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ABSTRACT In this paper, we propose a new code design technique, called partial doping, for
protograph-based generalized low-density parity-check (GLDPC) codes. While the conventional construc-
tion method of protograph-based GLDPC codes is to replace some single parity-check (SPC) nodes with
generalized constraint (GC) nodes applying to multiple variable nodes (VNs) that are connected in the
protograph, the proposed technique can select any VNs in the protograph to be protected by GC nodes.
In other words, the partial doping technique facilitates finer tuning of doping, which in turn enables a
sophisticated code optimization with higher degree of freedom. We construct the proposed partially doped
GLDPC (PD-GLDPC) codes using the partial doping technique and optimize the PD-GLDPC codes by the
protograph extrinsic information transfer (PEXIT) analysis. In addition, we propose a condition guaranteeing
the linear minimum distance growth of the PD-GLDPC codes and use the condition for the optimization.
Experimental results show that the optimized PD-GLDPC codes outperform the conventional GLDPC codes
and have competitive performance compared to the state-of-the-art protograph-based LDPC codes without
the error floor phenomenon over the binary erasure channel (BEC).

INDEX TERMS Generalized low-density parity-check (GLDPC) codes, partial doping, partially doped
GLDPC (PD-GLDPC) codes, protograph, protograph extrinsic information transfer (PEXIT), typical mini-
mum distance.

I. INTRODUCTION In addition, GLDPC codes have several advantages over

Low-density parity-check (LDPC) codes, first introduced
in [1], have received much attention due to their low decod-
ing complexity and capacity approaching performance [2].
An LDPC code is defined over a bipartite graph consist-
ing of variable nodes (VNs) and single parity-check (SPC)
nodes. As a generalized class of LDPC codes, generalized
LDPC (GLDPC) codes were introduced in [3], which are con-
structed by replacing some SPC nodes with generalized con-
straint (GC) nodes. GC nodes are defined by code constraints
of a linear code with a larger minimum distance [4], which
makes GLDPC codes have a larger minimum distance [5].
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LDPC codes such as faster decoding convergence [6] and
a better asymptotic threshold at the cost of the additional
decoding complexity and redundancy introduced by GC
nodes [7]. Many types of linear codes for GC nodes, also
called as the component codes, are used in the GLDPC codes
such as Hamming codes [8], Hadamard codes [9], Bose—
Chaudhuri-Hocquenghem (BCH) codes, and Reed-Solomon
(RS) codes [10]. The research on GLDPC codes is extended
to spatially coupled LDPC codes [11], [12], [13] and doubly
GLDPC codes [14], [15], [16]. Moreover, some capacity
approaching GLDPC codes were constructed using irregular
random GLDPC codes [7], [17].

LDPC codes can be constructed from a small bipar-
tite graph called protograph. Many researches on the
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protograph-based LDPC codes were previously carried out
under various scenarios [18], [19], [20]. Moreover, the
protograph-based GLDPC codes were thoroughly studied in
[21], [22], [23], and [24], but they mainly focused on the low-
rate codes [21], [22], [23], [24]. Protograph-based GLDPC
codes can be constructed from a small protograph [25] using
the so called doping technique [26]. Doping a GC node,
defined by a (u, k) linear code of length p and dimension
k, means the replacement of an SPC node by the GC node
with © — k constraints, which causes a rate loss. In the
perspective of VNs, 1 VNs are selected to be doped by a
GC node, assuming that there are no parallel edges in the
protograph. Thus, the smallest unit of doping, also called
the doping granularity, is u for the conventional protograph
doping technique. In other words, the conventional doping
technique has two limitations: 1) the degree of the SPC node
to be replaced should be p, which implies that the doping
operation is dependent on the underlying protograph and the
parameter u of component codes and 2) one cannot choose a
finer doping granularity less than  and thus the code design
cannot be sophisticated. Due to the limited design flexibility,
there has been little works on the well-designed optimization
for protograph-based GLDPC codes especially for medium
to high code rates.

In this paper, we propose a new doping technique, called
partial doping on the VNs, to minimize the doping granularity
and enlarge the code design freedom. In detail, the partial
doping involves the following three steps: 1) A VN to be
doped is selected in the protograph. 2) The Tanner graph is
obtained by the lifting operation [25] from the protograph
with a lifting factor N. 3) Additional GC nodes are connected
to the lifted N VNs in the Tanner graph after lifting the
protograph. The main difference from the conventional pro-
tograph doping technique is that the partial doping operation
is conducted on the Tanner graph instead of the protograph
domain. Thus, it is possible to partially dope on a single VN
in the protograph and the doping granularity becomes one,
which is also independent of w. In other words, the partial
doping enables fine tuning of the code structure regardless of
the underlying protograph and the parameter of component
codes. Specifically, the selection of VNs to be protected by
GC nodes and the rate loss can be adjusted in a more flexible
manner.

We denote the proposed protograph-based GLDPC codes
constructed using the partial doping as partially doped
GLDPC (PD-GLDPC) codes. The structural characteristics
of the PD-GLDPC codes have several advantages. First, the
PD-GLDPC codes are structurally adequate to adopt the
puncturing technique that compensates the rate-loss. Since
the partially doped VNs are highly and locally protected
by GC nodes, the performance loss occurred by punctur-
ing the doped VNs is relatively small while attaining the
code rate gain. Second, the asymptotic performance of the
PD-GLDPC codes can be analyzed by the low-complexity
extrinsic information transfer (EXIT) analysis. For the con-
ventional protograph doped GLDPC codes [26], the exact
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EXIT analysis is provided in [27], where the topology for
the a priori and extrinsic mutual information of GC nodes is
considered. Since the cases of the topology grow exponen-
tially with the component code length p, the computational
complexity is too high to design a fast optimization algorithm.
On the contrary, GC nodes in the PD-GLDPC codes can be
analyzed by an average manner EXIT analysis in [28] because
GC nodes in the PD-GLDPC codes are incident to VNs
lifted from a single VN in the protograph. The a priori and
extrinsic mutual information of GC nodes can be evaluated by
a single value, which facilitates a fast optimization algorithm.
Using this advantage, we propose an efficient optimization
algorithm for the PD-GLDPC codes.

In addition, we propose the condition guaranteeing the
linear minimum distance growth of the PD-GLDPC codes.
We analytically prove that the PD-GLDPC code ensembles
satisfying the condition have the typical minimum distance
and use this condition for the construction of the PD-GLDPC
codes in this paper. Also, we propose novel methods to
optimize the asymptotic performance, i.e., the threshold of
the code ensemble, by using the protograph EXIT (PEXIT)
analysis [29] and differential evolution [30] targeting medium
code rate 1/2 and high code rate 2/3. Thus, the optimized
PD-GLDPC code ensembles are constructed while satisfying
the typical minimum distance condition to have a minimum
distance that grows linearly with the block length of the code.
Comparison of the PD-GLDPC codes is made with the exist-
ing state-of-the-art protograph LDPC codes and conventional
GLDPC codes [17]. Threshold analysis and shows that the
optimized protograph-based PD-GLDPC codes outperform
the well known GLDPC and protograph-based LDPC codes
and have a competitive asymptotic performance compared to
the optimized protograph-based LDPC codes.

To be specific, the optimized protograph PD-GLDPC
codes from a random ensemble with a low doping ratio
0.02439 achieves the coding gain 0.0079 over the binary
erasure channel (BEC) compared to the optimized GLDPC
codes [17] with a relatively higher doping ratio 0.4. In addi-
tion, the optimized protograph PD-GLDPC code by the
differential evolution outperforms AR4JA codes [31] with
coding gains 0.0477 and 0.032 for code rates 1/2 and 2/3,
respectively. Also, the average VN degree of the optimized
PD-GLDPC codes, are only 87.2% and 80.5% compared to
the state-of-the-art protograph LDPC codes for code rates
1/2 and 2/3, respectively. Similarly, the frame error rate
(FER) results show tangible gain in the waterfall performance
compared to the existing protograph-based LDPC codes
in [31] without the error floor phenomenon up to FER 1074,

We list the contributions of this paper as follows; 1) We
propose a novel doping technique, where the constraints of
GC nodes are applied to specific VNs lifted from single
protograph node, i.e., partial doping on the VNs after lifting.
2) We propose two design criteria for the optimization of the
threshold of the PD-GLDPC codes: the EXIT analysis and the
condition for the existence of the typical minimum distance.
3) We propose the optimization method of the asymptotic
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performances for the PD-GLDPC codes using differential
evolution. 4) We show the finite length performance gain
of the optimized PD-GLDPC codes over some well known
LDPC and GLDPC codes.

The rest of the paper is organized as follows.
In Section II, we introduce some preliminaries on the BEC
and protograph-based GLDPC codes. Section III illustrates
the proposed PD-GLDPC code structure and derives its
PEXIT analysis and the condition for the typical mini-
mum distance. In addition, the comparison of the proposed
PD-GLDPC codes and protograph doped GLDPC codes is
given. The optimization algorithms of PD-GLDPC codes are
given in Section I'V. Section V shows the error correcting per-
formance of the proposed codes over the BEC compared with
other well known protograph-based LDPC codes. Section VI
concludes the paper with some discussion of the results.

Il. BACKGROUNDS

In this section, we introduce some notations and concepts of
a binary erasure channel, protograph LDPC codes, and the
construction method of protograph doped GLDPC codes. The
EXIT analysis and the decoding process of protograph doped
GLDPC codes are also briefly introduced. The notations
mainly used throughout the paper are summarized in Table 1.

A. PROTOGRAPH LDPC CODE AND BEC

Let x = {x1, -+, x¢},x; € {0, 1} be a k-bit binary message
vector, which is encoded via an (n, k) linear code, forming an
n-bit codeword ¢ = {cy, -- -, ¢y}, ¢; € {0, 1}. The codeword
passes through a memoryless BEC, where each bit is either
erased with a probability € or correctly received.

Protograph LDPC codes [25] are defined by a relatively
small bipartite graph G = (V, C, E) representing a proto-
graph, where V. = {v1,---,v,,} is a set of VNs and C =
{c1, -+, cp.} 1s a set of check nodes (CNs). Let E be a set of
edges e, where ¢ = (v, ¢) connects a VN v € V and a CN
c € C. The bipartite graph can also be expressed in terms of
an n. x ny-sized base matrix B, xn, = {bij},1 € [nc],j €
[ny], where b;; € {0,1,2,---} and [A] is a set of positive
integers less than or equal to a positive integer A. The rows
represent the CNs and the columns represent the VNs in the
protograph. Each entry b; ; of the base matrix represents the
number of edges connected between a VN and a CN. If there
are no edges connected between v; and ¢;, the entry b; j is zero.
The variable (check) node degree deg(v;) (deg(c;)) is defined
as the number of edges incident to itself. A protograph LDPC
code is constructed by copy-and-permute operation of G. The
bipartite graph G is copied by the lifting factor N and copies
of each edge e = (v,c) € E are permuted among copies
of v and c. In general, the large value of N guarantees the
sparseness of the code.

B. CONSTRUCTION OF PROTOGRAPH DOPED GLDPC
CODES [26]

Conventionally, a protograph doped GLDPC code ensemble
is constructed by replacing (doping) a CN of a protograph

95464

Algorithm 1 The PEXIT Analysis of a Protograph Doped
GLDPC Code [32]

1: Step 1) Initialization
Initialize I.,(j) = 1 — € forj € [n,].

2: Step 2) Message update from VN to CN _
Update gy (i.j) = 1 — € [T,y (1 — Lav (r, )" for
all j € [n,], where 8(¢,j) = b;j fort # iand §(¢,)) =
by j—1fort =i. Further, Igy(i,j) = 0if b; j = 0. If ¢; is
an SPC node, 4y (i, j)) = IEc(i, j) and if ¢; is a GC node,
Lav (i, j) = Igcc (i, j).

3: Step 3) Message update from CN to VN
For all i, if ¢; is an SPC node, go to Step 3-1) and if ¢; is
a GC node, go to Step 3-2).

Step 3-1) Iec(i.j) = [Tyen(e lac. 1’4, where
8(i,t) =bj; fort # iand

8(i,t) = bjy — 1 for t = j. Further, Iyc(i,t) =
Igv (i, 1).

Step 3-2) For all j € N(c;), compute

. 1 & h—1 ~\ni—h
IgGe (i, ) = P Z(l —Inge )" (Ingc ()"
b =1
x[hep — (i —h+ Dep—1], (1)
where Iygc (i) = nl ZjeN(c,') bij x Igy (i, ).

4: Step 4) APP mutual information computation
Forallj € [ny]. Iapp() = 1—€ [T,eny (1= Tav(e. ).
If ¢; is an SPC node, 4y (¢, j) = Igc(t, j) and if ¢; is a GC
node, Iy (1, ) = Igcc(t, ))-

5. Step 5) Convergence check of VNs
Repeat Step 2)—4) until I4pp(j) = 1, for allj € [n,].

with a GC node that has a parity-check constraint from an
(ni, ki, d,"nm) linear code (component code), where n; (k;) is
the code length (dimension) and d, ;. is the minimum dis-
tance of the component code for a CN c;. The condition for
replacement is that the CN degree should be exactly equal to
the length of the component code, i.e., deg(c;) = n;. Note
that the original CN has the parity-check constraint of an
(ni, ki) = (deg(c;), deg(c;) — 1) SPC code. The code rate R
of protograph doped GLDPC codesisR =1 — m’;—’:””, where
Mproto = Z?;l(n,- — k;). While the minimum distance of
an SPC node is 2, the VNs connected to the GC node are
protected by parity-check constraints of the component code
with the minimum distance larger than two. Fig. 1 shows
the protograph doped GLDPC code of the code rate 3/7
by replacing an SPC node with the (7,4) Hamming code
constraints.

C. PEXIT ANALYSIS AND DECODING PROCESS OF
PROTOGRAPH DOPED GLDPC CODES

The asymptotic performance of the protograph doped
GLDPC codes is evaluated by the PEXIT analysis. The
PEXIT analysis tracks down the mutual information of extrin-
sic messages and a priori error probabilities of the VNs,
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TABLE 1. Main mathematical notations used in the paper.

| Notation

Explanation

Bncxnv

An n. X n, base matrix defining the protograph

V = {Ul,"',vnv}

Set of VN5 in a protograph

C=A{c1, - cn.}

Set of CNs in a protograph

E

Set of edges connecting V' and C'

deg(v;) (deg(ci))

Number of edges incident to v; (c;), i.e., variable (check) node degree of v; (c;)

N(ci) (N (v;))

Set of variable (check) nodes incident to ¢; (v;), i.e., neighborhood of ¢; (v;)

Ich(j)

Channel information of v; € V/

Ipv(i,j) Uec(4,7))

Extrinsic information sent from v; (c;) to ¢; (v5)

IAV(i’j) (IAC(laJ))

A priori mutual information of v; (c;) sent from c; (v;), where ¢; is an SPC node

Tacc (i) Upac(4,9))

A priori (extrinsic) mutual information of a GC node c¢;

Tapp(j)

A posteriori probability of v;

(u, k) component code

Component code with codelength 1 and information size s

X

Index set of protograph VNs that are partially doped

N Lifting factor

v Doping ratio

Ig’{}) (J) Extrinsic information from v; to b;,j € X

I i&bé:)c () (I g’é)c (1)) A priori (extrinsic) mutual information of b;, j € X

¢ Optimized protograph of the LDPC code

Gp Initial irregular protograph that is used to construct the PD-GLDPC code

Aa. (z) (pa. (x)) VN (CN) degree distribution to construct G
|dv|-sized vector defining the numbers of protograph VNs, where a; is the

DY = (a1, -, @maz) | number of protograph VNs of degree I; and dv is a set of VN degrees that
exist in the protograph, i.e., dv = {l1,l2, -, lmaz }

P Random puncturing ratio of the entire protograph

Pd Random puncturing ratio for partially doped VNs in the protograph

HSPC

Vq, ..., V7 With constraints of Hygmm and Hgpe

FIGURE 1. An example of protograph doped GLDPC code construction following [26] by replacing an
SPC node with a GC node using the (7, 4) Hamming code as the component code.

CNs, and GC nodes of protograph GLDPC codes. For an
exact PEXIT analysis, tracking down each mutual informa-
tion corresponding to edges of the component code is needed,
i.e., multi-dimensional EXIT computation [27]. However,
in terms of code optimization, where lots of EXIT computa-
tion is required, it is beneficial to reduce the complexity of the
EXIT computation in GC nodes by averaging the a priori and
extrinsic mutual information of the GC nodes. The EXIT and
PEXIT analyses of the protograph doped GLDPC codes over
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the BEC in terms of average mutual information are given
in [28], [29], and [32].

The PEXIT process is given in Alg. 1. Let I.,(j) be the
channel information from the erasure channel for the proto-
graph VN v;. In addition, Igy (i, j) (Igc(i, j)) is the extrinsic
information sent from v; (¢;) to ¢; (vj) and Iay (i, j) (Uac (i, j))
is the a priori mutual information of v; (c;) sent from ¢; (v;),
where ¢; is an SPC node. For GC nodes, we use the notations
Iagc (i) and Iggc(i, j) for a priori and extrinsic information.
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Let N(c;) (N(v;)) be a set of variable (check) nodes incident
to ¢; (vj), i.e., neighborhood of ¢; (vj). Finally, I4pp(j) is a
posteriori probability of v;. To explain (1) in Alg. 1,if ¢; is a
GC node with the (n;, k;) Hamming code, the PEXIT of the
GC node is computed from a closed form using the property
of the simplex code, which is the dual code of a Hamming
code. Also, Iagc (i) = % ZjeN(c,-) b; jxIgy (i, j)is the average
a priori mutual information for a GC node to compute the

PEXIT message. In (1), we have

-1 Ny 1—u
g B )

For two positive integers a and b, we also have (Z) =
[ &% and [¢9] = 1%, %, where (§) = 1 and
[¢] = 1. The PEXIT process searches for the minimum e
to successfully decode, i.e., I4pp(j) = 1, for allj € [n,], in an
asymptotic sense.

Now, we briefly explain the decoding process of GLDPC
codes over the BEC [13]. The VNs process the conventional
message-passing decoding over the BEC by sending correct
extrinsic messages to the CNs if any of the incoming bits
from their neighborhood is not erased. The SPC nodes send
correct extrinsic messages to the VNG if all of their incoming
messages are correctly received, and send erasure messages
otherwise. In this paper, the decoding of GC nodes is pro-
cessed by the maximum likelihood (ML) decoder. For each
iteration, a GC node ¢; with the (n;, k;) component code
receives the set of erasure locations {e;} from N(c;). Let
Hgc be the parity-check matrix (PCM) of the component
code and H, be the submatrix of Hgc indexed with {e;}.
The decoder computes the Gaussian-elimination operation
of H,, making it into a reduced row echelon form Hedced,
If rank(H¢“¢d)="|{e;}|, the GC node solves all the input
erasures and otherwise, the decoder corrects the erasures
corresponding to the rows with weight 1 from H, e’ed’“ed . The
decoding complexity can be further reduced if the GC node
exploits bounded distance decoding; however, the degrada-
tion of asymptotic performance is not negligible, as shown
in [7].

lll. THE PROPOSED PD-GLDPC CODES

In this section, a new construction method of protograph-
based GLDPC codes is proposed. While the protograph
doped GLDPC codes are constructed by replacing some
protograph SPC nodes in the original protograph by GC
nodes using the component code, the proposed PD-GLDPC
codes are constructed by adding GC nodes for the subset
of VNs using component codes after the lifting process
of the original protograph, where each GC node is con-
nected to the VNs copied from single protograph VN.
A block diagram of the construction process of both codes
together with the conventional random GLDPC code is given
in Fig. 2.

95466

Doping by
LDPC component codes
protograph

GLDPC Lifting GLDPC
protograph code

(a) Protograph doped GLDPC codes [26]

Random doping by
Random Lifting LDPC component codes GLDPC
ensemble code code
A(x), p(x)

(b) Randomly doped GLDPC codes

Partial doping by
PD-GLDPC

LDPC Lifting LDPC component codes
protograph code code

(c) Proposed PD-GLDPC codes

FIGURE 2. A block diagram of the construction process of protograph
doped GLDPC codes [26], randomly doped GLDPC codes, and the
proposed PD-GLDPC codes.

A. CONSTRUCTION METHOD OF PD-GLDPC CODES
First, we define the partial doping for VNs using additional
GC nodes to a lifted protograph, that is, the addition of rows
for the PCM by the component code, where each GC node
is incident to VNs copied from single protograph VN. Also,
we define a partially doped protograph VN as the aforemen-
tioned single protograph VN for the GC node. While the
term doping in protograph doped GLDPC codes is used in
the perspective of CNs, we use the term partial doping in the
perspective of VNs. While it is clear that the connection of GC
nodes can be applied to VNs copied from multiple protograph
VNs, we have limited the connection to a single protograph
VN to compute an accurate EXIT of the PD-GLDPC codes.
Let By, xn, be an n. x n, base matrix, where some pro-
tograph VNs are partially doped with a (u, x) component
code after the lifting process. Let X’ be a set that contains
indices of protograph VNs that are partially doped, where
each partially doped protograph VN is randomly doped by
N/ component codes after the lifting process. Then, the
proposed PD-GLDPC codes are defined with the parame-
ters By, xn,, 1, k, X). Although any component code can be
used, we restrict the component code used in the paper as the
(u, k) Hamming code and assume that p divides the lifting
factor N such that N = up, where § is a positive integer.
The VN5 copied from | X'| VNs in the protograph are partially
doped by GC nodes. That is, in the proposed PD-GLDPC
code construction, the N/u GC nodes are randomly con-
nected to N VNs lifted from each partially doped protograph
VN. Thus, the proposed construction method can choose
any protograph VNS to protect by partial doping. The code
rate of the PD-GLDPC code ensemble with (B, x,,,, i, &, X)
isl— "‘HX‘HM An example of the proposed construc-
tion is given in Fig. 3, which illustrates the doping process by
a (7, 4) component Hamming code over a protograph defined
by a 2 x 3 base matrix.

The basic concept of the proposed construction is to focus
on the protection of VN lifted from single protograph VN.
Although only a portion of VN5 from a single protograph VN
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Lift by factor N = 14
and dope

7 bundles

Doped protograph

variable node

Cramm

2 GC nodes

(7,4) component Hamming code

FIGURE 3. An example of a proposed (B, 3, 7, 4, X = {1}) PD-GLDPC code construction, where
B,,3 =[111;101] and x is the 14 x 14 sized permutation matrix.

can be partially doped, for the exactness of EXIT computation
and the typical minimum distance analysis, we have limited
the doping process over the entire VNs lifted from a single
protograph VN. Since N is the multiple of the component
code length, all the VNs lifted from single protograph VN
can be protected by using 8 GC nodes. A simple exam-
ple for the PCM for 8 GC nodes, connected to the VNs
lifted from single protograph VN, Hy is shown in Fig. 4(a),
where Hygmm 1s the PCM of the Hamming code. Although
the PCM of the Hamming code can be applied randomly,
a trivial representation of applying generalized constraints
sequentially is given. The constructed PD-GLDPC code has
a PCM Hpp.grppc as in Fig. 4(b), where the upper part is
the PCM of the added Bx GC nodes and the lower part Hy,; 10
refers to the PCM of the LDPC code lifted from the original
protograph. Intuitively, Hy represents the PCM for each
partially doped VN in the protograph and thus, the x = |X|
bundles of matrices are diagonally appended to the PCM of
the PD-GLDPC code. Since the doping proceeds after the
lifting process, PD-GLDPC codes cannot be expressed in
terms of a protograph. We define the doping ratio v as the
portion of GC nodes over the entire constraint nodes, i.e.,
B +’Z " . Also, we define the doping granularity as the
minimum number of protograph VNs needed for doping. For
the protograph doped GLDPC codes with (u, k) component
code, the doping granularity is wu, whereas the proposed
PD-GLDPC code has doping granularity 1. The finer doping
granularity of the PD-GLDPC codes allows the construction
of protograph-based GLDPC codes with the higher rate.

V =

B. PEXIT ANALYSIS OF PD-GLDPC CODES

The PEXIT of the proposed PD-GLDPC codes is similar to
that of the protograph doped GLDPC codes in Alg. 1 except
for the EXIT of a GC node. Since the incoming mutual
information of each GC node is obtained from only a single
protograph VN in the proposed code, the average mutual
information sent to each GC node is the same as the extrinsic
message of the protograph VN connected to the GC node.
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Let bj,j € X be the virtual node representing the set of
GC nodes connected to the protograph VN v;. An example
of the representation of a virtual node over a protograph is
givenin Fig. 5. Note that although b; is not a protograph node
itself, it is possible to compute the PEXIT of a PD-GLDPC
code. Also, let [ g’é)@ be the extrinsic information from v; to
b; expressed as

(b)

Iy =1—e¢ [ Q=Lw@. ). jeX.

teN(vj)

Since b; is solely connected to v;, the index term for the
extrinsic information from v; to b; is expressed by the notation
of j only. In order to compute the EXIT of b;, let 1% N (]) and
ébG)C(]) be the a priori and extrinsic mutual informations of
b;, respectively. Note that in an average sense, the EXIT of
each GC node is computed from a single a priori mutual
information to process the single value of the extrinsic mutual
information for the neighboring VNs. Since b; receives
the extrinsic mutual information of v; only, it is clear that

(b (bj)
IC(]) — 1 J

mutual information from b; to v; denoted as I EGC (j) using (1),

v (D, j € X. We also compute the extrinsic

given the a priori mutual information / Aéc (), which is given
as

“w
Tgie®) = LS a—1%a)

h=1

NIoe )"
x[hep, — (u—h+ Dep_1].  (2)

Note that for the proposed PD-GLDPC codes, the a pri-
ori (extrinsic) EXIT of the GC node is computed from the
extrinsic (a priori) EXIT of single protograph VN. While the
EXIT of VNs and SPC nodes for the proposed PD-GLDPC
codes is the same as that of the protograph doped GLDPC
codes described in Alg. 1, the EXIT of the GC nodes in the
proposed codes is changed to (2) whereas the protograph
doped GLDPC codes use (1) from Alg. 1.
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B bundles (GC nodes)

(a) A PCM of 8 GC nodes doped for single protograph VN assuming a trivial

permutation.

n,N Total VNs

xN Doped VNs

x bundles

Added xf8 _ i
GC nodes B =) : /\
: Hy

M@y | -+ |G

Hpp_gLppc =

n(al,nc)

Hproto = [n(ai,j)]

xB(u—x) +n.N

(b) A PCM of the PD-GLDPC code for the first x = | X'| partially doped protograph VNs.

FIGURE 4. An exemplary PCM of a PD-GLDPC code.

Doped protograph
variable node

Virtual node | |
representing GC h—| bl |
nodes doping over v; L1

FIGURE 5. An example of the Tanner graph representation of the
proposed PD-GLDPC codes with a base matrix By, 3 =[111;101],
where X = {1).

C. CONDITION FOR THE EXISTENCE OF THE TYPICAL
MINIMUM DISTANCE OF THE PD-GLDPC

CODE ENSEMBLE

The existence of a typical minimum distance in the given
LDPC code ensemble defined in [33] guarantees that the
minimum distance of its corresponding code grows linearly
with the block length in an asymptotic sense [34]. To express
it formally, if there exists a small number §* > 0 such that the
weight enumerators for a given code ensemble with weights
less than or equal to §*n vanish as n — oo, then §* is the typ-
ical minimum distance of the code ensemble. It was proved
in [35] that a protograph LDPC code ensemble has a typical
minimum distance if there is no cycle consisting of only
degree-2 VNs in the protograph. Furthermore, in [36], the
condition for the existence of the typical minimum distance
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of the protograph-based GLDPC code ensembles was
given.

The proposed PD-GLDPC codes also have a similar
approach to that of the protograph doped GLDPC codes
in [36]. However, since a GC node of the proposed
PD-GLDPC codes is not well defined by a protograph node,
the derivation of the weight enumerator of the proposed
codeword is quite different from that of the protograph doped
GLDPC code. Thus, the condition for the existence of the
typical minimum distance of the proposed PD-GLDPC code
ensemble is slightly different from that of the protograph
doped GLDPC code ensemble. In fact, we can regard the
degree-2 VNs to be partially doped as the VNs with higher
degrees. The detailed explanation for the existence of the
typical minimum distance of the PD-GLDPC code ensemble
is given in Appendix A. Then, we have the following theorem
for the proposed PD-GLPDC codes.

Theorem 1: For the PD-GLDPC code ensemble of
By, xn,, 4, k, X) without degree-1 VNs in B,,_x,, the prop-
erty of the typical minimum distance holds if the undoped
degree-2 VNs in the protograph have no cycles among
themselves.

Proof: The proof is given in the Appendix.

The existence of the typical minimum distance of the
proposed PD-GLDPC code ensemble guarantees that the
minimum distance of the proposed code grows linearly with
the code length, and thus the proposed code is expected to
have the low error floor for the large code length. In the
next section, we use Theorem 1 as the constraint to optimize
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the protograph in order to guarantee the existence of the
typical minimum distance of the proposed PD-GLDPC code
ensemble.

D. COMPARISON BETWEEN PROPOSED PD-GLDPC
CODES AND PROTOGRAPH DOPED GLDPC CODES
The main difference between the proposed PD-GLDPC codes
and the protograph doped GLDPC codes is the perspective of
doping. While the protograph doped GLDPC codes replace
an entire row in the protograph, i.e., a protograph CN by the
PCM of the component code, the proposed PD-GLDPC codes
append some rows incident to the VNs copied from single
protograph VN. The focus of the protograph doped GLDPC
codes is to choose a certain protograph CN to be replaced,
whereas the PD-GLDPC codes focus on choosing which
protograph VNs are further protected by partial doping. The
constraint for the protograph doped GLDPC code is that
the CNs to be replaced should have the degree equal to the
component code length, while the constraint for the proposed
PD-GLDPC codes is that the lifting size of a protograph
should be the multiple of the component code length.
Furthermore, compared to the proposed PD-GLDPC
codes, the protograph doped GLDPC codes have large doping
granularity. By generalizing a single CN by a component
code with parameters (i, k), the i protograph VNs are doped
assuming that the corresponding base entries are all ones
for the protograph check node. Whereas, for every partial
doping of 8 GC nodes in the proposed PD-GLDPC code,
VNs copied from single protograph VN are partially doped.
In other words, the doping granularity is 1, which is smaller
than that of the protograph doped GLDPC codes. Since the
doping granularity of protograph doped GLDPC codes is
large, construction of the small protograph with capacity
approaching performance is very difficult. In Section IV.B,
we propose the construction method of PD-GLDPC codes
with partial doping of |X’| protograph VNs.

IV. OPTIMIZATION OF PD-GLDPC CODES

In this section, we introduce two optimization methods for
the PD-GLDPC codes. The first subsection illustrates the
construction method of protographs from the degree distribu-
tion of a random LDPC code ensemble in order to conduct
comparison between LDPC codes and PD-GLDPC codes
under the same degree distribution. The second subsection
shows the optimization method of the protograph using the
differential evolution algorithm in order to conduct compari-
son between LDPC codes and PD-GLDPC codes without any
constraints.

A. DIFFERENTIAL EVOLUTION-BASED CODE
CONSTRUCTION FROM THE DEGREE DISTRIBUTION

OF RANDOM LDPC CODE ENSEMBLES

In general, as the portion of degree-2 VN5 in the LDPC codes
increases, the asymptotic performance is enhanced [37], but
their minimum distance decreases and then the error floor
becomes worse. For the construction of PD-GLDPC codes
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in this subsection, we exploit the balance of the portion of
degree-2 VNs, where we focus on the partial doping only for
degree-2 VNs. The brief construction method is as follows.
First, we construct the original base matrix B, x,, with the
large portion of degree-2 VNs. Then, we partially dope some
of the protograph VNs of degree-2 to increase the minimum
distance and improve their performance. Thus, irregular pro-
tographs with several degree-2 VNs are used for the construc-
tion of the proposed PD-GLDPC codes. In terms of irregular
LDPC code ensembles, a large portion of degree-2 VNs
enables the LDPC code to achieve the capacity approaching
performance [38]. On the other hand, by reasonably selecting
the number of partially doped VNs of degree-2, the property
of the linear minimum distance growth with the length of
the LDPC code can be guaranteed. Thus, when we design
the proposed PD-GLDPC codes, balancing the partial doping
over degree-2 VNs enables both the existence of a typical
minimum distance and a good asymptotic performance. Opti-
mization of irregular protograph LDPC code ensembles is
made by initially obtaining the degree distribution of the ran-
dom LDPC code ensemble using differential evolution [30]
and constructing the protograph via the progressive edge
growth (PEG) [39] algorithm for the construction of the pro-
posed PD-GLPDC codes from irregular protographs. In this
subsection, in order to make the CN degrees as even as
possible, we try to construct the protograph from the degree
distribution of a random LDPC code ensemble. We define
G, as the optimized protograph of the conventional LDPC
code and G, as the initial irregular protograph that is used to
construct the PD-GLDPC code. That is, we can regard G, as
the protograph corresponding to Hp,oz in Fig. 4. In order to
compare FER performances of the conventional LDPC code
and the proposed PD-GLDPC code under the same degree
distribution, G, is constructed to have the same VN degree
distribution as the PD-GLDPC code constructed from G,
after lifting by N.

Let Ag.(x) and pg, (x) be the VN and CN degree distri-
butions of an irregular LDPC code ensemble to construct G,
which is the optimized protograph for the conventional LDPC
codes. In this subsection, we assume the degree distributions
26, (X) = Aax 4+ A3x? + x4+ Asx* + Aex® + Ax'~! and
PG (x) = Pr—1X" "2+ p,.x" 1, where A; and p; are the portions
of edges of VNs and CNs of degree-i. Using the optimized
degree distributions of A, (x) and pg,(x), a protograph G, is
constructed by the PEG algorithm. For the description of the
protographs that construct the conventional LDPC codes and
the proposed PD-GLDPC codes, let DYV — (ai, -+, amax) be
a |dv|-sized vector defining the numbers of protograph VN,
where @; is the number of protograph VNs of degree /; and
dv ={li, o, - -, Lyax } is a set of VN degrees that exist in the
protograph.

In order to make the same VN degree distributions of
the LDPC codes constructed from G, and the PD-GLDPC
codes constructed from G, after lifting by N, optimization of
AG,.(x) and pg, (x) should be constrained by yx, Which is
the maximum number of bulks of protograph VNs allowed
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Algorithm 2 Construction of G, and the PD-GLDPC Code
Inmput: w, «,ny, ne, R, 1, 7y Yiax
Output: y”', G, G,
1: Step 1) Optimize degree distribution of G,
Optimize Ag.(x) = Axx + x4 raxd 4+ asxt +

rex> + Ax!~1 and 0G.(x) = Pro1x" 72 4 paxt 1 using
differential evolution under constraints (a)~(c):
1
(a) rate constraintR = 1 — Jo pocdx 0<x<1,0<

o Ao (o)dx”
pi <1
(b) typical minimum distance constraint % X n, <

2% {ne—1—ymax (14—
ne =1 — Ymax(W — k) <> A2 < in ﬂ}v ()

(c) G, existence constraint A3 > lziﬂ,)u; >
v
24ZYma,r , )\‘5 2 ZOZymax , )"6 2 62)’max
ny, ny, ny,

2: Step 2) Construction of G,
From the optimized degree distribution and the
random PEG algorithm, construct G, defined as
D@34560) — (a,b,c,d, e, f) guaranteeing a typical
minimum distance.

3: Step 3) Optimization of G,
For each y = 1,2, -, yiax, construct G, defined as
DZ345.60 — (g 4+ 15y, b — 4y, c — 6y, d — 4y, e —y,f)
and choose y' € {y} with the best threshold.

4: Step 4) Typical minimum distance check of the
PD-GLDPC code
For the chosen y’”" and G,,, if there exists any cycle for
the submatrix induced by undoped VNs of degree-2, go to
Step 2). Otherwise, output y”* and G,,.

to be partially doped in G,,. Although doping granularity for
the proposed PD-GLDPC code is 1, we consider doping for
bulks of protograph VNs in order to easily match the code rate
and degree distribution because the purpose of this subsection
is comparing FER performances between the conventional
LDPC code and the proposed PD-GLDPC code under the
same degree distribution. A PD-GLDPC code is constructed
by partially doping wy protograph VNs in G,,. Construction
of a PD-GLDPC code from G), is optimized by ranging the
doping bulk y, 1 <y < y,4,. That is, we search for the opti-
mal value y which maximizes the coding gain between the
PD-GLDPC codes constructed from G, and the conventional
protograph LDPC codes constructed from G..

Conditions for the degree distributions in order to construct
G, are derived as follows. The conditions need to guarantee
two criteria: 1) the VN degree distributions of the protograph
LDPC code constructed from G, and the PD-GLDPC code
constructed from G, after lifting by N are the same and
i) a typical minimum distance exists for both code ensem-
bles. In this subsection, we assume that partial doping is
conducted for the first iy degree-2 protograph VNs without
loss of generality due to randomness of the PEG algorithm.
For the y bulks of partially doped protograph VNs using
the PCM of the (15, 11) Hamming code, the numbers of
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protograph VNs in G, should be
D(2’3’4’5,6J) = (a + 15}’, b - 4)’7 c— 6)’7 d - 4}’, e _yaf)

Given that G, is represented as D>34360 =(a, b, ¢, d, e, f),
for the existence constraint, each element of D(23:4:5.6.))
should be non-negative. The parameters a~f are approxi-
mated by the PEG construction as

r2/2 A3/3 Aa/4

ax 22 a8 en M
As/5 re/6 A/l
e e R T R )

where ¥ = fol AG,(x)dx. For the realization of the protograph
from the degree distribution using the PEG algorithm, if the
summation a + b + c +d + e +f is lower than n,, the values
of a~f are added by 1 in order starting from the lowest VN
degree until the summation is equal to n,.

If G, is determined for a given v, as D
(a,b,c,d,e,f),wherea+b+c+d+e+f = n,, G, defined
by D%343.6.D — (4 4+ 15y, b — 4y, c — 6y, d — 4y, e — v, f)
can be constructed fory = 1, - - -, yjuqr. By allowing the PEG
algorithm of the VN degree distribution over a base matrix
with size {n. — (L — )y} X n,, both the code rate and the
VN degree distributions for the LDPC codes constructed from
G, and the proposed PD-GLDPC codes constructed from G,
after lifting by N are matched. We search for the value of y,
which has the best PEXIT threshold while having a typical
minimum distance. The optimized doping value is denoted
as y°P'. The construction of G, and the PD-GLDPC code is
described in Alg. 2.

The protograph of the conventional protograph LDPC
code, G, is made for yuq = 35,10, 15 for the half-rate
protograph LDPC code ensemble. The numerical results are
summarized in Table 2, where the coding gain given for the
proposed PD-GLDPC code is compared to the conventional
protograph LDPC code with the equal degree distribution.

3,4,5,60) _

B. OPTIMIZATION OF PD-GLDPC CODES USING
PROTOGRAPH DIFFERENTIAL EVOLUTION

In this subsection, we propose the optimization method
using the differential evolution algorithm. Similar to the dif-
ferential evolution algorithm in [37], we use the differential
evolution algorithm to find the protograph with the optimized
BEC threshold. The parameters for the differential evolution
are given as follows. The number of generations of the algo-
rithm g is set to 6000. Each entry of the base matrix can
have the integer value varying from O to a positive integer ¢.
The number of base matrices examined for each generation
instance is defined as N,,. For a given base matrix size n X ny,
we fix N, = 10-n.n,. The mutation parameter F' is fixed
to 0.5 and « is a uniform random variable with the domain
[0, 1]. Lastly, the crossover probability p. is fixed to 0.88 in
this paper.

We define the optimized PD-LDPC code ensemble as
C1 and the optimization algorithm is given in Alg. 3. It is
clear that while the optimization process is the same as that of
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TABLE 2. Simulation results for optimized PD-GLDPC codes from irregular protographs using Alg. 2, where | =20, ny = 400,R = 1/2.

G protograph Gp protograph
Ymag Ac.(z), pc, (x) (threshold) D(2:3,4,5,6,20) D(2:3,4,5,6,20) ' opt Coding gain
/ G threshold / PD-GLDPC threshold
G, (r) = 0.2049x + 0.2489x2 + 0.115023 opt _
5 40.0742% + 0.02102° + 0.3363219 (165, B 26) | (240,114, 13’0342;;6)’ v =51 90079
pG. (z) = 0.9735z7 + 0.026528 (0.4815) : )
G, (z) = 0.1894z + 0.2255z2 + 0.1431z3 opt _
10 £0.11912% + 0.035725 + 0.2872219 (152, 121,07, 559, 23) | (287,85, e 91’6?9)?’ yorr =9 0.0115
pa, () = 0.9908z7 + 0.0012x® (0.4696) : :
A, (x) = 0.1632x + 0.1758z2 + 0.2143z° opt _
15 £0.18272% + 0.054325 + 0.2098219 (131, SO 16) | (341,38, 27%04;?2’ v =14 012
pc, () = 0.994027 4+ 0.0060° (0.4476) : :

Algorithm 3 Differential Evolution Algorithm to Design the
Base Matrix of the PD-GLDPC Codes

Input: u,«,ne,ny, X, 8,t, Ny, pe, F,

Output: B, .,

1: Initialization: Set the initial base matrices (Bq, . . ., BNp)
each with size n, x n, randomly, where each entry is
chosen from {0, .. ., t}.

2. form=1:gdo

Mutation: For each £ € {1,...,N,}, the muta-
tion matrices are created through the interpolation as
follow:

[Milij=I[B 1ij + (F +a(l = F))[B,]ij — [Br]1i).

where [A];; is the (7, /) element of the matrix A and
indices r; € [N,],i =1, 2, 3 are distinct and randomly
selected. Each entry of My is replaced with the nearest
integer in {0, . . ., t}.

4: Crossover: Foreach k € {1, ..., N,}, create the trial
matrices M’y such that [M';]; j = [M];; with a prob-
ability p, and [M';];. j = [Bg]ij with probability 1 —p..
If M'j. contains any cycles only consisting of undoped
degree-2 protograph VNs, M/ is regenerated.

5:  Selection: Each base matrix in the candidates for (m+
1)th generation is chosen between By and M'y. If the
threshold of By, is larger than M'y, no update is made.
Otherwise, update B to M.

end for

7: From By, k € [N,], choose the matrix with the best
threshold value and output B, .

a

the protograph LDPC codes, the indices of the partial doping
represented by X" are included, which show the protograph
VNs that are doped by GC nodes. Although the indices of
X can be arbitrarily selected for code constructions using
the differential evolution algorithms, we fix the number of
indices as small as possible. For applications on partially
doping over a given protograph, algorithms selecting the
indices of X' can be made to optimize the performance of
the code ensemble. Also, the criterion for the existence of
the typical minimum distance derived in Theorem 1 is used
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during the construction of new trial matrices for the proposed
PD-GLDPC codes. The component code used in the follow-
ing optimization is a (15, 11) Hamming code.

We optimize the protographs for the PD-GLDPC codes for
base matrices with size 8 x 16 and 4 x 12. We set X = {1, 2}
and t = 5 for Bgx16, X = {1} and t = 3 for B4y« 2. Let
Bnc(}x n, De the resulting base matrix of the optimization for
both cases. The optimized base matrix result of Bg; 16 18 given
in (3), as shown at the bottom of the next page, where the BEC
threshold is 0.5227 with the code rate 0.4667. Likewise, the
result of Bi'( 1> 1s given in (4), as shown at the bottom of the
next page, where the BEC threshold is 0.3397 with the code
rate 0.6444. The bold parts in the matrix represent VNs that
are partially doped. The results show that the VN with the
highest degree is partially doped. From these optimization
results, we can expect that partially doping VNs with high
degree and puncturing some portion of them for rate matching
can improve the performance of the proposed PD-GLDPC
codes.

The approach of partially doping and puncturing is a simi-
lar techique to the precoding and puncturing. Precoding and
puncturing high degree VN5 in a protograph is a well known
technique in order to enhance the threshold of protograph
LDPC codes [40]. Precoding takes place by placing a CN
between a degree-1 VN and a high degree VN. In order to
compensate for the rate loss, the high degree VN is punc-
tured. From some intuition of the proposed optimization
results and well known concepts of precoding, we apply a
similar approach of the precoding technique to the proposed
PD-GLDPC codes.

We first define p, as the portion of random puncturing for
VNs that are doped. For the BEC, we use the concept in [41]
to derive p,. For a target code rate R*, the random puncturing
ratio pis 1 — ]%. Thus, pg is derived as pg = p - |"7‘| and we
use it for the computation of the EXIT during the optimization
algorithm. The channel values for the partially doped VNs
become Io;(j) = 1 — {pa + (1 — pa)e}, j € X. Thus, it is
possible to construct the PD-GLDPC codes for the target code
rate by using the random puncturing method.

For the construction of PD-GLDPC codes with the target
code rate R* = 1/2, the base matrix Bg 14 is optimized using
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Alg. 3 for X = {1,2}, pg = 0.5333, and r = 5. Likewise,
for the target code rate R* = 2/3, the base matrix Bsy 2
is optimized for X = {1}, pg = 0.4058, and ¢+ = 3. Let
B,%X,,v be the resulting base matrix for the optimized results
of the protographs constructed by puncturing partially doped
VNs. The optimized base matrices for both code rates are
given as in (5) and (6), shown at the bottom of the page, where
resulting base matrix for R* = 1/2 is given in (5) and the
resulting base matrix for R* = 2/3 is given in (6). The result-
ing thresholds of the optimized base matrices are 0.4857 and
0.319 for target code rates R* = 1/2 and R* = 2/3, respec-
tively. The optimization results show that the constructed
PD-GLDPC codes have capacity approaching performances
and the average VN density is reduced by huge amount com-
pared to B,%X”v. Since the base matrix B,fczx n, 18 driven from
the random puncturing of partially doped VNs, we define
the constructed PD-GLDPC code ensemble with parameters

C
(anxnv’ M, K, X’ /Od)

V. NUMERICAL RESULTS AND ANALYSIS

In this section, we propose the optimized protograph design
and show the FER of the proposed PD-GLDPC codes. The
performance of the conventional protograph LDPC code is
compared with that of the proposed PD-GLDPC code. Two
methods of comparison are conducted. The first subsection
compares them under the same degree distribution using

Alg. 2. The second subsection compares the performance
of the PD-GLDPC codes constructed without the degree
distribution constraints using Alg. 3 to the state-of-the-art
protograph LDPC codes.

A. SIMULATION RESULT FOR OPTIMIZED PD-GLDPC
CODE FROM IRREGULAR RANDOM LDPC

CODE ENSEMBLES

As the performance comparison with the existing GLDPC
codes, we use the random GLDPC code ensemble with the
threshold 0.466 in [17] that is represented as A(x) = 0.8x2 4+
0.01x> 4+ 0.01x> + 0.18x” and a doping ratio v = 0.4
by the Hamming code. Fig. 6 shows performance compar-
ison of four half-rate codes which are AR4JA code [31],
the irregular protograph LDPC code constructed from G,
the random ensemble-based GLDPC code in [17], and the
proposed PD-GLDPC code constructed from G, in Table 2,
where y,.x = 5. All four codes in Fig. 6 are (n,k) =
(30000, 15000) codes of the half-rate, where G. is defined
as D(2:3:4.5.6.20) — (165, 134, 47, 23, 5, 26) and has the same
VN degree distribution as the PD-GLDPC code after lifting
by N = 75.x = uy = 75 protograph VNs are partially doped
in the PD-GLDPC code. For the constructed PD-GLDPC
code, we have v = xﬁj—/ch 3753_7155000 = 0.02439.
The constructed PD-GLDPC code for y,,, = 5 has a coding
gain of 0.0079 and 0.0039 compared to the GLDPC code

(5 2 0 0 0 0 0O 1 1 1 0 0 0 0 O]
4 0 0 0 0OOO O O 1 01 01 0 0
5 5 01 0 0 1 0 0 0 01 1 1 0 0
gt _ |5 01 02 1 55 0055050 3 3)
8x16 5 3 01 1 1 5 1 0 0 0 0 1 1 2 0
0 0 1 0 0 0 0 1 4 1 3 0 0 2 1 0
4 0 0 00O OO 1 1 O 1 0 0 0 0 O
(0 5 00 0 01 0 3 00 1 1 1 1 0]
(3 0 0 3 1 3 0 1 2 2 3 0
a |30 1 3 1 0 0 0 1 2 0 1
Bo=13 1 03 0 0 000 1 0 2 @
3 33 3.0 0 3 1 0 1 0 0
2 0 5 2 1 3 0 0 1 0 O 1 0 0 0 1]
20 0 01 000 0 0 01 1 0 0 O
1 2 0 0 001 00 0 0 O0O 0 0 1 0
g _|1 0 0 0 0 0 0 1 0 2 1 0 2 1 20 5)
8x16 20 0 00 001 01 0 0 0 0 0 0
111 0 1 0 0 0 1 0 0 0 2 1 1 0
0 0 01 2 0 4 0 1 0 1 0 0 0 3 1
3 1.1 0 1.0 0000 0 1 0 0 0 O]
2 0 01 0 0 3 2 1 0 2 2
G 2 0 1 1 0 O 1 1 0 0 2 2
Biz=13 1 0 0 0 1 100 0 0 1] ©)
(2 1.2 0 3 2 0 0 1 3 0 3
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FIGURE 6. Comparison of the BEC threshold and FER for the LDPC codes
constructed from AR4JA and G¢, the conventional random GLDPC code
from the ensemble in [17], and the PD-GLDPC code from Gp, for the code
rate 1/2.

in [17] and the irregular protograph LDPC code from G,
respectively. Fig. 6 shows that the proposed PD-GLDPC code
has a good performance both in the waterfall and the low
error floor region due to the fact that the code is optimized by
increasing the doping as much as possible, and at the same
time, the typical minimum distance constraint is satisfied.
In terms of the asymptotic analysis, increasing the portion
of degree-2 VNs increases the possibility of the code to
approach the channel capacity [38]. However, the existence of
a typical minimum distance of the protograph is also impor-
tant, which upper bounds the portion of degree-2 VNs in the
LDPC code. Thus, balancing the portion of degree-2 VNS is
needed in order to satisfy both a typical minimum distance
condition and a good threshold. The proposed PD-GLDPC
code guarantees the balance of the degree-2 VN by carefully
choosing the rate of the protograph code and the number of
doping on degree-2 VNs.

B. SIMULATION RESULTS FOR PD-GLDPC CODE FROM
OPTIMIZED PROTOGRAPH

The proposed PD-GLDPC codes for R* = 1/2 and
R* = 2/3 are constructed from the ensembles (Bgim, 15,
11, {1, 2},0.5333) and (Bfilz, 15, 11, {1}, 0.4058), respec-
tively. The protographs are shown in (5) and (6). The
AR4JA [31] and block protograph codes in [31] and [37]
of the same code rate are used for performance compari-
son. We first compare the threshold and average VN degree
between the proposed PD-GLDPC code ensembles and the
aforementioned protograph LDPC code ensembles in Table 3.
The average VN degree of the PD-GLDPC codes considers
both the base matrix and the edges added from the partial
doping. The results show that the asymptotic performance
of the proposed PD-GLDPC code ensemble outperforms the
AR4JA and block protograph introduced in [31]. The aver-
age VN degree of the PD-GLDPC codes is low while hav-
ing the asymptotic performance comparable to the capacity
approaching protographs introduced in [37].
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FIGURE 7. FER comparison for the constructed codes from AR4JA [31],
protograph [31, Fig. 7], protograph [37], and PD-GLDPC code ensemble

(Bngx,,v, 15,11, X, og)-

By using the PEG algorithm, the protographs are lifted to
construct (48000, 24000) PD-GLDPC code for R* = 1/2.
The protograph AR4JA and protographs in [31] and [37] are
lifted to the same code length. The FER results are shown
in Fig. 7(a). Likewise, the protograph of the PD-GLDPC,
ARA4JA, and [37] are lifted to construct (45000, 30000) codes
for R* = 2/3. The protograph in [31, Fig. 7] is lifted to
blocklength near n = 45000. The FER results are shown
in Fig. 7(b). The doping ratio v for the PD-GLDPC codes
is 0.016393 for both code rates R* = 1/2 and R* = 2/3.
Also, the FER results of the proposed PD-GLDPC codes
for both code rates R* = 1/2 and R* = 2/3 show tangi-
ble gain compared to the AR4JA code and protograph code
in [31]. Also, the performance is comparable to the capacity
approaching block LDPC code in [37]. The partial doping
and puncturing technique, which is similar to the precoding
technique, shows that the capacity approaching PD-GLDPC
codes can be constructed with the relatively low average VN
degree.
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TABLE 3. Comparison for thresholds and average VN degrees of protographs for the BEC.

Code type Code rate Protograph size Threshold Average VN degree Gap to capacity

AR4JA [31] 0.5 3X5 0.438 3 0.062
Protograph [31, Fig. 7] 0.5 4x8 0.468 4.25 0.032
Protograph [37] 0.5 8x 16 0.486 5.25 0.014
PD-GLDPC 0.5 8Xx 16 0.4857 4.58 0.0143
AR4JA [31] 0.67 3xX7 0.287 3.29 0.046
Protograph [31, Fig. 7] 0.67 2X6 0.292 5 0.041
Protograph [37] 0.67 412 0.320 5.08 0.013
PD-GLDPC 0.67 4x12 0.319 4.09 0.014

VI. CONCLUSION

We proposed a new class of GLDPC codes called PD-GLDPC
codes that has advantages of a finer doping granularity
compared to the conventional protograph doped GLDPC
codes. Also, we proposed two optimization algorithms for
the PD-GLDPC codes: protographs constructed from ran-
dom LDPC code ensembles and protographs for PD-GLDPC
code ensembles constructed from genetic algorithms. Fur-
thermore, we proposed the partially doping and puncturing
technique. Using the proposed technique, the constructed
PD-GLDPC codes have good FER performances compared
to the popular protograph LDPC codes. Since it is possible to
partially dope the protograph VNs with a granularity one, the
rate loss is reduced from partial doping, and thus, GLDPC
codes can have capacity approaching performance in the
medium to high code rate regime. For future work, use of
other component codes and protographs with degree-1 VNs
can be studied. Also, constructions of PD-GLDPC codes by
generalizing the partial doping process such as doping over
multiple protograph VNs or doping only a portion of a proto-
graph VN can be considered. Furthermore, new constructions
of PD-GLDPC codes over additive white Gaussian noise
channels can be made.

ABBREVIATIONS
AR4JA Accumulate-Repeat-4-Jagged-Accumulate
BEC Binary erasure channel

CN Check node

EXIT Extrinsic information transfer
FER Frame error rate

GC Generalized constraint

GLDPC Generalized low-density parity-check
LDPC Low-density parity-check
ML Maximum likelihood
PCM Parity-check matrix
PD-GLDPC Partially doped GLDPC
PEG Progressive edge growth
PEXIT Protograph EXIT
SPC Single parity-check
VN Variable node
APPENDIX A

PROOF OF THEOREM 1
A proof for the constraint of the existence of a typical mini-

mum distance for the proposed PD-GLDPC code ensemble
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is given in this appendix. Similar to that in [36], a typical
minimum distance is derived by the weight enumerator anal-
ysis over the lifted protograph. In order to use the notations
in [36], we’ve distinguished the indexing notations during
the enumeration for the partially doped VNs using '. Also,
the ¢; and v; notations are used for the CNs and the VNs,
respectively. Suppose that the proposed PD-GLDPC code is
constructed from the protograph defined by G = (V,C, E)
and x VNs are partially doped, where component codes are
identical with the parameters (u, «). We assume that the
first x protograph VNs are partially doped without loss of
generality. Then, we are givena VNset V = {v(, - -+, v, } and
aCNset Cpp.grppc = BUC = {by, ---, b} U{cy, -+ -, cn,}
for the protograph. It is important to note that the GC node set
B is not defined over a protograph. However, the codeword
enumeration can be made when the protograph is lifted,
where by, € [x] is a virtual CN that represents CNs of the
component code used for partial doping for vy in the original
protograph. Although by is not a protograph CN, we define
it for the enumeration of the partially doped protograph VNs.
The PD-GLDPC code is constructed by lifting the graph G
by N times and permuting the replicated edges. Each v; (c;)
has degree gy, (qc;) in terms of G and each by has degree w in
terms of B. For the enumeration of the GC node b, we can
think of it as a protograph node of degree p that is lifted by
a factor of . The upper bound of the weight enumerator of
the proposed PD-GLDPC code ensemble with the weight d,
denoted as A(I;D'GLDP € is derived as follows.

Let w4, u € [gy,,] be the uth edge weight from a VN v,,.
For a partially doped VN v,,, m € [x], there are additional
u weights sent towards the incident GC node, where the uth
weight is defined as wﬁn) u» 4 € [u]. For a given input weight
vector d = (dy, - - -, dp,), we need to calculate APD-GLDPC (q)
and sum it over every instance of d that satisfies d = d; +
-+ +dy,. Forinputdy, i’ € [x], itis clear that Y /" | w), . = dy
because the extrinsic weight w/, ; consists of weights solely

from v,,. We introduce the f0110\i/ing notations:
o

vi N
Adi(wi) - d: (Sd"vwi,l 2Tt Sdiﬁwi,qvi
l
_ )G ifwij=di Y € gy
0, otherwise

is the vector weight enumerator for a VN v; of the
protograph [36].
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o Afi(z;) is the vector weight enumerator for a CN ¢; of
the original protograph, for the incoming weight vector
2 =121, Zg, ) 361,

By = b Tt =

i 0, otherwise
the vector weight enumerator for partially doped VNs
vy, 1 € [x].

« Bbv (w;,) is the vector weight enumerator for CNs that are
created during the lifting process given the weight vector
w;,. Abv (dy) is the summation of enumerators over all
possible w;, values given that wj, | + -+ + W;",u = dy
satisfying

Abi (dy) = ZBb/(w)

= ZZC( m),

, _ / . ’ n / —
where w = (W),---,w),) such that >3 wj =

<N
dk’ i—= u
Then, the weight enumerator is given as
— ZAPDfGLDPC(dL

{d}

AS)D_GLDPC

where
[T, 4 (w)]‘[ | A% (z))
[T, ZV“I(le]r)
RURRST
[Ti= IT ’—1( )
= ) H LA%(d))
wong o T G
» - 1B”i’(w/) |
[y T _1( )

The solution to the equation w’

APD-GLDPC d) =

= mMC is given as
N

my}. The term (w/‘ ) is lower bounded by
Cr )WS’ v e W My Then, APP~GLDPC(d) can be upper
bounded asin (7), shown at the bottom of the next page, where
P = Y 5 _,dy is the total weight of the x partially doped
VNs. Then Y (¢ - Int) < (O ,t) - In(Q_, 1) is used for the
second and the third inequalities in (7). It was shown in (18)
of [36] that the inequality

m = {m,--

av; k) I 2)

[T2A%) D ay=1=—)diln A+ o
_— < e mln min
1 = | |
ny N CIvi* .
[T (d,-) i=1

holds, where d(c) is the minimum distance of an SPC com-
ponent code for the original protograph and k,(,mx is the max-
imum number of codewords of an SPC component code.
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Using the similar notations in [36], let d,gfil and k® be the
minimum distance and the number of codewords of the (u, )
component code for the GC nodes. Then, ]_[f,:l Abr (dy) is
upper bounded as in (8), shown at the bottom of the next page.
For the inequality in the third line of (8), we use the fact that
P tilnt; <s-Ind withs =t +---+1,, which is clear by
using the derivative on the multivariable function that consists
of independent ¢#;’s. The equality is satisfied when all t; values
are the same. Going back to (7), let f(P) =

(N ) —PInP
convenience. Then we can organize the inequality as in (9),
shown at the bottom of the next page. We classify the VNs in
the protograph into three groups before doping:

o Protograph VN5 of degrees higher than 2

« Protograph VN5 of degree-2 to be partially doped

« Protograph VNs of degree-2 not to be partially doped.
We also separate the weights of codewords after lifting into
three parts according to the three groups of VNs: u;, p,, and
l;, where u; is the weight of the sub-codeword corresponding
to a protograph VN v; of degree higher than 2 and p; and J;
are the weights of the sub-codewords of each partially doped
and undoped protograph VN v, and v; of degree-2 from the
protograph, respectively. The sum of sub-codeword weights
for each group of VNs is givenas U = ) ,u;, P = ) __p.,
and L = ) ; lj- It is clear that for the total codeword weight
d,d = U + P + L. Then, the upper bound of the first term
in (9) is written as

(c)
i d;  qv; QtkmaxIn2)
ny (LIvi—l—%)diln Wl"'%a’i
e dmin dmin
i=1
- ((> )d—P— L)lnd P— L+w (d—P—L)
e mln dl'l'llrl

2(2+k,(,§ax n2) 2(2+kma cIn2) P
(c) (c)
Xe min e dmm s ( 1 O)

which is derived by using three weight groups of codewords

similar to (20) of [36]. We share the same inequality u; <
kD )
Ne ' over the given codeword weight d as in [36].

The upper bound of the second [ term of (9) can be derived

as
L, kD2 1
x <N> (b)d/ T”)d_ (b)d/ln
1_[ — min e min mm
"

i'=1

x 1 v er®my ,
FORG dyln 3 Fo; dy (b) d/ln
= e min g ”1[’1 mm
i'=1
X +kPim2)
(b) d,/l = dy
= e mm e mm
i'=1
x 1 N C+kO@im2)
o P Ty Pe
= 1_[@ min e min
z=1
(b) P.in Nx (2+k((b)1n 2p
S e “min e dmm . (11)
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Using (10) and (11), the upper bound

derived in terms of E(d, P, L) as follows:

APD—GLDPC (d)

Ny (2+k(h)ln 2)
d(b) P-in @ P
< e "min e ‘min

(©)
)d—P—Lyln =E=L 4 3 madn (g _p_p)

min

of APD—GLDPC(d) is -
xXe

3
7©

min
204K n2) (
(©)

min

xe WDl r(P). (12)

Let E(d, P, L) be the parameter satisfying APP-GLPPC(q) <
=) . pEW@.P.L)  Then, from the upper bound in (12),

APD—GLDPC (d)

/. !
Wywy

IT14°0) x Ty P00
(g)qvi % 1—[?/ 1 I—[;,L/ I(N)Wv/ r/e W;/J./'ll‘l W;/’,./
i = r=

[Ti, A%(d)) x [Ty B (W)

2

n
+-~-+w;.,_ﬂ=dl-/} Hi:1

= >
- n,  (N\9vi—1 X (NNdy ,—dg-Indy
wyon, ety =dy) Tlidy (@)™ x [hm Gofvemdrind
[T, A%d)) x [Ti—, B" (W))
=1 J
< >
- n (N\&—L  N\p _pmp
{W;':W;".1+"'+W;".u:di’} ni:l (di) x (M) ¢
ne cicd. X by (!
Hj:] A "(dj) X Hi’:] Z{w’.,:w’./ +eetw,  =dy} B (wi’)
_ i 7,1 i’ i
N n (N\&~1 N\P,_pinp
[T () x()e
ne ; X b
_ [Ti2, A9(dy) x [T A" (dy) -
o N\ NP PP
[T () x()'e
(2+k/ n2)
X x / e 1 /
by (b) FORCARO) Wy Wy
l_[A i (di’) < 1_[ Z l_[( ) min e min min
=1 i'=1 {w w,1+ +w, —d/}l—
<2+k/ n2)
al N 4 — iy —dr =X <b) sy
d
= 1_[ Z (—) min e mm mm
U=1{w,:w, +-+w dy} ®
Wi /o
(2+k’ n?2)
1
x d(h) d (b) dl-/ (b) d/l}’l
< 1_[ Z ( ) min @ mm mm
I=1{w,:w, 4w, =dy} ®
=W [
(2+Kk,In2)
X (dy+ =1\ N rde — iy —dr——gydyin %
< H (—)min € min i )
e dy u
n qv; i | Qi kS in2)
v gy 1= )diln W”f’Td"
APD'GLDPC(d) S 1_[6 min mm
i=1
N Ly (2+k’/n2) dy
N o~ —dr= oy n
X l_[ edi’+:u_1(_)dmin e mm mm f(P)
; 158
=1
" Ly dp | v Crkaain2)
v (q"'i (L) )diln W+Td,
E l_le mm min
i=1
+kPin2) d dyl
_ (b) o 4Tl <b> ’”*
Xex(l‘t 1) P 1_[( dmm e dmm mm f(P) (9)
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E(d, P, L) is given as

1 N 24+ k®m2
Ed,P,L)= —P-In * M

) P (b)
dmin P dmin
3 d—P—L
+2 = —5)d = P — Lin —————
min
(c)
32 + kypgxIn2
(2 + kaxin )(d—P—L)
ds)
min
(c)
212 + kpaxln2
( (gax )(P +1L)
d

min

N
+P + PlnP — Pln —.
n

Assuming that there are no cycles consisting only of
undoped VNs of degree-2, we can further ignore the existence
of type 1 degree-2 VNs defined in [36] for undoped degree-
2 VNs. Thus, we use the result of (22) in [36] such that the
: sy 786D 1yl €y of
inequality L} < —(L," + Yo iw; ) is satisfied for all
J € [nc], where lg}g is the weight of the degree-2 undoped
VN of the original protograph and the total weight of them
is denoted as L;Cj ) for a CN ¢;. Similar to the result in [36],
we can derive the upper bound L < y(U + P), which is
the same as L < %d. Now, the upper bound of E(d, P, L)
needs to be derived for independent values L and P. The first

and second partial derivatives of E(d, P, L) by P are given as

dE 1 Nx Q+k®in2)
_— = ——n— e —
®) ®)
dp dmin eP dmin
3 ed—P—L) Q+k9imn2)
Q- —5)n N B ©
dmin dmin

N
+14+mhP+1—-—In— <O,
I

d’E 1 3 1
T g, T )

min

1
L)
di—pP_L P~

min

Since the first derivative over P is negative and the second
derivative is positive, E(d, P, L) is upper bounded by

3
lim E(d,P.L) = (2 — ——)(d — L)in
P—0+ (©
min
32+ kS,
d(C)

min

+ (d—1L)

202 + k) In 2),

Since the resulting upper bound of E(d, L) is the same as (37)
in [36], the rest of the proof is the same as that in [36]
and thus the proposed constraint guarantees the existence of
typical minimum distance of the proposed PD-GLDPC code
ensemble.
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