) [49] algorithms were used for feature selection. 195

The selected and control features were fed to a separately 196

created classification model. ResNet101 and DenseNet201 197

provided the best results with PBPSO and achieved an accu- 198

racy of 87.3% and 94.8 %, respectively. Raju et al. [50], [51], 199

[52], [53], [54], [55], [56] utilized a class activation heat-map 200

algorithm named Grad-CAM, which uses gradient data for 201

its calculations, and heat-maps to help in understanding the 202

working of a deep model. They selected a transfer learning 203

approach for training a deep model and modified the VGG16 204

by adding an extra dense layer at the end of the model. The 205

model’s performance is enhanced by Fastai [51], [55], [56], 206

[57], [58] using the grad-CAM to highlight the brain regions 207
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on MRI samples that the previous model used, making pre-208

dictions selected. SGD loss function in combination with209

Nesterov intensity [52], [56], [57], [58] further improved the210

classification results, and the model attained a test accuracy211

of 97.89%.212

The proposed model differs from other recently proposed213

methods in two ways:214

• Firstly, a few researchers have used data augmentation215

techniques to improve their results. In contrast, none216

of the reviewed research papers regarding the classifica-217

tion of Alzheimer’s disease has recognized the central218

problem of data-set imbalance. Our proposed model is219

oversampling the dataset by generating synthetic sam-220

ples using SMOTETOMEK.221

• Secondly, the previous models are trained using trans-222

fer learning containing many parameters affecting the223

network’s efficiency. In contrast, the proposed model is224

built from scratch to precisely classify the stages of AD225

by decreasing parameters and calculation costs.226

In DL, there is always scope for improvement, and most227

researchers have not achieved remarkable classification per-228

formance. Their methodologies and approaches suffer from229

various hindering factors because they have overlooked some230

inherent hurdles of DL models and medical image data-231

set [5], [12], [23]. The data set used in this research is232

collected from Kaggle, which contains 6400 samples of233

anonymous patients with only MRI scan images and their234

respective class labels information. It is a multi-class data-235

set consisting of four different classes, including a customary236

(NOD) class and three other classes representing three differ-237

ent early stages of AD, namely, VeryMild Demented (VMD),238

Mild Demented (MD), and Moderate Demented (MOD). It is239

a two-year-old data set, and various researchers have offered240

their contributions in this duration while obtaining good241

results by employing several techniques and combinations.242

III. THE PROPOSED ADD-NET MODEL FOR EARLY243

ALZHEIMER DIAGNOSIS244

In the medicine and healthcare field, image processing has245

brought quite a revolution. Nowadays, image processing has246

applications in almost every aspect of the medical field.247

Doctors can examine the organs of the human body from248

the inside without the need for surgery during the diag-249

nosis stage. There are various types of scans in the medi-250

cal field: X-Ray, Ultrasound, Magnetic Resonance Imaging251

(MRI), and Computed Tomography (CT) scans. A human252

being cannot possibly examine medical scans as precisely as253

a machine is capable and draw accurate conclusions from254

them. A device trained on a medical image data set can255

provide accurate results within seconds, whereas, on the other256

hand, it might take a whole panel of doctors to derive the257

same conclusion in days. Modern health care systems depend258

upon computer vision and image processing algorithms as259

their integral part. The importance cannot be overstated.260

AD is becoming one of the most rapidly increasing diseases261

FIGURE 1. Methodology of the proposed ADD-Net for early detection
of AD.

globally. A few researchers have used data augmentation 262

techniques to improve their results. In contrast, none of 263

the reviewed research papers regarding the classification 264

of Alzheimer’s disease has recognized the imbalance data- 265

set issue. Some researchers failed to obtain notable results 266

because they did not train their models enough. It is observed 267

that research papers focus on discovering new approaches 268

toward classification purposes for biomedical diagnoses. In 269

this proposed model, the input data set is pre-processed using 270

normalization. The essential process of converting the cate- 271

gorical data variables is to be provided to the ADD-Net using 272

the one-hot encoder. Then, the Synthetic Minority Oversam- 273

pling Technique (SMOTETOMEK) algorithm is utilized to 274

solve the imbalanced data-set issue that over-samples the 275

classes to balance the data-set. Afterward, the data set is 276

split into train, test, and validation by 60%, 20%, and 20%, 277

respectively. Furthermore, the features are extracted using a 278

standard CNN for effectively training theADD-Net, as shown 279

in Fig. 1. The size of training parameters is smaller in compar- 280

ison with [29], [31], and [33] for the robustness of the model 281

in AD classification. The Grad-CAM heat-map algorithm is 282
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utilized to visualize the class activation map, highlighting the283

features that lead to the classification of an image sample.284

A. DESCRIPTION OF THE AD DATASET285

Several data sets are available on the internet for AD clas-286

sification. Many AD data sets are in CSV format and are287

unsuitable for this research. Dedicated organizations like288

ADNI and OASIS also provide access to their data sets for289

research and educational purposes. However, the samples in290

both of these data sets are in 3-Dimensional image format,291

and the size of the data sets is gigantic. The OASIS data set292

is 18 gigabytes, while the ADNI dataset is 450 gigabytes.293

The data set used in this research is collected from Kaggle,294

which contains samples of anonymous patients with only295

MRI scan images and their respective class label information.296

It is a multi-class data set consisting of different views and297

four classes, including an average NOD class and three other298

classes representing three different early stages of AD. VMD,299

MD, and MOD are slightly observable with the bare eye in300

Fig. 2.301

FIGURE 2. Image samples from AD dataset without up-sampling through
SMOTETOMEK.

According to the description of the data set, each sample302

in the data set available on Kaggle is personally verified by303

the uploader himself. Also, the data set size is reasonable, and304

the pieces are already cleaned up, i.e., resized and organized.305

Based on these factors, this data set is used in our research.306

The data set has 6400 samples in total. The samples are307

individual three-channel (RGB) images of 176 x 208 pixels308

belonging to four different classes. The number of samples309

in the NOD class is 3200. The remaining three classes,310

VMD, MD, and MOD, have 2240, 896, and 64 images,311

respectively. The only downside of this data set is that it is312

imbalanced, as discussed in Table 2. To solve this problem,313

we use SMOTETOMEK to generate synthetic data for each314

imbalance class concerning the balanced class, as shown in315

Fig. 2. The data set is divided into 60%, 20%, and 20% for316

training, validation, and test set, respectively.317

TABLE 2. AD data-set class distribution before up-sampling through
SMOTETOMEK.

1) BALANCING THE AD DATA SET USING SMOTETOMEK 318

Typically, oversampling and under-sampling are two tech- 319

niques for re-sampling. However, another type of re-sampling 320

approach exists, which is a hybrid of both methods. 321

For this research study, we have employed the hybrid 322

SMOTETOMEK algorithm. It combines SMOTE, the up- 323

sampling algorithm, and TOMEK, the down-sampling 324

method. SMOTE generates new samples relying on class 325

nearest neighbors, while TOMEK is an implementation 326

of condensed nearest neighbors. Both algorithms work in 327

sequence, and SMOTE chooses a random instance from a 328

minority class and increases its proportion by interpolating 329

new samples. TOMEK then selects a random sample and 330

discards it if its nearest neighbors belong to the minority 331

class. In this way, SMOTETOMEK evens the examples of 332

each type and effectively solves the dataset imbalance prob- 333

lem as depicted in Table 3. To balance out the data set, 334

SMOTETOMEK utilizes the Nearest Neighbor technique to 335

interpolate new imitation samples for the minority classes 336

shown in Fig. 3. 337

TABLE 3. AD data-set class distribution after up-sampling through
SMOTETOMEK.

FIGURE 3. Synthetic image samples generated through SMOTETOMEK for
all classes.
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FIGURE 4. Architecture of the proposed ADD-Net for early detection of AD.

B. ADD-NET MODEL COMPONENTS338

The main components of the proposed model are briefly339

discussed in the next subsections.340

1) THE PROPOSED ADD-NET NETWORK ARCHITECTURE341

The CNN architecture is based on the biological structure of342

the human brain, and it is mainly used in computer vision343

applications like image classification, image segmentation,344

and object detection. Previously designed deep models pre-345

ferred it due to its translation-invariant nature [48]. The trans-346

lation or space invariance implies that a CNN can recognize347

the same feature regardless of its position in various images.348

This paper proposes a novel CNN model from scratch to349

perform accurate AD classification. The proposed ADD-Net350

is comprised of four convolutional blocks, and each convo-351

lutional block has a Rectified Linear Unit (ReLU) activa-352

tion function and a 2D average pooling layer, two dropout353

layers, two dense layers, and a SoftMax classification layer,354

as depicted in Fig. 4. The detailed network architecture and355

model summary of the proposed model used for the clas-356

sification of AD with the subsequent layer is discussed in357

Table 4, and a description of hyper-parameters that plays358

a vital role in practical training of the ADD-Net model in359

Table 5.360

2) ADD-NET CONVOLUTIONAL BLOCKS361

The convolutional block is the main block of the pro-362

posed ADD-Net, and each convolutional block consists of363

TABLE 4. Total parameters for the proposed ADD-Net model.

a convolutional 2D, a ReLU, and an average-pooling2D. 364

The kernel initializer is used to choose weights for the con- 365

volutional 2D layer. The ReLU activation function is used 366

to overcome the gradient vanishing problem and allow the 367

network to learn and perform faster. At the same time, the 368
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TABLE 5. List of hyper parameters that are used in ADD-Net architecture.

convolutional 2D down-samples the image and its spatial369

dimensions by taking the average value over an input window370

(of size defined by pool_size) for each channel of the input.371

The convolutional layers work in asymmetry, and the features372

are gradually built. Local patterns, like edges, lines, and373

curves, are extracted in the initial layers, and local features374

are extracted based on these patterns, as shown in Fig. 5.375

Consecutively, the model extracts high-level features and376

enables the deep model to classify an image more accurately.377

FIGURE 5. Typical CNN Model.

3) DROPOUT LAYER378

Dropout layers turn nodes on and off to reduce the training379

time of the model and decrease the network complexity.380

Dropout randomly switches off nodes using probability dis-381

tribution during each epoch, preventing models from over-382

fitting. As a result, the model learns all the relevant features383

and entirely contains various elements in each iteration.384

4) FLATTEN LAYER385

Flatten layer is placed between the convolution layers and386

dense layers. Convolution layers work with tensor data types387

for input, while dense layers require information in a 1-388

Dimensional format. Flatten layer vectorizes the feature map389

to feed it to dense layers, as depicted in Fig. 6.390

FIGURE 6. Details of flatten operation to vectorize the feature map.

C. DENSE BLOCK 391

The are two Dense blocks in the proposed architecture and 392

each ADD-Net block has few layers. The details of each layer 393

is discussed in the next subsection. 394

1) ReLU ACTIVATION 395

Activation functions are mathematical operations that decide 396

whether output from a perceptron is to be forwarded to the 397

next layer. In short, they activate and deactivate nodes in a 398

deep model. The activation function is used in the output 399

layer to start the node, which returns its label, which is then 400

assigned to the image processed through the model. There are 401

several activation functions. We used ReLU in hidden layers 402

because of its simple and time-saving calculation. SoftMax, 403

a probability-based activation function, is used for the output 404

layer because our model is for multi-class classification. 405

2) DENSE LAYER 406

The dense layer is also called the fully connected layer. This 407

layer inputs a single vector and produces output based on its 408

parameters. The images are identified and assigned a class 409

label in these layers. The learning of the model takes place 410

in fully connected layers via the back-propagation method. 411

The number of trainable parameters of a model is determined 412

based on the number of values used in each dense layer. 413

SoftMax is used after a couple of layers, with the number of 414

neurons equal to the number of classes [49]. The labels are 415

one-hot encoding in multi-class classification, and only the 416

positive type is present in the loss term. 417

IV. EVALUATION OF THE PROPOSED ADD-NET MODEL 418

The experiments were executed on a personal computer sys- 419

tem equipped with two Intel Xeon 2687W v4 (3.0 GHz clock 420

speed, 12 cores, and 24 threads) CPUs, 64 GB RAM, 5 GB 421

(NVIDIA) P2000 GPU (Graphical Processing Unit). The 422

model’s evaluation was conducted using the test set that was 423

created from splitting the data set before training the model. 424
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Using several metrics ensures the robustness of a model from425

every angle. The combined understanding of these results426

determines the successful training of a model. For instance,427

if accuracy is very high, say above 90% does not necessarily428

mean that the model is excellent. Several other factors are429

involved, like loss, over-fitting, etc. We employed different430

metrics to benchmark the performance of our model. The431

following terms are extensively used when observing various432

metrics of a classifier and the source code will be publicly433

available at https://github.com/shahidzikria/ADD-Net.434

A. ACCURACY435

Accuracy is the measure of total correct predictions436

out of accurate predictions obtained using the following437

expressions:438

Accuracy =
(

TP+ TN
TP+ FN + FP+ TN

)
(1)439

where TP, TN, FN, and FP are True Positive, True Negative,440

False Negative, and False Positive values, respectively.441

B. PRECISION442

Precision is the ratio of correct positive predictions to total443

positive predictions, and it is calculated using the following444

equation:445

Precision =
(

TP
TP+ FP

)
(2)446

C. RECALL447

The recall is also known as the sensitivity score or actual pos-448

itive rate. It is the comparison of correct positive predictions449

to total actual correct positives. The recall is calculated using450

the following equation:451

Recall =
(

TP
TP+ FN

)
(3)452

D. F1-SCORE453

Ideally, a value of 1.0 in precision and 1.0 in the recall is454

considered an ideal case for a classification model. F1-score455

is the harmonic mean of precision and recall. F1-score is456

unique in the sense that it plots its graph with a separate457

line for each class label. The F1-score is computed using the458

following equation:459

F1 =
(
2 ∗

Precision ∗ Recall
Precision + Recall

)
(4)460

E. RECEIVER OPERATING CHARACTERISTICS (ROC) CURVE461

AROC curve is a graphical way to illustrate the possible con-462

nection between sensitivity and specificity for every possible463

cut-off for a combination of tests. The ROC-curve graph is464

displayed with the help of 1–specificity (on the x-axis) and465

sensitivity (on the y-axis). While the 1–specificity is False466

Positive Rate and sensitivity is True Positive Rate can be467

obtained through the following expressions: 468

TPR =
(

FP
FP+ FN

)
(5) 469

FPR =
(

FP
FP+ TN

)
(6) 470

F. CONFUSION MATRIX 471

A confusion matrix is used to assess and calculate different 472

metrics of a classification model. It provides the division of 473

numbers and all the predictions a model has made during the 474

training or testing phase. 475

G. LOSS FUNCTION 476

Loss functions calculate themathematical difference between 477

the predicted value and the actual value. For this research, 478

we have used a categorical cross-entropy algorithm for loss. 479

Loss = y − y (7) 480

LCE = −
k∑

n=1

(Li log (pi) ) (8) 481

where L is the calculated loss of each class, and P is the 482

probability calculated by the SOFT function. 483

H. THE PROPOSED MODEL COMPARISON WITH RECENT 484

MODELS USING ROC 485

ROC curve is used to analyze the performance of clinical tests 486

and, more specifically, the accuracy of a classifier for binary 487

or multi-classification. The Area Under Curve (AUC) in a 488

ROC curve is used to measure the usefulness of the classifier, 489

where greater the AUC generally means greater the useful- 490

ness of the classifier.We check the usefulness and accuracy of 491

our proposedADD-Netmodel using the ROC curve usingAD 492

data-set with and without SMOTETOMEK. The proposed 493

ADD-Net is compared using the AD dataset’s ROC curve 494

with DenseNet169, InceptionResNet V2, and VGG19. The 495

proposed ADD-Net, DenseNet169, InceptionResNet V2, and 496

VGG19 achieved ROC values of 79.79%, 91.17%, 82.37%, 497

95.21%, respectively on imbalanced AD dataset as depicted 498

in Fig. 7. After balancing the AD dataset with SMOTE- 499

TOMEK, the proposed ADD-Net, DenseNet169, Inception- 500

ResNet V2, and VGG19 achieved AUC values of 97.99%, 501

94.92%, 94.75%, 97.01%, respectively as depicted in Fig. 8. 502

I. ADD-NET COMPARISON WITH OTHER MODELS USING 503

EXTENSION OF ROC FOR MULTI CLASS 504

ROC curves are commonly used in binary classification 505

to investigate a classifier’s output. Binarizing the output 506

is required to expand the ROC curve and ROC area to 507

multi-class or multi-label classification. One ROC curve can 508

be generated for each label; however, each element of the 509

label indicator matrix can also be treated as a binary predic- 510

tion (micro-averaging). The proposed ADD-Net is compared 511

using the Extension of the ROC curve with DenseNet169, 512
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FIGURE 7. ROC curve results of DenseNet, InceptionResNet V2,VGG19 and ADD-Net without SMOTETOMEK.

FIGURE 8. ROC curve results of DenseNet, InceptionResNet V2, VGG19 and ADD-Net with SMOTETOMEK.

InceptionResNet V2, and VGG19 on the balance and imbal-513

ance AD dataset as depicted in Fig. 9. We can note that514

after balancing the AD data-set using the SMOTETOMEK515

algorithm, the AUC significantly for all the approaches, 516

as shown in Fig. 10. AUC has also noted a similar effect 517

for all the classes of the proposed ADD-Net. The AUC of 518
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FIGURE 9. Extension receiver results of DenseNet, InceptionResNet V2, VGG19 and ADD-Net without SMOTETOMEK.

FIGURE 10. Extension receiver results of DenseNet, InceptionResNet V2, VGG19 and ADD-Net with SMOTETOMEK.

class 0 (MD), class 1 (MOD), class 2 (NOD), and class 3519

(VMD) is 69.19%, 50.0%, 75.79%, and 68.27%, respec-520

tively without balancing the data-set. After balancing the AD521

data-set, the AUC of class 0 (MD), class 1 (MOD), class 2 522

(NOD), and class 3 (VMD) is 99.7%, 1.00%, 98.10%, and 523

98.59%, respectively. These improvements in AUC prove the 524
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FIGURE 11. Accuracy comparison of DenseNet169, InceptionResNet V2, VGG19 and ADD-Net without
SMOTETOMEK.

authenticity of the SMOTETOMEK algorithm and feature525

selection of the ADD-Net model.526

J. ACCURACY COMPARISON AGAINST OTHER MODEL527

WITH AND WITH SMOTETOMEK528

SMOTETOMEK algorithm is applied to the data set to529

up-sample the number of images in classes with fewer sam-530

ples. It increased the size of the data set from 6400 models to531

12800 instances, i.e., 3200 equal numbers of pictures for each532

class. Hence, balancing out the data imbalance problem. The533

contrast between the twomethods is utilizing the up-sampling534

technique, SMOTETOMEK.535

The common point of both models is their architec-536

ture, consisting of a pre-trained model and fully con-537

nected dense layers for training. For a fair comparison,538

we evaluated our proposed and recent hybrid models like539

DenseNet169, VGG19, and InceptionResNet V2 using the540

same AD dataset before and after balancing it through541

SMOTETOMEK. The system provides remarkable results542

with SMOTETOMEK for the proposed and other mod-543

els. The proposed ADD-Net model, DenseNet169, VGG19,544

and InceptionResNet V2 achieved an accuracy of 66.1%,545

87.6%, 94.5%, 77.80%, respectively, using an imbalanced546

AD dataset as shown in Fig. 11. All models, like ADD-Net,547

DenseNet169, VGG19, and InceptionResNet V2, achieved548

accuracies of 98.63%, 96.14%, 97.56%, 96.03%, respec-549

tively, using the balanced AD data-set. This significant550

improvement in accuracies of all the models is visible551

from Fig. 12.552

K. AUC COMPARISON OF PROPOSED MODELS WITH 553

OTHER HYBRID MODELS 554

Several deep models were created to classify the early stages 555

of AD. Some were conventional CNN models, while others 556

were based on pre-trained deep architectures. Our proposed 557

model is a deep CNN-based ADD-Net consisting of different 558

ADD blocks and is very effective in classifying the different 559

AD classes, as discussed earlier in this paper. We also created 560

a few hybrid models using state-of-the-art classification mod- 561

els InceptionResNet V2, VGG19, andDenseNet169. The first 562

model is a hybrid framework of DenseNet169 andMobileNet 563

V2, reaching an AUC = 98% and AUC = 99% before and 564

after balancing the AD data-set through SMOTETOMEK as 565

depicted in Fig. 13. The second hybrid model was created 566

using Inception ResNet V2 andMobileNet V2, and its evalua- 567

tion AUC results are 94.8% and 99.6% AUC on balanced and 568

imbalancedAD datasets, respectively. The third hybridmodel 569

is created through MobileNet V2 and VGG19, the AUC 570

values for this model are 95.9% and 98.89% using balanced 571

and imbalanced AD data sets, respectively. The proposed 572

model attained AUC values of 99.89% and 98.99% on both 573

AD datasets, as depicted in Fig. 14. As a result of the above 574

discussion, we noted that the performance of the proposed 575

model remains better and more consistent in comparison with 576

hybrid models in the form of AUC. 577

L. LOSS COMPARISON OF ADD-NET 578

WITH RECENT MODELS 579

Loss functions calculate themathematical difference between 580

predicted and actual values. For this research, we have used a 581
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FIGURE 12. Training process Accuracy of DenseNet, InceptionResNet V2, VGG19 and ADD-Net with SMOTETOMEK.

FIGURE 13. Training process AUC of DenseNet, InceptionResNet V2, VGG19 and ADD-Net without SMOTETOMEK.

categorical cross-entropy algorithm for loss calculation. Opti-582

mization functions are backtracking algorithms that adjust583

the weights and biases of layers based on the value of the 584

loss. However, the results are even more outstanding when 585
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FIGURE 14. Training process AUC of DenseNet, InceptionResNet V2, VGG19 and ADD-Net with SMOTETOMEK.

the model is trained with up-sampled images. The pro-586

posed model’s training accuracy reached 98.60%, while the587

validation obtained a 96.70% accuracy, 99.82% AUC, and an588

F1-score of 98.61%. The Loss values for InceptionResNet V2589

are 0.1041 and 0.5364, DenseNet169 is 0.1595 and 0.3187,590

VGG19 is 0.2083 and 0.09, and ADD-Net is 0.05 and 0.76 on591

both the data sets with and without up-sampling through592

SMOTETOMEK as depicted in Figs. 15 and 16.593

M. COMPARISON OF ADD-NET WITH RECENT MODELS594

USING F1-SCORE595

The input data set is normalized in this suggested ADD-Net596

model. The fundamental procedure of converting categorical597

data variables is delivered to the model utilizing the one-598

hot encoder. The SMOTETOMEK technique is then used to599

correct the unbalanced data-set problem by oversampling the600

classes to balance the data set. We evaluated the ADD-Net601

model on the AD data set with recent models like Dense602

Net169, VGG19, and InceptionResNet V2 for a fair compari-603

son. The system using SMOTETOMEKproduces remarkable604

results for the suggested and other models. The proposed605

ADD-Net model, DenseNet169, VGG19, and Inception-606

ResNet V2 achieved F1-score of 46.04%, 85.5%, 95.81%,607

75.68%, respectively using an imbalanced AD data-set as608

shown in Fig. 17. All models, like ADD-Net, DenseNet169,609

VGG19, and InceptionResNet V2, achieved an F1-score of610

98.6%, 96%, 97.50%, 96.1%, respectively, using the balanced611

AD data-set. This significant improvement in accuracies of 612

all the models is visible from Fig. 18. 613

N. COMPARISON OF ADD-NET WITH RECENT MODELS 614

USING PRECISION 615

Several deep models were developed to classify Alzheimer’s 616

disease in its early stages. Some algorithms were tradi- 617

tional CNN, while others were pre-trained deep architec- 618

tures. As mentioned earlier in this paper, our proposed model 619

is a deep CNN-based ADD-Net comprising distinct ADD 620

blocks. We compared our model with the InceptionRes- 621

Net V2, VGG19, and DenseNet169 classification models as 622

shown in Fig. 19; the first model is a hybrid framework 623

of DenseNet169 and MobileNet V2 with precision values 624

88.7% 96.1% and before and after balancing the AD data-set 625

using SMOTETOMEK. The second hybrid model was built 626

with Inception ResNet-V2 and MobileNet V2, and its eval- 627

uation precision values are 79.9% 96.6% on balanced and 628

unbalanced tasks, respectively. The third hybrid model is 629

developed using MobileNet V2 and VGG19, with precision 630

values are 94.7% and 97.6%, respectively, utilizing balanced 631

and imbalanced AD data sets. As shown in Fig. 20, the 632

proposed model achieved precision values are 74.5% 98.60% 633

on both AD datasets. As a result of the preceding discussion, 634

we discovered that the presented model’s performance is 635

better and more consistent than hybrid models in the form of 636

precision. 637
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FIGURE 15. Training loss of DenseNet, InceptionResNet V2, VGG19 and ADD-Net without SMOTETOMEK.

FIGURE 16. Training loss of DenseNet, InceptionResNet V2, VGG19 and ADD-Net with SMOTETOMEK.

O. COMPARISON OF ADD-NET WITH RECENT MODELS638

USING CONFUSION MATRIX639

In this proposed ADD-Net model, the input data set is640

pre-processed using normalization. The essential process of641

converting the categorical data variables is to be provided to 642

the model using the one-hot encoder. 643

Then, the SMOTETOMEK algorithm is applied to resolve 644

the imbalanced data-set issue that over-samples the classes 645
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FIGURE 17. F1-Score of DenseNet, InceptionResNet V2, VGG19 and ADD-Net without SMOTETOMEK.

FIGURE 18. F1-Score of DenseNet, InceptionResNet V2, VGG19 and ADD-Net with SMOTETOMEK.

to balance the data-set. For a fair comparison, we assessed646

the ADD-Net model with recent models selected for647

comparisons, like DenseNet169, VGG19, and Inception- 648

ResNet V2 on the AD dataset before and after balancing 649
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FIGURE 19. Precision results of DenseNet, InceptionResNet V2, VGG19 and ADD-Net without SMOTETOMEK.

FIGURE 20. Precision results of DenseNet, InceptionResNet V2, VGG19 and ADD-Net with SMOTETOMEK.

it through SMOTETOMEK up-sampling algorithm. The650

system provides remarkable results with SMOTETOMEK651

for the proposed and other models, as depicted in 652

Figs. 21 and 22. 653
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FIGURE 21. Confusion matrix’s of state-of-the-art algorithms and ADD-Net model without using SMOTETOMEK.

P. VISUALIZATION THROUGH GRADIENT-WEIGHTED654

CLASS ACTIVATION MAP655

Grad-CAM detects the discriminatory regions for a CNN656

classification by calculating its CAM using gradient data.657

Grad-CAM visualizes a map of all the working classes by658

integrating gradient information. Grad-CAM considers 2D659

activation’s along with the average gradient information.660

It supports recognizing what a network perceives and which661

neuron is firing in a specific deep layer [48]. The preceding662

class gradient is related to the channel, ensuring the last CNN663

layer generates a localization CAM displaying the image’s 664

critical locations that substantially affect the deep model’s 665

prediction, as shown in Fig. 23. To generate the CAM, the 666

class gradient score is computed relative to the feature maps 667

of the CNN layers [48]. 668

Q. DISCUSSION AND COMPARISON WITH OTHERS DEEP 669

MODELS USING UP-SAMPLING 670

The previous models used for comparison in this paper 671

are not very effective in handling data imbalance problems 672
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FIGURE 22. Confusion matrix’s of state-of-the-art algorithms and ADD-Net model with using SMOTETOMEK.

and are limited in their performance. Sometimes suffer673

from over-fitting because of this data imbalance issue or674

lose their accuracy in correctly detecting the AD classes.675

The ADD-NET achieved maximum accuracy by using the676

SMOTETOMEK. However, the DEMENET attained an677

accuracy of 92.88% using the SMOTE algorithm. The pro-678

posed model performed with distinction among all the deep679

CNN, deep transfer learning, and hybrid models that we used680

for comparison in this research study. All the simulation681

results using different quality metrics are evidence of the682

performance of deep ADD-NET. The detailed comparison683

of ADD-Net and other deep models with SMOTETOMEK 684

is discussed in Table 6. 685

V. LIMITATIONS 686

A solution to solve any real-world problem is not perfect 687

in every aspect; this ideal case for a solution is used to 688

solve a critical real-world problem that is well matured in 689

its early versions and does not need upgrades. Solutions are 690

prepared after studying the base requirement necessary to fix 691

a problem and then gradually improve by analyzing real-time 692

reviews about the system. In this proposed study, we present 693
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TABLE 6. Performance comparison of ADD-Net with state-of-the-art algorithms.

FIGURE 23. Generalization of the class activation map to locate the discriminative region through Grad-CAM.

a deep learning-based classification model named ‘‘ADD-694

Net’’ for classifying the early stages of Alzheimer’s disease.695

Although outperforming other models still has shortcom- 696

ings, the proposed mode efficiency suffers on the imbalanced 697
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dataset. As discussed above, due to an imbalanced dataset,698

the accuracy of deep learning models is compromised; our699

model suffers from the same problem when the dataset has a700

different number of samples in each class.701

VI. CONCLUSION702

In this paper, we proposed a novel deep CNN for detect-703

ing AD with relatively few parameters, and the proposed704

solution is ideal for training a smaller dataset. The pro-705

posed Alzheimer’s Disease Detection Network (ADD-Net)706

is built from scratch to precisely classify the stages of AD707

by decreasing parameters and calculation costs. Each block708

is specifically designed with many layers named ADD-709

block, which is used to classify the AD in its early stages710

for all the specific classes. The SMOTETOMEK method711

is employed for handling data-set imbalance problems for712

generating new instances to balance the number of samples713

for each category. Grad-CAM algorithm provides insight714

into CNN layers’ working by visualizing class activation715

heat-map. Our proposed deep model provides outstanding716

accuracy of 96.70%, 97% precision, Sensitivity (Recall) of717

97%, and an impressive AUC value of 99.82%. We will718

involve other pre-trained architectures and fine-tune trans-719

fer learning models to achieve more desirable results in the720

future.721
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