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ABSTRACT Alzheimer’s Disease (AD) is a neurological brain disorder marked by dementia and neurologi-
cal dysfunction that affects memory, behavioral patterns, and reasoning. Alzheimer’s disease is an incurable
disease that primarily affects people over 40. Alzheimer’s disease is diagnosed through a manual evaluation
of a patient’s MRI scan and neuro-psychological examinations. Deep Learning (DL), a type of Artificial
Intelligence (Al), has pioneered new approaches to automate medical image diagnosis. This study aims to
create a reliable and efficient system for classifying AD using MRI by applying the deep Convolutional
Neural Network (CNN). In this paper, we propose a new CNN architecture for detecting AD with relatively
few parameters, and the proposed solution is ideal for training a smaller dataset. This proposed model
successfully distinguishes the early stages of Alzheimer’s disease and shows class activation maps as a heat
map on the brain. The proposed Alzheimer’s Disease Detection Network (ADD-Net) is built from scratch to
precisely classify the stages of AD by decreasing parameters and calculation costs. The Kaggle MRI image
dataset has a significant class imbalance problem, and we exploited a synthetic oversampling technique to
evenly distribute the image among the classes to prevent the problem of class imbalance. The proposed
ADD-Net is extensively evaluated against DenseNet169, VGG19, and InceptionResNet V2 using precision,
recall, F1-score, Area Under the Curve (AUC), and loss. The ADD-Net achieved the following values for
evaluation metrics: 98.63%, 99.76%, 98.61%, 98.63%, 98.58%, and 0.0549% accuracy, AUC, Fl1-score,
precision, recall, and loss, respectively. The simulation results show that the proposed ADD-Net outperforms
other state-of-the-art models in all the evaluation metrics.

INDEX TERMS Deep learning, image classification, supervised learning, transfer learning, imbalanced
data-set, MRI data-set, computer-aided diagnosis, SMOTETOMEK, class activation.

I. INTRODUCTION

Alzheimer’s Disease (AD) is the most frequent kind of
dementia that needs substantial medical attention. Early
and precise analysis of AD prognosis is required to start
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therapeutic progress, and efficient patient therapy [1].
According to a study, 10 million new cases of dementia are
registered every year [2]. The World Health Organization
(WHO) reported that AD had surpassed cancer as the fifth
most significant cause of death, with the number of AD
patients expected to reach 152 million by 2050 [2]. AD is a
long-term neurological brain disease that gradually destroys
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brain cells, causing memory loss and cognitive problems and
finally accelerating the loss of ability to perform day-to-day
activities of real-life [3].

AD is a brain-neurological degeneration disorder [4]. It is
categorized as dementia, atrophy of the human brain affecting
memory, and causes loss of behavioral, social, and reasoning
faculties. It is caused by the accumulation of protein frag-
ments in the brain [5], [6], [7]. Plaques and tangles are formed
around the neurons inside the human brain, which results in
abnormal shrinking of lobes and hippocampus, and enlarged
ventricles [8]. It is an incurable fatal disease [9], [10] with a
lifetime of agony for the patient and a severe mental, phys-
ical, and financial toll of suffering for the patient’s family.
The cause of AD is unknown, and there are no effective
medications or therapies to reverse dementia. Mild Cognitive
Impairment (MCI), a pre-clinical stage of AD, is a transitory
state between normal ageing and AD.

Detecting the risk and severity of AD at its early stages is
very critical [11], [12]. However, Doctors can classify AD in
its early stages using neuro-imaging and computer-assisted
diagnostic approaches with less accuracy. Neuro-imaging,
including Computed Tomography (CT) scan, Positron Emis-
sion Tomography (PET) scan, and specifically Magnetic
Resonance Imaging (MRI) scan, play a vital role in med-
ical diagnosis [4]. It is an effective non-invasive method
that provides information about the human body. The
advancement of the medical diagnosis process has cre-
ated tremendous research trends in computer-aided diagnosis
nowadays [5], [6].

Over the years, numerous Machine Learning (ML) [13]
and Deep Learning (DL) [14] algorithms have been devel-
oped by many researchers around the globe for AD detection
and classification. Many researchers have achieved remark-
able results using the DL algorithms. However, there is still
room for improvement. In this series of DL models, a hybrid
Convolutional Neural Network (CNN), a CNN model with
slice selection, and a CNN model with histogram stretching
are introduced in [15], [16], and [17]. Others proposed a
CNN model with skull striping [18] and a CNN model which
utilized the slicing samples for pre-processing is introduced
in [19]. However, the focus of these deep models is primarily
biased towards classification due to the black-box nature of
CNN.

In the literature on AD, some researchers have devel-
oped miscellaneous tools and applications for automated
segmentation of neuro-images [20]. These applications
are Vol-Brain [21], and Fusion of neuro-imaging Pre-
processing [22]. Although these applications are practical
tools for segmenting neuro-image, the research focused on
visualizing the classification process through CNN layers is
scarce. The feature map of each convolution layer reveals var-
ious filters being applied to the image, and it provides a hint as
to what sort of filters the model uses to the image for feature
extraction [23]. This approach supports grad-CAM [24] heat-
map, which shows class activation via gradient-based local-
ization map.
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The proposed CNN model uses a series of conventional
blocks consisting of different deep layers to accomplish out-
standing classification results. The proposed ADD-Net aims
to obtain an accurate classification result for detecting AD in
its earlier stages with better accuracy. The main contributions
of the research study are:

o We propose a new convolutional neural network archi-
tecture for detecting AD with relatively few parameters,
and the proposed solution is ideal for training a smaller
dataset.

o The previous methods [22], [23], [25] accuracy com-
promised on Alzheimer’s data-set due to an imbalanced
number of classes. To handle the imbalance problem
of the Alzheimer’s data set, we exploited the SMOTE-
TOMEK oversampling algorithm, which interpolates
new images to balance the class samples.

« In our proposed model, we used the Grad-CAM to show
and highlight the infected part of the brain for different
stages of Alzheimer’s disease, and the generated heat
map intensities highlight each stage’s severity.

o The proposed model is extensively compared with sev-
eral other approaches using various evaluation parame-
ters: Accuracy, AUC, Precision, Recall, F1-score, and
size of trainable parameters. It is observed that our
approach outperforms other state-of-the-art models.

The rest of the paper is arranged in the following way: The
related studies of the proposed model are briefed in section II.
The methodology and proposed ADD-Net model for AD
classification details are presented with the description of
the dataset, and model components are shown in section III.
The visualization process and the ADD-Net model evaluation
with the state-of-the-art models are presented in section IV.
The ADD-Net’s limitations and the conclusion with future
goals are described in section V and section VI, respectively.

Il. RELATED WORK

Precise classification of medical images is a strenuous task
because of the complicated procedure of obtaining med-
ical data sets [25]. Unlike other data sets, medical data
sets are prepared by expert specialists and contain sensi-
tive and private information about patients, which cannot
be publicly disclosed to anyone. That is why organizations
and institutions like Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) [26] and Open Access Series of Imaging
Studies (OASIS) [27] providing medical data-sets have a
screening process for accessing their data-sets which requires
an application to be filled and terms to be agreed by the
researcher, constraining them from using it for research pur-
poses only [28], [29], [30], [31]. Medical data sets are inher-
ently highly imbalanced because it is impossible to compile
a data set with an equal number of patients with health and
ailment samples. The techniques to tackle this problem are
pretty challenging themselves [32], [33], [34], [35]. OASIS
data-set containing 416 3D samples is used by Islam and
Zhang [36] to create a CNN model with the convolution
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TABLE 1. Literature evaluation of numerous recent cutting-edge approaches used in AD detection and classification.

Results ... Imbalance

Approach Year Method Accuracy AUC Precision Recall F1-Score Modalities Handling

Shereen [29] 2021 DenseNet201, 94.86% 89.47% 83.74% 95.36% 4 None
ResNet101
AlexNet + SVM

Badiea [30] 2021 & 94.8% 99.7% - - - 2 None
AlexNet + ResNet50

Pradhan [31] 2021 2%2??;“169 & 82.6% 86.7% - - - 2 None

Vasukidevi 2021 CapsNet 94.3% 94.92% 95.89% 95.19% 1 None

[32]

Battineni [33] 2021 CNN Model 83.3% - - 1 None

Suganthe [16] 2021 Inception-ResNet-v2 79.12% 81.9% 70.64%  28.22% 3991% 1 None

. InceptionV4 + ResNet Data

Jyoti [34] 2018 + ADNet 93.18% 94% 93% 92% 5 Augmentation
DenseNet121 +

Jyoti [35] 2017 DenseNet161 + 93.18% 94% 93% 92% 4 None
DenseNet169

Jyoti [36] 2017 InceptionV4 73.75% - 1 None

layer, batch normalization layer, pooling layer, and Adam
optimizer.

To evaluate their model accuracy, the authors compared
their model with two different pre-trained architectures like
InceptionV4 [37] and ResNet [37]. To overcome the data-set
imbalance problem, a cost-sensitive training technique is
discussed in [38]. The cost matrix modified the result of
the output layer to give more importance to classes with
fewer samples, and the experiments achieved a precision of
75%. A comparative analysis of state-of-the-art Alzheimer’s
disease classification models is depicted in Table 1; we can
note that the traditional deep and transfer learning models
achieve good accuracy on the imbalanced datasets.

A similar approach is adopted by Khan et al. [38] for the
same OASIS data set. They used a 12-layer CNN archi-
tecture, including convolution and pooling operations. They
used Leaky ReLU [39] in combination with MaxPooling as
activation function instead of ReLU [40] to avoid gradient
vanishing issue [41]. The authors compared their model with
four different pre-trained models like InceptionV3, Xcep-
tion [42], MobileNetV2 [43], and VGG19 [25] to analyze the
performance of the model. The model achieves an accuracy of
97.75% during experiments compared to pre-trained models.

The same data set from Kaggle is wused by
Ebrahimighahnavieh et al. [14] to implement a hybrid frame-
work using ResNet V2 with Inception V4. In this model, the
ResNet V2 integrates residual connections to the pre-trained
Inception V4 model [38]. In the experiments, the model
is assessed by varying learning rates and optimizers, pro-
ducing the highest accuracy of 79.12%. Pradhan et al. [31]
perform a simple comparative study using two state-of-the-
art pre-trained models like VGG19 and DenseNet169 [44].
These two models are selected due to the ability of VGG19
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to train on many classes with remarkable accuracy, and
the DenseNet169 can handle vanishing gradient issues and
reduce the number of training parameters. The data set from
Kaggle was fed to both models via Image Data Genera-
tor (IDG) with different augmentation parameters. Through
the augmentation, the pre-trained models like VGG19 and
DenseNet169 achieved an accuracy of 88% and 87%, respec-
tively. Battineni et al. [33] employed an OASIS-3 data set and
created a five-layer CNN model to classify three different
early stages of Alzheimer’s disease [45].

Not all the features extracted by a deep model are helpful
in accurately predicting the correct class of a sample, and
some hinder a model from reaching desired results [46], [47].
This issue of deep models was tackled by El-Aal et al. [29]
and presented a novel approach to selecting specific fea-
tures from the feature map of deep models, which ultimately
improves the classification results and reduces the train-
ing time of the model. The ResNetl0l and DenseNet201
for feature extraction, while the Rival Genetic Algorithm
(RGA) [48] and Probability Binary Particle Swarm Optimiza-
tion (PBPSO) [49] algorithms were used for feature selection.
The selected and control features were fed to a separately
created classification model. ResNet101 and DenseNet201
provided the best results with PBPSO and achieved an accu-
racy of 87.3% and 94.8 %, respectively. Raju ez al. [50], [51],
[52], [53], [54], [55], [56] utilized a class activation heat-map
algorithm named Grad-CAM, which uses gradient data for
its calculations, and heat-maps to help in understanding the
working of a deep model. They selected a transfer learning
approach for training a deep model and modified the VGG16
by adding an extra dense layer at the end of the model. The
model’s performance is enhanced by Fastai [51], [55], [56],
[57], [58] using the grad-CAM to highlight the brain regions
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on MRI samples that the previous model used, making pre-
dictions selected. SGD loss function in combination with
Nesterov intensity [52], [56], [57], [58] further improved the
classification results, and the model attained a test accuracy
of 97.89%.

The proposed model differs from other recently proposed
methods in two ways:

« Firstly, a few researchers have used data augmentation
techniques to improve their results. In contrast, none
of the reviewed research papers regarding the classifica-
tion of Alzheimer’s disease has recognized the central
problem of data-set imbalance. Our proposed model is
oversampling the dataset by generating synthetic sam-
ples using SMOTETOMEK.

« Secondly, the previous models are trained using trans-
fer learning containing many parameters affecting the
network’s efficiency. In contrast, the proposed model is
built from scratch to precisely classify the stages of AD
by decreasing parameters and calculation costs.

In DL, there is always scope for improvement, and most
researchers have not achieved remarkable classification per-
formance. Their methodologies and approaches suffer from
various hindering factors because they have overlooked some
inherent hurdles of DL models and medical image data-
set [5], [12], [23]. The data set used in this research is
collected from Kaggle, which contains 6400 samples of
anonymous patients with only MRI scan images and their
respective class labels information. It is a multi-class data-
set consisting of four different classes, including a customary
(NOD) class and three other classes representing three differ-
ent early stages of AD, namely, Very Mild Demented (VMD),
Mild Demented (MD), and Moderate Demented (MOD). It is
a two-year-old data set, and various researchers have offered
their contributions in this duration while obtaining good
results by employing several techniques and combinations.

Ill. THE PROPOSED ADD-NET MODEL FOR EARLY
ALZHEIMER DIAGNOSIS

In the medicine and healthcare field, image processing has
brought quite a revolution. Nowadays, image processing has
applications in almost every aspect of the medical field.
Doctors can examine the organs of the human body from
the inside without the need for surgery during the diag-
nosis stage. There are various types of scans in the medi-
cal field: X-Ray, Ultrasound, Magnetic Resonance Imaging
(MRI), and Computed Tomography (CT) scans. A human
being cannot possibly examine medical scans as precisely as
a machine is capable and draw accurate conclusions from
them. A device trained on a medical image data set can
provide accurate results within seconds, whereas, on the other
hand, it might take a whole panel of doctors to derive the
same conclusion in days. Modern health care systems depend
upon computer vision and image processing algorithms as
their integral part. The importance cannot be overstated.
AD is becoming one of the most rapidly increasing diseases
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globally. A few researchers have used data augmentation
techniques to improve their results. In contrast, none of
the reviewed research papers regarding the classification
of Alzheimer’s disease has recognized the imbalance data-
set issue. Some researchers failed to obtain notable results
because they did not train their models enough. It is observed
that research papers focus on discovering new approaches
toward classification purposes for biomedical diagnoses. In
this proposed model, the input data set is pre-processed using
normalization. The essential process of converting the cate-
gorical data variables is to be provided to the ADD-Net using
the one-hot encoder. Then, the Synthetic Minority Oversam-
pling Technique (SMOTETOMEK) algorithm is utilized to
solve the imbalanced data-set issue that over-samples the
classes to balance the data-set. Afterward, the data set is
split into train, test, and validation by 60%, 20%, and 20%,
respectively. Furthermore, the features are extracted using a
standard CNN for effectively training the ADD-Net, as shown
in Fig. 1. The size of training parameters is smaller in compar-
ison with [29], [31], and [33] for the robustness of the model
in AD classification. The Grad-CAM heat-map algorithm is
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utilized to visualize the class activation map, highlighting the
features that lead to the classification of an image sample.

A. DESCRIPTION OF THE AD DATASET

Several data sets are available on the internet for AD clas-
sification. Many AD data sets are in CSV format and are
unsuitable for this research. Dedicated organizations like
ADNI and OASIS also provide access to their data sets for
research and educational purposes. However, the samples in
both of these data sets are in 3-Dimensional image format,
and the size of the data sets is gigantic. The OASIS data set
is 18 gigabytes, while the ADNI dataset is 450 gigabytes.
The data set used in this research is collected from Kaggle,
which contains samples of anonymous patients with only
MRI scan images and their respective class label information.
It is a multi-class data set consisting of different views and
four classes, including an average NOD class and three other
classes representing three different early stages of AD. VMD,
MD, and MOD are slightly observable with the bare eye in
Fig. 2.

MD MOD

VMD NOD

FIGURE 2. Image samples from AD dataset without up-sampling through
SMOTETOMEK.

According to the description of the data set, each sample
in the data set available on Kaggle is personally verified by
the uploader himself. Also, the data set size is reasonable, and
the pieces are already cleaned up, i.e., resized and organized.
Based on these factors, this data set is used in our research.
The data set has 6400 samples in total. The samples are
individual three-channel (RGB) images of 176 x 208 pixels
belonging to four different classes. The number of samples
in the NOD class is 3200. The remaining three classes,
VMD, MD, and MOD, have 2240, 896, and 64 images,
respectively. The only downside of this data set is that it is
imbalanced, as discussed in Table 2. To solve this problem,
we use SMOTETOMEK to generate synthetic data for each
imbalance class concerning the balanced class, as shown in
Fig. 2. The data set is divided into 60%, 20%, and 20% for
training, validation, and test set, respectively.
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TABLE 2. AD data-set class distribution before up-sampling through
SMOTETOMEK.

Class | No. of Images
Mild Demented (MD) 896

Moderate Demented (MOD) 64
Non-Demented (NOD) 3200

Very Mild Demented (VMD) 2240

1) BALANCING THE AD DATA SET USING SMOTETOMEK
Typically, oversampling and under-sampling are two tech-
niques for re-sampling. However, another type of re-sampling
approach exists, which is a hybrid of both methods.
For this research study, we have employed the hybrid
SMOTETOMEK algorithm. It combines SMOTE, the up-
sampling algorithm, and TOMEK, the down-sampling
method. SMOTE generates new samples relying on class
nearest neighbors, while TOMEK is an implementation
of condensed nearest neighbors. Both algorithms work in
sequence, and SMOTE chooses a random instance from a
minority class and increases its proportion by interpolating
new samples. TOMEK then selects a random sample and
discards it if its nearest neighbors belong to the minority
class. In this way, SMOTETOMEK evens the examples of
each type and effectively solves the dataset imbalance prob-
lem as depicted in Table 3. To balance out the data set,
SMOTETOMEK utilizes the Nearest Neighbor technique to
interpolate new imitation samples for the minority classes
shown in Fig. 3.

TABLE 3. AD data-set class distribution after up-sampling through
SMOTETOMEK.

Class | No. of Images
Mild Demented (MD) 3200
Moderate Demented (MOD) 3200
Non-Demented (NOD) 3200
Very Mild Demented (VMD) 3200

MD MOD

VMD NOD

FIGURE 3. Synthetic image samples generated through SMOTETOMEK for
all classes.
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FIGURE 4. Architecture of the proposed ADD-Net for early detection of AD.
B. ADD-NET MODEL COMPONENTS TABLE 4. Total parameters for the proposed ADD-Net model.
The main components of the proposed model are briefly
discussed in the next subsections. Model Summary
Layer Type | Output Shape | Parameters
1) THE PROPOSED ADD-NET NETWORK ARCHITECTURE Tnput Layer | (None, 176, 208, 3) 0
The CNN arch{tecture is I.aased'on the blqloglcal structurg of ADD-NET Block01 | (None. 86 102, 16) | 1216
the bumgn br:am,.and it is m.al.nly.useq in computer vision ADD.NET Blocko2 | (None, 41,49, 32) 12832
applications like image classification, image segmentation,
and object detection. Previously designed deep models pre- ADD-NET Block03 | (None, 18, 22, 64) | 51264
ferred it due to its translation-invariant nature [48]. The trans- ADD-NET Block04 | (None, 7,9, 128) | 204928
lation or space invariance implies that a CNN can recognize Dropout_1 | (None,7,9,128) | 0
the same feature regardless of its position in various images. Flatten | (None, 8064) |0
This paper proposes a noys:l CNN model from scratch to Dense_ 1 | (None, 256) | 2064640
perform accurate AD classification. The proposed ADD-Net
. . ] Dropout_2 | (None, 256) | 0
is comprised of four convolutional blocks, and each convo-
lutional block has a Rectified Linear Unit (ReLU) activa- Dense_2 | (None, 4) | 1028
tion function and a 2D average pooling layer, two dropout Output: SOFTMAX | (None, 4) | 0
layers, two dense layers, and a SoftMax classification layer, Total Parameters 23,35,908
as depicted in Fig. 4. The detailed network architecture and Trainable Parameters 23.35.909
model summary of the proposed model used for the clas- -
Non-Trainable Parameters 0

sification of AD with the subsequent layer is discussed in
Table 4, and a description of hyper-parameters that plays
a vital role in practical training of the ADD-Net model in
Table 5.

2) ADD-NET CONVOLUTIONAL BLOCKS
The convolutional block is the main block of the pro-
posed ADD-Net, and each convolutional block consists of

VOLUME 10, 2022

a convolutional 2D, a ReLU, and an average-pooling2D.
The kernel initializer is used to choose weights for the con-
volutional 2D layer. The ReLU activation function is used
to overcome the gradient vanishing problem and allow the
network to learn and perform faster. At the same time, the
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TABLE 5. List of hyper parameters that are used in ADD-Net architecture. Flatten
Input Layer
Sr# | Parameter Name | Parameter Type —
. 14
1 | Optimizer | SGD — IS
2 | Learning rate | 0.01 i
. 16
3 | Batch size 8 VOLUME 4. 2016 —_—
4 | Epochs | 40 .
5 | Call back | ReduceLRonPlateau A 10
- — 1afas |16 =
6 | Hidden layer activation | ReLU 9
7 | Output layer activation | SoftMAX el sl B 5
s | a2 4
Conv2D 2 Output Layer

convolutional 2D down-samples the image and its spatial
dimensions by taking the average value over an input window
(of size defined by pool_size) for each channel of the input.
The convolutional layers work in asymmetry, and the features
are gradually built. Local patterns, like edges, lines, and
curves, are extracted in the initial layers, and local features
are extracted based on these patterns, as shown in Fig. 5.
Consecutively, the model extracts high-level features and
enables the deep model to classify an image more accurately.

Input Convolutional layer

Pooling layer

Fully connected layer

Output

FIGURE 5. Typical CNN Model.

3) DROPOUT LAYER

Dropout layers turn nodes on and off to reduce the training
time of the model and decrease the network complexity.
Dropout randomly switches off nodes using probability dis-
tribution during each epoch, preventing models from over-
fitting. As a result, the model learns all the relevant features
and entirely contains various elements in each iteration.

4) FLATTEN LAYER

Flatten layer is placed between the convolution layers and
dense layers. Convolution layers work with tensor data types
for input, while dense layers require information in a 1-
Dimensional format. Flatten layer vectorizes the feature map
to feed it to dense layers, as depicted in Fig. 6.
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FIGURE 6. Details of flatten operation to vectorize the feature map.

C. DENSE BLOCK

The are two Dense blocks in the proposed architecture and
each ADD-Net block has few layers. The details of each layer
is discussed in the next subsection.

1) ReLU ACTIVATION

Activation functions are mathematical operations that decide
whether output from a perceptron is to be forwarded to the
next layer. In short, they activate and deactivate nodes in a
deep model. The activation function is used in the output
layer to start the node, which returns its label, which is then
assigned to the image processed through the model. There are
several activation functions. We used ReLU in hidden layers
because of its simple and time-saving calculation. SoftMax,
a probability-based activation function, is used for the output
layer because our model is for multi-class classification.

2) DENSE LAYER

The dense layer is also called the fully connected layer. This
layer inputs a single vector and produces output based on its
parameters. The images are identified and assigned a class
label in these layers. The learning of the model takes place
in fully connected layers via the back-propagation method.
The number of trainable parameters of a model is determined
based on the number of values used in each dense layer.
SoftMax is used after a couple of layers, with the number of
neurons equal to the number of classes [49]. The labels are
one-hot encoding in multi-class classification, and only the
positive type is present in the loss term.

IV. EVALUATION OF THE PROPOSED ADD-NET MODEL

The experiments were executed on a personal computer sys-
tem equipped with two Intel Xeon 2687W v4 (3.0 GHz clock
speed, 12 cores, and 24 threads) CPUs, 64 GB RAM, 5 GB
(NVIDIA) P2000 GPU (Graphical Processing Unit). The
model’s evaluation was conducted using the test set that was
created from splitting the data set before training the model.
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Using several metrics ensures the robustness of a model from
every angle. The combined understanding of these results
determines the successful training of a model. For instance,
if accuracy is very high, say above 90% does not necessarily
mean that the model is excellent. Several other factors are
involved, like loss, over-fitting, etc. We employed different
metrics to benchmark the performance of our model. The
following terms are extensively used when observing various
metrics of a classifier and the source code will be publicly
available at https://github.com/shahidzikria/ADD-Net.

A. ACCURACY

Accuracy is the measure of total correct predictions
out of accurate predictions obtained using the following
expressions:

ey

( TP + TN )
Accuracy =

TP+ FN + FP+ 1N

where TP, TN, FN, and FP are True Positive, True Negative,
False Negative, and False Positive values, respectively.

B. PRECISION
Precision is the ratio of correct positive predictions to total
positive predictions, and it is calculated using the following

equation:
. TP
Precision = ——— 2)
TP + FP
C. RECALL
The recall is also known as the sensitivity score or actual pos-
itive rate. It is the comparison of correct positive predictions
to total actual correct positives. The recall is calculated using
the following equation:
TP
3

Recall = ——
TP + FN

D. F1-SCORE

Ideally, a value of 1.0 in precision and 1.0 in the recall is
considered an ideal case for a classification model. F1-score
is the harmonic mean of precision and recall. Fl-score is
unique in the sense that it plots its graph with a separate
line for each class label. The F1-score is computed using the
following equation:

Fl =

Precision * Recall
2 % 4

Precision + Recall

E. RECEIVER OPERATING CHARACTERISTICS (ROC) CURVE
A ROC curve is a graphical way to illustrate the possible con-
nection between sensitivity and specificity for every possible
cut-off for a combination of tests. The ROC-curve graph is
displayed with the help of 1—specificity (on the x-axis) and
sensitivity (on the y-axis). While the 1-specificity is False
Positive Rate and sensitivity is True Positive Rate can be
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obtained through the following expressions:

FP
TPR = [ ———— 5)
FP+ FN
FP
FPR=—"— (©6)
FP + TN

F. CONFUSION MATRIX
A confusion matrix is used to assess and calculate different
metrics of a classification model. It provides the division of
numbers and all the predictions a model has made during the
training or testing phase.

G. LOSS FUNCTION

Loss functions calculate the mathematical difference between
the predicted value and the actual value. For this research,
we have used a categorical cross-entropy algorithm for loss.

Loss =y — Yy @)
k

Lee = — ) (Lilog (pi) ®)
n=1

where L is the calculated loss of each class, and P is the
probability calculated by the SOFT function.

H. THE PROPOSED MODEL COMPARISON WITH RECENT

MODELS USING ROC

ROC curve is used to analyze the performance of clinical tests
and, more specifically, the accuracy of a classifier for binary
or multi-classification. The Area Under Curve (AUC) in a
ROC curve is used to measure the usefulness of the classifier,
where greater the AUC generally means greater the useful-
ness of the classifier. We check the usefulness and accuracy of
our proposed ADD-Net model using the ROC curve using AD
data-set with and without SMOTETOMEK. The proposed
ADD-Net is compared using the AD dataset’s ROC curve
with DenseNet169, InceptionResNet V2, and VGG19. The
proposed ADD-Net, DenseNet169, InceptionResNet V2, and
VGG19 achieved ROC values of 79.79%, 91.17%, 82.37%,
95.21%, respectively on imbalanced AD dataset as depicted
in Fig. 7. After balancing the AD dataset with SMOTE-
TOMEK, the proposed ADD-Net, DenseNet169, Inception-
ResNet V2, and VGG19 achieved AUC values of 97.99%,
94.92%, 94.75%, 97.01%, respectively as depicted in Fig. 8.

I. ADD-NET COMPARISON WITH OTHER MODELS USING
EXTENSION OF ROC FOR MULTI CLASS

ROC curves are commonly used in binary classification
to investigate a classifier’s output. Binarizing the output
is required to expand the ROC curve and ROC area to
multi-class or multi-label classification. One ROC curve can
be generated for each label; however, each element of the
label indicator matrix can also be treated as a binary predic-
tion (micro-averaging). The proposed ADD-Net is compared
using the Extension of the ROC curve with DenseNet169,
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FIGURE 8. ROC curve results of DenseNet, InceptionResNet V2, VGG19 and ADD-Net with SMOTETOMEK.

InceptionResNet V2, and VGG19 on the balance and imbal-
ance AD dataset as depicted in Fig. 9. We can note that
after balancing the AD data-set using the SMOTETOMEK

96938

algorithm, the AUC significantly for all the approaches,
as shown in Fig. 10. AUC has also noted a similar effect
for all the classes of the proposed ADD-Net. The AUC of
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FIGURE 9. Extension receiver results of DenseNet, InceptionResNet V2, VGG19 and ADD-Net without SMOTETOMEK.
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FIGURE 10. Extension receiver results of DenseNet, InceptionResNet V2, VGG19 and ADD-Net with SMOTETOMEK.

class 0 (MD), class 1 (MOD), class 2 (NOD), and class 3 data-set, the AUC of class 0 (MD), class 1 (MOD), class 2
(VMD) is 69.19%, 50.0%, 75.79%, and 68.27%, respec- (NOD), and class 3 (VMD) is 99.7%, 1.00%, 98.10%, and
tively without balancing the data-set. After balancing the AD 98.59%, respectively. These improvements in AUC prove the
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FIGURE 11. Accuracy comparison of DenseNet169, InceptionResNet V2, VGG19 and ADD-Net without

SMOTETOMEK.

authenticity of the SMOTETOMEK algorithm and feature
selection of the ADD-Net model.

J. ACCURACY COMPARISON AGAINST OTHER MODEL
WITH AND WITH SMOTETOMEK

SMOTETOMEK algorithm is applied to the data set to
up-sample the number of images in classes with fewer sam-
ples. It increased the size of the data set from 6400 models to
12800 instances, i.e., 3200 equal numbers of pictures for each
class. Hence, balancing out the data imbalance problem. The
contrast between the two methods is utilizing the up-sampling
technique, SMOTETOMEK.

The common point of both models is their architec-
ture, consisting of a pre-trained model and fully con-
nected dense layers for training. For a fair comparison,
we evaluated our proposed and recent hybrid models like
DenseNet169, VGG19, and InceptionResNet V2 using the
same AD dataset before and after balancing it through
SMOTETOMEK. The system provides remarkable results
with SMOTETOMEK for the proposed and other mod-
els. The proposed ADD-Net model, DenseNet169, VGG19,
and InceptionResNet V2 achieved an accuracy of 66.1%,
87.6%, 94.5%, 77.80%, respectively, using an imbalanced
AD dataset as shown in Fig. 11. All models, like ADD-Net,
DenseNet169, VGG19, and InceptionResNet V2, achieved
accuracies of 98.63%, 96.14%, 97.56%, 96.03%, respec-
tively, using the balanced AD data-set. This significant
improvement in accuracies of all the models is visible
from Fig. 12.

96940

K. AUC COMPARISON OF PROPOSED MODELS WITH
OTHER HYBRID MODELS

Several deep models were created to classify the early stages
of AD. Some were conventional CNN models, while others
were based on pre-trained deep architectures. Our proposed
model is a deep CNN-based ADD-Net consisting of different
ADD blocks and is very effective in classifying the different
AD classes, as discussed earlier in this paper. We also created
a few hybrid models using state-of-the-art classification mod-
els InceptionResNet V2, VGG19, and DenseNet169. The first
model is a hybrid framework of DenseNet169 and MobileNet
V2, reaching an AUC = 98% and AUC = 99% before and
after balancing the AD data-set through SMOTETOMEK as
depicted in Fig. 13. The second hybrid model was created
using Inception ResNet V2 and MobileNet V2, and its evalua-
tion AUC results are 94.8% and 99.6% AUC on balanced and
imbalanced AD datasets, respectively. The third hybrid model
is created through MobileNet V2 and VGG19, the AUC
values for this model are 95.9% and 98.89% using balanced
and imbalanced AD data sets, respectively. The proposed
model attained AUC values of 99.89% and 98.99% on both
AD datasets, as depicted in Fig. 14. As a result of the above
discussion, we noted that the performance of the proposed
model remains better and more consistent in comparison with
hybrid models in the form of AUC.

L. LOSS COMPARISON OF ADD-NET

WITH RECENT MODELS

Loss functions calculate the mathematical difference between
predicted and actual values. For this research, we have used a
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categorical cross-entropy algorithm for loss calculation. Opti-
mization functions are backtracking algorithms that adjust
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FIGURE 12. Training process Accuracy of DenseNet, InceptionResNet V2, VGG19 and ADD-Net with SMOTETOMEK.
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FIGURE 13. Training process AUC of DenseNet, InceptionResNet V2, VGG19 and ADD-Net without SMOTETOMEK.

the weights and biases of layers based on the value of the
loss. However, the results are even more outstanding when
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FIGURE 14. Training process AUC of DenseNet, InceptionResNet V2, VGG19 and ADD-Net with SMOTETOMEK.

the model is trained with up-sampled images. The pro-
posed model’s training accuracy reached 98.60%, while the
validation obtained a 96.70% accuracy, 99.82% AUC, and an
F1-score of 98.61%. The Loss values for InceptionResNet V2
are 0.1041 and 0.5364, DenseNet169 is 0.1595 and 0.3187,
VGG19is 0.2083 and 0.09, and ADD-Net is 0.05 and 0.76 on
both the data sets with and without up-sampling through
SMOTETOMEK as depicted in Figs. 15 and 16.

M. COMPARISON OF ADD-NET WITH RECENT MODELS
USING F1-SCORE

The input data set is normalized in this suggested ADD-Net
model. The fundamental procedure of converting categorical
data variables is delivered to the model utilizing the one-
hot encoder. The SMOTETOMEK technique is then used to
correct the unbalanced data-set problem by oversampling the
classes to balance the data set. We evaluated the ADD-Net
model on the AD data set with recent models like Dense
Net169, VGG19, and InceptionResNet V2 for a fair compari-
son. The system using SMOTETOMEK produces remarkable
results for the suggested and other models. The proposed
ADD-Net model, DenseNet169, VGG19, and Inception-
ResNet V2 achieved Fl-score of 46.04%, 85.5%, 95.81%,
75.68%, respectively using an imbalanced AD data-set as
shown in Fig. 17. All models, like ADD-Net, DenseNet169,
VGG19, and InceptionResNet V2, achieved an Fl-score of
98.6%, 96%, 97.50%, 96.1%, respectively, using the balanced
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AD data-set. This significant improvement in accuracies of
all the models is visible from Fig. 18.

N. COMPARISON OF ADD-NET WITH RECENT MODELS
USING PRECISION

Several deep models were developed to classify Alzheimer’s
disease in its early stages. Some algorithms were tradi-
tional CNN, while others were pre-trained deep architec-
tures. As mentioned earlier in this paper, our proposed model
is a deep CNN-based ADD-Net comprising distinct ADD
blocks. We compared our model with the InceptionRes-
Net V2, VGG19, and DenseNet169 classification models as
shown in Fig. 19; the first model is a hybrid framework
of DenseNet169 and MobileNet V2 with precision values
88.7% 96.1% and before and after balancing the AD data-set
using SMOTETOMEK. The second hybrid model was built
with Inception ResNet-V2 and MobileNet V2, and its eval-
uation precision values are 79.9% 96.6% on balanced and
unbalanced tasks, respectively. The third hybrid model is
developed using MobileNet V2 and VGG19, with precision
values are 94.7% and 97.6%, respectively, utilizing balanced
and imbalanced AD data sets. As shown in Fig. 20, the
proposed model achieved precision values are 74.5% 98.60%
on both AD datasets. As a result of the preceding discussion,
we discovered that the presented model’s performance is
better and more consistent than hybrid models in the form of
precision.
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FIGURE 15. Training loss of DenseNet, InceptionResNet V2, VGG19 and ADD-Net without SMOTETOMEK.
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FIGURE 16. Training loss of DenseNet, InceptionResNet V2, VGG19 and ADD-Net with SMOTETOMEK.

O. COMPARISON OF ADD-NET WITH RECENT MODELS
USING CONFUSION MATRIX

In this proposed ADD-Net model, the input data set is
pre-processed using normalization. The essential process of
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converting the categorical data variables is to be provided to
the model using the one-hot encoder.

Then, the SMOTETOMEK algorithm is applied to resolve
the imbalanced data-set issue that over-samples the classes
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FIGURE 17. F1-Score of DenseNet, InceptionResNet V2, VGG19 and ADD-Net without SMOTETOMEK.
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FIGURE 18. F1-Score of DenseNet, InceptionResNet V2, VGG19 and ADD-Net with SMOTETOMEK.

to balance the data-set. For a fair comparison, we assessed comparisons, like DenseNet169, VGG19, and Inception-
the ADD-Net model with recent models selected for ResNet V2 on the AD dataset before and after balancing
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it through SMOTETOMEK up-sampling algorithm. The
system provides remarkable results with SMOTETOMEK
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for the proposed and other models, as

Figs. 21 and 22.
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DenseNet169 Model Without using SMOTETomek

©
]
H
T
E- 100 0 7 8
o
a
2 400
2
©
2
i
T
E
v
= 0 9 0 3 300
£y
-
B
F
T
5
33
= - 200
O
E- 9 0
)
)
<
=]
2
o
& - 100
£
u
E
ol 4 0
]
E
2
* 0
] 2
Ni\d-DeImEnted Moderate-Demented Non-De;nenred VeryMild-Demented
Prediction of Images
(a) DenseNet169
VGG19 Model without using SMOTETomek
©
g
£
T
E- 147 0 4 3
o
(=]
2 400
£
o
]
H
]
E
o
o- 0 14 0 0 200
£ 8
E
F ¥
T
5
8
(O - 200
E- 5 0
w
)
£
]
=z
-]
] - 100
£
u
E
&- 4 0
]
E
B
2

| i
Moderate-Demented Non-Demented
Prediction of Images

'
Mild-Demented

VeryMild-Demented

(c) VGG19

Ground Truth

Ground Truth

InceptionResNetV2 Model without using SMOTETomek

350

]
1]
£
T
£ 114 0 9 30
o
a
=
H 300
L]
4
i
T
E 250
o- 0 7 ¥ 5
&
I
IJ
b=
£ 200
k-l
]
§ -150
E- 16 0
o
)
<
°
2
-100
-]
il
&
u
E
o 1 0 - 50
]
z
B
* 0
] 2
MId-DelrnEnted Moderate-Demented Non-De;nenred \eryMild-Demented
Prediction of Images
(b) InceptionResNet V2
ADD-Net Model Without using SMOTETOMEK
- 65 0 20 61 350
e
2
£
300
o
a 2 (] 0 9 250
o
- 200
i % 0 -150
9
c
2
-100
a- 27 0 50
3
H
2
* -0
Mild-D D Non-D VeryMild-Demented

Prediction of Images

(d) ADD-Net

FIGURE 21. Confusion matrix’s of state-of-the-art algorithms and ADD-Net model without using SMOTETOMEK.

P. VISUALIZATION THROUGH GRADIENT-WEIGHTED
CLASS ACTIVATION MAP

Grad-CAM detects the discriminatory regions for a CNN
classification by calculating its CAM using gradient data.
Grad-CAM visualizes a map of all the working classes by
integrating gradient information. Grad-CAM considers 2D
activation’s along with the average gradient information.
It supports recognizing what a network perceives and which
neuron is firing in a specific deep layer [48]. The preceding
class gradient is related to the channel, ensuring the last CNN

96946

layer generates a localization CAM displaying the image’s
critical locations that substantially affect the deep model’s
prediction, as shown in Fig. 23. To generate the CAM, the
class gradient score is computed relative to the feature maps
of the CNN layers [48].

Q. DISCUSSION AND COMPARISON WITH OTHERS DEEP
MODELS USING UP-SAMPLING

The previous models used for comparison in this paper
are not very effective in handling data imbalance problems
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FIGURE 22. Confusion matrix’s of state-of-the-art algorithms and ADD-Net model with using SMOTETOMEK.

and are limited in their performance. Sometimes suffer
from over-fitting because of this data imbalance issue or
lose their accuracy in correctly detecting the AD classes.
The ADD-NET achieved maximum accuracy by using the
SMOTETOMEK. However, the DEMENET attained an
accuracy of 92.88% using the SMOTE algorithm. The pro-
posed model performed with distinction among all the deep
CNN, deep transfer learning, and hybrid models that we used
for comparison in this research study. All the simulation
results using different quality metrics are evidence of the
performance of deep ADD-NET. The detailed comparison
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of ADD-Net and other deep models with SMOTETOMEK
is discussed in Table 6.

V. LIMITATIONS

A solution to solve any real-world problem is not perfect
in every aspect; this ideal case for a solution is used to
solve a critical real-world problem that is well matured in
its early versions and does not need upgrades. Solutions are
prepared after studying the base requirement necessary to fix
a problem and then gradually improve by analyzing real-time
reviews about the system. In this proposed study, we present
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TABLE 6. Performance comparison of ADD-Net with state-of-the-art algorithms.

Reference Dataset Accuracy AUC Precision Recall F1-score

Proposed ADD-Net

(with SMOTETOMEK) Kaggle 97.05% 99.89% 97% 97 % 97.05%
Proposed ADD-Net
(without SMOTETOMEK) Kaggle 92.88% 98.99% 82% 89% 84.55%
DEMNET
(with SMOTE) Kaggle 95.23% 97% 96% 95% 95%
DEMNET
(without SMOTE) Kaggle 85% 92% 80% 88% 83%
Conv-BLSTM (SMOTE) ADNI 82% 91% 78% 88% 82%
Conv-BLSTM (GAIN) ADNI 82% 90% 79% 82% 82%
VGG16 ADNI 95.73% - 96.33% 96% 95%
AlexNet Kaggle 92.20% 99.45% - 94.50% -
ResNet-50 Kaggle 93.10% 98.82% - 92.25% -
Inception ResNet v2 Kaggle 79.12% 81.90% 70.64% 28.22% 39.91%
Class 0
. mD )
\. 4
Class 1

FIGURE 23. Generalization of the class activation map to locate the discriminative region through Grad-CAM.

a deep learning-based classification model named “ADD- Although outperforming other models still has shortcom-
Net” for classifying the early stages of Alzheimer’s disease. ings, the proposed mode efficiency suffers on the imbalanced
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dataset. As discussed above, due to an imbalanced dataset,
the accuracy of deep learning models is compromised; our
model suffers from the same problem when the dataset has a
different number of samples in each class.

VI. CONCLUSION

In this paper, we proposed a novel deep CNN for detect-
ing AD with relatively few parameters, and the proposed
solution is ideal for training a smaller dataset. The pro-
posed Alzheimer’s Disease Detection Network (ADD-Net)
is built from scratch to precisely classify the stages of AD
by decreasing parameters and calculation costs. Each block
is specifically designed with many layers named ADD-
block, which is used to classify the AD in its early stages
for all the specific classes. The SMOTETOMEK method
is employed for handling data-set imbalance problems for
generating new instances to balance the number of samples
for each category. Grad-CAM algorithm provides insight
into CNN layers’ working by visualizing class activation
heat-map. Our proposed deep model provides outstanding
accuracy of 96.70%, 97% precision, Sensitivity (Recall) of
97%, and an impressive AUC value of 99.82%. We will
involve other pre-trained architectures and fine-tune trans-
fer learning models to achieve more desirable results in the
future.
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