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ABSTRACT Accurate segmentation of lesion region from skin lesion images can provide guidance for
medical experts to make an early diagnosis of skin cancer. In this study, we construct Recurrent Attentional
Convolutional Networks (O-Net), which exploits the skin lesion’s attention class feature with a recurrent
O-shape structure, in an iterative refinement strategy for skin lesion image segmentation. Inspired by
the recently proposed attention class feature network, we integrate the attention class feature module
into the proposed networks. The O-Net, with recurrent unit to iteratively refine the segmentation result,
is designed to extract attention feature information and enable coarse-to-fine feature representation by
iteratively integrating attention feature maps into network. Furthermore, O-Net calculates the attentional
class feature by extracting attention information from the coarse segmentation result. Two currently popular
datasets ISIC-2017 and PH2 are employed to explore the validity of our proposed model. The study provides
detailed comparisons of our proposed network, the attention class feature network and Recurrent U-Net.
O-Net achieved Dice coefficient by 87.04% on the ISIC-2017 dataset, 92.12% on the PH2 dataset with
corresponding Jaccard indices of 80.36% and 86.15%, respectively, on the same dataset, which exhibits
competitive performance for skin lesion image segmentation in results. The visual results also shown that
more detailed tissues are extracted by O-Net than other methods.
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INDEX TERMS Skin lesions, automatic image segmentation, O-Net, melanoma, attention class feature,
lesion segmentation.

I. INTRODUCTION18

Skin cancer is a particularly fatal and common disease all over19

the world. In the United States alone, more than 5 million20

new skin cancer patients appear every year. [1] The American21

Cancer Society estimates that in 2020, about 100,350 newly22

melanoma patients will be diagnosed in the United States, and23

6,850 people (2,240 women and 4,610 men) will die from24

the disease. [2] The research shows the survival rate over25

90% for patients who detect melanoma early [3], therefore,26

early discovery of skin cancer is indispensable for subsequent27

treatment that can prevent serious lesions.28

Traditionally, experienced dermatologists by observing29

dermoscopy or non-dermoscopy images to diagnose the early30

skin cancer. [4] For dermatologists, however, diagnosing31

The associate editor coordinating the review of this manuscript and

approving it for publication was Fahmi Khalifa .

large numbers of patients is often seen as a complex and 32

tedious process. The Computer-Aided Diagnosis (CAD) sys- 33

tem has brought new vitality to the procedure, which was 34

designed to raise inspection efficiency and reduce the work 35

stress of dermatologists. At present, CAD has become an 36

essential auxiliary facility in many screening sites and hospi- 37

tals by complementation of its unique advantages with physi- 38

cians to form efficient and reliable detection and diagnosis 39

results. [5] The CAD system for skin cancer detection mainly 40

includes the following basic aspects: target image acquisition, 41

correlation preprocessing, lesion image segmentation, region 42

feature extraction, and results classification. [6], [7] Lesion 43

image segmentation is an important part of skin cancer diag- 44

nosis because it locates the exact lesion mask, which is the 45

basis for accurate feature extraction and disease classification 46

later. [8] However, accurately dividing the lesion region from 47

the normal skin is a sophisticated task as a result of poor 48
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FIGURE 1. The comparison between O-Net network and the other two networks. (a) Recurrent U-net. The recurrent units achieve an
iteratively updating of the internal network’s states, and refine the segmentation mask simultaneously. (b) ACFNet utilize attention
mechanism to obtain class-level context and generate segmentation results. (c) O-Net. Compared with the above methods, O-Net
integrate the attention mechanism into the recurrent unit, so as to iteratively integrating attention maps into network and improve
the segmentation results.

contrast, difference in skin color, skin aberrations, physical49

location of lesion and non-uniform lighting. [9] Deal with50

the interference, therefore, to obtain accurate lesion image51

segmentation results is very critical to promote CAD assistant52

ability.53

Deep learning has shown remarkable ability in the task54

of processing medical images for the past few years. It is55

capable of exploring deep features by building network struc-56

tures that include convolution, pooling and nonlinear func-57

tions, appearing impressive capabilities to excavate abstract58

representations from raw annotation data. Compared with59

traditional Convolutional Neural Network (CNN), networks60

formed by complementing the advantages of convolutional61

neural network and Recurrent Neural Network (RNN), such62

as U-Net [10] containing recurrent structure, have attracted63

more and more attention benefit from its speciality to acquire64

a coarse-to-fine representation. In addition, recent research65

has identified one of the most successful method to improve66

the performance is adding attention block to exploiting richer67

context. In the study, we constructed an attention-based68

mechanism network named Recurrent Attentional Convolu-69

tional Networks (O-Net) that effectively improves the capac-70

ity of the convolutional neural network to distinguish each71

complex voxel in the skin lesion image. It is designed as72

a circular closed network that coarse segmentation results73

are fused by the attentional module with the high-level fea-74

ture map, Therefore, the context information is captured and75

guided throughout the segmentation network during the iter-76

ation process, so as to obtain more accurate segmentation.77

Furthermore, inspired by recently proposed attentional class78

feature network (ACFNet) [11], we improve the skin lesion79

image segmentation by using attention class feature mod-80

ule that explores class level context. ACFNet and Recurrent81

U-Net [12] are used for comparison. We trained all the net-82

works from the ground up and analyzed the experimental83

results in detail. Figure 1 shows the simple comparison of84

three models.85

The main contributions of the paper are as follows: 86

(1) We first defined the concept of recurrent attentional, 87

which represents to refine attention mechanism from the 88

iterative process, to help network learn more accurately fea- 89

tures and achieve a coarse-to-fine segmentation performance. 90

(2) We proposed a recurrent attention segmentation struc- 91

ture with iterative refinement, named Recurrent Attentional 92

Convolutional Networks (O-Net), equipped with an atten- 93

tion feature fusion module (AFFM), which containing both 94

the class center block and the class attention block, so as 95

to exploit class context information of coarse segmenta- 96

tion results to improve the final lesion segmentation result. 97

(3) Our novel O-Net achieves accurate skin lesion segmen- 98

tation results on two publicly available datasets, which is 99

significantly competitive with other current advanced meth- 100

ods, especially in skin regions with different aberrations and 101

artifacts. 102

In Section 2, the related work is given a brief literature 103

review. Section 3 describes two publicly available datasets 104

used to analyze model performance. The section also pro- 105

vides a briefly introduction of the proposed O-Net, ACFNet 106

and Recurrent U-Net architecture, as well as the employed 107

evaluation metrics. Section 4 presents experimental results, 108

where evaluate the capability of our constructed network on 109

two public skin lesion datasets. Discussion and conclusion 110

are contained in Section 5 and Section 6. 111

II. RELATED WORKS 112

The purpose of skin lesion image segmentation is to extract 113

and recognize lesion regions in skin images. With the 114

popularity of non-invasive imaging techniques in skin can- 115

cer diagnosis, various relevant practical methods have been 116

implemented to the skin lesion image segmentation. With 117

reference to the strategies used, segmentation methods can 118

be summarized as two main classes: learning-based method 119

and non-learning-based method. Learning- based approaches 120

learn from hand-crafted or automatically learned features to 121
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TABLE 1. The summarization of several representative methods.

obtain the fitting weight parameter and generate the predic-122

tion results from using parameter, it automatically identifies123

the category to which the data belongs. Following is a brief 124

review of lesion segmentation in skin images from these two 125
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aspects. We also make a summarization of several represen-126

tative methods which shown in Table1.127

A. NON-LEARNING-BASED METHODS128

Non-learning-based approaches that rely on spatial color dis-129

tribution of the lesion image have been popular in the early130

stage for its widespread practicality, such as histogram thresh-131

olding, clustering, edge-based, etc. Cavalcanti et al. [13]132

proposed using rich preprocessing steps to assist skin133

lesion segmentation based on Otsu’s thresholding method.134

Pathan et al. [14] proposed an automatic edge curve evolu-135

tion approach for segmentation without the need to define the136

specific initial contour. Goceri and Gunay [15] used the rough137

segmentation and fine segmentation of two steps to imple-138

ment the automatic curve evolution segmentation algorithm.139

They took full advantage of the color information of the lesion140

area in the rough segmentation process, which provided help141

to minimize the active contour in the fine segmentation.142

Zhou et al. [16] improved segmentation results by achieving143

a gradient vector flow (GVF) algorithm based on mean shift144

relied on balancing the mean difference of all the gradients145

and the current gradient vector. Glaister et al. [17] proposed146

a novel segmentation method to distinguish the lesion region147

from skin lesion image by identifying the occurrence of the148

constructed representation texture distribution. This method149

significantly improves segmentation accuracy, but it is sensi-150

tive to the complex lesion and skin texture which can lead to151

poor performance.152

B. LEARNING-BASED METHODS153

Significantly, non-learning-based approaches involve a great154

deal of preprocessing. They generally did not perform well155

on skin lesion image in different scenes, because it is usu-156

ally impossible to find a suitable algorithm to deal with all157

intensity variability noise. To address this limitation, many158

learning-based methods achieve better performance on lesion159

images with complex intensity variations through their own160

advantages. For the purpose of segmentation, two processing161

stages are needed: firstly, the feature vectors of pixels need to162

be extracted; Then, the extracted vectors need to be mapped163

to the corresponding category label. On the basis of the164

approaches adopted in the different feature extraction stage,165

learning-based approaches are divided into hand-crafted fea-166

tures based approaches and feature learning based approaches167

in this study.168

1) HAND-CRAFTED FEATURES BASED METHODS169

Based on the cellular automata (CA) model, Bi et al. [18]170

constructed a practical framework for skin lesion automatic171

segmentation. They used the image-wise supervised learning172

(ISL) in the process of seed initialization to achieve an opti-173

mal probabilistic map. Nasir et al. [19] adopted SVM to clas-174

sify combined lesion features ground on uniform distribution175

and active contour. Satheesha et al. [20] proposed a lesion176

segmentation algorithm based on adaptive snake technique.177

Each voxel expressed by intensity and spatial characteristics178

was classified by SVMAdaBoost, and bag-of-features (BoF) 179

classifier. 180

2) FEATURE LEARNING BASED METHODS 181

In recent years, deep learning has gradually demonstrated 182

its extraordinary value in many practical application sce- 183

narios. Effective feature hierarchies can be learned from 184

the skin lesion images and labels, rather than manually 185

capturing the features. Accordingly, Yu et al. [21] con- 186

structed a multilayer convolution neural network framework 187

for the accurate skin lesion segmentation. For purpose of 188

capture more discriminative and richer features, the pro- 189

posed method combined U-Nets and context information 190

fusion structure (CIFS) to capture multi-scale information 191

about each pixel. Tang et al. [22] presented a CNN-based 192

method which employing multi-stage U-Nets to segment the 193

skin lesion. Salimi et al. [24] constructed a network namely 194

DermoNet with structure included encoder and decoder for 195

skin lesion segmentation. Bi et al. [25] extracted the features 196

of skin lesions in the process of adversarial learning by 197

using the generative adversarial networks (GANs) to promote 198

the capability of segmentation. Xie et al. [26] constructed a 199

MB-DCNN architecture to further improve the performance 200

by combining the segmentation and classification of lesion 201

regions. Olusola et al. [27] utilized a covariant SMOTE and 202

proposed a data augmentation technique to generate new 203

skin melanoma samples so as to solve the problem of class 204

imbalance. The ASCU-Net [28] focus on the combination of 205

the attention mechanism to capture the spatial and contextual 206

correlation to fusing the important information of objects and 207

achieve segmentation performance with highly reliability and 208

robustness. MSAU-Net [29] proposed a multi-scale attention 209

U-net to selectively adjust the hierarchical representations 210

and utilized a long short-termmemory structure to capture the 211

discriminative features. Marriam Nawaz et al. [30] proposed 212

a DenseNet77-based UNET to improve the feature extraction 213

power of the encoder unit of UNET and enhance the ability 214

of the model in segmenting small skin lesions. Dense-shuffle 215

attention U-Net [31] proposed a multiple-attention-based 216

neural network to extract high-level information and intro- 217

duced a shuffle-attention unit to integrate channel and spatial 218

attention. 219

In general, deep learning approach brings a new way 220

of solving problems different from traditional non-learning- 221

based and hand-crafted features based approaches. In this 222

research, we constructed a novel network iteratively fusing 223

global attention information to accomplish the task of effec- 224

tive automatic skin lesion images segmentation. 225

III. MATERIALS AND METHODS 226

The target of our study is to design a fully convolutional 227

network of automatic segment skin lesion region in skin 228

dermoscopy images. Inspired by Recurrent U-Net [12] and 229

attentional class feature network (ACFNet) [11], we present 230

a novel network named Recurrent Attentional Convolutional 231

Networks (O-Net) for lesion images segmentation work. 232
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FIGURE 2. The framework of the proposed O-Net. The overall architecture consists of encoder, decoder and the attention feature
fusion module (AFFM). The graph on the right gives the details of two main components in AFFM: the Class Center Block (CCB), and
the Class Attention Block (CAB), which captures the context information of each pixel and obtains attention features of lesion to
improve the segmentation performance.

The proposed method is designed to combine the advan-233

tages of both attentional class feature module and Recurrent234

U-Net architecture. In this section, we will present a detailed235

description of the proposed method, as well as giving a brief236

introduction of the two other networks.237

A. DATASETS AND MATERIAL238

To measure the performance of our proposed network archi-239

tecture, we trained and validated on publicly available dataset240

namely ISIC-2017 [32] and tested on the ISIC-2017 and PH2241

[33] dataset, respectively. In 2017, the ISIC-2017 dataset was242

aggregated and released by the International Skin Imaging243

Collaboration (ISIC). The number of train sets, validation sets244

and test sets were 2000, 100 and 600, respectively, for each,245

group of data contains the original dermoscopy images of246

skin lesion and the corresponding lesion region annotations.247

The original images are RGB images in JPEG format with248

a resolution range of 566 × 679 to 4499 × 6748 , and the249

lesion annotations are binary mask images in PNG format250

with the same resolution. The PH2 dataset was established251

by a collaboration of several research institutions.252

B. RECURRENT ATTENTIONAL CONVOLUTIONAL253

NETWORKS (O-NET)254

Inspired by Recurrent U-Net and attentional class feature net-255

work (ACFNet), we design a novel network named Recurrent256

Attentional Convolutional Networks (O-Net) for skin lesion257

images segmentation process. The constructed network is258

composed of a symmetrical encoders and decoders architec-259

ture on both sides, and the output coarse segmentation results260

as feature attention maps to reintegrate into the network261

through attention class feature module on top. The newmodel 262

is trained to reintegrate global attention information, and each 263

pixel is trained to selectively perceive different class centers 264

of the whole scene, both of which help achieve accurate 265

segmentation. 266

Figure 2 describes the proposed network architecture of 267

O-Net. The integrated internal design of the class center 268

block and class attention block is given by the interpretation 269

on the right side. The architecture consists of three parts: 270

feature encoder (left side), feature decoder (right side) and 271

attentional feature fusion module (top side). The input skin 272

lesion image is passed through the encoder and decoder, 273

which are designed in U-Net, to produce coarse segmenta- 274

tion result Y1 with the spatial size of W × H × C . The 275

attentional feature fusion module guided by coarse segmen- 276

tation result Y1 extracts the attention class features between 277

classes and integrates them into the encoder part. The feature 278

information is iterated through encoder, decoder and feature 279

fusion module in turn to further form the segmentation result 280

Y2,Y3 · · · Yk . Our experiment shows that the model gets the 281

best segmentation result when k = 3. With this architecture, 282

O-Net can iteratively integrate attention features and predict 283

the detail skin lesion images segmentation maps. 284

1) Recurrent U-Net architecture: The primary structure of 285

the proposed network is roughly similar to parts of Recurrent 286

U-Net, with encoders and decoders symmetrically distributed 287

on both sides of the structure, and the previously output seg- 288

mentation mask is concatenated to the input image through 289

recurrent unit. In the encoding stage, the low dimensional 290

feature in the input image is obtained through a rich filter, 291

while the decoding stage, the inverse process of encoding is 292
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carried out by up-sampling and integrate the corresponding293

encode layer feature information, so as to acquire the precise294

segmentation results of each voxel. The recurrent unit incor-295

porated the previous segmentation mask into the input using296

the corresponding attention extraction fusion mechanism.297

Besides, in the up-sampling part, transposed convolutions are298

used to enhance the network’s representation ability rather299

than bilinear interpolation. Group normalization [34] is used300

in partial unit to overcome the internal covariate shift (ICS)301

phenomenon and increase the speed of processing.302

2) Attention Class Feature Module: In general, the main303

challenge of skin lesion images segmentation is to distinguish304

the low contrast voxels in the boundary regions. Figure 3305

shows the challenging skin lesion images from ISIC-2017306

dataset. Traditional non-learning-based approaches guide the307

lesion segmentation process through obtain spatial color dis-308

tribution of the lesion image, which may bring bias because309

of the lowest tissue contrast arise from the edge region. Deep310

Learning based approaches such as Multi-stage U-Nets [22],311

CDNN [23], DermoNet [24] explore the lesion tissue features312

by directly combination of responses at multiple direction or313

scales, which not distinguish voxels from different classes.314

The attentional class feature network (ACFNet) solved this315

problem by introducing attentional class feature module into316

the normal convolutional neural networks. It can be seen from317

the characteristics of ACFNet that each voxel can combine318

different class centers, which are distinguish voxels from319

different classes explicitly. Therefore, we integrated the320

attentional class feature module into the proposed network.321

In the attention class feature module, richer global context322

is explored from view of categorical through class center. The323

features of all voxels remain with lesion category is averaged324

to obtain the class center of lesion category. Therefore, the325

attention class feature is able to supervise the whole segmen-326

tation process from the overall presentation of each class.327

In the process of the attention class feature extraction,328

for the input feature map X ∈ RW×H×C , in which W , H329

and C represent width, height and the number of channels330

respectively, the class center F of c category is formalized as331

follows:332

Fcclass =

∑WH
i=0 γ (yi, c) · Fi∑WH
i=0 γ (yi, c)

(1)333

where yi is the actual class of voxel i and γ (yi, c) denotes334

the indicator function of binary that recognize whether the335

providing voxel belong to the class c.336

In our approach, we use the feature map F ∈ RW×H×C
337

in the second layer of the encoder and coarse segmentation338

result Fcoarse ∈ RW×H×N , where N denotes the number339

of classes, generated by encoder and decoder to calculate340

class center for each class. For purpose of lessen the costs341

of calculate the class center, for feature map F , we employ342

a 1 × 1 convolution to change its channel dimension to343

C ′. Next, we reshape and transpose Ycoarse to RN×WH and344

only reshape the dimension reduction of feature map F ′ to345

RWH×C ′ . Then we calculate the class center Fclass ∈ RN×C ′
346

as follows: 347

Fcclass =

∑WH
i=0 P

i,c
coarse · F ′i∑WH

i=0 P
i,c
coarse

(2) 348

where Pi,ccoarse is the probability of voxel i belonging to class 349

c. Both Fcclass and F
′
i are in R

1×C ′ . 350

In order to monitor the update of model parameters during 351

training, we utilize the binary cross entropy loss to measure 352

the difference between the predicted coarse segmentation 353

result and the corresponding ground truth, which computed 354

on the pixel-level. The total loss is the sum of all coarse seg- 355

mentation loss. The loss can be obtained from the following: 356

LBCE = −
1
M

M∑
i=1

[(1− yi)log(1− ŷi)+ yilogŷi] (3) 357

where M denote the number of all pixels in one sample, yi 358

and ŷi stand for the ground truth and the predict probability 359

of pixel i, respectively. 360

C. COMPARE WITH RECURRENT U-NET AND ATTENTION 361

CLASS FEATURE NETWORK (ACFNet) 362

Two state-of-the-art works were used to compare with our 363

proposed method. One is the Recurrent U-Net, which three 364

layers to englobe; The other is the attention class feature 365

network (ACFNet). Recurrent U-Net introduce a simplified 366

Gate Recurrent Unit (GRU) [35] dubbed Single-gated Recur- 367

rent Unit (SRU) to integrate recursions. Our proposed O-Net 368

provides an attention module with the ability to extract atten- 369

tion class feature information as a recurrent unit. Compared 370

with SRU, the attention class feature module is beneficial 371

to distinguish the low contrast voxel at the edge of skin 372

lesions. ACFNet focused its attention on Cityscapes [36] 373

dataset with large training samples and achieved good seg- 374

mentation results. For skin lesion images segmentation with 375

fewer training datasets, O-Net is based on a more compact 376

U-Net that can use attention mechanisms to achieve a coarse- 377

to-fine segmentation effect without using a large number of 378

parameters. 379

D. PERFORMANCE EVALUATION METRICS 380

In the experiment, we used the following metrics to 381

evaluate our model: Accuracy (ACC), Dice coefficient 382

(DICE), Jaccard index (JAC), Sensitivity(SEN), and Speci- 383

ficity(SPEC). The accuracy represents the proportion of the 384

number of correctly predicted pixels in the picture to all 385

pixels, which can measure the ability of the model in pixel 386

classification. Dice and JAC are defined to measure the 387

degree of overlap between the predicted area and the correctly 388

labeled area, and the value is between [0, 1]. The larger the 389

value, the closer the predicted lesion area is to the real lesion 390

area. Because the lesion area accounts for less than normal 391

skin in the skin lesion image, a large number of background 392

pixels make the accuracy higher, but the actual segmentation 393

effect is poor. Sensitivity and specificity will distinguish 394
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FIGURE 3. Sample images of skin lesion with low boundaries contrast from ISIC-2017 dataset, including samples with hair and
marks covering the lesion area, as well as complex samples with different skin color, lesion location, lesion size, lesion shape and
so on.

between normal skin and lesion areas to avoid being affected395

by unbalanced data.The expressions are as follows:396

ACC =
TP+ TN

TP+ FP+ TN + FN
(4)397

DICE =
2× TP

FP+ FN + 2× TP
(5)398

JAC =
TP

TP+ FN + FP
(6)399

SEN =
TP

TP+ FN
(7)400

SPEC =
TN

TN + FP
(8)401

where TP, FP, TN, and FN represent the quantity of true posi-402

tive, false positive, true negative, and false negative voxels in403

the binary segmentation results.404

IV. EXPERIMENTAL405

The proposed O-Net has recurrent unit to adaptively capture406

the attentional and contextual information. It enables integra-407

tion of the attentional class features in the rough segmentation408

results to the recurrent network and obtains the information409

differences between the classes, so that the precise segmen-410

tation results are obtained. In this section, we systematically411

compared our proposed O-Net with ACFNet and Recurrent412

U-Net. First, the results ground on the validation set are413

presented and employed in the selection of hyperparameter.414

Then, we provide experimental results of our model and415

comparison model on two test sets. We also make a brief416

comparison between O-Net with other recently published417

methods, most of which are ground on the framework of418

convolution neural network. All experiments were carried out419

based on the PyTorch frameworks using an NVIDIAGeForce420

RTX 2080Ti GPU.421

A. DATA PREPROCESSING 422

Due to the limited hardware resources, it is impossible to 423

set a large training batch size when using high-resolution 424

images during training. Moreover, it is various of the res- 425

olution of skin lesion images in ISIC dataset. Therefore, 426

in order to enable the model to be trained in batch-wise, all 427

images are uniformly reduced to resolution 341 × 256 pixel 428

before being input into the network. Furthermore, to enrich 429

the color information in lesion images, we superimposes the 430

HSV color space on the original RGB color space so as 431

to form a six channel image. HSV refers to defining the 432

color space through hue, saturation and lightness. Compared 433

with traditional RGB images, HSV images are less affected 434

by light, and insensitive to changes in skin curvature, and 435

can effectively improve the accuracy of skin lesion image 436

segmentation. HSV color space is intuitive in distinguish- 437

ing lesion areas from normal skin, which is beneficial to 438

segmentation. 439

In addition, due to the limitation of the number of training 440

data, we utilize several data augmentation skills to enrich 441

the training samples and meanwhile avoid the phenomenon 442

of overfitting. This paper mainly adopts the following data 443

enhancement methods: (1) horizontal and vertical inversion. 444

(2) fuzzy. (3) random rotation. (4) affine transformation. 445

(5) random masking. (6) mesh distortion. 446

B. COMPARISONS WITH ACFNet AND RECURRENT U-NET 447

On the basis of ISIC-2017 dataset and PH2 dataset, three 448

models of O-Net, ACFNet, Recurrent U-Net were compared. 449

As mentioned before, the dataset was divided into three sub- 450

sets: training, validation and test. We initialized the model 451

parameter weights with random values and trained the above 452

three models from scratch on the training set. In order to 453

avoid overfitting and ensure a quick convergence, we utilize 454
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FIGURE 4. The segmentation results predicted by our model and the comparison model on ISIC-2017 dataset, each column
represents a sample. The first row and the second row is the original image and the skin lesion segmentation ground truth,
respectively and the remaining rows are the visual segmentation results of different models.

TABLE 2. Performance of three models trained on ISIC-2017 dataset.

TABLE 3. Performance of three models trained on ISIC-2017 dataset.

the Adam optimizer to update parameters, the initial learning455

rate is set to 1e-3, momentum parameters b1=0.9, b2=0.99.456

Meanwhile, the learning rate decay strategy ReduceLROn-457

Plateau is used to dynamically adjust the learning rate during458

the train process, specifically, when Jaccard index does not459

increase after 30 iterations, the learning rate will be reduced460

to 1/10 of the original. The batch size is set to 8.461

In the process of model training, we recorded the loss val-462

ues and validation accuracy. Table 2 reflects the performance463

on the validation set. As shown in Table 2, ours O-Net has the464

highest accuracy rate and the lowest loss value of 0.9473 and465

0.0927, respectively on ISIC-2017 dataset.466

We used the test set for the further evaluation of the467

model. Table 3, Table 4 show the comparison of SEN, SPEC,468

ACC, DICE and JAC on the three model. Compared to the469

TABLE 4. Performance of three models tested on PH2 dataset.

other methods, O-Net obtains the best performance on all 470

metrics as shown in the tables. It’s worth noting that the 471

O-Net achieves the highest average Dice coefficient among 472

the several models. The average DICE for R-UNet, ACFNet 473

and O-Net is 0.8314/0.8407/0.8704 on ISIC-2017 dataset, 474

0.9057/0.9176/0.9212 on PH2 dataset, respectively. 475

C. SKIN LESION IMAGE SEGMENTATION RESULTS 476

The results of skin lesion image segmentation were shown in 477

Figure 4 and Figure 5. The figure shows lesion segmentation 478

results produced by O-Net were more refined at the lesion 479

edge. The proposed O-Net can distinguish low-contrast parts 480

whichmay be confused inACFNet and Recurrent U-Net, thus 481

it allows more details to be preserved. 482

Figure 6 show the difference of segmentation results gen- 483

erated by each model in detail, which provides a typical view 484

of skin edge regions where the voxel intensity distribution of 485

skin and lesion is highly overlapping. Due to the low tissue 486

contrast at the lesion edge, it is difficult for segmentation 487

algorithms to accurately process such tissue. Due to the lim- 488

itation of model architecture, ACFNet and Recurrent U-Net 489
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FIGURE 5. Representative segmentation results predicted by our model and the comparison model. Each column represents a
sample. The first row and the second row are the original image and the skin lesion segmentation ground truth, respectively
and the remaining rows are the visual segmentation results of different models.

extracted incomplete information in the edge regions of the490

skin lesion. It is noteworthy that ACFNet extracted more491

detailed lesion than Recurrent U-Net in edge regions, which492

presented its capability to distinguish different class of low493

signal differentiation. With the aid of attention class feature494

module, the O-Net successfully segmented the overlapping495

voxels at the lesion edge. In low intensity distribution of496

voxels regions, Recurrent U-Net shows limitations in dealing497

with the details. However, ACFNet had identified them cor-498

rectly in some places. Therefore, the O-Net obtained desired499

segmentation results in overlapping and low contrast tissue.500

The experimental results present that the novel network501

architecture characteristics of O-Net have better performance502

compared with among the other three models, especially,503

when dealing with complex and low-contrast lesion voxels.504

D. COMPARISON AGAINST EXISTING METHODS505

Our approach is also compared with several state-of-the-art506

approaches. Among them, some are traditional convolution507

neural network approaches while the others are adversar-508

ial learning approaches. We generalize the performance on509

ISIC-2017 and PH2 dataset in Table 5 and Table 6. The510

data show that O-Net architecture almost achieves the highest511

metrics among all methods on ISIC-2017 dataset. It produces512

the highest ACCwith 0.9471, which represents that the O-Net513

achieves best performance comparing with convolutional514

TABLE 5. Comparison with state-of-the-art networks on ISIC-2017
dataset.

TABLE 6. Comparison with state-of-the-art networks on PH2 dataset.

neural network based methods and adversarial learning meth- 515

ods. Furthermore, the confusion matrices on ISIC-2017 and 516

PH2 datasets are shown in Figure 7. Although the O-Net 517

does not perform much better than other approaches on 518

PH2 dataset, the results it produces are still competitive and 519

demonstrate its strong generalization ability. 520

Although the dice coefficient of O-Net performs no better 521

than Sarker et al.’s method [41] on ISIC-2017 dataset, O-Net 522

is ahead in both accuracy and Jaccard index, which indicate 523
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FIGURE 6. The detail Segmentation results predicted by our model and
the comparison model. Samples shown here contains lesions in extreme
cases. Similarly, the first row shows the original images, and the second
row is the skin lesion segmentation ground truth, and the remaining rows
are the visual segmentation results of different models.

FIGURE 7. The confusion matrix on ISIC-2017(left) and PH2(right)
datasets.

our method improves the accuracy while maintaining the524

integrity of the lesion regions. Similarly, when our model525

is extended to PH2 dataset, despite the fact that Bi et al.’s526

model [37] achieves higher accuracy, its ability to correctly527

distinguish the lesion region from normal skin is inadequate,528

so it is lower than O-Net on dice coefficient and Jaccard529

index. The reason may be the result of O-Net’s compre-530

hensive consideration of attentional class feature and lesion531

feature.532

E. ANALYSIS OF THE INFLUENCE OF THE BACKBONE533

The proposed O-Net is essentially composed of an534

encoder-decoder structure and a recurrent attention mech-535

anism module AFFM, which captures context information536

and achieves feature fusion with iterative refinement. Intu-537

itively, any network with U-Net structure can be used as a538

backbone to replace the original U-Net model used in the539

experiments. Here, we choose two different common used540

TABLE 7. Comparison with different encoder networks on ISIC-2017
dataset.

backbone networks: VGG16 and ResNet50. The experiments 541

are conducted on the ISIC-2017 dataset, and the results are 542

shown in Table 7. It can be seen that, AFFM achieves com- 543

petitive performance with different backbones, which shows 544

the great generalization ability. Specifically, AFFM shows 545

better segmentation performance on ResNet50 compared 546

with U-Net and VGG16. It can be explained that, utilizing 547

the backbone with stronger feature extraction ability is more 548

conducive to AFFM to further achieve feature fusion and 549

recurrent optimization. 550

F. ANALYSIS OF INCREASING THE RECURSIVE ITERATION 551

In this study, the relationship between recursive iterations 552

K and model performance is studied in detail. For this pur- 553

pose, we use different iterations to train our model, i.e., 554

K = 1, 2, . . . , 6. Figure 8 describes how the performance 555

of the network changes with the number of iterations. The 556

performance has improved significantly when the number of 557

iterations increases from 1 to 3. Meanwhile, we visualize 558

the segmentation performance in Figure 9. It can be seen 559

that, as the iteration K increasing, the segmented lesion area 560

gradually approaching to the Ground Truth, which can be 561

proved that the proposed recurrent attention mechanism cap- 562

turing more detailed attention feature information through 563

input coarse-to-fine segmentation result. However, the per- 564

formance has been no further significant improvement, when 565

the number of iterations was further increased. One possible 566

reason is when the number of iterations more than 3, the 567

limited the basic network structure and the integration of 568

attention class features, the rough segmentation results cannot 569

be further improved. Therefore, in our experiments, for better 570

balance the efficiency and effectiveness, we set 3 as the 571

value of iterations K. Improving integration of attention class 572

features will be the focus of our follow-up research. 573

V. DISCUSSION 574

Attention mechanism, which inspires by the way of humans 575

acquire scene information, have been generally used for 576

semantic segmentation tasks and achieved remarkable per- 577

formance. O-Net is extended by introducing attention class 578

feature module as recurrent fusion unit on the idea of the 579

Recurrent U-Net. With the circular O-shape architecture, 580

O-Net is designed to generate coarse segmentation result by 581

standard U- Net and integrate the attention class feature infor- 582

mation by recurrent unit through extracted in the coarse seg- 583

mentation into the encoder. Furthermore, with the attention 584

class feature module, O-Net is able to capture the informa- 585

tion differences between classes by combine different class 586

centers. By using the coarse skin lesion segmentation result 587
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FIGURE 8. The performance of the model with different iterations.

FIGURE 9. The segmentation performance of different iterations.

of each iteration as attention feature map of the next iteration588

to capture attentional class feature, the different pixels focus589

on different classes.590

Begin, we have trained Recurrent U-Net and ACFNet591

from scratch to compare the performance with our proposed592

approach. It is also the first time O-Net has been used to han-593

dle the skin lesion segmentation. Besides, O-Net is compared594

with several deep convolutional network based approaches595

and some other non-learning-based approaches.596

Although O-Net complete the skin lesion image597

segmentation task to some extent, there are still aspects598

worthy of exploration. On the one hand, O-Net only seg-599

ments apart the normal skin and lesion area, but lacks of600

further division on lesion types, which only provides limited601

information for subsequent process. Therefore, it is necessary602

to explore how to further divide the specific area in combi-603

nation with the clinical diagnostic criteria for the diagnosis604

of pigmented skin lesions, so as to provide more valuable605

information for doctors’ diagnosis and subsequent analysis.606

On the other hand, the training of O-Net needs to manually607

set the number of iterations and other hyperparameters, which608

is time-consuming and only achieve suboptimal in general.609

In subsequent research, the neural network automatic search610

(NAS) technology can be utilized to automatically explore the611

optimal parameters for the skin lesion image segmentation612

task.613

Moreover, O-Net utilizes the basic encoder and decoder614

structure to introduce long-distance class-level attention615

information through recurrent iteration, which realizes the616

accurate segmentation of skin lesion area and ensures the617

compactness and lightweight of the model. Combined with618

the characteristics of relatively simple and small datasets, the619

compact and lightweight framework is universal in the field 620

of medical image processing. Therefore, we aim to explore 621

the application of the network proposed in this paper in other 622

medical image fields. 623

VI. CONCLUSION 624

In the study, we build a recurrent attentional convolutional 625

network, named O-Net to deal with the skin lesion images 626

segmentation task. O-Net is equipped with the attention fea- 627

ture fusion module in the recurrent unit, which iteratively 628

compromise the attention mechanism and capture sufficient 629

context information to refine the skin lesion segmentation 630

results. In experiments, the model is trained and tested on two 631

datasets: ISIC-2017 dataset and PH2 dataset. Results show 632

that with the help of attention class feature module, more 633

detailed lesion regions are extracted, and achieved compet- 634

itive performance in segmenting the skin lesion images. 635
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