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ABSTRACT Secret sharing schemes for classical secrets can be classified into classical secret sharing
schemes and quantum secret sharing schemes. Classical secret sharing has been known to be able to distribute
some shares before a given secret. On the other hand, quantum mechanics extends the capabilities of secret
sharing beyond those of classical secret sharing. We propose quantum secret sharing with the capabilities in
designing of access structures more flexibly and realizing higher efficiency beyond those of classical secret
sharing, that can distribute some shares before a given secret.

INDEX TERMS Advance sharing, quantum secret sharing, quantum stabilizer code, Reed-Solomon code.

I. INTRODUCTION

Secret sharing scheme [1] is a cryptographic scheme to
encode a secret into multiple pieces of information (called
shares) and distribute shares to participants so that qualified
sets of participants can reconstruct the secret but forbidden
sets can gain no information about the secret. For instance,
it can be used to guarantee that no individual can obtain an
industrial secret, or can launch a nuclear missile, but qualified
groups can. The set of qualified sets and that of forbidden sets
are called an access structure [2]. In common uses of secret
sharing schemes, it is assumed that a dealer can communicate
with participants after the dealer obtains a secret.

We consider the following problem: In a country, the pres-
ident suffers from a serious disease and is anxious about his
sudden death. He is afraid that his death makes a national
secret accessible to no one if he alone knows about the
national secret. For this reason, the president wishes to share
the national secret to the dignitaries by a secret sharing
scheme. The national secret is sensitive information and the
president needs to hand encoded information of the national
secret to the dignitaries. The president will obtain the national
secret three days later but some dignitaries will make an
extended business trip to foreign country from tomorrow.
How can the president share the secret?
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FIGURE 1. Advance sharing is distribution of shares to some participants
before a given secret.

As we can see from this problem, perhaps a dealer may
be unable to communicate with some participants after the
dealer obtains a secret. In those situations, it is desirable
for the dealer to distribute shares to some participants while
the dealer can communicate with participants. To realize
this distribution, the dealer needs to be capable to distribute
shares to some participants before a given secret. We call this
distribution “advance sharing” and a set of shares that can
be distributed in advance is called ‘“‘advance-shareable”. For
example, a dealer considers to share a 1-bit secret M to partic-
ipants A and B (see Fig. 1). Before a secret is given, the dealer
randomly chooses either 0 or 1 as a 1-bit share S4 and dis-
tributes a 1-bit share S4. After the dealer obtains a secret M,
the dealer generates a share Sp by exclusive-OR @ (XOR),
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Sg = M @ S4 and then distributes a 1-bit share Sp to
participant B. Only if participants A and B collaborate, they
can reconstruct a secret M by XOR &, M = S4 @ Sp. In this
example, the share Sy is advance-shareable.

Secret sharing schemes for classical secrets can be clas-
sified into classical secret sharing schemes [1], [2], [3], [4]
and quantum secret sharing schemes [5], [6], [7], [8], [9],
[10], [11], [12]. Classical secret sharing uses classical infor-
mation as shares while quantum secret sharing uses quantum
information [13] as shares. Classical secret sharing has been
known to be able to distribute some shares before a given
secret. Advance sharing for quantum secrets was proposed
in [14] and it can be used for advance sharing for classical
secrets. However, an advantage over classical secret shar-
ing has not been clarified in advance sharing of quantum
shares for classical secrets by [14]. We propose quantum
secret sharing with the capabilities in designing of access
structures more flexibly and realizing higher efficiency [2,
Definition 13.4] (i.e., the ratio of the size of a secret over the
size of each share) beyond those of classical secret sharing,
that can distribute some shares before a given secret.

On the other hand, quantum mechanics provides the promi-
nent capabilities to information processing beyond those of
classical information processing [13]. For example, quantum
computation [15], [16] and quantum teleportation [17], [18],
[19] are studied by many researchers. As another application,
quantum mechanics extends the capabilities of secret sharing
beyond those of classical secret sharing as below [5], [6], [7],
[8], [9], [10], [11], [12]. For a fixed size of classical secrets
and a fixed size of shares, quantum secret sharing enables
designing of access structures more flexibly than classical
secret sharing. For example, consider a scheme to share a
2-bit classical secret to 2 participants by distributing a 1-bit
or 1-qubit share to each participant. When a dealer distributes
a 1-bit share to each participant, leakage of a share from
1 participant allows an adversary to gain a 1-bit classical
secret and the dealer cannot distribute any share before a
secret is given. On the other hand, the superdense coding [20]
provides quantum secret sharing scheme, where each share is
1-qubit and a secret is 2-bits. This quantum secret sharing
scheme was proposed by Gottesman [5, Section 4]. Let I be
the identity operator, X (or Y or Z) be a Pauli-X (or Y or
Z) operator [13] and i = +/—1. Gottesman’s secret sharing
scheme [5, Section 4] is given as follows:

1) Prepare a Bell state |¢) = (|00) + |11))/\/§.
2) Perform a unitary operator corresponding to a secret
and prepare the quantum state of shares as follows:

o If asecretis 00, perform I ® [ to |y) and prepare

I ®Dly).
o Ifasecretis Ol, perform I ® Z to |¢) and prepare

I RD)\Y).
o Ifasecretis 10, perform / ® X to |i) and prepare

I X)|Y).
o Ifasecretis 11, perform / ® iY to |¢) and prepare

I iY)|Y).
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3) Distribute each qubit in the quantum state of shares to
each participant.

In this scheme, leakage of a share from 1 participant does
not allow an adversary from gaining any information about a
secret. In addition, the quantum state of shares has the form
(I ® U)|¥r), where U is a unitary operator for a given secret
and thus a dealer can distribute the first qubit in the quantum
state of shares to 1 participant before a given secret.

Matsumoto generalized Gottesman’s secret sharing [5,
Section 4] to an arbitrary number of participants and an
arbitrary size of classical secrets [21], [22]. Matsumoto’s
secret sharing scheme [22] is based on quantum stabilizer
codes [23], [24], [25], [26], [27], [28], [29] and summarized
as follows:

1) Prepare the multipartite entangle state |¢) determined
by a quantum stabilizer code.

2) Choose a unitary operator U for a given secret and
perform chosen unitary operator U on |¢). Prepare the
quantum state of shares U|y).

3) Distribute each qudit in the quantum state of shares
U|g) to each participant.

We modify an encoding method of Matsumoto’s secret shar-
ing scheme [22] so that for any classical secrets, a dealer
chooses a unitary operator of the form U =1 ® V, where /
is the identity operator and V is a unitary operator. As we can
see from Gottesman’s secret sharing [5, Section 4], a dealer
can distribute each qudit in the quantum state of shares
corresponding to an identity operator / before a secret is
given. Our proposed secret sharing scheme is a special case
of Matsumoto’s secret sharing scheme [22] and thus retains
access structures of Matsumoto’s secret sharing scheme [22].
In our paper, we clarify a necessary and sufficient condition
on advance-shareable sets in our proposal.

Our proposal can provide a further advantage to advance
sharing. In advance sharing of Fig. 1, the dealer generates a
share Sp based on not only a secret M but also a share S4.
In classical secret sharing, a dealer realizes advance shar-
ing by generating the rest of shares based on given secret
and shares already distributed. Thus the dealer needs to
keep shares already distributed until all shares are generated.
Shares distributed in advance can leak out from the dealer.
If shares distributed in advance leak out, forbidden sets are
narrower than designed. It implies that smaller leakage allows
an adversary to gain the partial information about a secret
than designed. Thus advance sharing causes extra danger of
security breaches in classical secret sharing. In our paper,
we prove that extra danger of security breaches caused by
advance sharing is unavoidable in any classical secret sharing.
In contrast, the rest of shares are generated only based on a
given secret in the proposed quantum secret sharing scheme.
Thus in our proposal, the dealer does not need to keep the
information about shares already distributed. For this reason,
even if security breaches expose dealer’s storage before a
secret is given, our proposed secret sharing is as secure as
designed. Therefore, our proposed secret sharing does not
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have extra danger of security breaches which is unavoidable
in any classical secret sharing.

The paper is outlined as follows: Sect. II introduces nec-
essary notations. In Sect. III, we modify an encoding method
of Matsumoto’s quantum secret sharing scheme so that some
shares can be distributed before a given secret and clarify a
necessary and sufficient condition on advance shareable sets
in our proposal. In Sect. IV, we show a construction of our
proposed encoding method from the Reed—Solomon codes
and compare it with a ramp version [30] of Shamir’s secret
sharing. In Sect. V, we prove that extra danger of security
breaches described above is unavoidable in any classical
secret sharing while our proposed secret sharing has no extra
danger of security breaches. In Sect. VI, we give a Gilbert—
Varshamov-type sufficient condition for existence of our
proposed secret sharing. We conclude our paper in Sect. VII.

1. NOTATION
Throughout this paper, we suppose that ¢ = p”* where p is

a prime and m is a positive integer. Denote the finite field
with g elements by I, and the g-dimensional complex linear
space by C,. The quantum state space of n-qudits is denoted
by (C(‘?" with its orthonormal basis {|v) = [v{) ® - - - ® |v,,) :
Vv=0W1,...,Vy) ng}.

For two vectors a, b € Fé”, (a, b)r denotes the standard
Euclidean inner product. For two vectors (a|b), (c|d) € Fé”,
define the standard symplectic inner product as

((alb), (c|d)); = (a,d)r — (¢, b)E.

For an F-linear space C C 2", C1$ denotes its orthogonal
space in IE%" with respect to (-, -)s, that is,

c={@lb) € Fé” : (@alb), (c|d))s =0 forall (c|d) € C}.

Let{y1,..., ym} be afixed IF,-basis of IF,. Let M be am xm
invertible matrix over IF, whose (i, j) element is Try/,(vi¥}),

where Tr,, is the trace map from F, to F,. Let ¢ : IB‘IQ,’"” —

IE%" be an [F-linear isomorphism sending (a1, 1, . .., @1,m, a2,1,
ces Gumlb11s s D1ms D214 s D) tO
m m m m
Zal,j)/j» e Zan,ﬂ/j Zb’l’jyj, e Zb;,jyj ,
j=1 j=1 j=1 j=1
where (0] |, ..., b} ) = (bi1, ..., bim)M " fori=1,...,n.

Fora, B € IF,, define the unitary operators X (cr), Z(8) on C,
as

X@) =Y k+a)xl, z@B =) o),
xel, zelF,

2mi

where w = e 7 is a p-th primitive root of unity. For (a|b) =

(@1, ..., anlby, ....by) € B, let ¢~ (ay, ..., anlby, ....by) =

(€115 v €Ly €215 o+ sCmldi 15 oo dimy d2 15 -, dpm) €

IF,Z,’”" and define the unitary operator on (Cflz’” as

X@Zb) = X(c1,0Zd1,1) ® ... X(c1,m)Z(d1,m)
®X(c2,1)Z(d2,1) ® ... ® X(cn,m)Z(dn,m)-
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LetC C IF(ZI” be an F-linear space such that dim C = n—k
and C C C. An [[n, k]l4 quantum stabilizer codes [23]
encoding k qudits into n qudits can be defined as a simulta-
neous eigenspace of all X(a)Z(b)((alb) € C).

For (alb) = (a1, ..., anlby, ....by) € F2", define its
symplectic weight as swt(alb) = |{i : (a;, b;)) # (0, 0)}].
For V, Cc Vi C ]F(ZJ”, define their coset distance [31] as
ds(Vi, V2) = min{swt(alb) : (alb) € Vi \ V2}.

LetA C {1, ..., n}. Define IF;} = {(ai, ...,anlb1, ... ,by) €
]Fé" 1 (a;, bj) = 0fori ¢ A}. Let P4 to be the projection map
onto A, that is, Pa(ay, ..., ay|by, ..., by) = (ai|b;)iea for any
(@1, ..., anlby, ..., by) € F2".

1ll. DISTRIBUTION OF QUANTUM SHARES BEFORE A
GIVEN SECRET

In this section, we modify an encoding method of Mat-
sumoto’s secret sharing scheme [22] so that some shares can
be distributed before a given secret.

A. OUR PROPOSED ENCODING METHOD

Let Cs, Cr C IF%]" be IF,-linear spaces with dimCs = n —
k—s,dimCr =n—sand Cs C Cr C Cx* C Cg*. Then
Cs defines an [[n, k + 5]], quantum stabilizer code Q and Cr
defines an [[n, s]],; quantum stabilizer code. By Witt’s lemma
in [32], there always exists Cs C Cr C Cpax C Cé‘s C Cé‘s
such that Cpx = Cé{;ix and dim Cpy,x = n. Note that there are
many possible choices of Cpax. We fix Cpax. Since Cpax =
c;;x, Cnax defines an [[n, 0]]; quantum stabilizer code Qp.
Without loss of generality, we can assume Qy C Q. Denote a

quantum state vector in Qg by |¢). Since dim Cg-s / CI%S =k,

we have an isomorphism f : IF’; — CS“/ Cl%s. Note that
there are many possible choices of isomorphisms f : IE"; —
CS“ / Cl%s . We fix f. Denote n participants or a set of n shares
by {1,...,n}. Let B be a set of ¢ shares distributed before
a given secret and B = {1,...,n}\ B be the rest of shares.
Without loss of generality, we can assume B = {1, ..., t} and
B={t+1,...,n}.

The conventional quantum secret sharing scheme [22]
using stabilizers Cs C Cr C Cpax distributes a given
classical secret m € ]F’; to n participants as follows:

1) f(m) is a coset of Cg‘s/Cli‘s and f(m) can also seen as
a subset of C§-S /Cmax- Choose T' € f(m) C Cé-s /Ciax
at uniformly random. Choose an arbitrary (a|lb) € T
and prepare the quantum codeword X (a)Z(b)|p) € Q.

2) Distribute each qudit in the quantum codeword
X(a)Z(b)|g) to each participant.

Our proposed modified version of the conventional quantum
version [22] distributes a given classical secret m € ]F’(; to
n participants with a set of shares B = {l,...,t} being
advance-shareable as follows:

0) Prepare the quantum codeword |¢) and distribute the
i-th qudit in the quantum codeword |¢) to the i-th
participant fori e B = {1, ..., t}.
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1) f(m) is a coset of Cé‘s / Cli's and f(m) can also seen as
a subset of Cg"*/Cinax. Choose T € f(m) C Cg*/Crmax
at uniformly random. Choose a coset representative of
T of the form (0, x|0, y) with x,y € F’;_’ . Prepare the
quantum codeword

X(0,x)Z(0, y)lg)
= (X(0)Z(0) ® X(X)Z(y))l¢)
= (I, ® XWZ(Y))ly) € Q,

where 7 is the identity operator on (ng” .

2) Distribute the i-th qudit in the quantum codeword (I; ®
X(x)Z(y))|¢) to the i-th participant for i € B = {t +
1,...,n}.

Our proposal restricts choices of unitary operator applied
by the dealer. Thus the quantum codeword has the form
X(0,x)Z0,y)|¢) = (II§ ® X(x)Z(y))|p) for a given secret.
Therefore, the dealer can distribute the i-th qudit in the quan-
tum codeword before a given secret fori € B= {1, ...,1}.

Focus on Step 1 of the conventional quantum version [22]
and that of our proposed modified version. Assume that a
dealer chooses T' € f(m) C Cé-s /Cmax- A dealer chooses an
arbitrary coset representative (alb) € 7T in the conventional
quantum version [22] while a dealer chooses a coset repre-
sentative of T of the form (0, x|0, y) in our proposed modified
version.

Theorem 1: Since our proposed modified version is a spe-
cial case of the conventional quantum version [22], it retains
access structures, and necessary and sufficient conditions
on qualified sets and forbidden sets, from the conventional
quantum version [22].

In our proposed secret sharing scheme, after a dealer
chooses T € f(m) C CS“ /Cmax, the dealer chooses a coset
representative of T of the form (0, x|0, y). Let (a|b) be any
element of 7. We give an explicit method to compute X,
y € IE‘Z” such that T = (0, x|0, y) + Cnax as follows: First
compute a basis {(¢1]dy), ..., (¢;|d,)} of an F,-linear space
Cmax. Define a matrix H for Cpax as

d] —C

d2 —C2
H=| .

d, -—c,

Next solve the following simultaneous linear equation in
unknowns X, y and constants (a|b) € T:

([alb] — [0, x]0, yD'H = 0, ey

where 'H represents the transpose of the matrix H. A solution
(x,y) to (1) satisfies T = (0, x|0,y) + Cnax. If a solution
to (1) exists for any 7' € CS“/Cmax, a set of shares B is
advance-shareable. There may exist 7 € Cg‘s /Cmax such
that (1) has no solution. In this case, a set of shares B is not
advance-shareable.

Thus a set of shares B is said to be advance-shareable if and
only if there exists a solution to (1) for any T € CS“ /Cmax-
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However, it is nontrivial to check if a set of shares B is
advance-shareable. Thus it is desirable to have a simpler
condition to check if a set of shares B is advance-shareable.
For this reason, we will clarify a necessary and sufficient con-
dition that a set of shares B is advance-shareable in Sect. ITI-C.

Remark 2: Encoding can be classified into deterministic
encoding and randomized encoding. Shares are determin-
istically chosen for a fixed secret in deterministic encod-
ing, while shares are randomly chosen for a fixed secret
in randomized encoding. In both conventional and modified
versions, encoding is randomized and includes deterministic
encoding as a special case. Encoding is deterministic if and
only if CR = Cnax = Cg*.

Remark 3: The reconstructing process of the secret in our
proposal is the same as that of the conventional quantum
version [22, Theorem 4].

B. OUR PROPOSED ENCODING METHOD CONSTRUCTED

FROM A SHORT LINEAR CODE

We illustrate how our proposed encoding method in

Sect. ITII-A works with an example in [22, Example 3].
Letgqg =3, n=4,k =5 =2,t = |B| =2. Abasis of

the doubly-extended [4, 2, 3]3 Reed-Solomon code [33] over

F3 consists of

vi=(1,1,1,0),
v, =(2,1,0,1).
By using them, define Cs = {0}, Cr as the linear space

spanned by {(v1]|0), (0|vy)}, and Cmax as the linear space
spanned by {(v1]0), (v2(0), (0]v1), (0[v2)}. Let

vy =(1,1,0,0).
Then Cﬁ'x is spanned by Cpax U {(v3]0), (0|v3)}. Let
v4 =(0,0,0,1).

Then Cé-s = Fg and {(V4|0)+C§‘S, (0|V4)+Cé‘s} forms a basis
of CS“ / CI%A'. Let |¢) be an eigenvector of all unitary matrices
corresponding to a vector in Cpax. Define [ : IF% —
Cg*/Cr* asf(mi,mp) = (0,0,0,m]0,0,0,m)+Cx* C F.

Let T be any coset in f(my, mp) C Cé“v/Cmax. CI%S is
spanned by Cpax U {(v3]0), (0|v3)}. Thus for any T € f(my,
my) = (0, 0,0, m 10,0, 0, m) + Cx* C Cg™*/Crax, there
exist aj,ap € F3 such that T = (ay, a, 0, my|az, ay, 0,
m>) + Cmax. An explicit derivation of (x1, x3), (y1,y2) € F%
such that T = (ay, ag, 0, my|ay, az, 0, my) + Cnax = (0, 0,
x1,x2]0, 0, y1, y2) + Cmax is given as follows: Define a matrix
H for Cihax as

H =

— O N
N oo

0 0 2 2
1 0 0 0
0 0 2 0
0 1 0 O

DO = O
—_— O = O

0 0

Solve the following simultaneous linear equation in
unknowns (x1, x2), (y1, y2) € IE‘% and constants aj, a; € F3:

(lat, a1, 0, milaz, az, 0, my]
_[Oa 05 X1, x2|07 05 Y1, y2])tH = 0'
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The solution to this equation is (x1,x2) = (2ai,my),
01, y2) = (2az, mp). For any T' = (a1, ai, 0, milaz, az, 0,
my)+Cmax With ay, ap € F3, find that

T = (07 O’ zal , M |0’ 09 2a29 m2) + Cmax~

A dealer can perform the following secret sharing scheme
for a given classical secret (my, my) € IF% to 4 participants
with a set of shares {1, 2} being advance-shareable:

0) Prepare the quantum codeword |¢) and distribute the
i-th qudit in the quantum codeword |¢) to the i-th
participant for i € {1, 2}.

1) f(my, my) is a coset of C;S/CI%S and f(m, mp) can
also seen as a subset of CS“/Cmax. Choose T =
(a1,a1,0,milaz, a2,0,mp) + Cmax € f(my,my) C
Cg‘s/ Cmax at uniformly random, with aj, a € Fs.
This means that the dealer chooses aj, a € [F3 at
uniformly random and fix a;, a» € 3. Choose a coset
representative of the form (0, 0, 2a;, m110, 0, 2a;, my).
Prepare the quantum codeword

X(0, 0, 2a1, m)Z(0, 0, 2a>, mp)| )
= (X(0,0)Z(0, 0) ® X(2ar, m)Z(2az, m2))|g)
= (I, ® XQa1, m)Z(2az, m))lg) € Q,

where Ip2 is the identity operator on (C?Z.

2) Distribute the i-th qudit in the quantum codeword
(II% ® X(2ay, m)Z(2az, my))|p) to the i-th participant
fori € {3, 4}.

In this scheme, Cs, Cr, Cmax are defined as the same as
[22, Example 3]. Thus by Theorem 1, this scheme retains the
access structure of the conventional quantum secret sharing
scheme [22, Example 3]. That is, a set of 2 or less than
2 shares is forbidden and the set of all 4 shares is qualified.

C. NECESSARY AND SUFFICIENT CONDITION ON
ADVANCE-SHAREABLE SETS
We clarify a necessary and sufficient condition that a set of
shares B is advance-shareable in our proposal.

Theorem 4: A set of shares B is advance-shareable or
equivalently for any T € CS“/ Cmax, there exists (z|w) €

Cg* N5 such that T = (2|W) + Crax if and if only
dim C¢* N F?/Coax NFE = dim €/ Conax.

To prove Theorem 4, we give several lemmas. Theorem 4
immediately follows from Lemma 5 and Lemma 7.
Lemma 5: The following conditions (i) and (ii) are
equivalent:
(i) For any coset T € C;-S /Cmax, there exists (z|w) €
Cg‘“ N IE‘{I§ such that T = (z|w) 4+ Cpax.
(i) C§* = (C&* NFE) + Cax. where (C3* NFE) + Conax
is an F,-linear space spanned by an [ -linear spaces
Cé‘s N ]Fg and Cpax.
Proof: Assume that the condition (i) holds. Let (a|b) be
any element of CSL". Then there exists a coset T’ € CS“ / Crmax
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such that (a|b) € T. By the condition (i), there exists (z|w) €
Cé‘s N Fg such that T = (z|w) + Cax. This means that there
exist (z|lw) € Cg* N F2 and (c|d) € Cpax such that (a[b) =
(z|w) + (c|d). This shows that Cg* C (Cg™* N F5) + Crax.
Obviously, Cg* D (C4* N Fg) + Cpax holds. Therefore, the
condition (ii) holds.

Assume that the condition (ii) holds. Let 7" be any coset
of Cé‘s /Cmax. Then there exists (alb) € C§‘S such that T =
(alb) + Cmax. Since (ab) € Cg* = (Cg* N FE) + Conax,
there exist (z|w) € Cé‘“ N IF?, (c|d) € Cphax such that
(alb) = (z|w) + (c|d). This shows that T = (a|b) + Cpax =
(z|w)+(c|d)+ Cmax = (2|W)= Cmax. Therefore, the condition
(i) holds. m

Lemma 6: LetV, W be any IF;-linear spaces such that V C
W C Cmax = CiS, € WS € V45, Define an [F,-linear map

— “max ol —
v vhn F?/W“ N ]Fg — (VN IE‘I;) + Cmax)/ (W0
Fg)+ Cmax) as Y ((alb) + W NFY) = (alb) + (W NFg) +
Cinax for any (a[b) € V- NFE. Then  : VA NFE/whn
FE — (VY N FE) + Cna) /(W N FE) + Cinay) is an
isomorphism. B _
Proof: Assume that (a|b)+ W NF% = (c|d)+ W NF5
for (alb), (cld) € VN IE‘g. Then we have (alb) — (c|d) €
WS mFg C (Ws mFg) + Cmax. This means that ¥ ((a|b) +
WL n Fg) = Y((eld) + W+ n IFE). This shows that v is
well-defined. _ B

Assume that w((alb)+W“ﬂF§) = (a|b)+(W“ﬂIE‘g)+
Cmax = (WH NFE) + Cimax for (alb) € VS N FE. Then
we have (alb) € (W5 N Fg ) + Cmax. This means that there
exist (c|/d) € W N F2 and (e|f) € Crax such that (alb) =
(c|d)+(e|f). Since (alb) € Vlsﬂ]Fg, we have (e|f) = (a|b) —
(c|d) € CmaxﬂIFg. Therefore, we have (a|b) = (c|d)+(e|f) €
wtsn Fg . This shows that the kernel of v is zero and thus an
F4-linear map v is injective.

Let (njm)+ (W N IFg) + Cpax be any element of (VN
FE)+ Cona) /(WS NFE)+ Cinay). Since (n[m) € (V- NFE)+
Cmax., there exist (alb) € V5N IFE and (c|d) € Cpax such
that (njm) = (alb) + (c|d). Since (¢|d) € Cpax C (WHn
F) 4 Crmax, we have (njm) + (W NFE) 4 Cnax = (alb) +
(WHsn F2) + Cinax. Namely, there exists (a|b) € vin F2
such that y((a|b)+ W NFE) = (m|m)+ (W NFE)+ Crrax.
This shows that v is surjective.

Therefore, ¥ : VS NFE /W NFE — (V2 NFE) +
Crmax)/ (W5 N IFg) 4 Chax) is an isomorphism. m

Lemma 7:

dim C§ NFE /Crnax NFE = dim €3/ Crnax )
if and only if
Cs*" = (Cs* NFY) + Coax 3)

VOLUME 10, 2022



R. Miyajima, R. Matsumoto: Advance Sharing of Quantum Shares for Classical Secrets

IEEE Access

Proof: Assume that (2) holds. We have
dim €/ Cinax 4)
= dim C§* N FZ/Cynax NFE ©)
= dim((C5* N F2) + Conax)/ Cnax» (6)
where (5) follows from (2), and (6) follows from (Cé;;x N
Iﬁ‘g ) + Chax = Cmax and Lemma 6. This means that
dim Cg™* = dim(Cg™ N ]Fg) + Ciax- Since obviously Cg* >
(Cg* NFE)+ Cinay holds, we have Cg™* = (Cg* NF5)+ Cryax.
Thus (3) holds.
Assume that (3) holds. We have
dim Cg NFE /Crnax NFE
= dim((Cg™ NFL) + Comax)/Crmax )
= dim C§"*/ Cinax, ®)

where (7) follows from (CL5, N ]FE) 4+ Cmax = Cmax and

max

Lemma 6, and (8) follows from (3). Thus (2) holds. m

D. SUFFICIENT CONDITION ON ADVANCE-SHAREABLE
SETS
We present a sufficient condition that a set of shares B is
advance-shareable in our proposal. The following sufficient
condition can be verified without computing dimensions of
linear spaces like Theorem 4.

Theorem 8: If |B| < ds(Cmax, Cs) — 1, then a set of shares
B is advance-shareable or equivalently dim C g‘x N IFg /Cmax N
F5 = dim C§*/ Crnax.

Proof: By the condition |B| < d;(Cmax, Cs) — 1, there is

no (ajb) € Cpax N Fg \CsN Fg . This means that

dim Cs NFY = dim Conax NFY. 9)

By [33], [34], we have
dim C3* N FB /Cnax NFE = dim P5(Conax)/P5(Cs).  (10)
Since the kernel of P5 : Cs —> Pg(Cs)is Cs N F2, we have
dim Cs — dim Cs N FY = dim P5(Cs). (11)

Since the kernel of Pz : Ciax —> P5(Cmax) i Cimax N Fg R
we have
dim Cpax — dim Cpypx N Fg = dim Pz(Crax).  (12)
Therefore, we find that
dim C3* N FB /Cnax NFE

= dim Pz(Ciax)/P5(Cs) (13)

= dim P5(Ciax) — dim P5(Cs)

= (dim Cyax — dim Crnax N FY)

—(dim Cs — dim Cs NF5) (14)
= dim Cpax — dim Cs (15)
= dim CSLS/Cma)u

where (13) follows from (10), (14) follows from (11) and
(12), and (15) follows from (9). m
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E. RELATIONSHIP BETWEEN ADVANCE-SHAREABLE SETS
AND FORBIDDEN SETS

We clarify a relationship between advance-shareable sets and
forbidden sets in our proposal.

By Theorem 1, a necessary and sufficient condition on
forbidden sets remains the same as the conventional quantum
secret sharing scheme [22]. Thus by [22, Theorem 4], a set of
shares B is forbidden if and only if

dim Cr NF5/Cs NFS = 0.

Theorem 9: If a set of shares B is advance-shareable, then
a set of shares B is forbidden. Equivalently, if

dim Cg* NFE/Cax NFE = dim C§*/Conax.~ (16)
then
dim Cg NFS/Cs NFL = 0. (17)

Proof: Assume (16) holds. Let T be any coset in
Ci*/Crmax- Then we have T € Ci*/Cmax C Cg*/Crmax-
By (16) and Theorem 4, there exists (z|w) € CS“ N ]F’E such
that T = (z|w) + Cpax. Since T € Cl%s/Cmax, we have
(z|lw) € (Csls N ]F?) N Cl%“ = Cl%“ N IF?. Thus for any
T € C}%S/Cmax, there exists (z|w) € Cl%s N Fg such that
T = (z|w)+ Cmax- By replacing Cs with Cr in Lemma 5, we
have Ci* = (Cg* N FE) + Ciax. By (16) and Lemma 7, we

have Cg‘s = (CS“ NnEF 13) 4 Cmax. Therefore, we have
dim C* NFE/Cg NFE
= dim((Cg”* NFL) + Conax)/(CR* NFY) + Conax) (18)
= dim C§"*/Cx* (19)
= dim CR/Cs, (20)

where (18) follows from Lemma 6, and (19) follows from
Cg* = (Cg* NFE) + Crnax and Cx* = (CR* NFB) + Crnax.
Let Pg to be the projection map onto B. Since the kernel of
Pg:Cs — Pg(Cs)is Cs N F2, we have

dim Cs — dim Cs N F} = dim P5(Cs). (21)
Since the kernel of Pz : CR —> Pz(Cr)is CrN F2, we have
dim Cg — dim Cg NF} = dim P5(Cr). (22)
By [33], [34], we have
dim Cg* NF2/Cx* NF) = dim P(Cr)/P5(Cs). (23)
Therefore, we obtain (17) as follows:
dim Cr NF5/Cs NFY
= dim Cg NFY — dim Cs N F?
= (dim Cr — dimPE(CR))
—(dim Cs — dim P3(Cs)) (24)
= dim Cg — dim Cs — dim P5(CRr))/P5(Cs))
= dim Cg — dim Cs — dim Cg* NFE/C* NFE (25)
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= dim Cr — dim Cs — dim Cr/Cs (26)
=0,

where (24) follows from (21) and (22), and (25) follows from
(23), and (26) follows from (20). m

IV. OUR PROPOSED ENCODING METHOD CONSTRUCTED
FROM THE REED-SOLOMON CODES

In this section, we show a construction of our proposed secret
sharing scheme by using the Reed—Solomon codes in which
we can easily see from |A| if a set of shares A is qualified, for-
bidden and advance-shareable. In this scheme, Cs, Cr, Ciax
are defined as the same as [22, Sect. 6.2]. Thus by Theorem 1,
this scheme retains the access structure of the conventional
quantum secret sharing scheme [22, Sect. 6.2].

Let n = g and let n — s, k be positive even integers which
implies that n — k — s,n + s,n + k + s are even. Let oy,
..., ay € I, be n distinct elements. Define an [n, k] Reed-
Solomon(RS) code [33] as

RS(n, k) = {(g(a1), . .., glan)) :

g(x) € Fylx], deg g(x) < k}.
Denote the Euclidean dual by “1 E”’. Then RS(n, KLE =

RS(n, n — k) [33] because n = q.
Define

Cs = {(alb):a,b e RS(n, (n — k — 5)/2)},
Cr = {(ab):a,b € RS(n, (n — 5)/2)}.

Then we find that

Ci* = {(ab) : a,b € RS(n, (n + 5)/2)},
C{* = {(ab) : a,b € RS(n, (n + k + 5)/2)},
dimCs = n—k —s,

dimCr = n —s.
We can choose Cax as
Cmax = {(alb) : a € RS(n, |n/2]), b € RS(n, [n/2])}.

Let (alb) be any element of Cpax. Then we have a €
RS(n, |n/2]) and b € RS(n, [n/2]). There exists a polyno-
mial g(x) € Fyl[x] such that deg g(x) < [n/2] and a =
(g(a1), ..., glay)). There exists a polynomial h(x) € IFy[x]
such that deg h(x) < [n/2] and b = (h(wxy), ..., h(ay)).
If g(x), h(x) # 0, the number of distinct roots of g(x) is less
than |n/2] and the number of distinct roots of A(x) less than
[n/2]. Then we have swt(alb) = |{i : (a;, b;) # (0,0)}| >
n—|n/2|+1 > [n/2]+ 1. Thus we have dg(Cpax, Cs)—1 >
ds(Cmax, {0}) — 1 > [n/27. Thus a set of [n/2] shares is
advance-shareable by Theorem 8.

Therefore, we can easily see from |A| if a set of shares A is
qualified, forbidden and advance-shareable as follows:

o A set of shares A is forbidden if and only if

0< 4] < ’”2”. 27)
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o A set of shares A is qualified if and only if

k
PEEES laj<n (28)
2
¢ A set of shares A is advance-shareable if
n
0=la=[5]. (29)

We will compare the size of forbidden sets and
advance-shareable sets of our proposed quantum secret shar-
ing scheme constructed from the Reed—Solomon codes with
that of a classical linear secret sharing. To the best of the
authors’ knowledge, a necessary and sufficient condition on
advance-shareable sets in classical linear secret sharing has
not been studied by other researchers to date. For this reason,
we clarify a necessary and sufficient condition on advance-
shareable sets in classical linear secret sharing.

First we give a definition of encoding of classical linear
secret sharing schemes [35], [36], [37].

Definition 10: Let {1, ..., n} be n participants or equiva-
lently a set of n shares. Let C; C Iy be a linear code and
C, C Cq be asubcode of Cy. Denote k = dim C/C». Fix an
arbitrary isomorphism g : FX — C;/C;. Letm € F} be a
secret. From a coset g(m) € C1/C», a dealer chooses a vector
¢ =(c,...,cp) € gm) C Cp at uniformly random. Then
the dealer distributes each element c; to the i-th participant.
It was shown in [37] that encoding in any classical linear
secret sharing can be written as Definition 10.

Next we clarify a necessary and sufficient condition on
advance-shareable sets of shares in classical linear secret
sharing.

Lemma 11: In classical linear secret sharing, a set of
shares A is advance-shareable if and only if A is forbidden.

Proof: Assume that a set of shares A is forbidden, which
is necessary and sufficient to P4(C1) = Pa(C3) [35], [36],
[37], where Py is the projection map onto A. Let y be any
element of P4(C1). For any g(m) € C;/C>, there exists X €
g(m) such that P4(x) = y. Thus a dealer can distribute a set
of shares A before a given secret.

Assume that a set of shares A is not forbidden, which is
necessary and sufficient to P4(C1) # Pa(C») [35], [36], [37].
Let y be any element of P4(Cy) \ P4(C>). For a given secret
m such that g(m) = 04+ C; € C1/C», there does not existx €
g(m) such that P4(x) = y. Thus the dealer cannot distribute
a set of shares A before a given secret. m

Finally we compare the size of forbidden sets and advance-
shareable sets of our proposed quantum secret sharing
scheme constructed from the Reed—Solomon codes with that
of a classical linear secret sharing. In our proposed quantum
secret sharing scheme, a dealer shares a k log, g-bit secret
(i.e., a secret is an element of IF’;) to n participants by dis-
tributing a log, g-qubit share (i.e., g-qudit share) to each
participant. Consider a ramp version [30] of Shamir’s scheme
as a classical linear secret sharing. Assume that in a ramp
version [30] of Shamir’s scheme,

o A classical secret is shared between n participants.
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TABLE 1. Comparison between our proposed quantum secret sharing scheme and ramp Shamir’s scheme [30].

Proposed quantum secret sharing scheme

Ramp Shamir’s scheme [30]

The bit-size of a secret

The bit-size of each share
The size of qualified sets A
The size of forbidden sets A

The size of advance-shareable sets A

klog, g-bit
log, g-bit

nilts <JAl<n
0<|A] < nds

0<|A < [5]

k log, g-bit
log, g-qubit

<Al <n
0<|A] < nbs=k

0<|A| < mh=t

o The bit-size of a shared classical secret is k log, g-bit
(i.e., a secret is an element of F’;).

« The bit-size of each share is log, g-bit (i.e., a share is an
element of IF,)).

o A set of shares A is qualified if and only if

<IAl=n, (30)

which implies that the size of qualified set is the same as
(28), that is, that of our proposed quantum secret sharing
constructed from the Reed—Solomon code.

The bit-size of a secret and each share and the size of qual-
ified sets, forbidden sets and advance-shareable sets in our
proposed quantum secret sharing scheme constructed from
the Reed—Solomon codes and a ramp version [30] of Shamir’s
scheme can be summarized in Table 1.

Since in a ramp version [30] of Shamir’s scheme, the size
of qualified sets is given by (28) and the size of each share is
1/k of the bit-size of the secret, a set of shares A is forbidden
if and only if

3D

By Lemma 11, a set of shares A is advance-shareable if and
only if a set of shares A is forbidden. Thus a set of shares A is
advance-shareable if and only if

0<|Al = ——5—. (32)

Forbidden sets of a ramp version [30] of Shamir’s
scheme are narrower than that of our proposed quantum
secret sharing scheme constructed from the Reed—Solomon
codes, which follows from (27) and (31). It implies that
smaller leakage allows an adversary to gain the partial
information about a secret than our proposed quantum
secret sharing scheme constructed from the Reed—Solomon
codes. Our proposed quantum secret sharing scheme con-
structed from the Reed—Solomon codes can make the size
of advance-shareable sets larger than a ramp version [30]
of Shamir’s scheme when s < k. This follows from (29)
and (32).
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V. UNAVOIDABLE EXTRA DANGER OF SECURITY
BREACHES IN ANY CLASSICAL SECRET SHARING

WITH ADVANCE SHARING

In this section, we prove that extra danger of security breaches
caused by advance sharing is unavoidable in any classical
secret sharing while our proposed secret sharing does not
have any extra danger of security breaches.

First, we give the most general definition of encoding in
classical secret sharing schemes.

Definition 12: Let {1, ..., n} be n participants or equiva-
lently a set of n shares. Let X1, . .., X, be random variables of
nshares. Foreachi = 1, ..., n, X; denotes a share distributed
to the i-th participant. Let S be a random variable of a clas-
sical secret. Encoding of a classical secret sharing scheme
is defined by a conditional probability P(Xq, ..., X,|S) of
X1,..., X, given S.

In classical secret sharing, a dealer can realize advance
sharing by generating the rest of shares based on given
secret and shares already distributed. Thus the dealer needs
to keep the information about shares already distributed until
all shares are generated. Shares distributed in advance can
leak out from the dealer. If shares distributed in advance leak
out, forbidden sets are narrower than designed. It implies
that smaller leakage allows an adversary to gain the partial
information about a secret than designed and thus advance
sharing of classical secret sharing can cause extra danger of
security breaches. The dealer wishes to avoid extra danger of
security breaches. To avoid extra danger of security breaches,
the dealer would like not to keep any information about
shares already distributed. What happens if the dealer does
not keep any information about shares already distributed?
Theorem 13 provides an answer to this question.

Theorem 13: Let B be an advance-shareable set of shares
which implies 1(S; {X; i € B})) = 0, where I(:; ) is
the mutual information [38]. Suppose that the dealer does
not keep any information about a set of shares B distributed
before a given secret or equivalently {X; : i € B} <& § <
{X;:ie E} forms a Markov chain [38] (i.e., the conditional
distribution of {X; i € B} depends only on S and is
conditionally independent of {X; : i € B} for a given S).
Then the amount of information about a secret is determined
by only a set of shares B or equivalently for any set of shares
DcBandE C B,I({X;:i € DUEY;S)=1({X;:i € E}; S).
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Proof: Since {X; : i € B} < § < {X; : i € B} forms
a Markov chain, {X; : i € D} < § < {X; : i € E} forms a
Markov chain. We have

I{X;:ie DUE};S)
=I({X;:i€eE};S{X;: i€ D})

+I({X;:ie D}, S|{X;: i€ E}) (33)
<I({X::i€E};S|{X; : i € D})

+I({X; 1 i € D}; S) (34)
<I({X;:icE;S|{X;:ieD)H+0 35)
< I(X;:i€ E)S), (36)

where (33) follows from chain rule for the mutual information
[38, Theorem 2.5.2], (34) and (36) follow from a Markov
chain {X; : i € D} < S <« {X; : i € E} and
[38, Theorem 2.8.1], and (35) follows from the assumption
I(S;{Xi:ieB})=0.Since I{X;:ie DUE};S) > I({X; :
ieE};S),wehave I{X; :i e DUE}S) = I({X; : i €
E};S).m

Theorem 13 provides an answer to the question as follows:
Suppose that the dealer does not keep any information about a
set of shares B already distributed. Then even if participants in
B dispose their shares distributed before a secret is given, the
amount of information about a secret gained from shares of
participants is the same. That is, distributing a set of shares
B is completely wasteful and advance sharing is worthless.
Therefore, the dealer cannot avoid extra danger of security
breaches described above if the dealer uses classical secret
sharing.

In contrast, the rest of shares are generated only based on a
given secret in our proposed quantum secret sharing scheme.
Thus the dealer does not need to keep the information about
shares already distributed. For this reason, even if security
breaches expose dealer’s storage before a secret is given, our
proposed secret sharing is as secure as designed. Therefore,
our proposed secret sharing has no extra danger of security
breaches which is unavoidable in any classical secret sharing.

VI. GILBERT-VARSHAMOV-TYPE SUFFICIENT CONDITION
In this section, we give a Gilbert-Varshamov-type sufficient
condition for existence of our proposed secret sharing and
then discuss its engineering implication.

Theorem 14: 1f positive integers n, k, s, 8, 87, 6; with
dr > &, satisfy

s _ s O]
q" QZ:_ lqn s ; (?)(‘]2 _ l)i
S (-
i=1
, S—1
+—qn;2; fn;kﬂ fZ (?)(6]2 —<1, (37
i=l1
94466

then there exist Cs C Cr C Cmax = CiS, C C* C
C§‘S C Fé" such that dimCs =n —k — s, dimCr = n — s,
dy(Cg*, Cg*) = 84, ds(CR, Cs) > 8¢ and dy(Crmax, Cs) = 8.

Remark 15: By Theorem 1, a sufficient condition on for-
bidden sets remains the same as the conventional quantum
secret sharing scheme [22]. Thus by [22, Theorem 6], the
condition ds(CRr, Cs) > &y implies that a set of 5 — 1 shares
is forbidden. By Theorem 8, the condition ds(Cpax, Cs) > &;
implies that a set of §; — 1 shares is advance-shareable.

Proof: Let A(k, s) be the set of triples of linear spaces
(U,V,W)such that dmU = n—k —s,dimV = n — s,
dmW =nandU CVCW =W cVvE cUuls cF
For e € F2", define By 1s(k, €) = {(U,V, W) € A(k,s) : e €
U\ VYY), By(k,e)={(U,V,W)cAk,s):ec W\ V}
and By(k,e) ={(U,V,W) € A(k,s):ec V\U}.

For nonzero eq, e; € IB‘Z”, we have |Byis(k,e))| =
|Byis(k, e2)l, [Bw(k,e1)| = |Bw(k,ez)| and By (k,e;)| =
|By(k, ey)| by the almost same argument as [22, Proof of
Theorem 15].

For each (U, V, W) € A(k, s), the number of e such that
ec UH\VEis|ULS|— VLS| = ¢"TF+S — "+ The number
of quadruples (e, U,V, W) such that 0 # e € U5\ V15 is

Y IByutk, @) = Ak, 5)| x (g"TFT — g,
0£eclF2"
which implies
Byisk,e)| gt —gmths

38
|A(k, 5)] g —1 G
Similarly we have
|Bw(k.©)l _ ¢"—¢""" (39)
Ak, )] ¢—1"
By(k,e)l  ¢" —g"7* 40)
Ak, )] g—1

If there exists (U, V, W) € A(k, s) such that (U,V, W) ¢
Byistk,er), (U, V,W) ¢ Bw(k,ex) and (U,V, W) ¢
By(k,e3) forall 1 < swt(e;) < §; — 1,1 < swi(ez) <
d; — land 1 < swt(e3) < §r — 1, then there exists a triple of
(U, V, W) with the desired properties. The number of e such
that 1 < swt(e) < 4§ — 1 is given by

5—1

3 (’Z)(cﬂ — 1) (41)
i=1

By combining (38), (39), (40) and (41), we see that (37) is a
sufficient condition for ensuring the existence of (U, V, W)
required in Theorem 14. m

We will derive Theorem 16 as an asymptotic form of
Theorem 14.

Theorem 16: LetR < 1,5 < 1,6 < ¢ <0.5,¢4 < 0.5
be nonnegative real numbers. Define 24(x) = —logqx —(1-
x)logq(l — x). For sufficiently large n, if

he(eq) + &g log,(¢* —1) < 1 =R =S,
hy(er) + & logq(q2 —1) < land
hy(er) + er log (" — 1) < 1+,
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then there exist Cs C Cr C Cmax = CLS, C C3* C
Cg* C Fy" such that dim Cs = n — [n(R + 5)], dim Cg =
n — |nS], dy(C5*, Cg*) = |negl, ds(Cr, Cs) = |ner] and
dy(Cmax, Cs) = |ne;].

Proof: Proof can be done by almost the same argument
as [22, Theorem 16]. m

For sufficiently large n, the size of advance-shareable sets
(i.e., |ne;] — 1 in Theorem 16) depends on only a prime
power g and independent of the size of classical secrets
(i.e., R in Theorem 16). We compare our proposed quantum
secret sharing scheme with classical secret sharing schemes
and then can make the following observation: Consider a
scheme to share a nlog, g-bit classical secret to sufficient
large number 7 of participants by distributing a log, g-bit or
log, g-qubit (i.e., g-qudit) share to each participant. When a
dealer distributes a log, g-bit share to each participant, all of
each share depend on the secret and there are no advance-
shareable shares. On the other hand, our proposed quantum
secret sharing scheme distributing a log, g-qubit share to each
participants can make a set of |ne;| — 1 shares advance-
shareable for ¢, satisfying that h,(s;) + & logq(q2 -1 <1
Particularly when ¢ = 2, Theorem 16 implies that a set of
roughly 19% of shares is advance-shareable independently
of the size of classical secrets (i.e., R in Theorem 16), as
h2(0.19) 4+ 0.191og, 3 = 1 for sufficiently large n.

For sufficiently large n, Theorem 16 gives a sufficient con-
dition on existence of our proposed secret sharing schemes
with a set of |ner]| — 1 shares being forbidden and a set of
|ne;] — 1 shares being advance-shareable, which is indepen-
dent of the size of classical secrets (i.e., R in Theorem 16).

VIi. CONCLUSION

In our paper, we propose quantum secret sharing with the
capabilities in designing of access structures more flexibly
and realizing higher efficiency beyond those of classical
secret sharing, that can distribute some shares before a
given secret. We clarify a necessary and sufficient condi-
tion on advance-shareable sets in Sect. IIIl. Our proposed
quantum secret sharing can make the size of forbidden sets
and advance-shareable sets larger than classical linear secret
sharing scheme, which is demonstrated in Sect. IV by com-
paring our proposed quantum secret sharing scheme from
the Reed—Solomon codes with a ramp version of Shamir’s
scheme. In Sect. V, we prove that in classical secret shar-
ing, a dealer needs to keep the partial information about
shares already distributed until all shares are generated, which
causes extra danger of security breaches. On the other hand,
the dealer does not need to keep the information about shares
already distributed in our proposed quantum secret sharing.
Thus our proposed quantum secret sharing has no extra dan-
ger of security breaches. In Sect. VI, we give a sufficient con-
dition on existence of our proposed secret sharing schemes
with the given size of forbidden and advance-shareable sets,
which is independent of the size of classical secrets. There-
fore, our proposal can provide a useful method of advance
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sharing when a dealer unable to communicate with some
participants after the dealer obtains a secret.
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