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ABSTRACT This paper addresses the problem of optimizing the deployment of Flying Backhaul Networks
(FBNs). The latter comprise Unmanned Aerial Vehicles (UAVs), which are used as access points to provide
coverage to a set of ground nodes deployed in a target area. The optimization problem is addressed by means
of a Multi-Objective Optimization Algorithm (MOEA), which calculates Pareto curves of UAV placement,
providing different trade-offs between the considered objectives: (1) to minimize the number of UAVs, and
(2) to maximize the Packet Delivery Ratio (PDR). The selected MOEA is NSGA-II. An embedded single
objective Genetic Algorithm (inner-GA) is used to optimize routing, finding the paths that maximize the
PDR. In order to obtain consistent solutions for the PDR taking into account MAC layer contention, the
scheme makes use of an existing fixed-point algorithm (FPA). Simulation results were obtained for different
scenarios combining average versus maximin PDR objective funtions, two different routing optimization
algorithms, as well as single sink versus multiple sink traffic patterns.
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INDEX TERMS Flying backhaul networks, topology optimization, routing optimization, NSGA-II,
unmanned aerial vehicles.

I. INTRODUCTION14

Traditionally, Unmanned Aerial Vehicles (UAVs) have been15

used by themilitary for surveillance and reconnaissance oper-16

ations. However, with the advent of robust wireless network-17

ing technologies, UAVs equipped with wireless transceivers18

can be enabled to communicate with ground nodes (GNs)19

as well as other UAVs [1]. As such, a swarm of UAVs can20

be configured to operate cooperatively as a Flying Backhaul21

Network (FBN). Among the possible applications of UAV-22

based networks, also known as Flying Ad Hoc Networks23

(FANETs), civilian application are envisioned to play an24

important role, e.g., UAVs can be deployed in critical sce-25

narios, such as natural disaster (wildfire, floods, earthquake,26

etc.) to provide communication services to the GNs. In such27

scenarios, communication among different rescue teams is28

vital for mission coordination. In the absence of a functional29

conventional terrestrial communication network (e.g., cellu-30

The associate editor coordinating the review of this manuscript and

approving it for publication was Xujie Li .

lar network), such coordination may fail. For example, due 31

to the large areas to be covered or accessed, teams may not 32

be able to report their findings or subsequent strategic plan in 33

a timely manner, and satellite communication may not be an 34

option due the high cost of operation and/or lack of terminal 35

equipment. This is where FBNs may be decisive. 36

FBNs present the following advantages: firstly, UAV 37

deployment is faster than recovering a crippled cellular net- 38

work. Secondly, the acquisition and operational costs are 39

lower. However, the design of such network is challenging 40

and should be done carefully. Finding a suitable UAV topol- 41

ogy that meets the overall network Quality of Service (QoS) 42

requirements is a challenging task in an FBN comprising 43

multiple UAVs. This issue is still attracting the academic 44

community [2], [3], [4], [5], [6], [7]. Essentially, optimized 45

UAV placement can be achieved either using a centralized 46

or distributed scheme. In a typical centralized UAV scheme, 47

there will be a single entity responsible for processing GN 48

data and updating the UAVs with the new positions. This is 49

different from a distributed placement scheme, where UAVs 50
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work cooperatively to adjust their positions based on local51

interactions [8].52

This paper proposes a centralized algorithm architecture to53

optimize deployment and routing of an FBN whose mission54

is to cover GNs located in a target area. The goal is to maxi-55

mize the Packet Delivery Ratio (PDR), while committing the56

minimum number of UAVs. In order to achieve this multi-57

objective goal, the proposed scheme relies on a MOEA, more58

specifically the Non-dominated Sorting Genetic Algorithm II59

(NSGA-II) [9], together with a nested single objective60

Genetic Algorithm (GA).61

The main contributions of this work are the following:62

(i) A comprehensive review and comparative analysis of the63

related work on FBN topology optimization;64

(ii) A novel multi-objective optimization scheme, which65

uses NSGA-II to calculate the Pareto curves of66

non-dominated FBN topologies, providing different67

trade-offs between number of UAVs (minimized) and68

PDR (maximized), considering MAC layer contention;69

(iii) An algorithm hierarchical structure, where the outer70

NSGA-II finds non-dominated topologies, while the71

inner single objective GA finds the best routes for each72

tested topology, and a fixed-point algorithm [10] is used73

as objective function to estimate end-to-end PDR;74

(iv) Network performance results and novel insights consid-75

ering different combinations of average versus maximin76

PDR metrics, shortest path versus GA based routing,77

as well as single sink versus multiple sink traffic pat-78

terns, some of them under the perspective of MAC layer79

contention.80

This paper is a development of previous work presented81

in [11], extending it with an updated and improved related82

work analysis, a deep explanation of the algorithms, and83

a more complete set of test scenarios and objective func-84

tions, where the advantages and limitations of the proposed85

approach become more evident.86

The remainder of this paper is organized as follows. The87

related work is presented in Section II. Section III presents88

the proposed system model. Section IV presents the math-89

ematical formulation of the objective functions and their90

constraints. In Section V, NSGA-II based UAV placement91

and routing optimization are presented. Section VI presents92

the simulation scenarios and results. Section VII presents the93

conclusions and future work.94

II. RELATED WORK95

This section presents the related work on UAV placement96

algorithms for FBNs. Generally, UAV placement schemes fall97

into two main categories: distributed and centralized [12].98

In distributed schemes, UAVs exchange and use local infor-99

mation in order to optimize their positions or trajectories,100

aiming to satisfy the required level of coverage of user nodes.101

This approach typically makes the network more responsive102

and resilient in case of unexpected changes. Most of the103

existing distributed algorithms adapt concepts coming from104

physics or animal behavior. For instance, Basu et al. [13]105

proposed an UAV placement scheme inspired on bird flock- 106

ing. The aim is to maintain connectivity among UAVs, 107

while adapting to the mobility of the nodes on the ground. 108

In order to achieve this goal, each UAV should follow a set 109

of rules/behavior, namely, ‘‘move to the point above ground 110

Centroid’’, ‘‘repel from UAV’’, ‘‘attract toward UAV’’ and 111

‘‘random walk’’. The rules are represented by a state digram, 112

and the transition from one state to another depends on 113

the distance between UAVs. The authors in [14] propose 114

a distributed mobility algorithm based on a Virtual Spring 115

Force (VSF) model, through which the UAVs self-organize 116

into a mesh structure by guaranteeing QoS over the aerial 117

link, and providing coverage to isolated GNs. This algorithm 118

was further developed in [8], where Connection Recovery 119

and Maintenance (CRM), as well as Mobility Prediction 120

(MP) mechanisms were also integrated. In [4], the authors 121

propose a Graph Convolutional Multi-Agent Reinforcement 122

Learning (MARL) method to maximize coverage of ground 123

nodes by UAVs. The convolutional input layers allow local 124

collaboration among neighbour UAVs, which is translated 125

into better coverage performance compared with Deep Q- 126

Learning (DQL) running independently in each UAV. The 127

number of UAVs is fixed, and the reward function only con- 128

siders the coverage score and energy spent by the UAV, not 129

taking into account MAC layer performance. 130

Centralized schemes rely on a single entity having full 131

knowledge of node positions, and control over the UAVs. 132

In this paper, we propose a centralized scheme to jointly 133

optimize UAV placement and routing in FBNs. Therefore, 134

the remainder of this section will focus approaches of this 135

kind proposed so far. In the past few years, this topic was the 136

target of a significant number of research works. The works 137

on centralized schemes may be divided in two groups. 138

The first group does not consider inter-UAV connectivity 139

(e.g., the UAV relay nodes are directly connected to terrestrial 140

base stations), or simply abstracts inter-UAV communication, 141

taking it for granted, so that the placement algorithm does 142

not have to bother with it. Galkin et al. [15], proposed small 143

cells mounted on UAVs to offload ground users from the 144

macrocell infrastructure. The K-means clustering algorithm 145

is used to optimally place the UAVs. In [16], Kalantari et al. 146

proposed a 3D UAV placement scheme using the Particle 147

SwarmOptimization (PSO) algorithm. Similarly to our work, 148

UAVs are used as flying access points, and the main goal is 149

to find the minimum number of UAVs and their 3D coordi- 150

nates to service all users with some target QoS requirement. 151

Mozaffari et al. [17], use circle packing theory to deploy 152

multiple UAVs, in order to maximize the coverage area. 153

The paper [12] was a previous work by our team. Here, an 154

NSGA-II based scheme is used to optimize two different 155

objectives: (1) to maximize the fulfillment of the data rates 156

required by the GNs, and (2) to minimize the number of 157

UAVs. A scheme to reduce algorithm search space based 158

on the computation of the convex hull ( [18]) formed by 159

the GNs was proposed, which is also adopted in the present 160

work. The link budget is calculated based on a log-distance 161
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path loss model. IEEE 802.11g data rates are considered,162

and the data rate of a link is simply the highest among163

those whose receiver sensitivity is lower than the received164

power. In [2], the authors consider the 3D placement of165

drone relays in mobile cellular networks, namely 5G, where166

each serial base station relay must be within reach of a167

ground base station. It starts by defining the optimal cov-168

erage problem as a Mixed-Integer Linear Problem (MILP),169

which is NP-complete. The complexity is reduced by the170

OnDrone algorithm, which is based on an Extremal Opti-171

mization Algorithm (EOA). The paper also proposes a Hun-172

garian method to solve the problem of minimizing the paths173

of the aerial base stations towards their optimal destinations,174

when the coverage optimization algorithm is recomputed.175

Then, it proposes to improve on-route coverage by using176

Bézier curves instead of straight lines in the routes towards177

the destination points, in order to biase the routes towards178

areas with higher density of GNs. Interference is taken into179

account in the objective function, and it also considers 3D180

beamforming to reduce interference. In [5], Network-based181

Heterogeneous PSO (NHPSO) is proposed. In this scheme,182

a heterogeneous scale-free network is employed as the topol-183

ogy structure. Besides, it introduces a heterogeneous strategy184

of particles along with the heterogeneous topology struc-185

ture, where topological central particles (i.e., high-degree186

particles) are encouraged to utilize more information from187

neighbors for self-improving, while low-degree particles tend188

to learn among themselves to maintain the diversity. The189

proposed NHPSO is compared with other PSO and non-PSO190

algorithms in standard optimization problems, as well as in191

a cellular network coverage problem with a fixed number192

of UAVs. In [6], the authors use a GA in order to opti-193

mize the placement of patch UAV base stations, after a dis-194

aster that reduces the capacities of base stations. The GA195

uses a weighed objective function that takes into account196

the number of UAVs, energy expenditure, and a penalty197

related with QoS level. UAVs are considered fully functional198

base stations. In [7], the authors present two algorithms to199

deploy UAV base stations to cover GNs in a 4G network,200

so that the number of drone base stations is minimized and201

the sum data rate is maximized. The first algorithm, called202

Data-Driven 3D Placement (DDP), is based on balanced203

K-means clustering. The second algorithm, called Enhanced204

DDP (eDDP), is an enhancement that tries to minimize the205

overlapping between coverage areas of the drone and ground206

base stations. It partitions the area in different parts and then207

employs the first algorithm to minimize the number of drone208

base stations and to deploy them separately for each partition.209

The second group of centralized schemes considers that210

the UAVs form a multihop mesh backhaul network in order211

to deliver the traffic to destination nodes or gateways to212

outside networks. This mesh backhaul must form a con-213

nected graph, guaranteing the delivery of traffic from any214

point of the network to any other point of the network,215

and it must be considered in the optimization process.216

The work presented in this paper belongs to this group.217

Reina et al. [19] proposed an optimized deployment scheme 218

that uses Multi-Layout Multi-Population Genetic Algorithm 219

(MLMPGA) as the optimization technique. The network has 220

three main requirements that should be satisfied and bal- 221

anced: it should provide coverage and redundancy, and it 222

should be fault tolerant. In order to achieve this goal, the 223

authors define a weighted multi-objective fitness function, 224

allowing the use of the single-objective MLMPGA. In [20], 225

the authors mathematically formulate the placement opti- 226

mization of UAVs as a multi-objective problem and solve it 227

as bi-objective linear optimization model. In paper [21], The 228

authors propose a system named Traffic-Aware Multi-Tier 229

Flying Network (TMFN). A TMFN consists of a mobile and 230

physically reconfigurable network of Flying Mesh Access 231

Points (FMAPs) and Gateway UAVs organized in a two-tier 232

architecture, which is able to quickly readjust its topology 233

according to the traffic demands of the users. In order to con- 234

trol the TMFN’s topology, the authors propose a traffic aware 235

Network Planning (NetPlan) algorithm, based on the concept 236

of Potential Fields (PFs). Although the paper assumes a mul- 237

tihop network architecture and tests the proposed algorithm 238

in such an environment with ns-3, the NetPlan algorithm only 239

takes into account the access links between GNs and FMAPs. 240

In [22], the authors present a scheme to explore a region 241

of interest where a terrestrial network is deployed, detect- 242

ing holes in the network topology, after which an algorithm 243

optimizes the selection of spots for placement of patch UAVs 244

that will increase the communication performance. In [23], 245

the authors propose a topology construction and adjustment 246

scheme, where the optimal topology is built using a PSO 247

algorithm, while the adjustment is based on gradient descent 248

using the same performance metric. The two algorithms are 249

integrated so that PSO only runs when the edit distance 250

between the current graph and the previous one calculated 251

by PSO is high enough. Thus, there is a compromise between 252

the optimality of PSO and the computational performance of 253

gradient descent. There is no attempt to minimize the number 254

of UAVs, which is fixed, so the PSO is single objective. 255

Departing from the previous work, in [3], the same team 256

proposes a joint mission assignment and topology manage- 257

ment scheme. The scheme comprises three algorithms. The 258

first one performs a global optimization of mission assign- 259

ment (greedy), then PSO based router placement and routing. 260

The second algorithm locally adjusts relay UAV positions 261

before the difference (edit distance) relative to the initial 262

network is too large. The third algorithm performs mission 263

reassignment of UAVs. Both the second and third algorithms 264

try to avoid running the first one (i.e., global optimization), 265

in order to reduce computation complexity. In both works, 266

the network performance metric is based on link distance and 267

thus does not take into account MAC layer aspects. In [24], 268

the authors focus on cellular networks, proposing an heuristic 269

iterative algorithm to obtain a connected network comprising 270

ground terminal nodes and a ground control station, which 271

is achieved by means of a mesh network of UAV relay 272

nodes. The worst case complexity of the proposed algorithm 273
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is demonstrated to be O(n2). However, the algorithm is not274

proved to achieve the minimum number of UAV relay nodes275

or the respective optimal positions.276

Table 1 lists the related works described above, highlight-277

ing their main characteristics for comparison purposes. The278

present paper focuses the global joint topology and routing279

optimization of the UAV backhaul network using a central-280

ized algorithm, considering MAC layer effects on link per-281

formance. Although this is a development from our previous282

work in [12], the latter did not consider the multihop FBN283

among the UAVs in the optimization scheme.284

There are several related works in Table 1 that consider285

multiple optimization objectives (e.g., [19]). These works use286

to reduce the multiple objectives to single objective optimiza-287

tion, by means of prioritization, weighted sum, product, etc.288

Such techniques are more prone to become trapped in local289

minima, and to miss Pareto optimal solutions in non-convex290

spaces. In contrast with these works, our scheme employs291

a true multi-objective optimization algorithm to calculate292

Pareto curves (number of UAV base stations versus PDR)293

instead of single solutions. Based on the latter, the decision-294

making entities can choose the one that best fits the applica-295

tion conditions and mission management strategy at hand.296

The work [23] is the one that bears more resemblance297

to ours in terms of system model and performance objec-298

tive, though it fixes the number of UAVs, solving a single299

objective problem with PSO. Unlike this work and [3] by300

the same team, we integrate MAC layer contention in the301

global optimization of the UAV positions. This is done by302

means of the fixed-point algorithm (FPA) presented in [10].303

Although we do not include a low complexity adjustment304

mechanism to minimize the frequency with which the global305

optimization algorithm must be run to adapt to GN position306

changes, it could be easily integrated with a scheme similar307

to the one proposed in [23].308

Meta-heuristic algorithms besides GA have already been309

used for routing optimization: Ant Colony Optimization310

(ACO), Artificial Bee Colony (ABC), PSO, Simulated311

annealing (SA), Firefly algorithm, Differential Evolution312

(DE), hybrid algorithms, etc. Similarly, multi-objective313

algorithms besides NSGA-II exist in the literature, such314

as Multi-Objective Differential Evolution (MODE), Multi-315

Objective PSO (MOPSO), Strengthen Pareto Evolutionary316

Algorithm (SPEA), hybrid algorithms, etc. Our choice of317

GA based meta-heuristics is backed by existing literature318

(e.g., [25], [26], and [27]). Detailed comparison between319

alternative algorithms deserves a dedicated study, being out-320

of-scope of this paper.321

III. SYSTEM MODEL322

We consider a connected wireless network comprising a set323

of UAVs (U ) and a set of GNs (V ) deployed in an area A.324

UAVs are assumed to be deployed in the 3D plane with their325

coordinates represented as qui(x,y,h) ∈ A, where h represents326

the flight altitude of a certain UAV ui. On the other hand, GNs327

are assumed to be on the ground with coordinates q
vj
(x,y,0) ∈328

FIGURE 1. Mobile network supported by an FBN of UAV base stations.

A, representing a 2D plane positioning in A. Nodes have 329

a maximum communication range which is denoted by D, 330

and communication among GNs is only realized through 331

UAVs in a multihop fashion. Fig. 1 depicts the proposed 332

communication system. The control station can be connected 333

to external networks, such as cellular network, satellite or 334

Cloud. 335

Definition 1: A wireless network is said to be connected 336

when there is a path between every pair of nodes. Hence, in a 337

connected network all nodes are reachable. 338

Definition 2: Two or more nodes are said to be neighbors 339

when the Euclidean distance between each pair is shorter than 340

or equal to D. 341

IV. MULTI-OBJECTIVE OPTIMIZATION PROBLEM 342

The scheme proposed in this paper aims to find the best 343

trade-offs between the FBN cost in terms of the number of 344

UAVs, and the achieved PDR. In this section, mathematical 345

formulation of each objective function is presented. 346

A. OBJECTIVE 1: MINIMIZING THE NUMBER OF UAVs 347

Similarly to [12], the present work assumes that there is a 348

cost associated with each used UAV. Thus, minimizing the 349

number of UAVs is desirable. This is done by restricting the 350

UAV coverage to the sub-area a′ ⊂ A that corresponds to 351

the convex hull (convex envelope) [18] formed by the GNs 352

inA. This restriction of the deployment area also reduces the 353

complexity of the algorithm. In order to further reduce that 354

complexity, a′ is discretized in a grid layout according to the 355

following relation: 1 = µD; µ ∈ [0, 1], where 1 is the 356

distance between two neighboring UAVs, which is adjusted 357

by changing µ. Let Q ⊂ a′ be the discrete set of allowed 358

UAV deployment points. 359

Let qj ∈ Q be the jth potential UAV placement point. Let 360

{δuqj},∀u ∈ U ,∀qj ∈ Q be defined as a set of binary variables 361

indicating which points are currently being used by an UAV, 362

as follows: 363

δuqj =

1 if UAV u is located at qj

0 Otherwise.
364

Let {ζ uv },∀u ∈ U ,∀v ∈ V be defined as a set of binary 365

variables indicating which GNs are being serviced by each 366

deployed UAV. It is assumed that a GN will be connected to 367
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TABLE 1. Related work on FBN optimization.

the closest deployed UAV:368

ζ uv =

1 if GN v is connected to UAV u

0 Otherwise.
369

The first objective is to assign values to δuqj , so that valid370

solutions are found to the following problem:371

min
∑
qj∈Q

∑
u∈U

δuqj . (1)372

s.t.: 373∑
qj∈Q

δuqj ≤ 1,∀u ∈ U , (2a) 374

∑
u∈U

δuqj ≤ 1,∀qj ∈ Q, (2b) 375∑
u∈U

ζ uv ≥ 1,∀v ∈ V , (2c) 376

Constraint (2a) indicates that each UAV u cannot be placed 377

in more than one point at the same time. Constraint (2b) 378
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indicates that each point qj is occupied by a single UAV.379

Constraint (2c) ensures that a GN is within communication380

range of at least one UAV. The cardinality of the setQ defines381

the maximum number of UAVs that can be used to cover a382

given convex hull. Details on how to maintain the network383

fully connected can be found in [12].384

B. OBJECTIVE 2: MAXIMIZING THE PACKET DELIVERY385

RATIO386

The PDR model is based on the one proposed in [10] by387

Baras et al. The model provides quantitative statistic relation-388

ships between (1) the PDR loss parameters used to charac-389

terize multi-user interference and physical path conditions,390

and (2) the traffic rates between the origin-destination pairs.391

The model takes into account the effects of the hidden nodes,392

scheduling algorithms, IEEE 802.11 MAC and PHY layer393

transmission failures, finite packet retries at the MAC layer,394

etc., in arbitrary network topologies where multiple paths395

(i.e., traffic flows) share nodes.396

In order to model the MAC layer, the following assump-397

tions are made:398

(i) The network consists of |U | + |V | nodes and a path399

set P that is used to forward traffic between the source-400

destination (S-D) pairs in the network;401

(ii) The 802.11 MAC layer with RTS/CTS mechanism;402

(iii) The unit of time is a time slot, which is equal to the403

back-off slot of the 802.11 protocol;404

(iv) The nodes access the channel with a fixed probability as405

proposed in [28];406

(v) The scheduler above the MAC layer keeps scheduling407

the same packet until it is successfully transmitted by408

theMAC layer, thus recovering fromMAC layer failures409

when the transmission retries are exceeded.410

For the scheduler behavior, the following assumptions are411

considered: the set of paths that goes through a node i is412

denoted by Pi; the scheduler behavior is specified by the413

scheduler coefficient ki,p, which is the average serving rate414

of path p packets at node i; the computation of ki,p takes into415

account the arrival rate, denoted by λi,p, the average service416

time Ti,p of path p packets at node i, the probability βi,p of417

PHY and MAC transmission attempt failure (this takes place418

during the initial stage of theMAC protocol, when transmitter419

and receiver nodes perform the RTS/CTS handshake). Based420

on this, ki,p can be calculated as follows:421

ki,p =



λi,p

(1− βmi,p)
if κT ≤ 1

λi,p

(1− βmi,p)

κT
Otherwise,

(3)422

where m is an input parameter representing the maximum423

number of packet transmission retries at the MAC layer,424

and κT =
∑
p′∈Pj

λi,p

(1− βmi,p′ )
Ti,p′ . Since the model assumes425

that the scheduler keeps scheduling the same packet until426

it is successfully transmitted by the MAC layer, in order to 427

compensate for the transmission failures at the MAC layer, 428

the scheduling rate should be higher than the node arrival 429

rate by a factor 1/(1 − βmi,p), i.e., the probability of lost 430

packet due to exceedingMAC layer retries. On the other hand, 431

if utilization is equal to one, some arriving packets cannot be 432

served, but the service rate for each path is still proportional 433

to its compensated arrival rate as given in the second line 434

of Equation (3). 435

From Equation (3), one can derive the fraction of incoming 436

traffic rate that is sent over each path. Let h−i,p represent the 437

node that precedes node i in path p. The arrival rate from 438

path p at node i is calculated as follows: 439

λi,p = kh−i,p,p(1− β
m
h−i,p,p

) for all i, p. (4) 440

This is obviously not valid when node i is the first node 441

(i.e., the originator node) of the path, in which case λi,p is 442

set as an input parameter of the algorithm. A comprehensive 443

explanation on how to compute βi,p is provided in [10]. The 444

computation of Ti,p′ is equal to the sum of four components 445

as follows: 446

Ti,p = (1− βmi,p)di,p + ui,p + bi,p + ci,p, (5) 447

where di,p is the time spent by successful transmission of 448

path p packets at node i (thus, it only applies when the MAC 449

succeeds, with probability 1 − βmi,p), ui,p is the average time 450

consumed by the successful transmission from the neighbors 451

of node i, bi,p is the average back-off time spent by node i 452

during the transmission of path p packets, and ci,p is the 453

average time spent by failed transmissions. 454

In order to find a consistent solution for the parameters 455

ki,p, λi,p, βi,p and Ti,p, the scheme uses the FPA equations as 456

provided in [10]. The FPA structure and stopping conditions 457

are adopted from [29]. 458

In order to compute the network PDR at the destination 459

node(s), represented by T , the scheme considers a set of active 460

connections in the network, denoted by C , and the set of 461

paths used in connection c ∈ C , denoted by Pc. Two metrics 462

are considered, corresponding to alternative PDR objective 463

functions: 464

(i) Average PDR. This metric is computed as follows: 465

T =

(∑
c∈C (

∑
p∈Pc λlast,p)

)
(∑

c∈C (
∑

p∈Pc λfirst,p)
) , (6) 466

where λfirst,p and λlast,p denote the arrival rate of packets 467

belonging to path p at the source and destination nodes, 468

respectively. In this case, the intention is to maximize 469

the PDR as follows: 470

max T ; s.t., Equation (2a), (2b) and (2c). (7) 471

(ii) Minimum PDR. The PDR provided in path pi, denoted 472

tpi , in connection c ∈ C is calculated as follows: 473

tpi∈Pc =
λlast,pi∈Pc

λfirst,pi∈Pc
, (8) 474
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where λlast,pi∈Pc is the arrival rate of the packets at the475

destination node, and λfirst,pi∈Pc is the arrival rate at the476

source node in path pi. In this case, the optimization477

problem is defined as follows:478

max min
{p1,...,p|Pc|}

tpi∈Pc; s.t., Equation (2a), (2b) and (2c).,479

(9)480

which corresponds to maximizing the lowest PDR, i.e.,481

the PDR of the flow that gets the lowest grade of service.482

Differently from [10], where Automatic Differentiation483

(AD) was used to reach the optimal PDR, the proposed484

scheme has two optimization objectives, which prompted the485

use of NSGA-II, as explained in the following section.486

V. NSGA-II BASED UAV PLACEMENT AND ROUTING487

OPTIMIZATION488

NSGA-II [9] is an elitist MOEA, which comprises two489

main procedures: Pareto ranking and diversity preservation.490

Pareto ranking aims to sort the population into different491

non-domination levels (irank ) in ascending order. Here, the492

lowest ranking level contains the best set of solutions. On the493

other hand, diversity preservation is used to maintain a good494

spread of solutions in the obtained solution set. Members495

of each non-dominated front are assigned a value called496

crowding distance (idistance), which is used to determine the497

density of solutions surrounding a particular solution in the498

population. In order to distinguish the best solutions, NSGA-499

II uses the crowded-comparison operator, denoted by ≺n.500

The operator assumes that every solution i in the population501

has two attributes: irank and idistance. The partial order ≺n is502

defined as follows:503

i ≺n j if (irank < jrank )504

or [(irank = jrank ) and (idistance > jdistance)] . (10)505

Assuming initial population of size N , Algorithm 1 shows506

the main loop of NSGA-II proposed by the authors in [9],507

where the calls to the routines fast-non-dominated-sort (Rt )508

and crowding-distance-assignment (Fi) correspond respec-509

tively to the the Pareto ranking and diversity preservation510

procedures described above. Rt has size equal to 2N , being511

formed by combining parent St and offspring Zt populations.512

Fi refers to the ith front or level.513

The chromosome structure X represents the 3D coordi-514

nates of a set of UAVs deployed inside the convex hull area515

a′. Therefore, the chromosome is represented as follows:516

X = [(qu1(x1,y1,h1)), (q
u2
(x2,y2,h2)

), . . . , (qun(xn,yn,hn))].517

In order to find optimal solutions, NSGA-II must be able to518

compute the values of two objectives from the above repre-519

sentation of the chromosome. The first objective is directly520

given by n, representing the number of UAVs forming the521

deployed network. It also represents the size of the chromo-522

some, which is variable. As for the second objective, i.e., the523

PDR, the scheme runs an embedded GA (inner-GA) in order524

Algorithm 1 NSGA-II Main Loop
1: Rt = St ∪ Zt
2: F=fast-non-dominated-sort(Rt )
3: St+1 = ∅ and i = 1
4: Until |St+1| + Fi ≤ N

4.1. crowding-distance-assignment(Fi)
4.2. St+1 = St+1 + Fi
4.3. i = i+ 1

5: Sort(Fi,≺n)
6: St+1 = St+1 ∪ Fi[1 : (N − |St+1|)]
7: Zt+1=make-new-population(St+1)
8: t = t + 1

FIGURE 2. Representation of the objective function computation.

to find the best routes from source GNs to the destination 525

GNs, which lead to a higher value of PDR for the current 526

placement of the UAVs. The value of the second objective 527

will be the highest PDR found by the inner-GA, which cor- 528

responds to the best set of routing paths for a given NSGA-II 529

individual. Fig. 2 depicts the idea behind the computation of 530

the objective functions. 531

A. INNER-GA CHROMOSOME ROUTING 532

REPRESENTATION 533

The inner-GA will have its own set of parameters as pre- 534

sented next: Given the UAVs’ positions from the NSGA-II 535

chromosome, the inner-chromosome will be a set of hash 536

tables of variable size, each of which representing a flow from 537

a source GN to a destination GN. For a given set of UAVs 538

occupying specific positions in the network, a source GNmay 539

be able to reach the same destination GN through different 540

paths. Therefore, the scheme uses those paths to distinguish 541

different inner-chromosomes as they would represent differ- 542

ent flows. As already stated, the communication between 543

GNs is realized through UAVs in a multihop fashion. Fig. 3 544

and Fig. 4 show a hypothetical communication network with 545

the flows of data and the corresponding inner-chromosome 546

representation, respectively. 547

Each key in the inner-chromosome represents a unique ID 548

of a node in the network, and the stored value corresponds to 549
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FIGURE 3. Hypothetical communication network and data flow.

FIGURE 4. Inner-chromosome represented as hash table with key-value
association.

the ID of the subsequent node in the downstream direction,550

i.e., toward the destination node.551

B. INNER-GA PARAMETERS AND GENETIC OPERATORS552

The inner-initial-population is a random generation of Ninner553

inner-chromosomes. The fitness of each inner-chromosome is554

evaluated by Equation (6), when average PDR is being used.555

Best individuals (i.e., inner-chromosomes with high score) go556

to the mating pool.557

The inner-crossover occurs with probability pcinner and558

is performed by exchanging a subset of flows with same559

source-destination pair between two inner-chromosomes.560

This is depicted in Fig. 5, taking into account the network rep-561

resented in Fig. 3. The exchanging point – which corresponds562

to the number of exchanged flows – is chosen randomly563

within the number of existing flows. The resulting offspring564

after exchanging 4 flows is shown in Fig. 6.565

As regards to inner-mutation, for each inner-chromosome,566

a flow is randomly chosen, for which a new route from567

the source to the respective destination node is generated.568

Breadth First Search (BFS) algorithm is used to generate a569

set of routes. Then, the new path is randomly chosen from the570

generated set, and the old path is replaced with the new one571

with a probability pminner . This procedure is shown in Fig. 7.572

C. NSGA-II PARAMETERS AND GENETIC OPERATORS573

Regarding the initial population of NSGA-II, a set of N ran-574

domly generated chromosomes is used to form the initial575

population. The length of the chromosomes in the population576

FIGURE 5. Inner-crossover.

FIGURE 6. Inner-offspring.

FIGURE 7. Inner-mutation.

may be different from each other depending on the number of 577

deployedUAVs to cover all GNs. In this study, the size of each 578

chromosome and the best solution found by the inner-GA 579

respectively correspond to the number of UAVs and PDR in a 580

given topology. The NSGA-II selection operation uses binary 581

tournament selection based on the crowded-comparison oper- 582

ator ≺n, in order to choose the best chromosome following 583

Equation (10). Here, given two solutions with differing non- 584

domination ranks, NSGA-II prefers the solution with the 585

lowest (i.e., best) rank. Otherwise, if both solutions belong 586

to the same front, then NSGA-II prefers the solution that is 587

located in a less crowded region. 588

The genetic operators (crossover and mutation) are imple- 589

mented in a way similar to our previous work [12], where 590

the crossover (with the probability pc) between two chromo- 591

somes is performed by finding a midpoint in a′ and drawing 592

(diagonally in 45/-45 degrees or horizontally or vertically) a 593

cutting line to divide the area in two parts in each chromo- 594

some. Next, the operator removes all UAVs that are within 595
1
2D distance radius along the cutting line within a′. If the 596

separation line is either diagonally or vertically drawn, the 597

leftmost part of one parent is joined with the rightmost part 598
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FIGURE 8. NSGA-II crossover.

of the other to form an offspring. On the other hand, if it is599

horizontally drawn, the uppermost and bottommost will be600

joined instead. Since the operator has removed some UAVs,601

there may be some uncovered GNs in the vicinity of the602

separation line, whichmakes the resulting offspring an invalid603

individual. In this case, the operator repairs the offspring by604

repeatedly choosing a random uncovered GN and placing an605

UAV in the closest available point qu(x,y,h) until all GNs are606

covered. UAVs which are not serving or bridging any GNs607

are removed.608

As regards to the mutation operator, for each chromosome,609

an UAV is randomly selected with a probability pm, then it is610

either temporarily removed or reallocated to a new randomly611

chosen available point qj ∈ Qwith a probability of 50%. If the612

above procedures fail to produce a valid individual, then the613

UAV is put back in its initial position. Examples of crossover614

and mutation operations are depicted in Fig. 8 and Fig. 9,615

respectively.616

D. COMPLEXITY ANALYSIS617

In [9], the authors propose NSGA-II and estimate its perfor-618

mance as O(MP2), where M is the number of objectives and619

P is the size of the population. This estimate assumes that620

complexity is determined by the non-dominated sorting part.621

While being useful for comparison with other MOEA under622

generic objective functions, such analysis is not suitable when623

the objective functions are themselves the most significant624

source of complexity. On the other hand, the complexity625

analysis of objective functions becomes particularly difficult626

FIGURE 9. NSGA-II mutation.

when the chromosome has variable length – as is the case of 627

the proposed scheme –, though a worst case characterization 628

is possible. 629

The proposed topology optimization scheme has a nested 630

algorithm structure, in which NSGA-II forms the outer layer. 631

One of the NSGA-II objective functions (PDRmaximization) 632

is particularly complex, making use of the inner-GA to find 633

the best routing, i.e., the one that maximizes the PDR for a 634

given UAV topology. In turn, the PDR objective function of 635

the inner-GA is calculated by means of the FPA proposed 636

in [10]. It is in this nested objective function that resides 637

most of the time complexity of the algorithm. The num- 638

ber of UAVs (|U |) corresponds to the size of the NSGA-II 639

chromosome, and significantly affects the performance of 640

the FPA. As already seen, since |U| constitutes one of the 641

NSGA-II objective functions, it is a variable, making it more 642

difficult to estimate the complexity of NSGA-II. As such, 643

in the following analysis it is considered that the number 644

of UAVs is fixed and equal to |U |max , corresponding to the 645

maximum allowed number of UAVs (an input parameter of 646

the algorithm). 647

The FPA updates the values of the variables based on 648

the values calculated in the previous iteration. Considering 649

only scalar operations, the most complex updates involve 650

four nested cycles, where two iterate over the number of 651

nodes (N = |U |max + |V |) and two over the number of 652

flows or paths (|F |). Such cases correspond to variables θ , 653

β, r , w and z in [10]. Each FPA execution will finish when 654
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the defined convergence criteria are met, which may take a655

variable number of iterations IFPA. Nevertheless, in order to656

allow a complexity estimate, IFPA can fixed as the expected657

worst case. Based on this assumption, FPA complexity is658

estimated as O(IFPA · N 2
· |F |2).659

Based on the above result, knowing that, in each inner-GA660

generation, the number of new offspring is proportional to the661

size of the population (PinnerGA), and that the FPA must be662

run for each new individual, the complexity of the inner-GA663

can be estimated as O
(
GinnerGA · PinnerGA · IFPA · N 2

· |F |2
)
,664

whereGinnerGA is the configured number of generations of the665

inner-GA. Since NSGA-II is also a GA, a similar reasoning666

can be applied to estimate its complexity. Knowing that in667

each NSGA-II generation the number of new offspring is668

proportional to the size of the population (PNSGAII ), and669

that the inner-GA must be run for each new individual, the670

complexity of the NSGA-II algorithm can be estimated as671

O
(
GNSGAII · PNSGAII · GinnerGA · PinnerGA · IFPA · N 2

· |F |2
)
,672

where GNSGAII is the configured number of generations673

of NSGA-II.674

From the above analysis, it becomes obvious that the simu-675

lation duration is highly influenced by the time or number of676

iterations/generations needed by the algorithms to converge,677

namely the stopping conditions, as well as the initial guesses.678

Depending on the value of the tolerated error, the FPA will679

stop before convergence if the value is set too high, or there680

will be useless additional iterations if the value is set too681

low. Another important factor is the initial guess of the FPA:682

when the algorithm departs closer to the fixed-point, the683

convergence is faster, thus the challenge is to make a good684

guess during initialization. As regards to the GAs, the num-685

ber of generations may be fixed based on empirical studies,686

or variable depending on more flexible stopping criteria, for687

example the rate of change of the population over a number of688

generations. A parameter that conditions the required number689

of NSGA-II generations is the degree of granularity of the690

search space, which in this scheme corresponds to the number691

of candidate placement points within the convex hull. The692

latter depends on µ: smaller values of µ create larger search693

space, and hence a higher value of GNSGAII is required to694

converge.695

VI. SIMULATION PARAMETERS AND RESULTS696

This section presents simulation results of the proposed697

NSGA-II implementation. Simulations were performed on a698

virtual machine running GNU/Linux (ubuntu) OS, x86_64699

architecture, 64 bits CPU, 1.992 GHz CPU clock speed,700

4 cores per socket, 1 socket and 1.6 Gbits of RAM. In order to701

implement the algorithm, C++ was used as the programming702

language.703

The network comprises 24 GNs uniformly distributed in704

a 500 × 500 m2 area. The maximum transmission range D705

is set to 100 m and µ = 0.40. It should be recalled that the706

PDR computation uses an FPA. Similarly to [10], in order to707

make the convergence faster, the FPA initializes the values of708

the parameters assuming communication is perfect for every709

TABLE 2. Default parameters.

TABLE 3. NSGA-II and inner-GA parameters.

connection, thus time Ti,p consists only of the time taken by 710

successful transmissions, plus the back-off time needed for 711

the first trial. Moreover, since perfect channel conditions are 712

assumed, the probabilities of failure are initialized to 0 in all 713

the links. As the FPA algorithm runs, the values of these vari- 714

ables change and converge to the approximate or real ones. 715

It is considered that all nodes generate traffic simultaneously. 716

Simulations are performed with different load values given 717

by the set L = {30, 60, 90, 120, 150} kbps. 718

Simulations take into account two scenarios with two 719

objectives each: 720

• Scenario (A): aims (1) to minimize the number of UAVs, 721

and (2) to maximize the average PDR at the destination 722

node(s). 723

• Scenario (B): aims (1) to minimize the number of UAVs, 724

and (2) to maximize the minimum PDR at the destina- 725

tion node(s). 726

In order to assess the impact of having more than one 727

sink/destination node, these scenarios were simulated with 728

two different traffic patterns: 729

(i) All traffic from the GNs is sent to a single destination 730

node with ID = 0. This node v0 is placed at 2D coordi- 731

nates qv0(0,0). 732

(ii) Twelve (half) randomly chosen GNs generate traffic 733

towards destination node with ID = 0 placed at qv0(0,0). 734

The other twelve GNs generate traffic towards destina- 735

tion node with ID = 25 placed at qv25(500,500). 736

In the UAV placement algorithm presented in [12], the use 737

of different altitudes (in the altitude range of [40,120] meters) 738

did not affect the performance, as the communication range 739

was quite long when compared to the maximum allowed 740

flight altitude. Based on these results, and since this work 741

does not address altitude optimization, a fixed flight altitude 742

of 80 m is assigned to the UAVs. Table 2 shows the summary 743

of the global/default parameters. 744

As already stated, an important and challenging step when 745

designing a GA is defining the stopping criteria, i.e., the point 746

where the algorithm should stop executing. There have been 747

several studies on the subject [30], [31]. Differently from the 748
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FIGURE 10. Scenario (A) for single destination node.

present proposal, most of these studies consider fixed size and749

string based chromosomes, hence, their stopping criteria are750

not directly applicable to the present GA scheme, which uses751

variable length and non-string based chromosomes. In [12],752

the authors adopted the rule of stopping when there is no753

significant improvement during the last ten iterations. How-754

ever, as the current GA proposal entails nested algorithms755

(i.e., inner-GA and FPA), that would add more complex-756

ity and an additional burden on computational resources.757

As such, the stopping criteria is set as a fixed number of758

generations. In order to determine the number of generations, 759

multiple simulations were performed to adjust the NSGA-II 760

parameters, such as pc, pcinner , pm, and pminner to avoid exces- 761

sive computation, as well as premature convergence. Table 3 762

shows the summary of the NSGA-II and inner-GA parame- 763

ters. Parameters such as population sizes and genetic operator 764

probabilities were not optimized and thus can be a subject of 765

further studies. 766

In each scenario, and for each load value taken from 767

the set L, 25 runs of NSGA-II with different seeds, 768
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FIGURE 11. Scenario (B) for single destination node.

[1, 2,. . . , 25], were performed. In each simulation, the val-769

ues of the following parameters were collected: optimized770

average and minimum PDR for each number of deployed771

UAVs, and the time spent in each run. For each 25 runs, the772

average and minimum PDR with 95% confidence interval773

were computed.774

In some circumstances, the maximization of the average775

PDR might imply that some flows in the network present a776

degraded service quality. On the other hand, themaximization777

of the minimum PDR may cause the average PDR to drop778

drastically. However, the choice of either to maximize the 779

average or minimum PDR is scenario specific, i.e., the latter 780

takes into account the improvement of individual PDRs of 781

the flows for fairness consideration, and the former takes 782

into account the overall PDR for efficiency consideration. 783

In order to visualize such behaviors, the simulation results 784

are presented as follows: for each load value in L, a pair of 785

results is captured, namely, the parameters to be optimized for 786

the specific scenario, i.e., Scenario (A) or Scenario (B), and 787

the behavior of the minimum or average PDR when it is not 788
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being optimized, respectively. Scenario (A) and Scenario (B)789

are considered together with single or multiple destination790

nodes, as presented in the following sections.791

A. SIMULATION RESULTS CONSIDERING SINGLE792

DESTINATION793

This section presents the performance of the proposed794

NSGA-II for Scenario (A) in Fig. 10, and for Scenario (B)795

in Fig. 11. Results for the initial load, L0 = 30 kbps, are796

not presented for space reasons. From the simulation results,797

it was observed that the valid solutions that were found have798

a minimum of 17 UAVs in both scenarios.799

In Fig. 10 (Scenario (A)), the trade-off between the solu-800

tions is clear. One may have fewer UAVs with lower PDR,801

or more UAVs with higher PDR. In fact, having fewer UAVs802

means that some nodes may have to carry more traffic than803

the others (i.e., the aggregation of flows through the same or804

neighboring routes is higher), leading to poor performance in805

terms of PDR. It is also observable that, despite the increase806

of the average PDR, as the number of UAVs increases, the807

minimum PDR decreases (recall that this is not an objective808

function in Scenario (A)), i.e., some flows experience star-809

vation at the cost of an overall higher PDR. This scenario810

becomes advantageous when one cares about the average811

PDR of the GNs as a whole, rather than fairness among flows.812

For Scenario (B) (see Fig. 11), the trade-off between the813

PDR metrics is also observed: the average PDR tends to814

decrease as the minimum PDR increases. The maximin PDR815

used in this scenario is advantageous when one cares about816

the fairness among flows, rather than the overall PDR in the817

network, i.e., it matters to guarantee a minimum acceptable818

performance for each flow.819

The performance of NSGA-II with inner-GA was also820

compared with NSGA-II using Dijkstra based routing. Dijk-821

stra finds the shortest path between source and destinations822

nodes, which is the route selection criterion employed by823

default in routing protocols. It can be observed that inner-GA824

was able to find alternative paths from the sources to the825

destination, and slightly outperformed shortest path in both826

scenarios, i.e., it maximizes the PDR metric while minimiz-827

ing the number of UAVs in a range between [9.5%-37.52%]828

for Scenario (A) (see Fig. 12), and [8.7%-31.93%] for Sce-829

nario (B) (see Fig. 13). This only applies to load values above830

30 kbps, since the latter leads to a PDR of 100% in all cases.831

The PDR tends to decrease as the load increases, which832

is also observed in Fig. 12 and Fig. 13. This complies with833

the expected behavior, since higher load causes additional834

contention at the MAC layer.835

B. SIMULATION RESULTS CONSIDERING MULTIPLE836

DESTINATIONS837

Following the same structure of Section VI-A, this section838

will firstly present the results for Scenario (A), and then839

the results for Scenario (B). Two destination nodes are840

now considered, located at coordinates qj0 = (0, 0) and841

FIGURE 12. Single destination: comparison between inner-GA and
Dijkstra performance for Scenario (A).

FIGURE 13. Single destination:comparison between inner-GA and
Dijkstra performance for Scenario (B).

qj1 = (500, 500), corresponding to opposite corners in the 842

deployment area. 843

In Fig. 14 (Scenario (A)), and differently from the sin- 844

gle destination scenario (see Fig. 10), the results show an 845

increase of the minimum PDR (not an objective function in 846

Scenario (A)) as the average PDR increases, i.e., the previ- 847

ously observed conflicting behavior is not present. This is 848

justified by the fact that data traffic is now split between two 849

destination nodes located at opposite coordinate points in the 850

target area. This configuration has the following advantages: 851

(i) Reduces the chance of having some nodes relaying data 852

belonging to many different flows, thus avoiding poten- 853

tial bottlenecks; 854

(ii) Potentially reduces the degree of source-destination star- 855

vation, as the number of immediate interfering neighbor- 856

ing flows is reduced. This is a well known problem in 857

multi-hop ad hoc wireless networks, also known as Flow 858

In the Middle (FIM) problem [32]. In fact, the inner-GA 859

tries to find paths that suffer less from FIM, in order to 860

maximize the PDR. 861
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FIGURE 14. Scenario (A) for two destination nodes.

In general, this leads to increased load balancing and thus862

overall capacity, which is translated into higher PDR in both863

metrics. The performance improvement gained by having one864

additional destination node for each load value is shown in865

Table 4.866

Similarly, in Scenario (B) (see Fig. 15), the results show867

an increase of both the minimum and average PDR (not868

an objective function in Scenario (B)) with the increase869

of the number of UAVs. Table 5 presents the performance870

improvement ranges from single to multiple destinations. 871

At 30 kbps there is no improvement, since the latter leads to 872

a PDR of 100% in all cases. 873

The previous results allow the conclusion that having mul- 874

tiple destinations placed apart from each other is beneficial 875

regarding the PDR. 876

Fig. 16 and Fig. 17 present the performance of inner-GA 877

over Dijkstra for the average PDR [9.50%-34.18%] and max- 878

imin PDR [9.30%-36.72%], respectively. The addition of the 879
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FIGURE 15. Scenario (B) for two destination nodes.

second destination node also improved the PDR of Dijkstra.880

However this was not enough to outperform the inner-GA.881

Again, for a load of 30 kbps, the PDR is 100% in both882

cases.883

C. SIMULATION PERFORMANCE884

As already noted, accurately estimating the complexity and885

simulation time of a MOEA is not trivial, particularly when886

dealing with chromosomes of variable length. Empirical887

results can provide additional insights on the factors that888

determine these metrics. The average time spent running the889

TABLE 4. Performance improvement from single to multiple destination
nodes for min # UAVs and max average PDR.

simulations in different scenarios (see Fig. 18 and Table 6 for 890

clarity) was measured. In general, simulations with multiple 891
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TABLE 5. Performance improvement from single to multiple destination
nodes for min # UAVs and maximin PDR.

TABLE 6. Average simulation time.

FIGURE 16. Multiple destinations: comparison between inner-GA and
Dijkstra performance forScenario (A).

FIGURE 17. Multiple destinations: comparison between inner-GA and
Dijkstra performance for Scenario (B).

destinations take less time to converge when compared to the892

single destination scenario. This is due to the reduction of893

inter-flow interference, leading to faster FPA convergence.894

Recall that FPA intialization assumes no contention between895

flows, which is a closer guess when load is low. It is also896

FIGURE 18. Average simulation time for the given simulation
environment.

observed that maximizing the average PDR converges rela- 897

tively faster than maximizing the minimum PDR. 898

VII. CONCLUSION 899

This paper presents a joint UAV placement and flow routing 900

optimization scheme based on a nested architecture, where 901

NSGA-II algorithm forms the outer layer, while a single 902

objective GA is used as inner layer. Link performance is esti- 903

mated by an FPA taking into account MAC layer contention. 904

Significant insights were only possible due to this feature. 905

Two scenarios, each with two optimization objectives, were 906

considered: (1) minimization of the number of UAVs while 907

maximizing the average PDR, and (2) minimization of the 908

number of UAVswhile maximizing the minimum PDR. From 909

the simulation results, it was observed that the proposed 910

algorithm is able to provide meaningful Pareto curves, deter- 911

mining a set of non-dominated solutions for UAV placement. 912

Based on the latter, the decision-making entities can choose 913

the one that best fits the application conditions and mission 914

management strategy at hand. Additionally, the performance 915

of the inner-GA routing optimization was compared against 916

the Dijkstra shortest path routing. The results show that the 917

inner-GA achieves better performance due to its capacity 918

of performing load balancing to reduce MAC contention. 919

This advantage is even more significant in complex scenarios 920

comprising more than one sink node. The simulation perfor- 921

mance was also studied. It was concluded that scenarios with 922

multiple sink nodes tend to reduce flow interference, speed- 923

ing up convergence of the FPA algorithm. In general, the 924

average PDR objective function leads to faster convergence 925

than maximin PDR. 926

In future work, we intend to evaluate the proposed scheme 927

when replacing NSGA-II and inner-GAwith other alternative 928

algorithms. We are currently investigating alternative prob- 929

lem formulations that optimize UAV displacement vectors 930

instead of positions, making use onGNmovement prediction. 931

Finally, we plan to reduce the overall complexity of the 932

scheme by performing heuristic based adjustments to UAV 933
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positions, as is done in [23], or by using multi-agent Deep934

Reinforcement Learning, where local adjustment decisions935

are negotiated among neighboring UAVs. Machine Learning936

models also have the potential to replace the inner-GA and937

FPA, trading-off efficiency versus accuracy.938
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