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ABSTRACT In this paper, we propose a new code design technique, called partial doping, for
protograph-based generalized low-density parity-check (GLDPC) codes. While the conventional construc-
tion method of protograph-based GLDPC codes is to replace some single parity-check (SPC) nodes with
generalized constraint (GC) nodes applying to multiple variable nodes (VNs) that are connected in the
protograph, the proposed technique can select any VNs in the protograph to be protected by GC nodes.
In other words, the partial doping technique facilitates finer tuning of doping, which in turn enables a
sophisticated code optimization with higher degree of freedom. We construct the proposed partially doped
GLDPC (PD-GLDPC) codes using the partial doping technique and optimize the PD-GLDPC codes by the
protograph extrinsic information transfer (PEXIT) analysis. In addition, we propose a condition guaranteeing
the linear minimum distance growth of the PD-GLDPC codes and use the condition for the optimization.
Experimental results show that the optimized PD-GLDPC codes outperform the conventional GLDPC codes
and have competitive performance compared to the state-of-the-art protograph-based LDPC codes without
the error floor phenomenon over the binary erasure channel (BEC).
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INDEX TERMS Generalized low-density parity-check (GLDPC) codes, partial doping, partially doped
GLDPC (PD-GLDPC) codes, protograph, protograph extrinsic information transfer (PEXIT), typical mini-
mum distance.

I. INTRODUCTION17

Low-density parity-check (LDPC) codes, first introduced18

in [1], have received much attention due to their low decod-19

ing complexity and capacity approaching performance [2].20

An LDPC code is defined over a bipartite graph consist-21

ing of variable nodes (VNs) and single parity-check (SPC)22

nodes. As a generalized class of LDPC codes, generalized23

LDPC (GLDPC) codes were introduced in [3], which are con-24

structed by replacing some SPC nodes with generalized con-25

straint (GC) nodes. GC nodes are defined by code constraints26

of a linear code with a larger minimum distance [4], which27

makes GLDPC codes have a larger minimum distance [5].28

The associate editor coordinating the review of this manuscript and

approving it for publication was Zesong Fei .

In addition, GLDPC codes have several advantages over 29

LDPC codes such as faster decoding convergence [6] and 30

a better asymptotic threshold at the cost of the additional 31

decoding complexity and redundancy introduced by GC 32

nodes [7]. Many types of linear codes for GC nodes, also 33

called as the component codes, are used in the GLDPC codes 34

such as Hamming codes [8], Hadamard codes [9], Bose– 35

Chaudhuri–Hocquenghem (BCH) codes, and Reed-Solomon 36

(RS) codes [10]. The research on GLDPC codes is extended 37

to spatially coupled LDPC codes [11], [12], [13] and doubly 38

GLDPC codes [14], [15], [16]. Moreover, some capacity 39

approaching GLDPC codes were constructed using irregular 40

random GLDPC codes [7], [17]. 41

LDPC codes can be constructed from a small bipar- 42

tite graph called protograph. Many researches on the 43
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protograph-based LDPC codes were previously carried out44

under various scenarios [18], [19], [20]. Moreover, the45

protograph-based GLDPC codes were thoroughly studied in46

[21], [22], [23], and [24], but they mainly focused on the low-47

rate codes [21], [22], [23], [24]. Protograph-based GLDPC48

codes can be constructed from a small protograph [25] using49

the so called doping technique [26]. Doping a GC node,50

defined by a (µ, κ) linear code of length µ and dimension51

κ , means the replacement of an SPC node by the GC node52

with µ − κ constraints, which causes a rate loss. In the53

perspective of VNs, µ VNs are selected to be doped by a54

GC node, assuming that there are no parallel edges in the55

protograph. Thus, the smallest unit of doping, also called56

the doping granularity, is µ for the conventional protograph57

doping technique. In other words, the conventional doping58

technique has two limitations: 1) the degree of the SPC node59

to be replaced should be µ, which implies that the doping60

operation is dependent on the underlying protograph and the61

parameter µ of component codes and 2) one cannot choose a62

finer doping granularity less than µ and thus the code design63

cannot be sophisticated. Due to the limited design flexibility,64

there has been little works on the well-designed optimization65

for protograph-based GLDPC codes especially for medium66

to high code rates.67

In this paper, we propose a new doping technique, called68

partial doping on the VNs, to minimize the doping granularity69

and enlarge the code design freedom. In detail, the partial70

doping involves the following three steps: 1) A VN to be71

doped is selected in the protograph. 2) The Tanner graph is72

obtained by the lifting operation [25] from the protograph73

with a lifting factor N . 3) Additional GC nodes are connected74

to the lifted N VNs in the Tanner graph after lifting the75

protograph. The main difference from the conventional pro-76

tograph doping technique is that the partial doping operation77

is conducted on the Tanner graph instead of the protograph78

domain. Thus, it is possible to partially dope on a single VN79

in the protograph and the doping granularity becomes one,80

which is also independent of µ. In other words, the partial81

doping enables fine tuning of the code structure regardless of82

the underlying protograph and the parameter of component83

codes. Specifically, the selection of VNs to be protected by84

GC nodes and the rate loss can be adjusted in a more flexible85

manner.86

We denote the proposed protograph-based GLDPC codes87

constructed using the partial doping as partially doped88

GLDPC (PD-GLDPC) codes. The structural characteristics89

of the PD-GLDPC codes have several advantages. First, the90

PD-GLDPC codes are structurally adequate to adopt the91

puncturing technique that compensates the rate-loss. Since92

the partially doped VNs are highly and locally protected93

by GC nodes, the performance loss occurred by punctur-94

ing the doped VNs is relatively small while attaining the95

code rate gain. Second, the asymptotic performance of the96

PD-GLDPC codes can be analyzed by the low-complexity97

extrinsic information transfer (EXIT) analysis. For the con-98

ventional protograph doped GLDPC codes [26], the exact99

EXIT analysis is provided in [27], where the topology for 100

the a priori and extrinsic mutual information of GC nodes is 101

considered. Since the cases of the topology grow exponen- 102

tially with the component code length µ, the computational 103

complexity is too high to design a fast optimization algorithm. 104

On the contrary, GC nodes in the PD-GLDPC codes can be 105

analyzed by an averagemanner EXIT analysis in [28] because 106

GC nodes in the PD-GLDPC codes are incident to VNs 107

lifted from a single VN in the protograph. The a priori and 108

extrinsic mutual information of GC nodes can be evaluated by 109

a single value, which facilitates a fast optimization algorithm. 110

Using this advantage, we propose an efficient optimization 111

algorithm for the PD-GLDPC codes. 112

In addition, we propose the condition guaranteeing the 113

linear minimum distance growth of the PD-GLDPC codes. 114

We analytically prove that the PD-GLDPC code ensembles 115

satisfying the condition have the typical minimum distance 116

and use this condition for the construction of the PD-GLDPC 117

codes in this paper. Also, we propose novel methods to 118

optimize the asymptotic performance, i.e., the threshold of 119

the code ensemble, by using the protograph EXIT (PEXIT) 120

analysis [29] and differential evolution [30] targetingmedium 121

code rate 1/2 and high code rate 2/3. Thus, the optimized 122

PD-GLDPC code ensembles are constructed while satisfying 123

the typical minimum distance condition to have a minimum 124

distance that grows linearly with the block length of the code. 125

Comparison of the PD-GLDPC codes is made with the exist- 126

ing state-of-the-art protograph LDPC codes and conventional 127

GLDPC codes [17]. Threshold analysis and shows that the 128

optimized protograph-based PD-GLDPC codes outperform 129

the well known GLDPC and protograph-based LDPC codes 130

and have a competitive asymptotic performance compared to 131

the optimized protograph-based LDPC codes. 132

To be specific, the optimized protograph PD-GLDPC 133

codes from a random ensemble with a low doping ratio 134

0.02439 achieves the coding gain 0.0079 over the binary 135

erasure channel (BEC) compared to the optimized GLDPC 136

codes [17] with a relatively higher doping ratio 0.4. In addi- 137

tion, the optimized protograph PD-GLDPC code by the 138

differential evolution outperforms AR4JA codes [31] with 139

coding gains 0.0477 and 0.032 for code rates 1/2 and 2/3, 140

respectively. Also, the average VN degree of the optimized 141

PD-GLDPC codes, are only 87.2% and 80.5% compared to 142

the state-of-the-art protograph LDPC codes for code rates 143

1/2 and 2/3, respectively. Similarly, the frame error rate 144

(FER) results show tangible gain in the waterfall performance 145

compared to the existing protograph-based LDPC codes 146

in [31] without the error floor phenomenon up to FER 10−4. 147

We list the contributions of this paper as follows; 1) We 148

propose a novel doping technique, where the constraints of 149

GC nodes are applied to specific VNs lifted from single 150

protograph node, i.e., partial doping on the VNs after lifting. 151

2) We propose two design criteria for the optimization of the 152

threshold of the PD-GLDPC codes: the EXIT analysis and the 153

condition for the existence of the typical minimum distance. 154

3) We propose the optimization method of the asymptotic 155
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performances for the PD-GLDPC codes using differential156

evolution. 4) We show the finite length performance gain157

of the optimized PD-GLDPC codes over some well known158

LDPC and GLDPC codes.159

The rest of the paper is organized as follows.160

In Section II, we introduce some preliminaries on the BEC161

and protograph-based GLDPC codes. Section III illustrates162

the proposed PD-GLDPC code structure and derives its163

PEXIT analysis and the condition for the typical mini-164

mum distance. In addition, the comparison of the proposed165

PD-GLDPC codes and protograph doped GLDPC codes is166

given. The optimization algorithms of PD-GLDPC codes are167

given in Section IV. Section V shows the error correcting per-168

formance of the proposed codes over the BEC compared with169

other well known protograph-based LDPC codes. Section VI170

concludes the paper with some discussion of the results.171

II. BACKGROUNDS172

In this section, we introduce some notations and concepts of173

a binary erasure channel, protograph LDPC codes, and the174

constructionmethod of protograph dopedGLDPC codes. The175

EXIT analysis and the decoding process of protograph doped176

GLDPC codes are also briefly introduced. The notations177

mainly used throughout the paper are summarized in Table 1.178

A. PROTOGRAPH LDPC CODE AND BEC179

Let x = {x1, · · ·, xk}, xi ∈ {0, 1} be a k-bit binary message180

vector, which is encoded via an (n, k) linear code, forming an181

n-bit codeword c = {c1, · · ·, cn}, ci ∈ {0, 1}. The codeword182

passes through a memoryless BEC, where each bit is either183

erased with a probability ε or correctly received.184

Protograph LDPC codes [25] are defined by a relatively185

small bipartite graph G = (V ,C,E) representing a proto-186

graph, where V = {v1, · · ·, vnv} is a set of VNs and C =187

{c1, · · ·, cnc} is a set of check nodes (CNs). Let E be a set of188

edges e, where e = (v, c) connects a VN v ∈ V and a CN189

c ∈ C . The bipartite graph can also be expressed in terms of190

an nc × nv-sized base matrix Bnc×nv = {bi,j}, i ∈ [nc], j ∈191

[nv], where bi,j ∈ {0, 1, 2, · · ·} and [A] is a set of positive192

integers less than or equal to a positive integer A. The rows193

represent the CNs and the columns represent the VNs in the194

protograph. Each entry bi,j of the base matrix represents the195

number of edges connected between a VN and a CN. If there196

are no edges connected between vj and ci, the entry bi,j is zero.197

The variable (check) node degree deg(vj) (deg(ci)) is defined198

as the number of edges incident to itself. A protograph LDPC199

code is constructed by copy-and-permute operation ofG. The200

bipartite graph G is copied by the lifting factor N and copies201

of each edge e = (v, c) ∈ E are permuted among copies202

of v and c. In general, the large value of N guarantees the203

sparseness of the code.204

B. CONSTRUCTION OF PROTOGRAPH DOPED GLDPC205

CODES [26]206

Conventionally, a protograph doped GLDPC code ensemble207

is constructed by replacing (doping) a CN of a protograph208

Algorithm 1 The PEXIT Analysis of a Protograph Doped
GLDPC Code [32]
1: Step 1) Initialization

Initialize Ich(j) = 1− ε for j ∈ [nv].
2: Step 2) Message update from VN to CN

Update IEV (i, j) = 1 − ε
∏

t∈N (vj)
(
1 − IAV (t, j)

)δ(t,j) for
all j ∈ [nv], where δ(t, j) = bt,j for t 6= i and δ(t, j) =
bt,j− 1 for t = i. Further, IEV (i, j) = 0 if bi,j = 0. If ci is
an SPC node, IAV (i, j) = IEC (i, j) and if ci is a GC node,
IAV (i, j) = IEGC (i, j).

3: Step 3) Message update from CN to VN
For all i, if ci is an SPC node, go to Step 3-1) and if ci is
a GC node, go to Step 3-2).

Step 3-1) IEC (i, j) =
∏

t∈N (ci) IAC (i, t)
δ(i,t), where

δ(i, t) = bi,t for t 6= i and
δ(i, t) = bi,t − 1 for t = j. Further, IAC (i, t) =

IEV (i, t).
Step 3-2) For all j ∈ N (ci), compute

IEGC (i, j) =
1
ni

ni∑
h=1

(
1− IAGC (i)

)h−1(IAGC (i))ni−h
×[hẽh − (ni − h+ 1)ẽh−1], (1)

where IAGC (i) = 1
ni

∑
j∈N (ci) bi,j × IEV (i, j).

4: Step 4) APP mutual information computation
For all j ∈ [nv], IAPP(j) = 1−ε

∏
t∈N (vj)

(
1−IAV (t, j)

)bt,j .
If ct is an SPC node, IAV (t, j) = IEC (t, j) and if ct is a GC
node, IAV (t, j) = IEGC (t, j).

5: Step 5) Convergence check of VNs
Repeat Step 2)–4) until IAPP(j) = 1, for all j ∈ [nv].

with a GC node that has a parity-check constraint from an 209

(ni, ki, d imin) linear code (component code), where ni (ki) is 210

the code length (dimension) and d imin is the minimum dis- 211

tance of the component code for a CN ci. The condition for 212

replacement is that the CN degree should be exactly equal to 213

the length of the component code, i.e., deg(ci) = ni. Note 214

that the original CN has the parity-check constraint of an 215

(ni, ki) = (deg(ci), deg(ci) − 1) SPC code. The code rate R 216

of protograph doped GLDPC codes is R = 1− mproto
nv

, where 217

mproto =
∑nc

i=1(ni − ki). While the minimum distance of 218

an SPC node is 2, the VNs connected to the GC node are 219

protected by parity-check constraints of the component code 220

with the minimum distance larger than two. Fig. 1 shows 221

the protograph doped GLDPC code of the code rate 3/7 222

by replacing an SPC node with the (7, 4) Hamming code 223

constraints. 224

C. PEXIT ANALYSIS AND DECODING PROCESS OF 225

PROTOGRAPH DOPED GLDPC CODES 226

The asymptotic performance of the protograph doped 227

GLDPC codes is evaluated by the PEXIT analysis. The 228

PEXIT analysis tracks down themutual information of extrin- 229

sic messages and a priori error probabilities of the VNs, 230
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TABLE 1. Main mathematical notations used in the paper.

FIGURE 1. An example of protograph doped GLDPC code construction following [26] by replacing an
SPC node with a GC node using the (7,4) Hamming code as the component code.

CNs, and GC nodes of protograph GLDPC codes. For an231

exact PEXIT analysis, tracking down each mutual informa-232

tion corresponding to edges of the component code is needed,233

i.e., multi-dimensional EXIT computation [27]. However,234

in terms of code optimization, where lots of EXIT computa-235

tion is required, it is beneficial to reduce the complexity of the236

EXIT computation in GC nodes by averaging the a priori and237

extrinsic mutual information of the GC nodes. The EXIT and238

PEXIT analyses of the protograph doped GLDPC codes over239

the BEC in terms of average mutual information are given 240

in [28], [29], and [32]. 241

The PEXIT process is given in Alg. 1. Let Ich(j) be the 242

channel information from the erasure channel for the proto- 243

graph VN vj. In addition, IEV (i, j) (IEC (i, j)) is the extrinsic 244

information sent from vj (ci) to ci (vj) and IAV (i, j) (IAC (i, j)) 245

is the a priori mutual information of vj (ci) sent from ci (vj), 246

where ci is an SPC node. For GC nodes, we use the notations 247

IAGC (i) and IEGC (i, j) for a priori and extrinsic information. 248

VOLUME 10, 2022 95465



J. Kim et al.: Construction of Protograph-Based Partially Doped Generalized LDPC Codes

Let N (ci) (N (vj)) be a set of variable (check) nodes incident249

to ci (vj), i.e., neighborhood of ci (vj). Finally, IAPP(j) is a250

posteriori probability of vj. To explain (1) in Alg. 1, if ci is a251

GC node with the (ni, ki) Hamming code, the PEXIT of the252

GC node is computed from a closed form using the property253

of the simplex code, which is the dual code of a Hamming254

code. Also, IAGC (i) = 1
ni

∑
j∈N (ci) bi,j×IEV (i, j) is the average255

a priori mutual information for a GC node to compute the256

PEXIT message. In (1), we have257

ẽh =
h∑
t=1

t
t−1∑
u=0

(−1)u2(
u
t)
[
ki
t

][
t
u

](
2t−u

h

)
.258

For two positive integers a and b, we also have
(a
b

)
=259 ∏b−1

i=0
a−i
b−i and

[a
b

]
=

∏b−1
i=0

2a−2i

2b−2i , where
(a
0

)
= 1 and260 [a

0

]
= 1. The PEXIT process searches for the minimum ε261

to successfully decode, i.e., IAPP(j) = 1, for all j ∈ [nv], in an262

asymptotic sense.263

Now, we briefly explain the decoding process of GLDPC264

codes over the BEC [13]. The VNs process the conventional265

message-passing decoding over the BEC by sending correct266

extrinsic messages to the CNs if any of the incoming bits267

from their neighborhood is not erased. The SPC nodes send268

correct extrinsic messages to the VNs if all of their incoming269

messages are correctly received, and send erasure messages270

otherwise. In this paper, the decoding of GC nodes is pro-271

cessed by the maximum likelihood (ML) decoder. For each272

iteration, a GC node ci with the (ni, ki) component code273

receives the set of erasure locations {ei} from N (ci). Let274

HGC be the parity-check matrix (PCM) of the component275

code and He be the submatrix of HGC indexed with {ei}.276

The decoder computes the Gaussian-elimination operation277

of He, making it into a reduced row echelon form H reduced
e .278

If rank(H reduced
e )= |{ei}|, the GC node solves all the input279

erasures and otherwise, the decoder corrects the erasures280

corresponding to the rows with weight 1 from H reduced
e . The281

decoding complexity can be further reduced if the GC node282

exploits bounded distance decoding; however, the degrada-283

tion of asymptotic performance is not negligible, as shown284

in [7].285

III. THE PROPOSED PD-GLDPC CODES286

In this section, a new construction method of protograph-287

based GLDPC codes is proposed. While the protograph288

doped GLDPC codes are constructed by replacing some289

protograph SPC nodes in the original protograph by GC290

nodes using the component code, the proposed PD-GLDPC291

codes are constructed by adding GC nodes for the subset292

of VNs using component codes after the lifting process293

of the original protograph, where each GC node is con-294

nected to the VNs copied from single protograph VN.295

A block diagram of the construction process of both codes296

together with the conventional random GLDPC code is given297

in Fig. 2.298

FIGURE 2. A block diagram of the construction process of protograph
doped GLDPC codes [26], randomly doped GLDPC codes, and the
proposed PD-GLDPC codes.

A. CONSTRUCTION METHOD OF PD-GLDPC CODES 299

First, we define the partial doping for VNs using additional 300

GC nodes to a lifted protograph, that is, the addition of rows 301

for the PCM by the component code, where each GC node 302

is incident to VNs copied from single protograph VN. Also, 303

we define a partially doped protograph VN as the aforemen- 304

tioned single protograph VN for the GC node. While the 305

term doping in protograph doped GLDPC codes is used in 306

the perspective of CNs, we use the term partial doping in the 307

perspective ofVNs.While it is clear that the connection ofGC 308

nodes can be applied to VNs copied frommultiple protograph 309

VNs, we have limited the connection to a single protograph 310

VN to compute an accurate EXIT of the PD-GLDPC codes. 311

Let Bnc×nv be an nc × nv base matrix, where some pro- 312

tograph VNs are partially doped with a (µ, κ) component 313

code after the lifting process. Let X be a set that contains 314

indices of protograph VNs that are partially doped, where 315

each partially doped protograph VN is randomly doped by 316

N/µ component codes after the lifting process. Then, the 317

proposed PD-GLDPC codes are defined with the parame- 318

ters (Bnc×nv , µ, κ,X ). Although any component code can be 319

used, we restrict the component code used in the paper as the 320

(µ, κ) Hamming code and assume that µ divides the lifting 321

factor N such that N = µβ, where β is a positive integer. 322

The VNs copied from |X |VNs in the protograph are partially 323

doped by GC nodes. That is, in the proposed PD-GLDPC 324

code construction, the N/µ GC nodes are randomly con- 325

nected to N VNs lifted from each partially doped protograph 326

VN. Thus, the proposed construction method can choose 327

any protograph VNs to protect by partial doping. The code 328

rate of the PD-GLDPC code ensemble with (Bnc×nv , µ, κ,X ) 329

is 1− nc+|X |·(µ−κ)/µ
nv

. An example of the proposed construc- 330

tion is given in Fig. 3, which illustrates the doping process by 331

a (7, 4) component Hamming code over a protograph defined 332

by a 2× 3 base matrix. 333

The basic concept of the proposed construction is to focus 334

on the protection of VNs lifted from single protograph VN. 335

Although only a portion of VNs from a single protograph VN 336

95466 VOLUME 10, 2022



J. Kim et al.: Construction of Protograph-Based Partially Doped Generalized LDPC Codes

FIGURE 3. An example of a proposed (B2×3,7,4,X = {1}) PD-GLDPC code construction, where
B2×3 = [1 1 1;1 0 1] and π is the 14× 14 sized permutation matrix.

can be partially doped, for the exactness of EXIT computation337

and the typical minimum distance analysis, we have limited338

the doping process over the entire VNs lifted from a single339

protograph VN. Since N is the multiple of the component340

code length, all the VNs lifted from single protograph VN341

can be protected by using β GC nodes. A simple exam-342

ple for the PCM for β GC nodes, connected to the VNs343

lifted from single protograph VN, HH is shown in Fig. 4(a),344

where HHamm is the PCM of the Hamming code. Although345

the PCM of the Hamming code can be applied randomly,346

a trivial representation of applying generalized constraints347

sequentially is given. The constructed PD-GLDPC code has348

a PCM HPD-GLDPC as in Fig. 4(b), where the upper part is349

the PCM of the added βx GC nodes and the lower partHproto350

refers to the PCM of the LDPC code lifted from the original351

protograph. Intuitively, HH represents the PCM for each352

partially doped VN in the protograph and thus, the x = |X |353

bundles of matrices are diagonally appended to the PCM of354

the PD-GLDPC code. Since the doping proceeds after the355

lifting process, PD-GLDPC codes cannot be expressed in356

terms of a protograph. We define the doping ratio ν as the357

portion of GC nodes over the entire constraint nodes, i.e.,358

ν =
xβ

xβ+ncN
. Also, we define the doping granularity as the359

minimum number of protograph VNs needed for doping. For360

the protograph doped GLDPC codes with (µ, κ) component361

code, the doping granularity is µ, whereas the proposed362

PD-GLDPC code has doping granularity 1. The finer doping363

granularity of the PD-GLDPC codes allows the construction364

of protograph-based GLDPC codes with the higher rate.365

B. PEXIT ANALYSIS OF PD-GLDPC CODES366

The PEXIT of the proposed PD-GLDPC codes is similar to367

that of the protograph doped GLDPC codes in Alg. 1 except368

for the EXIT of a GC node. Since the incoming mutual369

information of each GC node is obtained from only a single370

protograph VN in the proposed code, the average mutual371

information sent to each GC node is the same as the extrinsic372

message of the protograph VN connected to the GC node.373

Let bj, j ∈ X be the virtual node representing the set of β 374

GC nodes connected to the protograph VN vj. An example 375

of the representation of a virtual node over a protograph is 376

given in Fig. 5. Note that although bj is not a protograph node 377

itself, it is possible to compute the PEXIT of a PD-GLDPC 378

code. Also, let I
(bj)
EV (j) be the extrinsic information from vj to 379

bj expressed as 380

I
(bj)
EV (j) = 1− ε

∏
t∈N (vj)

(1− IAV (t, j))bt,j , j ∈ X . 381

Since bj is solely connected to vj, the index term for the 382

extrinsic information from vj to bj is expressed by the notation 383

of j only. In order to compute the EXIT of bj, let I
(bj)
AGC (j) and 384

I
(bj)
EGC (j) be the a priori and extrinsic mutual informations of 385

bj, respectively. Note that in an average sense, the EXIT of 386

each GC node is computed from a single a priori mutual 387

information to process the single value of the extrinsic mutual 388

information for the neighboring VNs. Since bj receives 389

the extrinsic mutual information of vj only, it is clear that 390

I
(bj)
AGC (j) = I

(bj)
EV (j), j ∈ X . We also compute the extrinsic 391

mutual information from bj to vj denoted as I
(bj)
EGC (j) using (1), 392

given the a priori mutual information I
(bj)
AGC (j), which is given 393

as 394

I
(bj)
EGC (j) =

1
µ

µ∑
h=1

(
1− I

(bj)
AGC (j)

)h−1(I (bj)AGC (j)
)µ−h

395

×[hẽh − (µ− h+ 1)ẽh−1]. (2) 396

Note that for the proposed PD-GLDPC codes, the a pri- 397

ori (extrinsic) EXIT of the GC node is computed from the 398

extrinsic (a priori) EXIT of single protograph VN. While the 399

EXIT of VNs and SPC nodes for the proposed PD-GLDPC 400

codes is the same as that of the protograph doped GLDPC 401

codes described in Alg. 1, the EXIT of the GC nodes in the 402

proposed codes is changed to (2) whereas the protograph 403

doped GLDPC codes use (1) from Alg. 1. 404
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FIGURE 4. An exemplary PCM of a PD-GLDPC code.

FIGURE 5. An example of the Tanner graph representation of the
proposed PD-GLDPC codes with a base matrix B2×3 = [1 1 1;1 0 1],
where X = {1}.

C. CONDITION FOR THE EXISTENCE OF THE TYPICAL405

MINIMUM DISTANCE OF THE PD-GLDPC406

CODE ENSEMBLE407

The existence of a typical minimum distance in the given408

LDPC code ensemble defined in [33] guarantees that the409

minimum distance of its corresponding code grows linearly410

with the block length in an asymptotic sense [34]. To express411

it formally, if there exists a small number δ∗ > 0 such that the412

weight enumerators for a given code ensemble with weights413

less than or equal to δ∗n vanish as n→∞, then δ∗ is the typ-414

ical minimum distance of the code ensemble. It was proved415

in [35] that a protograph LDPC code ensemble has a typical416

minimum distance if there is no cycle consisting of only417

degree-2 VNs in the protograph. Furthermore, in [36], the418

condition for the existence of the typical minimum distance419

of the protograph-based GLDPC code ensembles was 420

given. 421

The proposed PD-GLDPC codes also have a similar 422

approach to that of the protograph doped GLDPC codes 423

in [36]. However, since a GC node of the proposed 424

PD-GLDPC codes is not well defined by a protograph node, 425

the derivation of the weight enumerator of the proposed 426

codeword is quite different from that of the protograph doped 427

GLDPC code. Thus, the condition for the existence of the 428

typical minimum distance of the proposed PD-GLDPC code 429

ensemble is slightly different from that of the protograph 430

doped GLDPC code ensemble. In fact, we can regard the 431

degree-2 VNs to be partially doped as the VNs with higher 432

degrees. The detailed explanation for the existence of the 433

typical minimum distance of the PD-GLDPC code ensemble 434

is given in Appendix A. Then, we have the following theorem 435

for the proposed PD-GLPDC codes. 436

Theorem 1: For the PD-GLDPC code ensemble of 437

(Bnc×nv , µ, κ,X ) without degree-1 VNs in Bnc×nv , the prop- 438

erty of the typical minimum distance holds if the undoped 439

degree-2 VNs in the protograph have no cycles among 440

themselves. 441

Proof: The proof is given in the Appendix. 442

The existence of the typical minimum distance of the 443

proposed PD-GLDPC code ensemble guarantees that the 444

minimum distance of the proposed code grows linearly with 445

the code length, and thus the proposed code is expected to 446

have the low error floor for the large code length. In the 447

next section, we use Theorem 1 as the constraint to optimize 448
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the protograph in order to guarantee the existence of the449

typical minimum distance of the proposed PD-GLDPC code450

ensemble.451

D. COMPARISON BETWEEN PROPOSED PD-GLDPC452

CODES AND PROTOGRAPH DOPED GLDPC CODES453

Themain difference between the proposed PD-GLDPC codes454

and the protograph doped GLDPC codes is the perspective of455

doping. While the protograph doped GLDPC codes replace456

an entire row in the protograph, i.e., a protograph CN by the457

PCMof the component code, the proposed PD-GLDPC codes458

append some rows incident to the VNs copied from single459

protograph VN. The focus of the protograph doped GLDPC460

codes is to choose a certain protograph CN to be replaced,461

whereas the PD-GLDPC codes focus on choosing which462

protograph VNs are further protected by partial doping. The463

constraint for the protograph doped GLDPC code is that464

the CNs to be replaced should have the degree equal to the465

component code length, while the constraint for the proposed466

PD-GLDPC codes is that the lifting size of a protograph467

should be the multiple of the component code length.468

Furthermore, compared to the proposed PD-GLDPC469

codes, the protograph dopedGLDPC codes have large doping470

granularity. By generalizing a single CN by a component471

code with parameters (µ, κ), theµ protograph VNs are doped472

assuming that the corresponding base entries are all ones473

for the protograph check node. Whereas, for every partial474

doping of β GC nodes in the proposed PD-GLDPC code,475

VNs copied from single protograph VN are partially doped.476

In other words, the doping granularity is 1, which is smaller477

than that of the protograph doped GLDPC codes. Since the478

doping granularity of protograph doped GLDPC codes is479

large, construction of the small protograph with capacity480

approaching performance is very difficult. In Section IV.B,481

we propose the construction method of PD-GLDPC codes482

with partial doping of |X | protograph VNs.483

IV. OPTIMIZATION OF PD-GLDPC CODES484

In this section, we introduce two optimization methods for485

the PD-GLDPC codes. The first subsection illustrates the486

construction method of protographs from the degree distribu-487

tion of a random LDPC code ensemble in order to conduct488

comparison between LDPC codes and PD-GLDPC codes489

under the same degree distribution. The second subsection490

shows the optimization method of the protograph using the491

differential evolution algorithm in order to conduct compari-492

son between LDPC codes and PD-GLDPC codes without any493

constraints.494

A. DIFFERENTIAL EVOLUTION-BASED CODE495

CONSTRUCTION FROM THE DEGREE DISTRIBUTION496

OF RANDOM LDPC CODE ENSEMBLES497

In general, as the portion of degree-2 VNs in the LDPC codes498

increases, the asymptotic performance is enhanced [37], but499

their minimum distance decreases and then the error floor500

becomes worse. For the construction of PD-GLDPC codes501

in this subsection, we exploit the balance of the portion of 502

degree-2 VNs, where we focus on the partial doping only for 503

degree-2 VNs. The brief construction method is as follows. 504

First, we construct the original base matrix Bnc×nv with the 505

large portion of degree-2 VNs. Then, we partially dope some 506

of the protograph VNs of degree-2 to increase the minimum 507

distance and improve their performance. Thus, irregular pro- 508

tographs with several degree-2 VNs are used for the construc- 509

tion of the proposed PD-GLDPC codes. In terms of irregular 510

LDPC code ensembles, a large portion of degree-2 VNs 511

enables the LDPC code to achieve the capacity approaching 512

performance [38]. On the other hand, by reasonably selecting 513

the number of partially doped VNs of degree-2, the property 514

of the linear minimum distance growth with the length of 515

the LDPC code can be guaranteed. Thus, when we design 516

the proposed PD-GLDPC codes, balancing the partial doping 517

over degree-2 VNs enables both the existence of a typical 518

minimum distance and a good asymptotic performance. Opti- 519

mization of irregular protograph LDPC code ensembles is 520

made by initially obtaining the degree distribution of the ran- 521

dom LDPC code ensemble using differential evolution [30] 522

and constructing the protograph via the progressive edge 523

growth (PEG) [39] algorithm for the construction of the pro- 524

posed PD-GLPDC codes from irregular protographs. In this 525

subsection, in order to make the CN degrees as even as 526

possible, we try to construct the protograph from the degree 527

distribution of a random LDPC code ensemble. We define 528

Gc as the optimized protograph of the conventional LDPC 529

code and Gp as the initial irregular protograph that is used to 530

construct the PD-GLDPC code. That is, we can regard Gp as 531

the protograph corresponding to Hproto in Fig. 4. In order to 532

compare FER performances of the conventional LDPC code 533

and the proposed PD-GLDPC code under the same degree 534

distribution, Gc is constructed to have the same VN degree 535

distribution as the PD-GLDPC code constructed from Gp 536

after lifting by N . 537

Let λGc (x) and ρGc (x) be the VN and CN degree distri- 538

butions of an irregular LDPC code ensemble to construct Gc, 539

which is the optimized protograph for the conventional LDPC 540

codes. In this subsection, we assume the degree distributions 541

λGc (x) = λ2x + λ3x
2
+ λ4x3 + λ5x4 + λ6x5 + λlx l−1 and 542

ρGc (x) = ρr−1x
r−2
+ρrxr−1, where λi and ρi are the portions 543

of edges of VNs and CNs of degree-i. Using the optimized 544

degree distributions of λGc (x) and ρGc (x), a protograph Gc is 545

constructed by the PEG algorithm. For the description of the 546

protographs that construct the conventional LDPC codes and 547

the proposed PD-GLDPC codes, let Ddv
= (a1, · · ·, amax) be 548

a |dv|-sized vector defining the numbers of protograph VNs, 549

where ai is the number of protograph VNs of degree li and 550

dv = {l1, l2, · · ·, lmax} is a set of VN degrees that exist in the 551

protograph. 552

In order to make the same VN degree distributions of 553

the LDPC codes constructed from Gc and the PD-GLDPC 554

codes constructed from Gp after lifting by N , optimization of 555

λGc (x) and ρGc (x) should be constrained by ymax , which is 556

the maximum number of bulks of protograph VNs allowed 557
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Algorithm 2 Construction of Gc and the PD-GLDPC Code
Input: µ, κ , nv, nc, R, l, r , ymax
Output: yopt , Gc, Gp
1: Step 1) Optimize degree distribution of Gc

Optimize λGc (x) = λ2x + λ3x2 + λ4x3 + λ5x4 +
λ6x5 + λlx l−1 and ρGc (x) = ρr−1xr−2 + ρrxr−1 using
differential evolution under constraints (a)∼(c):

(a) rate constraint R = 1−
∫ 1
0 ρGc (x)dx∫ 1
0 λGc (x)dx

, 0 ≤ λi ≤ 1, 0 ≤

ρi ≤ 1
(b) typical minimum distance constraint λ2/2

6
× nv ≤

nc − 1− ymax(µ− κ)↔ λ2 ≤
26{nc−1−ymax (µ−κ)}

nv
(c) Gp existence constraint λ3 ≥

126ymax
nv

, λ4 ≥
246ymax

nv
, λ5 ≥

206ymax
nv

, λ6 ≥
66ymax
nv

2: Step 2) Construction of Gc
From the optimized degree distribution and the
random PEG algorithm, construct Gc defined as
D(2,3,4,5,6,l)

= (a, b, c, d, e, f ) guaranteeing a typical
minimum distance.

3: Step 3) Optimization of Gp
For each y = 1, 2, · · ·, ymax , construct Gp defined as
D(2,3,4,5,6,l)

= (a+ 15y, b− 4y, c− 6y, d − 4y, e− y, f )
and choose yopt ∈ {y} with the best threshold.

4: Step 4) Typical minimum distance check of the
PD-GLDPC code
For the chosen yopt and Gp, if there exists any cycle for
the submatrix induced by undopedVNs of degree-2, go to
Step 2). Otherwise, output yopt and Gp.

to be partially doped in Gp. Although doping granularity for558

the proposed PD-GLDPC code is 1, we consider doping for559

bulks of protographVNs in order to easily match the code rate560

and degree distribution because the purpose of this subsection561

is comparing FER performances between the conventional562

LDPC code and the proposed PD-GLDPC code under the563

same degree distribution. A PD-GLDPC code is constructed564

by partially doping µy protograph VNs in Gp. Construction565

of a PD-GLDPC code from Gp is optimized by ranging the566

doping bulk y, 1 ≤ y ≤ ymax . That is, we search for the opti-567

mal value y which maximizes the coding gain between the568

PD-GLDPC codes constructed from Gp and the conventional569

protograph LDPC codes constructed from Gc.570

Conditions for the degree distributions in order to construct571

Gc are derived as follows. The conditions need to guarantee572

two criteria: i) the VN degree distributions of the protograph573

LDPC code constructed from Gc and the PD-GLDPC code574

constructed from Gp after lifting by N are the same and575

ii) a typical minimum distance exists for both code ensem-576

bles. In this subsection, we assume that partial doping is577

conducted for the first µy degree-2 protograph VNs without578

loss of generality due to randomness of the PEG algorithm.579

For the y bulks of partially doped protograph VNs using580

the PCM of the (15, 11) Hamming code, the numbers of581

protograph VNs in Gp should be 582

D(2,3,4,5,6,l)
= (a+ 15y, b− 4y, c− 6y, d − 4y, e− y, f ). 583

Given thatGc is represented asD(2,3,4,5,6,l)
= (a, b, c, d, e, f ), 584

for the existence constraint, each element of D(2,3,4,5,6,l)
585

should be non-negative. The parameters a∼f are approxi- 586

mated by the PEG construction as 587

a ≈ bnv
λ2/2
6
c, b ≈ bnv

λ3/3
6
c, c ≈ bnv

λ4/4
6
c, 588

d ≈ bnv
λ5/5
6
c, e ≈ bnv

λ6/6
6
c, and f ≈ bnv

λl/l
6
c, 589

where6 =
∫ 1
0 λGc (x)dx. For the realization of the protograph 590

from the degree distribution using the PEG algorithm, if the 591

summation a+ b+ c+ d + e+ f is lower than nv, the values 592

of a∼f are added by 1 in order starting from the lowest VN 593

degree until the summation is equal to nv. 594

If Gc is determined for a given ymax as D(2,3,4,5,6,l)
= 595

(a, b, c, d, e, f ), where a+b+c+d+e+ f = nv,Gp defined 596

by D(2,3,4,5,6,l)
= (a+ 15y, b− 4y, c− 6y, d − 4y, e− y, f ) 597

can be constructed for y = 1, · · ·, ymax . By allowing the PEG 598

algorithm of the VN degree distribution over a base matrix 599

with size {nc − (µ − κ)y} × nv, both the code rate and the 600

VNdegree distributions for the LDPC codes constructed from 601

Gc and the proposed PD-GLDPC codes constructed from Gp 602

after lifting by N are matched. We search for the value of y, 603

which has the best PEXIT threshold while having a typical 604

minimum distance. The optimized doping value is denoted 605

as yopt . The construction of Gc and the PD-GLDPC code is 606

described in Alg. 2. 607

The protograph of the conventional protograph LDPC 608

code, Gc is made for ymax = 5, 10, 15 for the half-rate 609

protograph LDPC code ensemble. The numerical results are 610

summarized in Table 2, where the coding gain given for the 611

proposed PD-GLDPC code is compared to the conventional 612

protograph LDPC code with the equal degree distribution. 613

B. OPTIMIZATION OF PD-GLDPC CODES USING 614

PROTOGRAPH DIFFERENTIAL EVOLUTION 615

In this subsection, we propose the optimization method 616

using the differential evolution algorithm. Similar to the dif- 617

ferential evolution algorithm in [37], we use the differential 618

evolution algorithm to find the protograph with the optimized 619

BEC threshold. The parameters for the differential evolution 620

are given as follows. The number of generations of the algo- 621

rithm g is set to 6000. Each entry of the base matrix can 622

have the integer value varying from 0 to a positive integer t . 623

The number of base matrices examined for each generation 624

instance is defined asNp. For a given base matrix size nc×nv, 625

we fix Np = 10·ncnv. The mutation parameter F is fixed 626

to 0.5 and α is a uniform random variable with the domain 627

[0, 1]. Lastly, the crossover probability pc is fixed to 0.88 in 628

this paper. 629

We define the optimized PD-LDPC code ensemble as 630

C1 and the optimization algorithm is given in Alg. 3. It is 631

clear that while the optimization process is the same as that of 632
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TABLE 2. Simulation results for optimized PD-GLDPC codes from irregular protographs using Alg. 2, where l = 20,nv = 400,R = 1/2.

Algorithm 3 Differential Evolution Algorithm to Design the
Base Matrix of the PD-GLDPC Codes
Input: µ, κ , nc, nv, X , g, t , Np, pc, F , α
Output: Bnc×nv
1: Initialization: Set the initial base matrices (B1, . . .,BNp )

each with size nc × nv randomly, where each entry is
chosen from {0, . . ., t}.

2: for m = 1 : g do
3: Mutation: For each k ∈ {1, . . .,Np}, the muta-

tion matrices are created through the interpolation as
follow:

[Mk ]i,j= [Br1 ]i,j + (F + α(1− F))([Br2 ]i,j − [Br3 ]i,j),

where [A]i,j is the (i, j) element of the matrix A and
indices ri ∈ [Np], i = 1, 2, 3 are distinct and randomly
selected. Each entry ofMk is replaced with the nearest
integer in {0, . . ., t}.

4: Crossover: For each k ∈ {1, . . .,Np}, create the trial
matricesM′k such that [M′k ]i,j = [Mk ]i,j with a prob-
ability pc and [M′k ]i,j = [Bk ]i,j with probability 1−pc.
IfM′k contains any cycles only consisting of undoped
degree-2 protograph VNs,M′k is regenerated.

5: Selection: Each base matrix in the candidates for (m+
1)th generation is chosen between Bk and M′k . If the
threshold of Bk is larger thanM′k , no update is made.
Otherwise, update Bk to M′k .

6: end for
7: From Bk , k ∈ [Np], choose the matrix with the best

threshold value and output Bnc×nv .

the protograph LDPC codes, the indices of the partial doping633

represented by X are included, which show the protograph634

VNs that are doped by GC nodes. Although the indices of635

X can be arbitrarily selected for code constructions using636

the differential evolution algorithms, we fix the number of637

indices as small as possible. For applications on partially638

doping over a given protograph, algorithms selecting the639

indices of X can be made to optimize the performance of640

the code ensemble. Also, the criterion for the existence of641

the typical minimum distance derived in Theorem 1 is used642

during the construction of new trial matrices for the proposed 643

PD-GLDPC codes. The component code used in the follow- 644

ing optimization is a (15, 11) Hamming code. 645

We optimize the protographs for the PD-GLDPC codes for 646

base matrices with size 8×16 and 4×12. We set X = {1, 2} 647

and t = 5 for B8×16, X = {1} and t = 3 for B4×12. Let 648

BC1
nc×nv be the resulting base matrix of the optimization for 649

both cases. The optimized basematrix result ofBC1
8×16 is given 650

in (3), as shown at the bottom of the next page, where the BEC 651

threshold is 0.5227 with the code rate 0.4667. Likewise, the 652

result of BC1
4×12 is given in (4), as shown at the bottom of the 653

next page, where the BEC threshold is 0.3397 with the code 654

rate 0.6444. The bold parts in the matrix represent VNs that 655

are partially doped. The results show that the VN with the 656

highest degree is partially doped. From these optimization 657

results, we can expect that partially doping VNs with high 658

degree and puncturing some portion of them for ratematching 659

can improve the performance of the proposed PD-GLDPC 660

codes. 661

The approach of partially doping and puncturing is a simi- 662

lar techique to the precoding and puncturing. Precoding and 663

puncturing high degree VNs in a protograph is a well known 664

technique in order to enhance the threshold of protograph 665

LDPC codes [40]. Precoding takes place by placing a CN 666

between a degree-1 VN and a high degree VN. In order to 667

compensate for the rate loss, the high degree VN is punc- 668

tured. From some intuition of the proposed optimization 669

results and well known concepts of precoding, we apply a 670

similar approach of the precoding technique to the proposed 671

PD-GLDPC codes. 672

We first define ρd as the portion of random puncturing for 673

VNs that are doped. For the BEC, we use the concept in [41] 674

to derive ρd . For a target code rate R∗, the random puncturing 675

ratio ρ is 1− R
R∗ . Thus, ρd is derived as ρd = ρ ·

nv
|X | and we 676

use it for the computation of the EXIT during the optimization 677

algorithm. The channel values for the partially doped VNs 678

become Ich(j) = 1 − {ρd + (1 − ρd )ε}, j ∈ X . Thus, it is 679

possible to construct the PD-GLDPC codes for the target code 680

rate by using the random puncturing method. 681

For the construction of PD-GLDPC codes with the target 682

code rate R∗ = 1/2, the base matrix B8×16 is optimized using 683
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Alg. 3 for X = {1, 2}, ρd = 0.5333, and t = 5. Likewise,684

for the target code rate R∗ = 2/3, the base matrix B4×12685

is optimized for X = {1}, ρd = 0.4058, and t = 3. Let686

BC2
nc×nv be the resulting base matrix for the optimized results687

of the protographs constructed by puncturing partially doped688

VNs. The optimized base matrices for both code rates are689

given as in (5) and (6), shown at the bottom of the page, where690

resulting base matrix for R∗ = 1/2 is given in (5) and the691

resulting base matrix for R∗ = 2/3 is given in (6). The result-692

ing thresholds of the optimized base matrices are 0.4857 and693

0.319 for target code rates R∗ = 1/2 and R∗ = 2/3, respec-694

tively. The optimization results show that the constructed695

PD-GLDPC codes have capacity approaching performances696

and the average VN density is reduced by huge amount com-697

pared to BC1
nc×nv . Since the base matrix BC2

nc×nv is driven from698

the random puncturing of partially doped VNs, we define699

the constructed PD-GLDPC code ensemble with parameters700

(BC2
nc×nv , µ, κ,X , ρd ).701

V. NUMERICAL RESULTS AND ANALYSIS702

In this section, we propose the optimized protograph design703

and show the FER of the proposed PD-GLDPC codes. The704

performance of the conventional protograph LDPC code is705

compared with that of the proposed PD-GLDPC code. Two706

methods of comparison are conducted. The first subsection707

compares them under the same degree distribution using708

Alg. 2. The second subsection compares the performance 709

of the PD-GLDPC codes constructed without the degree 710

distribution constraints using Alg. 3 to the state-of-the-art 711

protograph LDPC codes. 712

A. SIMULATION RESULT FOR OPTIMIZED PD-GLDPC 713

CODE FROM IRREGULAR RANDOM LDPC 714

CODE ENSEMBLES 715

As the performance comparison with the existing GLDPC 716

codes, we use the random GLDPC code ensemble with the 717

threshold 0.466 in [17] that is represented as λ(x) = 0.8x2 + 718

0.01x3 + 0.01x5 + 0.18x7 and a doping ratio ν = 0.4 719

by the Hamming code. Fig. 6 shows performance compar- 720

ison of four half-rate codes which are AR4JA code [31], 721

the irregular protograph LDPC code constructed from Gc, 722

the random ensemble-based GLDPC code in [17], and the 723

proposed PD-GLDPC code constructed from Gp in Table 2, 724

where ymax = 5. All four codes in Fig. 6 are (n, k) = 725

(30000, 15000) codes of the half-rate, where Gc is defined 726

as D(2,3,4,5,6,20)
= (165, 134, 47, 23, 5, 26) and has the same 727

VN degree distribution as the PD-GLDPC code after lifting 728

byN = 75. x = µy = 75 protograph VNs are partially doped 729

in the PD-GLDPC code. For the constructed PD-GLDPC 730

code, we have ν = xβ
xβ+ncN

=
375

375+15000 = 0.02439. 731

The constructed PD-GLDPC code for ymax = 5 has a coding 732

gain of 0.0079 and 0.0039 compared to the GLDPC code 733

BC1
8×16 =



5 2 0 0 0 0 0 0 1 1 1 0 0 0 0 0
4 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0
5 5 0 1 0 0 1 0 0 0 0 1 1 1 0 0
5 0 1 0 2 1 5 5 0 0 5 5 0 5 0 3
5 3 0 1 1 1 5 1 0 0 0 0 1 1 2 0
0 0 1 0 0 0 0 1 4 1 3 0 0 2 1 0
4 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0
0 5 0 0 0 0 1 0 3 0 0 1 1 1 1 0


(3)

BC1
4×12 =


3 0 0 3 1 3 0 1 2 2 3 0
3 0 1 3 1 0 0 0 1 2 0 1
3 1 0 3 0 0 0 0 0 1 0 2
3 3 3 3 0 0 3 1 0 1 0 0

 . (4)

BC2
8×16 =



2 0 5 2 1 3 0 0 1 0 0 1 0 0 0 1
2 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0
1 2 0 0 0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 2 1 0 2 1 2 0
2 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
1 1 1 0 1 0 0 0 1 0 0 0 2 1 1 0
0 0 0 1 2 0 4 0 1 0 1 0 0 0 3 1
3 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0


, (5)

BC2
4×12 =


2 0 0 1 0 0 3 2 1 0 2 2
2 0 1 1 0 0 1 1 0 0 2 2
3 1 0 0 0 1 1 0 0 0 0 1
2 1 2 0 3 2 0 0 1 3 0 3

 , (6)
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FIGURE 6. Comparison of the BEC threshold and FER for the LDPC codes
constructed from AR4JA and Gc , the conventional random GLDPC code
from the ensemble in [17], and the PD-GLDPC code from Gp for the code
rate 1/2.

in [17] and the irregular protograph LDPC code from Gc,734

respectively. Fig. 6 shows that the proposed PD-GLDPC code735

has a good performance both in the waterfall and the low736

error floor region due to the fact that the code is optimized by737

increasing the doping as much as possible, and at the same738

time, the typical minimum distance constraint is satisfied.739

In terms of the asymptotic analysis, increasing the portion740

of degree-2 VNs increases the possibility of the code to741

approach the channel capacity [38]. However, the existence of742

a typical minimum distance of the protograph is also impor-743

tant, which upper bounds the portion of degree-2 VNs in the744

LDPC code. Thus, balancing the portion of degree-2 VNs is745

needed in order to satisfy both a typical minimum distance746

condition and a good threshold. The proposed PD-GLDPC747

code guarantees the balance of the degree-2 VNs by carefully748

choosing the rate of the protograph code and the number of749

doping on degree-2 VNs.750

B. SIMULATION RESULTS FOR PD-GLDPC CODE FROM751

OPTIMIZED PROTOGRAPH752

The proposed PD-GLDPC codes for R∗ = 1/2 and753

R∗ = 2/3 are constructed from the ensembles (BC2
8×16, 15,754

11, {1, 2}, 0.5333) and (BC2
4×12, 15, 11, {1}, 0.4058), respec-755

tively. The protographs are shown in (5) and (6). The756

AR4JA [31] and block protograph codes in [31] and [37]757

of the same code rate are used for performance compari-758

son. We first compare the threshold and average VN degree759

between the proposed PD-GLDPC code ensembles and the760

aforementioned protograph LDPC code ensembles in Table 3.761

The average VN degree of the PD-GLDPC codes considers762

both the base matrix and the edges added from the partial763

doping. The results show that the asymptotic performance764

of the proposed PD-GLDPC code ensemble outperforms the765

AR4JA and block protograph introduced in [31]. The aver-766

age VN degree of the PD-GLDPC codes is low while hav-767

ing the asymptotic performance comparable to the capacity768

approaching protographs introduced in [37].769

FIGURE 7. FER comparison for the constructed codes from AR4JA [31],
protograph [31, Fig. 7], protograph [37], and PD-GLDPC code ensemble
(B

C2
nc×nv ,15,11,X , ρd ).

By using the PEG algorithm, the protographs are lifted to 770

construct (48000, 24000) PD-GLDPC code for R∗ = 1/2. 771

The protograph AR4JA and protographs in [31] and [37] are 772

lifted to the same code length. The FER results are shown 773

in Fig. 7(a). Likewise, the protograph of the PD-GLDPC, 774

AR4JA, and [37] are lifted to construct (45000, 30000) codes 775

for R∗ = 2/3. The protograph in [31, Fig. 7] is lifted to 776

blocklength near n = 45000. The FER results are shown 777

in Fig. 7(b). The doping ratio ν for the PD-GLDPC codes 778

is 0.016393 for both code rates R∗ = 1/2 and R∗ = 2/3. 779

Also, the FER results of the proposed PD-GLDPC codes 780

for both code rates R∗ = 1/2 and R∗ = 2/3 show tangi- 781

ble gain compared to the AR4JA code and protograph code 782

in [31]. Also, the performance is comparable to the capacity 783

approaching block LDPC code in [37]. The partial doping 784

and puncturing technique, which is similar to the precoding 785

technique, shows that the capacity approaching PD-GLDPC 786

codes can be constructed with the relatively low average VN 787

degree. 788
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TABLE 3. Comparison for thresholds and average VN degrees of protographs for the BEC.

VI. CONCLUSION789

Weproposed a new class of GLDPC codes called PD-GLDPC790

codes that has advantages of a finer doping granularity791

compared to the conventional protograph doped GLDPC792

codes. Also, we proposed two optimization algorithms for793

the PD-GLDPC codes: protographs constructed from ran-794

dom LDPC code ensembles and protographs for PD-GLDPC795

code ensembles constructed from genetic algorithms. Fur-796

thermore, we proposed the partially doping and puncturing797

technique. Using the proposed technique, the constructed798

PD-GLDPC codes have good FER performances compared799

to the popular protograph LDPC codes. Since it is possible to800

partially dope the protograph VNs with a granularity one, the801

rate loss is reduced from partial doping, and thus, GLDPC802

codes can have capacity approaching performance in the803

medium to high code rate regime. For future work, use of804

other component codes and protographs with degree-1 VNs805

can be studied. Also, constructions of PD-GLDPC codes by806

generalizing the partial doping process such as doping over807

multiple protograph VNs or doping only a portion of a proto-808

graph VN can be considered. Furthermore, new constructions809

of PD-GLDPC codes over additive white Gaussian noise810

channels can be made.811

ABBREVIATIONS812

AR4JA Accumulate-Repeat-4-Jagged-Accumulate
BEC Binary erasure channel
CN Check node
EXIT Extrinsic information transfer
FER Frame error rate
GC Generalized constraint
GLDPC Generalized low-density parity-check
LDPC Low-density parity-check
ML Maximum likelihood
PCM Parity-check matrix
PD-GLDPC Partially doped GLDPC
PEG Progressive edge growth
PEXIT Protograph EXIT
SPC Single parity-check
VN Variable node

813

APPENDIX A814

PROOF OF THEOREM 1815

A proof for the constraint of the existence of a typical mini-816

mum distance for the proposed PD-GLDPC code ensemble817

is given in this appendix. Similar to that in [36], a typical 818

minimum distance is derived by the weight enumerator anal- 819

ysis over the lifted protograph. In order to use the notations 820

in [36], we’ve distinguished the indexing notations during 821

the enumeration for the partially doped VNs using ′. Also, 822

the cj and vi notations are used for the CNs and the VNs, 823

respectively. Suppose that the proposed PD-GLDPC code is 824

constructed from the protograph defined by G = (V ,C,E) 825

and x VNs are partially doped, where component codes are 826

identical with the parameters (µ, κ). We assume that the 827

first x protograph VNs are partially doped without loss of 828

generality. Then, we are given a VN set V = {v1, · · ·, vnv} and 829

a CN set CPD-GLDPC = B ∪ C = {b1, · · ·, bx} ∪ {c1, · · ·, cnc} 830

for the protograph. It is important to note that the GC node set 831

B is not defined over a protograph. However, the codeword 832

enumeration can be made when the protograph is lifted, 833

where bi′ , i′ ∈ [x] is a virtual CN that represents CNs of the 834

component code used for partial doping for vi′ in the original 835

protograph. Although bi′ is not a protograph CN, we define 836

it for the enumeration of the partially doped protograph VNs. 837

The PD-GLDPC code is constructed by lifting the graph G 838

by N times and permuting the replicated edges. Each vi (cj) 839

has degree qvi (qcj ) in terms of G and each bi′ has degree µ in 840

terms of B. For the enumeration of the GC node bi′ , we can 841

think of it as a protograph node of degree µ that is lifted by 842

a factor of N
µ
. The upper bound of the weight enumerator of 843

the proposed PD-GLDPC code ensemble with the weight d , 844

denoted as APD-GLDPCd is derived as follows. 845

Let wm,u, u ∈ [qvm ] be the uth edge weight from a VN vm. 846

For a partially doped VN vm,m ∈ [x], there are additional 847

µ weights sent towards the incident GC node, where the uth 848

weight is defined as w′m,u, u ∈ [µ]. For a given input weight 849

vector d = (d1, · · ·, dnv ), we need to calculate A
PD-GLDPC (d) 850

and sum it over every instance of d that satisfies d = d1 + 851

· · ·+dnv . For input di′ , i
′
∈ [x], it is clear that

∑µ
i=1 w

′
m,i = di′ 852

because the extrinsic weight w′m,i consists of weights solely 853

from vm. We introduce the following notations: 854

•

Avidi (wi) =
(
N
di

)
δdi,wi,1 , · · ·, δdi,wi,qvi

855

=

{(N
di

)
, ifwi,j = di,∀j ∈ [qvi ]

0, otherwise
856

is the vector weight enumerator for a VN vi of the 857

protograph [36]. 858
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• Acj (zj) is the vector weight enumerator for a CN cj of859

the original protograph, for the incoming weight vector860

zj = [zj,1, · · ·, zj,qcj ] [36].861

• B
vi′
di′
(w′i′ ) =

{
1, forw′i′,1 + · · · + w

′

i′,µ = di′

0, otherwise
is862

the vector weight enumerator for partially doped VNs863

vi′ , i′ ∈ [x].864

• Bbi′ (w′i′ ) is the vector weight enumerator for CNs that are865

created during the lifting process given the weight vector866

w′i′ . A
bi′ (di′ ) is the summation of enumerators over all867

possible w′i′ values given that w′i′,1 + · · · + w′i′,µ = di′868

satisfying869

Abi′ (di′ ) =
∑
w′

Bbi′ (w′i′ )870

=

∑
w′

∑
{m}

C(
N
µ
;m1, · · ·,mK ),871

where w′ = (w′1, · · ·,w
′
µ) such that

∑µ
i=1 w

′

1 =872

d ′k , w
′
i ≤

N
µ
.873

Then, the weight enumerator is given as874

APD−GLDPCd =

∑
{d}

APD−GLDPC (d),875

where876

APD-GLDPC (d) =

∏nv
i=1 A

vi
di (wi)

∏nc
j=1 A

cj (zj)∏nv
s=1

∏qvs
r=1

( N
ws,r

)877

×

∏x
i′=1 B

vi′
di′
(w′i′ )B

bi′ (w′i′ )∏x
s′=1

∏µ

r ′=1

( N
µ

w′
s′,r ′

)878

=

∑
{w′

i′
:w′

i′,1
+···+w′

i′,µ
=di′ }

∏nc
j=1 A

cj (dj)∏nv
i=1

(N
di

)qvi−1879

×

∏x
i′=1 B

bi′ (w′i′ )∏x
s′=1

∏µ

r ′=1

( N
µ

w′
s′,r ′

) .880

The solution to the equation w′ = mMC is given as881

m = {m1, · · ·,mK }. The term
( N

µ

w′
s′,r ′

)
is lower bounded by882

(N
µ
)w
′

s′,r ′ e−w
′

s′,r ′
·ln w′

s′,r ′ . Then, APD−GLDPC (d) can be upper883

bounded as in (7), shown at the bottom of the next page, where884

P =
∑x

s′=1 ds′ is the total weight of the x partially doped885

VNs. Then
∑

t (t · ln t) ≤ (
∑

t t) · ln (
∑

t t) is used for the886

second and the third inequalities in (7). It was shown in (18)887

of [36] that the inequality888 ∏nc
j=1 A

cj (dj)∏nv
i=1

(N
di

)qvi−1 ≤
nv∏
i=1

e
(qvi−1−

qvi
d(c)min

)diln
di
N +

qvi (2+k
(c)
max ln 2)

d(c)min

di
889

holds, where d (c)min is the minimum distance of an SPC com-890

ponent code for the original protograph and k (c)max is the max-891

imum number of codewords of an SPC component code.892

Using the similar notations in [36], let d (b)min and k (b) be the 893

minimum distance and the number of codewords of the (µ, κ) 894

component code for the GC nodes. Then,
∏x

i′=1 A
bi′ (di′ ) is 895

upper bounded as in (8), shown at the bottom of the next page. 896

For the inequality in the third line of (8), we use the fact that 897∑p
i=1 tiln ti ≤ s · ln

s
p with s = t1+· · ·+ tp, which is clear by 898

using the derivative on themultivariable function that consists 899

of independent ti’s. The equality is satisfied when all ti values 900

are the same. Going back to (7), let f (P) = 1

(Nµ)
P
e−Pln P

for 901

convenience. Then we can organize the inequality as in (9), 902

shown at the bottom of the next page. We classify the VNs in 903

the protograph into three groups before doping: 904

• Protograph VNs of degrees higher than 2 905

• Protograph VNs of degree-2 to be partially doped 906

• Protograph VNs of degree-2 not to be partially doped. 907

We also separate the weights of codewords after lifting into 908

three parts according to the three groups of VNs: ui, pz, and 909

lj, where ui is the weight of the sub-codeword corresponding 910

to a protograph VN vi of degree higher than 2 and pz and lj 911

are the weights of the sub-codewords of each partially doped 912

and undoped protograph VN vz and vj of degree-2 from the 913

protograph, respectively. The sum of sub-codeword weights 914

for each group of VNs is given as U =
∑

i ui, P =
∑

z pz, 915

and L =
∑

j lj. It is clear that for the total codeword weight 916

d , d = U + P + L. Then, the upper bound of the first term 917

in (9) is written as 918

nv∏
i=1

e
(qvi−1−

qvi
d(c)min

)diln
di
N +

qvi (2+k
(c)
max ln 2)

d(c)min

di
919

≤ e
(2− 3

d(c)min

)(d−P−L)ln d−P−L
N +

3(2+k(c)max ln 2)

d(c)min

·(d−P−L)
920

×e
2(2+k(c)max ln 2)

d(c)min

·L
e
2(2+k(c)max ln 2)

d(c)min

·P
, (10) 921

which is derived by using three weight groups of codewords 922

similar to (20) of [36]. We share the same inequality ui < 923

Ne
−

(2+k(c)max ln 2)

d(c)min−1 over the given codeword weight d as in [36]. 924

The upper bound of the second
∏

term of (9) can be derived 925

as 926

x∏
i′=1

(
N
µ

) 1

d(b)min

di′

e
(2+k(b)ln 2)

d(b)min

di′−
1

d(b)min

di′ ln
di′
µ

927

=

x∏
i′=1

e
1

d(b)min

di′ ln
N
µ

e
(2+k(b)ln 2)

d(b)min

di′−
1

d(b)min

di′ ln
di′
µ

928

=

x∏
i′=1

e
1

d(b)min

di′ ln
N
di′ e

(2+k(b)ln 2)

d(b)min

di′
929

=

x∏
z=1

e
1

d(b)min

pzln N
pz
e
(2+k(b)ln 2)

d(b)min

pz
930

≤ e
1

d(b)min

P·ln Nx
P
e
(2+k(b)ln 2)

d(b)min

P
. (11) 931
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Using (10) and (11), the upper bound of APD-GLDPC (d) is932

derived in terms of E(d,P,L) as follows:933

APD-GLDPC (d)934

≤ e
1

d(b)min

P·ln Nx
P
e
(2+k(b)ln 2)

d(b)min

P
935

×e
(2− 3

d(c)min

)(d−P−L)ln d−P−L
N +

3(2+k(c)max ln 2)

d(c)min

·(d−P−L)
936

×e
2(2+k(c)max ln 2)

d(c)min

·(P+L)
ex(µ−1)ePf (P). (12) 937

Let E(d,P,L) be the parameter satisfying APD-GLDPC (d) ≤ 938

ex(µ−1) · eE(d,P,L). Then, from the upper bound in (12), 939

APD-GLDPC (d) ≤
∑

{w′
i′
:w′

i′,1
+···+w′

i′,µ
=di′ }

∏nc
j=1 A

cj (dj)×
∏x

i′=1 B
bi′ (w′i′ )∏nv

i=1

(N
di

)qvi−1
×
∏x

s′=1
∏µ

r ′=1(
N
µ
)w
′

s′,r ′ e−w
′

s′,r ′
·ln w′

s′,r ′

≤

∑
{w′

i′
:w′

i′,1
+···+w′

i′,µ
=di′ }

∏nc
j=1 A

cj (dj)×
∏x

i′=1 B
bi′ (w′i′ )∏nv

i=1

(N
di

)qvi−1
×
∏x

s′=1(
N
µ
)ds′ e−ds′ ·ln ds′

≤

∑
{w′

i′
:w′

i′,1
+···+w′

i′,µ
=di′ }

∏nc
j=1 A

cj (dj)×
∏x

i′=1 B
bi′ (w′i′ )∏nv

i=1

(N
di

)qvi−1
× (N

µ
)Pe−P·ln P

=

∏nc
j=1 A

cj (dj)×
∏x

i′=1
∑
{w′

i′
:w′

i′,1
+···+w′

i′,µ
=di′ }

Bbi′ (w′i′ )∏nv
i=1

(N
di

)qvi−1
× (N

µ
)Pe−P·ln P

=

∏nc
j=1 A

cj (dj)×
∏x

i′=1 A
bi′ (di′ )∏nv

i=1

(N
di

)qvi−1
× (N

µ
)Pe−P·ln P

, (7)

x∏
i′=1

Abi′ (di′ ) ≤
x∏

i′=1

∑
{w′

i′
:w′

i′,1
+···+w′

i′,µ
=di′ }

µ∏
i=1

(
N
µ
)

1

d(b)min

w′
i′,i
e

(2+k′
i′
ln 2)

d(b)min

w′
i′,i
−

1

d(b)min

w′
i′,i
ln w′

i′,i

=

x∏
i′=1

∑
{w′

i′
:w′

i′,1
+···+w′

i′,µ
=di′ }

(
N
µ
)

1

d(b)min

di′
e

(2+k′
i′
ln 2)

d(b)min

di′−
∑µ

i=1
1

d(b)min

w′
i′,i
ln w′

i′,i

≤

x∏
i′=1

∑
{w′

i′
:w′

i′,1
+···+w′

i′,µ
=di′ }

(
N
µ
)

1

d(b)min

di′
e

(2+k′
i′
ln 2)

d(b)min

di′−
1

d(b)min

di′ ln
di′
µ

≤

x∏
i′=1

(
di′ + µ− 1

di′

)
(
N
µ
)

1

d(b)min

di′
e

(2+k′
i′
ln 2)

d(b)min

di′−
1

d(b)min

di′ ln
di′
µ

(8)

APD-GLDPC (d) ≤
nv∏
i=1

e
(qvi−1−

qvi
d(c)min

)diln
di
N +

qvi (2+k
(c)
max ln 2)

d(c)min

di

×

x∏
i′=1

edi′+µ−1(
N
µ
)

1

d(b)min

di′
e

(2+k′
i′
ln 2)

d(b)min

di′−
1

d(b)min

di′ ln
di′
µ

× f (P)

≤

nv∏
i=1

e
(qvi−1−

qvi
d(c)min

)diln
di
N +

qvi (2+k
(c)
max ln 2)

d(c)min

di

×ex(µ−1)eP
x∏

i′=1

(
N
µ
)

1

d(b)min

di′
e
(2+k(b)ln 2)

d(b)min

di′−
1

d(b)min

di′ ln
di′
µ

× f (P). (9)
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E(d,P,L) is given as940

E(d,P,L) =
1

d (b)min

P · ln
Nx
P
+

(2+ k (b)ln 2)

d (b)min

P941

+(2−
3

d (c)min

)(d − P− L)ln
d − P− L

N
942

+
3(2+ k (c)max ln 2)

d (c)min

(d − P− L)943

+
2(2+ k (c)max ln 2)

d (c)min

(P+ L)944

+P+ Pln P− Pln
N
µ
.945

Assuming that there are no cycles consisting only of946

undopedVNs of degree-2, we can further ignore the existence947

of type 1 degree-2 VNs defined in [36] for undoped degree-948

2 VNs. Thus, we use the result of (22) in [36] such that the949

inequality l
(cj)
2,k ≤

1

d
(cj)
min

(L
(cj)
2 +

∑
i w

(cj)
i ) is satisfied for all950

j ∈ [nc], where l
(cj)
2,k is the weight of the degree-2 undoped951

VN of the original protograph and the total weight of them952

is denoted as L
(cj)
2 for a CN cj. Similar to the result in [36],953

we can derive the upper bound L ≤ γ (U + P), which is954

the same as L ≤ γ
1+γ d . Now, the upper bound of E(d,P,L)955

needs to be derived for independent values L and P. The first956

and second partial derivatives of E(d,P,L) by P are given as957

dE
dP
=

1

d (b)min

ln
Nx
eP
+

(2+ k (b)ln 2)

d (b)min

958

−(2−
3

d (c)min

)ln
e(d − P− L)

N
−

(2+ k (c)max ln 2)

d (c)min

959

+1+ ln P+ 1− ln
N
µ
< 0,960

d2E
dP2
= −

1

d (b)minP
+ (2−

3

d (c)min

)
1

d − P− L
+

1
P
> 0.961

Since the first derivative over P is negative and the second962

derivative is positive, E(d,P,L) is upper bounded by963

lim
P→0+

E(d,P,L) = (2−
3

d (c)min

)(d − L)ln
d − L
N

964

+
3(2+ k (c)max)

d (c)min

(d − L)965

+
2(2+ k (c)max ln 2)

d (c)min

L.966

Since the resulting upper bound of E(d,L) is the same as (37)967

in [36], the rest of the proof is the same as that in [36]968

and thus the proposed constraint guarantees the existence of969

typical minimum distance of the proposed PD-GLDPC code970

ensemble.971
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