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ABSTRACT This paper addresses the problem of optimizing the deployment of Flying Backhaul Networks
(FBNs). The latter comprise Unmanned Aerial Vehicles (UAVs), which are used as access points to provide
coverage to a set of ground nodes deployed in a target area. The optimization problem is addressed by means
of a Multi-Objective Optimization Algorithm (MOEA), which calculates Pareto curves of UAV placement,
providing different trade-offs between the considered objectives: (1) to minimize the number of UAVs, and
(2) to maximize the Packet Delivery Ratio (PDR). The selected MOEA is NSGA-II. An embedded single
objective Genetic Algorithm (inner-GA) is used to optimize routing, finding the paths that maximize the
PDR. In order to obtain consistent solutions for the PDR taking into account MAC layer contention, the
scheme makes use of an existing fixed-point algorithm (FPA). Simulation results were obtained for different
scenarios combining average versus maximin PDR objective funtions, two different routing optimization
algorithms, as well as single sink versus multiple sink traffic patterns.

INDEX TERMS Flying backhaul networks, topology optimization, routing optimization, NSGA-II,

unmanned aerial vehicles.

I. INTRODUCTION

Traditionally, Unmanned Aerial Vehicles (UAVs) have been
used by the military for surveillance and reconnaissance oper-
ations. However, with the advent of robust wireless network-
ing technologies, UAVs equipped with wireless transceivers
can be enabled to communicate with ground nodes (GNs)
as well as other UAVs [1]. As such, a swarm of UAVs can
be configured to operate cooperatively as a Flying Backhaul
Network (FBN). Among the possible applications of UAV-
based networks, also known as Flying Ad Hoc Networks
(FANETS), civilian application are envisioned to play an
important role, e.g., UAVs can be deployed in critical sce-
narios, such as natural disaster (wildfire, floods, earthquake,
etc.) to provide communication services to the GNs. In such
scenarios, communication among different rescue teams is
vital for mission coordination. In the absence of a functional
conventional terrestrial communication network (e.g., cellu-
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lar network), such coordination may fail. For example, due
to the large areas to be covered or accessed, teams may not
be able to report their findings or subsequent strategic plan in
a timely manner, and satellite communication may not be an
option due the high cost of operation and/or lack of terminal
equipment. This is where FBNs may be decisive.

FBNs present the following advantages: firstly, UAV
deployment is faster than recovering a crippled cellular net-
work. Secondly, the acquisition and operational costs are
lower. However, the design of such network is challenging
and should be done carefully. Finding a suitable UAV topol-
ogy that meets the overall network Quality of Service (QoS)
requirements is a challenging task in an FBN comprising
multiple UAVs. This issue is still attracting the academic
community [2], [3], [4], [5], [6], [7]. Essentially, optimized
UAV placement can be achieved either using a centralized
or distributed scheme. In a typical centralized UAV scheme,
there will be a single entity responsible for processing GN
data and updating the UAVs with the new positions. This is
different from a distributed placement scheme, where UAV's
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work cooperatively to adjust their positions based on local

interactions [8].

This paper proposes a centralized algorithm architecture to
optimize deployment and routing of an FBN whose mission
is to cover GNs located in a target area. The goal is to maxi-
mize the Packet Delivery Ratio (PDR), while committing the
minimum number of UAVs. In order to achieve this multi-
objective goal, the proposed scheme relies on a MOEA, more
specifically the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [9], together with a nested single objective
Genetic Algorithm (GA).

The main contributions of this work are the following:

(i) A comprehensive review and comparative analysis of the
related work on FBN topology optimization;

(i) A novel multi-objective optimization scheme, which
uses NSGA-II to calculate the Pareto curves of
non-dominated FBN topologies, providing different
trade-offs between number of UAVs (minimized) and
PDR (maximized), considering MAC layer contention;

(iii) An algorithm hierarchical structure, where the outer
NSGA-II finds non-dominated topologies, while the
inner single objective GA finds the best routes for each
tested topology, and a fixed-point algorithm [10] is used
as objective function to estimate end-to-end PDR;

(iv) Network performance results and novel insights consid-
ering different combinations of average versus maximin
PDR metrics, shortest path versus GA based routing,
as well as single sink versus multiple sink traffic pat-
terns, some of them under the perspective of MAC layer
contention.

This paper is a development of previous work presented
in [11], extending it with an updated and improved related
work analysis, a deep explanation of the algorithms, and
a more complete set of test scenarios and objective func-
tions, where the advantages and limitations of the proposed
approach become more evident.

The remainder of this paper is organized as follows. The
related work is presented in Section II. Section III presents
the proposed system model. Section IV presents the math-
ematical formulation of the objective functions and their
constraints. In Section V, NSGA-II based UAV placement
and routing optimization are presented. Section VI presents
the simulation scenarios and results. Section VII presents the
conclusions and future work.

Il. RELATED WORK

This section presents the related work on UAV placement
algorithms for FBNs. Generally, UAV placement schemes fall
into two main categories: distributed and centralized [12].

In distributed schemes, UAVs exchange and use local infor-
mation in order to optimize their positions or trajectories,
aiming to satisfy the required level of coverage of user nodes.
This approach typically makes the network more responsive
and resilient in case of unexpected changes. Most of the
existing distributed algorithms adapt concepts coming from
physics or animal behavior. For instance, Basu et al. [13]
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proposed an UAV placement scheme inspired on bird flock-
ing. The aim is to maintain connectivity among UAVs,
while adapting to the mobility of the nodes on the ground.
In order to achieve this goal, each UAV should follow a set
of rules/behavior, namely, ‘““‘move to the point above ground
Centroid”, “repel from UAV”’, “attract toward UAV” and
“random walk”. The rules are represented by a state digram,
and the transition from one state to another depends on
the distance between UAVs. The authors in [14] propose
a distributed mobility algorithm based on a Virtual Spring
Force (VSF) model, through which the UAVs self-organize
into a mesh structure by guaranteeing QoS over the aerial
link, and providing coverage to isolated GNs. This algorithm
was further developed in [8], where Connection Recovery
and Maintenance (CRM), as well as Mobility Prediction
(MP) mechanisms were also integrated. In [4], the authors
propose a Graph Convolutional Multi-Agent Reinforcement
Learning (MARL) method to maximize coverage of ground
nodes by UAVs. The convolutional input layers allow local
collaboration among neighbour UAVs, which is translated
into better coverage performance compared with Deep Q-
Learning (DQL) running independently in each UAV. The
number of UAVs is fixed, and the reward function only con-
siders the coverage score and energy spent by the UAV, not
taking into account MAC layer performance.

Centralized schemes rely on a single entity having full
knowledge of node positions, and control over the UAVs.
In this paper, we propose a centralized scheme to jointly
optimize UAV placement and routing in FBNs. Therefore,
the remainder of this section will focus approaches of this
kind proposed so far. In the past few years, this topic was the
target of a significant number of research works. The works
on centralized schemes may be divided in two groups.

The first group does not consider inter-UAV connectivity
(e.g., the UAV relay nodes are directly connected to terrestrial
base stations), or simply abstracts inter-UAV communication,
taking it for granted, so that the placement algorithm does
not have to bother with it. Galkin et al. [15], proposed small
cells mounted on UAVs to offload ground users from the
macrocell infrastructure. The K-means clustering algorithm
is used to optimally place the UAVs. In [16], Kalantari et al.
proposed a 3D UAV placement scheme using the Particle
Swarm Optimization (PSO) algorithm. Similarly to our work,
UAVs are used as flying access points, and the main goal is
to find the minimum number of UAVs and their 3D coordi-
nates to service all users with some target QoS requirement.
Mozaffari et al. [17], use circle packing theory to deploy
multiple UAVs, in order to maximize the coverage area.
The paper [12] was a previous work by our team. Here, an
NSGA-II based scheme is used to optimize two different
objectives: (1) to maximize the fulfillment of the data rates
required by the GNs, and (2) to minimize the number of
UAVs. A scheme to reduce algorithm search space based
on the computation of the convex hull ( [18]) formed by
the GNs was proposed, which is also adopted in the present
work. The link budget is calculated based on a log-distance
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path loss model. IEEE 802.11g data rates are considered,
and the data rate of a link is simply the highest among
those whose receiver sensitivity is lower than the received
power. In [2], the authors consider the 3D placement of
drone relays in mobile cellular networks, namely 5G, where
each serial base station relay must be within reach of a
ground base station. It starts by defining the optimal cov-
erage problem as a Mixed-Integer Linear Problem (MILP),
which is NP-complete. The complexity is reduced by the
OnDrone algorithm, which is based on an Extremal Opti-
mization Algorithm (EOA). The paper also proposes a Hun-
garian method to solve the problem of minimizing the paths
of the aerial base stations towards their optimal destinations,
when the coverage optimization algorithm is recomputed.
Then, it proposes to improve on-route coverage by using
Bézier curves instead of straight lines in the routes towards
the destination points, in order to biase the routes towards
areas with higher density of GNs. Interference is taken into
account in the objective function, and it also considers 3D
beamforming to reduce interference. In [5], Network-based
Heterogeneous PSO (NHPSO) is proposed. In this scheme,
a heterogeneous scale-free network is employed as the topol-
ogy structure. Besides, it introduces a heterogeneous strategy
of particles along with the heterogeneous topology struc-
ture, where topological central particles (i.e., high-degree
particles) are encouraged to utilize more information from
neighbors for self-improving, while low-degree particles tend
to learn among themselves to maintain the diversity. The
proposed NHPSO is compared with other PSO and non-PSO
algorithms in standard optimization problems, as well as in
a cellular network coverage problem with a fixed number
of UAVs. In [6], the authors use a GA in order to opti-
mize the placement of patch UAV base stations, after a dis-
aster that reduces the capacities of base stations. The GA
uses a weighed objective function that takes into account
the number of UAVs, energy expenditure, and a penalty
related with QoS level. UAVs are considered fully functional
base stations. In [7], the authors present two algorithms to
deploy UAV base stations to cover GNs in a 4G network,
so that the number of drone base stations is minimized and
the sum data rate is maximized. The first algorithm, called
Data-Driven 3D Placement (DDP), is based on balanced
K-means clustering. The second algorithm, called Enhanced
DDP (eDDP), is an enhancement that tries to minimize the
overlapping between coverage areas of the drone and ground
base stations. It partitions the area in different parts and then
employs the first algorithm to minimize the number of drone
base stations and to deploy them separately for each partition.

The second group of centralized schemes considers that
the UAVs form a multihop mesh backhaul network in order
to deliver the traffic to destination nodes or gateways to
outside networks. This mesh backhaul must form a con-
nected graph, guaranteing the delivery of traffic from any
point of the network to any other point of the network,
and it must be considered in the optimization process.
The work presented in this paper belongs to this group.
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Reina et al. [19] proposed an optimized deployment scheme
that uses Multi-Layout Multi-Population Genetic Algorithm
(MLMPGA) as the optimization technique. The network has
three main requirements that should be satisfied and bal-
anced: it should provide coverage and redundancy, and it
should be fault tolerant. In order to achieve this goal, the
authors define a weighted multi-objective fitness function,
allowing the use of the single-objective MLMPGA. In [20],
the authors mathematically formulate the placement opti-
mization of UAVs as a multi-objective problem and solve it
as bi-objective linear optimization model. In paper [21], The
authors propose a system named Traffic-Aware Multi-Tier
Flying Network (TMFN). A TMFN consists of a mobile and
physically reconfigurable network of Flying Mesh Access
Points (FMAPs) and Gateway UAVs organized in a two-tier
architecture, which is able to quickly readjust its topology
according to the traffic demands of the users. In order to con-
trol the TMFN’s topology, the authors propose a traffic aware
Network Planning (NetPlan) algorithm, based on the concept
of Potential Fields (PFs). Although the paper assumes a mul-
tihop network architecture and tests the proposed algorithm
in such an environment with ns-3, the NetPlan algorithm only
takes into account the access links between GNs and FMAPs.
In [22], the authors present a scheme to explore a region
of interest where a terrestrial network is deployed, detect-
ing holes in the network topology, after which an algorithm
optimizes the selection of spots for placement of patch UAVs
that will increase the communication performance. In [23],
the authors propose a topology construction and adjustment
scheme, where the optimal topology is built using a PSO
algorithm, while the adjustment is based on gradient descent
using the same performance metric. The two algorithms are
integrated so that PSO only runs when the edit distance
between the current graph and the previous one calculated
by PSO is high enough. Thus, there is a compromise between
the optimality of PSO and the computational performance of
gradient descent. There is no attempt to minimize the number
of UAVs, which is fixed, so the PSO is single objective.
Departing from the previous work, in [3], the same team
proposes a joint mission assignment and topology manage-
ment scheme. The scheme comprises three algorithms. The
first one performs a global optimization of mission assign-
ment (greedy), then PSO based router placement and routing.
The second algorithm locally adjusts relay UAV positions
before the difference (edit distance) relative to the initial
network is too large. The third algorithm performs mission
reassignment of UAVs. Both the second and third algorithms
try to avoid running the first one (i.e., global optimization),
in order to reduce computation complexity. In both works,
the network performance metric is based on link distance and
thus does not take into account MAC layer aspects. In [24],
the authors focus on cellular networks, proposing an heuristic
iterative algorithm to obtain a connected network comprising
ground terminal nodes and a ground control station, which
is achieved by means of a mesh network of UAV relay
nodes. The worst case complexity of the proposed algorithm
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is demonstrated to be O(n?). However, the algorithm is not
proved to achieve the minimum number of UAV relay nodes
or the respective optimal positions.

Table 1 lists the related works described above, highlight-
ing their main characteristics for comparison purposes. The
present paper focuses the global joint topology and routing
optimization of the UAV backhaul network using a central-
ized algorithm, considering MAC layer effects on link per-
formance. Although this is a development from our previous
work in [12], the latter did not consider the multihop FBN
among the UAVs in the optimization scheme.

There are several related works in Table 1 that consider
multiple optimization objectives (e.g., [19]). These works use
to reduce the multiple objectives to single objective optimiza-
tion, by means of prioritization, weighted sum, product, etc.
Such techniques are more prone to become trapped in local
minima, and to miss Pareto optimal solutions in non-convex
spaces. In contrast with these works, our scheme employs
a true multi-objective optimization algorithm to calculate
Pareto curves (number of UAV base stations versus PDR)
instead of single solutions. Based on the latter, the decision-
making entities can choose the one that best fits the applica-
tion conditions and mission management strategy at hand.

The work [23] is the one that bears more resemblance
to ours in terms of system model and performance objec-
tive, though it fixes the number of UAVs, solving a single
objective problem with PSO. Unlike this work and [3] by
the same team, we integrate MAC layer contention in the
global optimization of the UAV positions. This is done by
means of the fixed-point algorithm (FPA) presented in [10].
Although we do not include a low complexity adjustment
mechanism to minimize the frequency with which the global
optimization algorithm must be run to adapt to GN position
changes, it could be easily integrated with a scheme similar
to the one proposed in [23].

Meta-heuristic algorithms besides GA have already been
used for routing optimization: Ant Colony Optimization
(ACO), Artificial Bee Colony (ABC), PSO, Simulated
annealing (SA), Firefly algorithm, Differential Evolution
(DE), hybrid algorithms, etc. Similarly, multi-objective
algorithms besides NSGA-II exist in the literature, such
as Multi-Objective Differential Evolution (MODE), Multi-
Objective PSO (MOPSO), Strengthen Pareto Evolutionary
Algorithm (SPEA), hybrid algorithms, etc. Our choice of
GA based meta-heuristics is backed by existing literature
(e.g., [25], [26], and [27]). Detailed comparison between
alternative algorithms deserves a dedicated study, being out-
of-scope of this paper.

lll. SYSTEM MODEL

We consider a connected wireless network comprising a set
of UAVs (U) and a set of GNs (V) deployed in an area A.
UAVs are assumed to be deployed in the 3D plane with their
coordinates represented as q'&y’ n € A, where h represents
the flight altitude of a certain UAV u;. On the other hand, GNs
are assumed to be on the ground with coordinates q(vi,y’o) €
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FIGURE 1. Mobile network supported by an FBN of UAV base stations.

A, representing a 2D plane positioning in 4. Nodes have
a maximum communication range which is denoted by D,
and communication among GNs is only realized through
UAVs in a multihop fashion. Fig. 1 depicts the proposed
communication system. The control station can be connected
to external networks, such as cellular network, satellite or
Cloud.

Definition 1: A wireless network is said to be connected
when there is a path between every pair of nodes. Hence, in a
connected network all nodes are reachable.

Definition 2: Two or more nodes are said to be neighbors
when the Euclidean distance between each pair is shorter than
or equal to D.

IV. MULTI-OBJECTIVE OPTIMIZATION PROBLEM
The scheme proposed in this paper aims to find the best
trade-offs between the FBN cost in terms of the number of
UAVs, and the achieved PDR. In this section, mathematical
formulation of each objective function is presented.

A. OBJECTIVE 1: MINIMIZING THE NUMBER OF UAVs
Similarly to [12], the present work assumes that there is a
cost associated with each used UAV. Thus, minimizing the
number of UAVs is desirable. This is done by restricting the
UAV coverage to the sub-area @’ C A that corresponds to
the convex hull (convex envelope) [18] formed by the GNs
in A. This restriction of the deployment area also reduces the
complexity of the algorithm. In order to further reduce that
complexity, @’ is discretized in a grid layout according to the
following relation: A = uD; n € [0, 1], where A is the
distance between two neighboring UAVs, which is adjusted
by changing u. Let Q C d be the discrete set of allowed
UAV deployment points.

Let g; € O be the j™ potential UAV placement point. Let
{8;,}, Yu € U, Vq; € Q be defined as a set of binary variables
incficating which points are currently being used by an UAV,
as follows:

1 if UAV u is located at g;
uo_
8y, =
0 Otherwise.

Let {¢/},Yu € U,Vv € V be defined as a set of binary
variables indicating which GNs are being serviced by each
deployed UAV. It is assumed that a GN will be connected to
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TABLE 1. Related work on FBN optimization.

Algorithm Reference UAV Alti- | Inter-UAV Mul- | Optimization Objectives Link Types of Algorithms
Architec- tude tihop Routing Performance
ture Model of the
Algorithm
[13] Fixed No GN coverage, inter-UAV | Fixed Bird flocking heuristic
distance transmission
range
Distributed [14] Fixed Yes Link budget, GN coverage | Link budget VSF heuristic
[8] Fixed Yes Link budget, GN coverage | Link budget VSF heuristic, CRM,
MP
[4] Fixed Yes max coverage, min energy | Fixed MARL (reward is
consumption transmission product of objective
range functions)
[15] Fixed No min transmission distance NA K-means
[16] Variable No max GN coverage, min | Link budget, | PSO (prioritized ob-
UAV cost, max data rate spectral jectives)
efficiency, UAV
capacity
[12] Variable No min UAV cost, max data | Link budget, | NSGA-II
rate IEEE  802.11g
data rates
2] Variable No max GN coverage, min | Signal-to- EOA, MILP, Bézier
reposition delay interference- flight routes
plus-noise-ratio,
data rate
[5] Variable No max total data rate Shannon NHPSO

capacity  (fixed
background noise

power)
[6] Fixed No min  UAV cost, min | Shannon capacity | GA (weighted sum of
throughput penalty (w/ interference) objectives)
Centralized [7] Variable No min UAV cost Shannon capacity | K-means, heuristics
(w/ interference)
[19] Fixed Yes max GN coverage, max | Fixed MLMPGA (weighted
fault tolerance, max redun- | transmission sum of objectives)
dancy range
[20] Variable Yes min UAV cost, min alti- | Fixed Bi-objective linear
tude transmission model, €&-constraint
range method
[21] Fixed Yes max coverage Link budget PFs
[22] Fixed Yes min hole packet reception | TOSSIM signal- | Connectivity-based
ratio to-interference- k-hop clustering,
plus-noise-ratio strongly  connected
and error models components
[23] Fixed Yes min sum of path lengths distance  based | PSO, gradient descent
link quality
3] Fixed Yes max mission satisfaction, | distance based | PSO, gradient ascent,
max link quality link quality heuristics
[24] Fixed Yes min UAV cost Fixed Heuristic
transmission
range
Present Fixed Yes min UAV cost, max PDR Fixed NSGA-II w/ nested
work transmission inner-GA and FPA
range,
CSMA/CA
MAC
the closest deployed UAV: s.t.:
1 if GN v is connected to UAV u Z 8, <1 Vuel, (22)
g = q;€Q
0 Otherwise. Z 5;; <1,¥g €0, (2b)
Th . . . . . u . MEU
e first objective is to assign values to § > SO that valid Z > 1 WeV, 2¢)
solutions are found to the following problem: Z v
ue
min Z Z 6;}_. )] Constraint (2a) indicates that each UAV u cannot be placed
gi€Quel in more than one point at the same time. Constraint (2b)
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indicates that each point g; is occupied by a single UAV.
Constraint (2c) ensures that a GN is within communication
range of at least one UAV. The cardinality of the set Q defines
the maximum number of UAVs that can be used to cover a
given convex hull. Details on how to maintain the network
fully connected can be found in [12].

B. OBJECTIVE 2: MAXIMIZING THE PACKET DELIVERY
RATIO
The PDR model is based on the one proposed in [10] by
Baras et al. The model provides quantitative statistic relation-
ships between (1) the PDR loss parameters used to charac-
terize multi-user interference and physical path conditions,
and (2) the traffic rates between the origin-destination pairs.
The model takes into account the effects of the hidden nodes,
scheduling algorithms, IEEE 802.11 MAC and PHY layer
transmission failures, finite packet retries at the MAC layer,
etc., in arbitrary network topologies where multiple paths
(i.e., traffic flows) share nodes.

In order to model the MAC layer, the following assump-
tions are made:

(1) The network consists of |U| + |V| nodes and a path
set P that is used to forward traffic between the source-
destination (S-D) pairs in the network;

(i) The 802.11 MAC layer with RTS/CTS mechanism;

(iii) The unit of time is a time slot, which is equal to the
back-off slot of the 802.11 protocol;

(iv) The nodes access the channel with a fixed probability as
proposed in [28];

(v) The scheduler above the MAC layer keeps scheduling
the same packet until it is successfully transmitted by
the MAC layer, thus recovering from MAC layer failures
when the transmission retries are exceeded.

For the scheduler behavior, the following assumptions are
considered: the set of paths that goes through a node i is
denoted by P;; the scheduler behavior is specified by the
scheduler coefficient k; ,, which is the average serving rate
of path p packets at node i; the computation of k; ;, takes into
account the arrival rate, denoted by 4; ,, the average service
time T; , of path p packets at node i, the probability B; , of
PHY and MAC transmission attempt failure (this takes place
during the initial stage of the MAC protocol, when transmitter
and receiver nodes perform the RTS/CTS handshake). Based
on this, k; , can be calculated as follows:

)\,'
—Pifr <1
(1= Bl
kip = Aip 3)
a-8")
- P Otherwise,
KT

where m is an input parameter representing the maximum
number of packet transmission retries at the MAC layer,
Ai .
> T - Since the model assumes
(1=p")y "
P'EP ( ip'

that the scheduler keeps scheduling the same packet until

and ky =
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it is successfully transmitted by the MAC layer, in order to
compensate for the transmission failures at the MAC layer,
the scheduling rate should be higher than the node arrival
rate by a factor 1/(1 — ﬁ;f’p), i.e., the probability of lost
packet due to exceeding MAC layer retries. On the other hand,
if utilization is equal to one, some arriving packets cannot be
served, but the service rate for each path is still proportional
to its compensated arrival rate as given in the second line
of Equation (3).

From Equation (3), one can derive the fraction of incoming
traffic rate that is sent over each path. Let h; , represent the
node that precedes node i in path p. The arrival rate from
path p at node i is calculated as follows:

Aip= kh;p’p(l — ,BZEP,I)) forall i,p. 4

This is obviously not valid when node i is the first node
(i.e., the originator node) of the path, in which case 4; ) is
set as an input parameter of the algorithm. A comprehensive
explanation on how to compute f; , is provided in [10]. The
computation of T; ,y is equal to the sum of four components
as follows:

Ti,p =1- ﬁ,’r,np)di,p + Uip + bi,p + Cip» 5)

where d; , is the time spent by successful transmission of
path p packets at node i (thus, it only applies when the MAC
succeeds, with probability 1 — ,B{T’p), u; p is the average time
consumed by the successful transmission from the neighbors
of node i, b; , is the average back-off time spent by node i
during the transmission of path p packets, and c; ) is the
average time spent by failed transmissions.

In order to find a consistent solution for the parameters
kip, Aip, Bip and T; ,, the scheme uses the FPA equations as
provided in [10]. The FPA structure and stopping conditions
are adopted from [29].

In order to compute the network PDR at the destination
node(s), represented by T, the scheme considers a set of active
connections in the network, denoted by C, and the set of
paths used in connection ¢ € C, denoted by P.. Two metrics
are considered, corresponding to alternative PDR objective
functions:

(1) Average PDR. This metric is computed as follows:

T — (X:ceC(X:pePC )‘last,p)) ©
(ZceC(ZpePc )‘first,p)) ’

where A p and A5, p denote the arrival rate of packets
belonging to path p at the source and destination nodes,
respectively. In this case, the intention is to maximize
the PDR as follows:

max T; s.t., Equation (2a), (2b) and (2¢). (7)

(i) Minimum PDR. The PDR provided in path p;, denoted
ty;, in connection ¢ € C is calculated as follows:

)\last,pl-ePc (8)

tPiGPC = ’
)\first ,Di€P.:
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where Ay p;ep, is the arrival rate of the packets at the
destination node, and Ay p;ep, is the arrival rate at the
source node in path p;. In this case, the optimization
problem is defined as follows:

max min }fpiepc; s.t., Equation (2a), (2b) and (2¢).,

C))

which corresponds to maximizing the lowest PDR, i.e.,
the PDR of the flow that gets the lowest grade of service.

Differently from [10], where Automatic Differentiation
(AD) was used to reach the optimal PDR, the proposed
scheme has two optimization objectives, which prompted the
use of NSGA-II, as explained in the following section.

V. NSGA-II BASED UAV PLACEMENT AND ROUTING
OPTIMIZATION

NSGA-II [9] is an elitist MOEA, which comprises two
main procedures: Pareto ranking and diversity preservation.
Pareto ranking aims to sort the population into different
non-domination levels (i;4nx) in ascending order. Here, the
lowest ranking level contains the best set of solutions. On the
other hand, diversity preservation is used to maintain a good
spread of solutions in the obtained solution set. Members
of each non-dominated front are assigned a value called
crowding distance (igistance), Which is used to determine the
density of solutions surrounding a particular solution in the
population. In order to distinguish the best solutions, NSGA-
IT uses the crowded-comparison operator, denoted by <.
The operator assumes that every solution i in the population
has two attributes: i,gux and igiszance- The partial order <, is
defined as follows:

i <y jif (rank < jrank)

or [(Grank = jrank) and (igistance > Jdistance)] - (10)

Assuming initial population of size N, Algorithm 1 shows
the main loop of NSGA-II proposed by the authors in [9],
where the calls to the routines fast-non-dominated-sort (R;)
and crowding-distance-assignment (JF;) correspond respec-
tively to the the Pareto ranking and diversity preservation
procedures described above. R; has size equal to 2N, being
formed by combining parent S; and offspring Z, populations.
F; refers to the i front or level.

The chromosome structure X represents the 3D coordi-
nates of a set of UAVs deployed inside the convex hull area
d'. Therefore, the chromosome is represented as follows:

u u iy,
X =1 gy Gy o) - Gy )]

In order to find optimal solutions, NSGA-II must be able to
compute the values of two objectives from the above repre-
sentation of the chromosome. The first objective is directly
given by n, representing the number of UAVs forming the
deployed network. It also represents the size of the chromo-
some, which is variable. As for the second objective, i.e., the
PDR, the scheme runs an embedded GA (inner-GA) in order
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Algorithm 1 NSGA-II Main Loop
1: R, =S, UZ
2. F=fast-non-dominated-sort(R;)
3 Sy =0andi=1
4: Until |S;4(|+Fi <N
4.1. crowding-distance-assignment(JF;)
42.8 11 =841+ F

43.i=i+1
5: Sort(F;, <p)
6: St1 = Sp+1 UF[1: (N —18:41D)]
7. Zi+1=make-new-population(Sy+1)
8 t=1t+1

NSGA-II
r Chromosome

Objective 1:
min # of UAVs

Objective 2:
max PDR

FIGURE 2. Representation of the objective function computation.

Size of the
chromosome

Inner-chromosome
Inner-population
Inner-crossover
Inner-mutation

to find the best routes from source GNs to the destination
GNs, which lead to a higher value of PDR for the current
placement of the UAVs. The value of the second objective
will be the highest PDR found by the inner-GA, which cor-
responds to the best set of routing paths for a given NSGA-II
individual. Fig. 2 depicts the idea behind the computation of
the objective functions.

A. INNER-GA CHROMOSOME ROUTING
REPRESENTATION
The inner-GA will have its own set of parameters as pre-
sented next: Given the UAVs’ positions from the NSGA-II
chromosome, the inner-chromosome will be a set of hash
tables of variable size, each of which representing a flow from
a source GN to a destination GN. For a given set of UAVs
occupying specific positions in the network, a source GN may
be able to reach the same destination GN through different
paths. Therefore, the scheme uses those paths to distinguish
different inner-chromosomes as they would represent differ-
ent flows. As already stated, the communication between
GNes is realized through UAVs in a multihop fashion. Fig. 3
and Fig. 4 show a hypothetical communication network with
the flows of data and the corresponding inner-chromosome
representation, respectively.

Each key in the inner-chromosome represents a unique ID
of a node in the network, and the stored value corresponds to
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FIGURE 3. Hypothetical communication network and data flow.
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ID-UAV2 | ID-UAV4 | ID-UAVS | k—— child node/Kkey
.

ID-UAV1 | ID-UAV2 ID-UAV4 | ID-UAVS | ID-DEST | | ___ parent node/Value

ID-SRC2 | ID-UAV2

ID-UAV3 | ID-UAVS

ID-UAV2 | ID-UAV3 | ID-UAV5 [ ID-DEST

ID-SRC3 [ ID-UAV3 | ID-UAVS

!

ID-UAV3 [ ID-UAVS | ID-DEST

ID-SRC4 | ID-UAVA | ID-UAVS |

|

ID-UAV4 | ID-UAVS

ID-DEST _ |

FIGURE 4. Inner-chromosome represented as hash table with key-value
association.

the ID of the subsequent node in the downstream direction,
i.e., toward the destination node.

B. INNER-GA PARAMETERS AND GENETIC OPERATORS
The inner-initial-population is a random generation of Ny,
inner-chromosomes. The fitness of each inner-chromosome is
evaluated by Equation (6), when average PDR is being used.
Best individuals (i.e., inner-chromosomes with high score) go
to the mating pool.

The inner-crossover occurs with probability p, .. and
is performed by exchanging a subset of flows with same
source-destination pair between two inner-chromosomes.
This is depicted in Fig. 5, taking into account the network rep-
resented in Fig. 3. The exchanging point — which corresponds
to the number of exchanged flows — is chosen randomly
within the number of existing flows. The resulting offspring
after exchanging 4 flows is shown in Fig. 6.

As regards to inner-mutation, for each inner-chromosome,
a flow is randomly chosen, for which a new route from
the source to the respective destination node is generated.
Breadth First Search (BFS) algorithm is used to generate a
set of routes. Then, the new path is randomly chosen from the
generated set, and the old path is replaced with the new one
with a probability py,,, ... This procedure is shown in Fig. 7.

C. NSGA-Il PARAMETERS AND GENETIC OPERATORS

Regarding the initial population of NSGA-II, a set of N ran-
domly generated chromosomes is used to form the initial
population. The length of the chromosomes in the population
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FIGURE 5. Inner-crossover.
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FIGURE 7. Inner-mutation.

may be different from each other depending on the number of
deployed UAVs to cover all GNs. In this study, the size of each
chromosome and the best solution found by the inner-GA
respectively correspond to the number of UAVs and PDR in a
given topology. The NSGA-II selection operation uses binary
tournament selection based on the crowded-comparison oper-
ator <, in order to choose the best chromosome following
Equation (10). Here, given two solutions with differing non-
domination ranks, NSGA-II prefers the solution with the
lowest (i.e., best) rank. Otherwise, if both solutions belong
to the same front, then NSGA-II prefers the solution that is
located in a less crowded region.

The genetic operators (crossover and mutation) are imple-
mented in a way similar to our previous work [12], where
the crossover (with the probability p.) between two chromo-
somes is performed by finding a midpoint in ¢’ and drawing
(diagonally in 45/-45 degrees or horizontally or vertically) a
cutting line to divide the area in two parts in each chromo-
some. Next, the operator removes all UAVs that are within
%D distance radius along the cutting line within «’. If the
separation line is either diagonally or vertically drawn, the
leftmost part of one parent is joined with the rightmost part
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FIGURE 8. NSGA-II crossover.

of the other to form an offspring. On the other hand, if it is
horizontally drawn, the uppermost and bottommost will be
joined instead. Since the operator has removed some UAVs,
there may be some uncovered GNs in the vicinity of the
separation line, which makes the resulting offspring an invalid
individual. In this case, the operator repairs the offspring by
repeatedly choosing a random uncovered GN and placing an
UAV in the closest available point q’(‘x’y’ h) until all GNs are
covered. UAVs which are not serving or bridging any GNs
are removed.

As regards to the mutation operator, for each chromosome,
an UAV is randomly selected with a probability p,,, then it is
either temporarily removed or reallocated to a new randomly
chosen available point g; € Q with a probability of 50%. If the
above procedures fail to produce a valid individual, then the
UAV is put back in its initial position. Examples of crossover
and mutation operations are depicted in Fig. 8 and Fig. 9,
respectively.

D. COMPLEXITY ANALYSIS

In [9], the authors propose NSGA-II and estimate its perfor-
mance as O(MP?), where M is the number of objectives and
P is the size of the population. This estimate assumes that
complexity is determined by the non-dominated sorting part.
While being useful for comparison with other MOEA under
generic objective functions, such analysis is not suitable when
the objective functions are themselves the most significant
source of complexity. On the other hand, the complexity
analysis of objective functions becomes particularly difficult
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FIGURE 9. NSGA-II mutation.
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when the chromosome has variable length — as is the case of
the proposed scheme —, though a worst case characterization
is possible.

The proposed topology optimization scheme has a nested
algorithm structure, in which NSGA-II forms the outer layer.
One of the NSGA-II objective functions (PDR maximization)
is particularly complex, making use of the inner-GA to find
the best routing, i.e., the one that maximizes the PDR for a
given UAV topology. In turn, the PDR objective function of
the inner-GA is calculated by means of the FPA proposed
in [10]. It is in this nested objective function that resides
most of the time complexity of the algorithm. The num-
ber of UAVs (|U|) corresponds to the size of the NSGA-II
chromosome, and significantly affects the performance of
the FPA. As already seen, since Ul constitutes one of the
NSGA-II objective functions, it is a variable, making it more
difficult to estimate the complexity of NSGA-II. As such,
in the following analysis it is considered that the number
of UAVs is fixed and equal to |U|™*, corresponding to the
maximum allowed number of UAVs (an input parameter of
the algorithm).

The FPA updates the values of the variables based on
the values calculated in the previous iteration. Considering
only scalar operations, the most complex updates involve
four nested cycles, where two iterate over the number of
nodes (N = |U|™* + |V|) and two over the number of
flows or paths (|F|). Such cases correspond to variables 6,
B, r, wand z in [10]. Each FPA execution will finish when
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the defined convergence criteria are met, which may take a
variable number of iterations /rps. Nevertheless, in order to
allow a complexity estimate, Irps can fixed as the expected
worst case. Based on this assumption, FPA complexity is
estimated as O(Irps - N2 - |F|?).

Based on the above result, knowing that, in each inner-GA
generation, the number of new offspring is proportional to the
size of the population (Pjnnerga), and that the FPA must be
run for each new individual, the complexity of the inner-GA
can be estimated as O (Ginnerca - Pinnerca - Ippa - N* - [F|?),
where Gjnnerga is the configured number of generations of the
inner-GA. Since NSGA-II is also a GA, a similar reasoning
can be applied to estimate its complexity. Knowing that in
each NSGA-II generation the number of new offspring is
proportional to the size of the population (Pyscarr), and
that the inner-GA must be run for each new individual, the
complexity of the NSGA-II algorithm can be estimated as
O (Gnscair - Pnscair - GinnerGa - Pinnerca - Ippa - N* - [F1?),
where Gnsganr is the configured number of generations
of NSGA-II.

From the above analysis, it becomes obvious that the simu-
lation duration is highly influenced by the time or number of
iterations/generations needed by the algorithms to converge,
namely the stopping conditions, as well as the initial guesses.
Depending on the value of the tolerated error, the FPA will
stop before convergence if the value is set too high, or there
will be useless additional iterations if the value is set too
low. Another important factor is the initial guess of the FPA:
when the algorithm departs closer to the fixed-point, the
convergence is faster, thus the challenge is to make a good
guess during initialization. As regards to the GAs, the num-
ber of generations may be fixed based on empirical studies,
or variable depending on more flexible stopping criteria, for
example the rate of change of the population over a number of
generations. A parameter that conditions the required number
of NSGA-II generations is the degree of granularity of the
search space, which in this scheme corresponds to the number
of candidate placement points within the convex hull. The
latter depends on w: smaller values of u create larger search
space, and hence a higher value of Gysgay is required to
converge.

VI. SIMULATION PARAMETERS AND RESULTS
This section presents simulation results of the proposed
NSGA-II implementation. Simulations were performed on a
virtual machine running GNU/Linux (ubuntu) OS, x86_64
architecture, 64 bits CPU, 1.992 GHz CPU clock speed,
4 cores per socket, 1 socket and 1.6 Gbits of RAM. In order to
implement the algorithm, C++ was used as the programming
language.

The network comprises 24 GNs uniformly distributed in
a 500 x 500 m? area. The maximum transmission range D
is set to 100 m and . = 0.40. It should be recalled that the
PDR computation uses an FPA. Similarly to [10], in order to
make the convergence faster, the FPA initializes the values of
the parameters assuming communication is perfect for every
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TABLE 2. Default parameters.

Number of GNs | 24

4 500 x 500 m

u 0.40

9 100

Flight altitude 80 m

L {30,60,90,120, 150} kbps

TABLE 3. NSGA-II and inner-GA parameters.

NSGA-II maximum generations 40
NSGA-II population size 60
NSGA-II crossover probability (p.) 0.7
NSGA-II mutation probability (p,,) 0.4
Inner-GA maximum generations 30
Inner-GA population size 60
Inner-GA crossover probability (pc,,,.,) | 0.7
Inner-GA mutation probability (py,,,,,) | 0.2

connection, thus time T; , consists only of the time taken by
successful transmissions, plus the back-off time needed for
the first trial. Moreover, since perfect channel conditions are
assumed, the probabilities of failure are initialized to 0 in all
the links. As the FPA algorithm runs, the values of these vari-
ables change and converge to the approximate or real ones.
It is considered that all nodes generate traffic simultaneously.
Simulations are performed with different load values given
by the set L = {30, 60, 90, 120, 150} kbps.

Simulations take into account two scenarios with two
objectives each:

o Scenario (A): aims (1) to minimize the number of UAVs,
and (2) to maximize the average PDR at the destination
node(s).

e Scenario (B): aims (1) to minimize the number of UAVs,
and (2) to maximize the minimum PDR at the destina-
tion node(s).

In order to assess the impact of having more than one
sink/destination node, these scenarios were simulated with
two different traffic patterns:

(1) All traffic from the GNss is sent to a single destination
node with ID = 0. This node vy is placed at 2D coordi-
nates ¢ -

(ii) Twelve (half) randomly chosen GNs generate traffic
towards destination node with ID = 0 placed at q(vg’o).
The other twelve GNs generate traffic towards destina-
tion node with 1D = 25 placed at ¢35 s590)-

In the UAV placement algorithm presented in [12], the use
of different altitudes (in the altitude range of [40,120] meters)
did not affect the performance, as the communication range
was quite long when compared to the maximum allowed
flight altitude. Based on these results, and since this work
does not address altitude optimization, a fixed flight altitude
of 80 m is assigned to the UAVs. Table 2 shows the summary
of the global/default parameters.

As already stated, an important and challenging step when
designing a GA is defining the stopping criteria, i.e., the point
where the algorithm should stop executing. There have been
several studies on the subject [30], [31]. Differently from the
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FIGURE 10. Scenario (A) for single destination node.

present proposal, most of these studies consider fixed size and
string based chromosomes, hence, their stopping criteria are
not directly applicable to the present GA scheme, which uses
variable length and non-string based chromosomes. In [12],
the authors adopted the rule of stopping when there is no
significant improvement during the last ten iterations. How-
ever, as the current GA proposal entails nested algorithms
(i.e., inner-GA and FPA), that would add more complex-
ity and an additional burden on computational resources.
As such, the stopping criteria is set as a fixed number of
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for 150 kbps.

generations. In order to determine the number of generations,
multiple simulations were performed to adjust the NSGA-II
parameters, such as pc, Pe; ., » Pm> a0d ppy,,.. to avoid exces-
sive computation, as well as premature convergence. Table 3
shows the summary of the NSGA-II and inner-GA parame-
ters. Parameters such as population sizes and genetic operator
probabilities were not optimized and thus can be a subject of
further studies.

In each scenario, and for each load value taken from
the set L, 25 runs of NSGA-II with different seeds,
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FIGURE 11. Scenario (B) for single destination node.

[1, 2,..., 25], were performed. In each simulation, the val-
ues of the following parameters were collected: optimized
average and minimum PDR for each number of deployed
UAVs, and the time spent in each run. For each 25 runs, the
average and minimum PDR with 95% confidence interval
were computed.

In some circumstances, the maximization of the average
PDR might imply that some flows in the network present a
degraded service quality. On the other hand, the maximization
of the minimum PDR may cause the average PDR to drop
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for 150 kbps.

drastically. However, the choice of either to maximize the
average or minimum PDR is scenario specific, i.e., the latter
takes into account the improvement of individual PDRs of
the flows for fairness consideration, and the former takes
into account the overall PDR for efficiency consideration.
In order to visualize such behaviors, the simulation results
are presented as follows: for each load value in L, a pair of
results is captured, namely, the parameters to be optimized for
the specific scenario, i.e., Scenario (A) or Scenario (B), and
the behavior of the minimum or average PDR when it is not
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being optimized, respectively. Scenario (A) and Scenario (B)
are considered together with single or multiple destination
nodes, as presented in the following sections.

A. SIMULATION RESULTS CONSIDERING SINGLE
DESTINATION

This section presents the performance of the proposed
NSGA-II for Scenario (A) in Fig. 10, and for Scenario (B)
in Fig. 11. Results for the initial load, Ly = 30 kbps, are
not presented for space reasons. From the simulation results,
it was observed that the valid solutions that were found have
a minimum of 17 UAVs in both scenarios.

In Fig. 10 (Scenario (A)), the trade-off between the solu-
tions is clear. One may have fewer UAVs with lower PDR,
or more UAVs with higher PDR. In fact, having fewer UAVs
means that some nodes may have to carry more traffic than
the others (i.e., the aggregation of flows through the same or
neighboring routes is higher), leading to poor performance in
terms of PDR. It is also observable that, despite the increase
of the average PDR, as the number of UAVs increases, the
minimum PDR decreases (recall that this is not an objective
function in Scenario (A)), i.e., some flows experience star-
vation at the cost of an overall higher PDR. This scenario
becomes advantageous when one cares about the average
PDR of the GNs as a whole, rather than fairness among flows.

For Scenario (B) (see Fig. 11), the trade-off between the
PDR metrics is also observed: the average PDR tends to
decrease as the minimum PDR increases. The maximin PDR
used in this scenario is advantageous when one cares about
the fairness among flows, rather than the overall PDR in the
network, i.e., it matters to guarantee a minimum acceptable
performance for each flow.

The performance of NSGA-II with inner-GA was also
compared with NSGA-II using Dijkstra based routing. Dijk-
stra finds the shortest path between source and destinations
nodes, which is the route selection criterion employed by
default in routing protocols. It can be observed that inner-GA
was able to find alternative paths from the sources to the
destination, and slightly outperformed shortest path in both
scenarios, i.e., it maximizes the PDR metric while minimiz-
ing the number of UAVs in a range between [9.5%-37.52%]
for Scenario (A) (see Fig. 12), and [8.7%-31.93%] for Sce-
nario (B) (see Fig. 13). This only applies to load values above
30 kbps, since the latter leads to a PDR of 100% in all cases.

The PDR tends to decrease as the load increases, which
is also observed in Fig. 12 and Fig. 13. This complies with
the expected behavior, since higher load causes additional
contention at the MAC layer.

B. SIMULATION RESULTS CONSIDERING MULTIPLE
DESTINATIONS

Following the same structure of Section VI-A, this section
will firstly present the results for Scenario (A), and then
the results for Scenario (B). Two destination nodes are
now considered, located at coordinates g;, = (0, 0) and
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FIGURE 13. Single destination:comparison between inner-GA and
Dijkstra performance for Scenario (B).

gj, = (500, 500), corresponding to opposite corners in the
deployment area.

In Fig. 14 (Scenario (A)), and differently from the sin-
gle destination scenario (see Fig. 10), the results show an
increase of the minimum PDR (not an objective function in
Scenario (A)) as the average PDR increases, i.e., the previ-
ously observed conflicting behavior is not present. This is
justified by the fact that data traffic is now split between two
destination nodes located at opposite coordinate points in the
target area. This configuration has the following advantages:

(1) Reduces the chance of having some nodes relaying data
belonging to many different flows, thus avoiding poten-
tial bottlenecks;

(i) Potentially reduces the degree of source-destination star-
vation, as the number of immediate interfering neighbor-
ing flows is reduced. This is a well known problem in
multi-hop ad hoc wireless networks, also known as Flow
In the Middle (FIM) problem [32]. In fact, the inner-GA
tries to find paths that suffer less from FIM, in order to
maximize the PDR.
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FIGURE 14. Scenario (A) for two destination nodes.

In general, this leads to increased load balancing and thus
overall capacity, which is translated into higher PDR in both
metrics. The performance improvement gained by having one
additional destination node for each load value is shown in
Table 4.

Similarly, in Scenario (B) (see Fig. 15), the results show
an increase of both the minimum and average PDR (not
an objective function in Scenario (B)) with the increase
of the number of UAVs. Table 5 presents the performance
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for 150 kbps.

improvement ranges from single to multiple destinations.
At 30 kbps there is no improvement, since the latter leads to
a PDR of 100% in all cases.

The previous results allow the conclusion that having mul-
tiple destinations placed apart from each other is beneficial
regarding the PDR.

Fig. 16 and Fig. 17 present the performance of inner-GA
over Dijkstra for the average PDR [9.50%-34.18%] and max-
imin PDR [9.30%-36.72%], respectively. The addition of the
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FIGURE 15. Scenario (B) for two destination nodes.

second destination node also improved the PDR of Dijkstra.
However this was not enough to outperform the inner-GA.
Again, for a load of 30 kbps, the PDR is 100% in both

cases.

C. SIMULATION PERFORMANCE

As already noted, accurately estimating the complexity and
simulation time of a MOEA is not trivial, particularly when
dealing with chromosomes of variable length. Empirical
results can provide additional insights on the factors that
determine these metrics. The average time spent running the
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for 150 kbps.

TABLE 4. Performance improvement from single to multiple destination

nodes for min # UAVs and max average PDR.

Load | Interval [min.- max.]
30 kbps -

60 kbps [36.68%-43.89%]
90 kbps [38.51%-47.71%]
120 kbps [38.91%-48.33%]
150 kbps [38.86%-49.39%]

simulations in different scenarios (see Fig. 18 and Table 6 for
clarity) was measured. In general, simulations with multiple
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TABLE 5. Performance improvement from single to multiple destination
nodes for min # UAVs and maximin PDR.

Load | Interval [min.- max.]
30 kbps -

60 kbps [38.49%-45.55%]
90 kbps [32.56%-39.25%]
120 kbps [15.23%-30.82%]
150 kbps [12.73%-38.06%]

TABLE 6. Average simulation time.

# destination | max average PDR | maximin PDR

Single 14907.21 s 15051.00 s
Multiple \ 13307.25 s \ 14302.99 s
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FIGURE 16. Multiple destinations: comparison between inner-GA and
Dijkstra performance forScenario (A).
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FIGURE 17. Multiple destinations: comparison between inner-GA and
Dijkstra performance for Scenario (B).

destinations take less time to converge when compared to the
single destination scenario. This is due to the reduction of
inter-flow interference, leading to faster FPA convergence.
Recall that FPA intialization assumes no contention between
flows, which is a closer guess when load is low. It is also
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FIGURE 18. Average simulation time for the given simulation
environment.

observed that maximizing the average PDR converges rela-
tively faster than maximizing the minimum PDR.

VIi. CONCLUSION

This paper presents a joint UAV placement and flow routing
optimization scheme based on a nested architecture, where
NSGA-II algorithm forms the outer layer, while a single
objective GA is used as inner layer. Link performance is esti-
mated by an FPA taking into account MAC layer contention.
Significant insights were only possible due to this feature.
Two scenarios, each with two optimization objectives, were
considered: (1) minimization of the number of UAVs while
maximizing the average PDR, and (2) minimization of the
number of UAVs while maximizing the minimum PDR. From
the simulation results, it was observed that the proposed
algorithm is able to provide meaningful Pareto curves, deter-
mining a set of non-dominated solutions for UAV placement.
Based on the latter, the decision-making entities can choose
the one that best fits the application conditions and mission
management strategy at hand. Additionally, the performance
of the inner-GA routing optimization was compared against
the Dijkstra shortest path routing. The results show that the
inner-GA achieves better performance due to its capacity
of performing load balancing to reduce MAC contention.
This advantage is even more significant in complex scenarios
comprising more than one sink node. The simulation perfor-
mance was also studied. It was concluded that scenarios with
multiple sink nodes tend to reduce flow interference, speed-
ing up convergence of the FPA algorithm. In general, the
average PDR objective function leads to faster convergence
than maximin PDR.

In future work, we intend to evaluate the proposed scheme
when replacing NSGA-II and inner-GA with other alternative
algorithms. We are currently investigating alternative prob-
lem formulations that optimize UAV displacement vectors
instead of positions, making use on GN movement prediction.
Finally, we plan to reduce the overall complexity of the
scheme by performing heuristic based adjustments to UAV
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positions, as is done in [23], or by using multi-agent Deep
Reinforcement Learning, where local adjustment decisions
are negotiated among neighboring UAVs. Machine Learning
models also have the potential to replace the inner-GA and
FPA, trading-off efficiency versus accuracy.
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