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ABSTRACT In the production of aluminum, the regenerative aluminum smelting process is an important
part for energy efficiency and product quality. Aluminum liquid temperature is a significant variable in the
aluminum smelting process, and it is costly to measure timely because it requires protective temperature
sensor. To handle this problem, a kind of modeling framework which combine a mechanism model with
multi-scale kernel technique is proposed. First, the mechanism model is built for the aluminum liquid
temperature by the energy conservation law and heat transfer mechanism. Since the mechanism model is
based on some assumptions, it often results in unknown variables. Thus, the multi-scale kernel technique is
used to obtain the unknown variables. Finally, a hybrid temperature prediction model is built by combining
the multi-scale kernel and the mechanism model. The parameter identification of the hybrid model is
described as an optimization problem, and a hybrid strategy-based sparrow search algorithm (HSSA) is
proposed to solve this problem. The experiment results show that HSSA has higher convergence accuracy
and stronger global search ability than the original sparrow search algorithm (SSA), and the proposed hybrid
model can correctly estimate the aluminum liquid temperature.

INDEX TERMS Regenerative aluminum smelting, mechanism modeling, multi-scale kernel, sparrow search
algorithm.

I. INTRODUCTION

Aluminum has good ductility, plasticity, recyclability and
oxidation resistance. Based on excellent physical and chemi-
cal properties, aluminum alloys are widely applied in automo-
bile, aviation and military industries. The aluminum smelting
process is an important part for the production of recycled
aluminum. This process mainly smelts the scrap aluminum
parts and aluminum smelting trimmings, and then recycled
aluminum is produced through thermal insulation, casting
and other processes. Besides, aluminum smelting can also be
used for the remelting and reprocessing of various aluminum
ingots. Aluminum smelting furnace is the key equipment for
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aluminum smelting and the main energy consuming equip-
ment of the process. The traditional recuperative smelting
technology has high fuel consumption, while the regenerative
smelting technology has low energy consumption [1]. In the
production of aluminum, the regenerative aluminum smelt-
ing process is an important part for energy efficiency and
product quality. Aluminum liquid temperature is a significant
variable in the aluminum smelting process, and it is costly
to measure timely because it requires protective temperature
sensor. Therefore, it is of practical significance to study the
online prediction method of aluminum liquid temperature for
monitoring the state of the aluminum smelting process.
Aluminum smelting is one of the typically complex indus-
trial furnace production process. Many scholars have con-
ducted a lot of related research on the modeling of complex
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industrial furnaces. Gao et al. [2] modeled the pyrolysis and
gasification processes of oil-bearing sludge to study the heat
transfer characteristics of an industrial furnace. In this model-
ing, material equations of motion, heat transfer equations and
kinetic equations were used to describe the pyrolysis process,
while mass and energy equations were used to describe the
gasification process. Alshehhi and Ali [3] presented a val-
idated 3D Computational Fluid Dynamics (CFD) model to
study the effects of burner position and orientation, chimney
position and flow momentum on heat transfer of hot gas and
furnace thermal efficiency, and the optimal design parameters
were obtained. Li et al. [4] calculated the slag iron heat index
by using the heat, carbon and oxygen balance in the high tem-
perature zone of the blast furnace. Then, using the relation-
ship between iron liquid temperature and slag iron heat index,
the furnace temperature parameters are calculated when pro-
duction conditions are changed. Zhou et al. [5] developed
various CFD models to simulate complex multi-phase reac-
tive flows in three regions of furnace, shaft, raceway and
hearth for fault diagnosis and operational optimization of
blast furnaces. Although the physical significance of this
kind of mechanism modeling approach is relatively clear, for
complex systems such as industrial furnaces, modeling often
suffers from computational complexity and time consump-
tion. Besides, certain assumptions or idealized modeling in
order to study a particular problem leads to a reduction in
the accuracy of the model. Hence, it is difficult to meet the
requirements of experiment with only a single mechanism
model.

Currently, more research on the modeling of industrial
furnaces and similar processes is focused on data-driven
approaches. In the aluminum smelting process, the collected
data is highly non-linear and time-varying due to the fluc-
tuating composition of the incoming material, the variety of
metal impurities contained in aluminum and the complexity
of the smelting process. For modeling strongly nonlinear
processes such as industrial furnaces, Chen et al. [6] pro-
posed a soft sensor modeling framework based on a double
locally weighted kernel principal component regression with
approximate linear correlation, and applied it to tempera-
ture prediction in a roller kiln furnace for lithium battery
cathode materials. Chen et al. [7] considered more accu-
rate predictions based on the paper [6] and constructed a
data-driven error compensation model using real-time opera-
tional data. For the strongly non-linear, highly redundant and
time-varying characteristics, an error compensation model
was developed using a double locally weighted kernel prin-
cipal component regression based on a dynamic window.
Finally, the compensation model was combined with the
mechanistic model to obtain a hybrid temperature predic-
tion model. Wu er al. [8] proposed a stacked auto-encoder
deep learning method based on just-in-time learning, and
applied it to the modeling of industrial hydrocracking pro-
cesses. Yang et al. [9] combined a mechanistic model of the
smelting process with a data-driven approach using artifi-
cial intelligence technology. The uncertainty and error of
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the mechanism model were modeled by a neural network
of unknown order. To effectively combine the mechanism
model and the data-driven model, a new saturation alter-
nation identification strategy was proposed. With the goal
of obtaining accurate silicon content online to improve the
quality of iron, a soft sensor method based on an adaptive
stacked polymorphism model was proposed in the paper [10].
Considering the process time variability of blast furnace iron
and silicon content prediction models, Li et al. [11] proposed
a new data-driven modeling approach to ensure the accuracy
of the model. First, a nonlinear T-S fuzzy model was con-
structed for the silicon content of iron liquid, and then the
subsequent parameters of the fuzzy model were identified
using a Bayesian approach to obtain probabilistic outputs.
Saxén et al. [12] reviewed a data-driven time-discrete model
for short-term time-discrete prediction of silicon content in
blast furnace hot metal. Gultekin ef al. [13] used a data-driven
dynamic mode-following control decomposition method to
model an inverter-fed induction motor. These papers above
provided ideas for dealing with the time variability of alu-
minum smelting process. Qu et al. [14] proposed an artificial
bee colony algorithm to optimize the classifier model of
the kernel extreme learning machine. The introduction of
the kernel method was beneficial to the classification and
identification of power quality disturbance signals. Tang and
Tian [15] could flexibly and stably process multi-source het-
erogeneous datasets through automatic adjustment of kernel
parameters. In addition, using multiple kernels could enhance
the interpretability of the model and improve the general-
ization performance of the classifier. Troncoso ef al. [16]
introduced a kernel function for time series data and used
it for any data mining task that relies on similarity or dis-
tance measures. Bao et al. [17] established multi-scale ker-
nels approach through a multi-kernel learning framework.
This approach generalized well not only the dispersed regions
of the training set but also the dense regions of the dataset.
Huang et al. [18] extracted the main components of the neural
network input by the kernel principal component analysis
method and built a prediction model for furnace temperature
by an improved extreme learning machine, obtaining better
prediction capability and higher generalization capability.
These papers provided the basic ideas for the research of this
paper. Although this type of data-driven modeling approach
enhanced the accuracy of model, it still had some disadvan-
tages. Firstly, it required a large amount of data. Secondly,
the distribution of data must include most of the situations
in the actual factory, otherwise the data-driven model may
not be applicable in some cases. Therefore, it is necessary to
further study the mechanism and data in the process modeling
to describe the aluminum smelting process more accurately.
Parameter identification is an important process in mod-
ern industrial process modeling. By properly optimizing and
adjusting model parameters, it can guide the operation of
the production process as much as possible. The problem of
parameter identification usually can be described as an opti-
mization problem. In recent decades, the swarm intelligence
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optimization algorithm has become the main technology to
solve the global optimization problem due to its simplicity,
flexibility and efficiency. To date, many algorithms such as
the firefly algorithm [19], the bat algorithm [20], the gray
wolf algorithm [21], the ant lion algorithm [22], the whale
algorithm [23], the salp swarm algorithm [24] and sparrow
search algorithm (SSA) have been successively proposed by
scholars. Among them, the sparrow algorithm (SSA) is a
new swarm intelligence algorithm developed by Xue and
Shen [25] based on the foraging and anti-predatory behav-
ior of sparrows. SSA is capable of satisfying the global
exploration and local exploitation abilities required by an
optimization algorithm, hence it is widely applied in the
identification of parameters in complex models. Yan and
Song [26] used SSA to optimize Back-propagation (BP)
neural network and applied it to coal mine water source
data processing. Yuan and Zhao [27] proposed a distributed
maximum power point tracking method based on improved
sparrow search algorithm. Tuerxun and Chang [28] used the
SSA for optimizing the penalty factor and kernel function
parameters of support vector machines, and constructed a
sparrow search algorithm-support vector machine wind tur-
bine fault diagnosis model. Nevertheless, there are still prob-
lems such as slow convergence, weak global search ability,
and the tendency to fall into local optimality when solving
the optimization problem. In order to improve the perfor-
mance of the SSA, Liu and Ye [29] used the Levy flight
strategy to simulate the bat search predation behavior, thus
essentially improving the optimization performance of the
algorithm and reducing the algorithm parameters. Simula-
tion tests with standard functions showed that the bat algo-
rithm with Levy flight characteristics effectively improved
the individual bat search ability, and convergence perfor-
mance and search accuracy were significantly improved. Fur-
thermore, Ma and Lu [30] combined SSA with improved
tent chaos mutation, Levy flight mutation, learning muta-
tion based on elite opposition, and variable radius mutation
inter-combination to obtain SSA variants of the optimal algo-
rithm. Lee and Kim [31] proposed a hybrid algorithm of par-
allel simulated annealing, which learns the Bayesian network
structure through a greedy algorithm. Specifically, simulated
annealing was then parallelized with memory to speed up the
search process. In each step of local search, a hybrid search
method combining simulated annealing and greedy algo-
rithm improved the convergence accuracy. Elgamal et al. [32]
introduced the chaotic initialization and simulated annealing
mechanism into the Harris Eagle algorithm, which was com-
pared with the grasshopper optimization algorithm, particle
swarm optimization, genetic algorithm, butterfly optimiza-
tion algorithm and ant lion algorithm one by one. A com-
parison of six learning algorithms through a neuron model
was made by Gao et al. [33], including particle swarm opti-
mization, genetic algorithm, ant colony optimization, evolu-
tionary strategy and population-based incremental learning.
In order to obtain larger data volume, better data utilization
and higher proxy accuracy, Li et al. [34] proposed a new
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evolutionary algorithm framework. For the problem of com-
plex material grinding factors and difficulty in accurately
predicting yield particle size, Zhang et al. [35] introduced a
chaotic initialization population to promote the global search
ability. At the same time, the Cauchy mutation strategy was
introduced to solve the local optimal problem, effectively
improving the algorithm’s search ability. Together, swarm
intelligence methods have been improved by the above schol-
ars extremely. However, in the face of complex industrial
processes, swarm intelligence algorithms still suffer from
unsatisfactory global search ability and a tendency to fall into
local optimum. Therefore, it is necessary to further explore
the application of swarm intelligence algorithm in combina-
tion with the characteristics of industrial furnaces. SSA is
a new meta-heuristic algorithm with fewer control param-
eters and superior local search capability. Compared with
other algorithms, the introduction of some strategies such as
the simulated annealing mechanism and weighting factors,
allows the SSA to avoid falling into local optima while
ensuring convergence. Subsequent experimental simulations
also show that the hybrid strategy-based sparrow algorithm
outperforms other algorithms in terms of convergence and
convergence speed, and is more suitable for handling similar
non-linear optimization problems in industrial furnaces.

In summary, many scholars have proposed a great variety
of methods on the modeling and parameter optimization of
industrial furnaces and complex industrial processes. How-
ever, due to the complex thermodynamics of the aluminum
smelting process and the large fluctuation of incoming mate-
rials, these approaches are difficult to be directly applied to
aluminum smelting process. Therefore, this paper designs
a process hybrid modeling approach that combines process
mechanics and data to predict aluminum liquid tempera-
ture. Besides, a hybrid strategy-based sparrow search algo-
rithm (HSSA) is proposed to identify the parameters of the
model. The subsequent subsections of this paper are struc-
tured as follows. Section 2 analyzes the problems existing in
the aluminum smelting process. In the third section, a hybrid
modeling approach for aluminum smelting process is pro-
posed. The fourth section describes the parameter identifica-
tion problem of the hybrid model, and proposes an improved
sparrow optimization algorithm. Section 5 verifies the effects
of the proposed model and algorithm through experiments.
Section 6 is the conclusion.

Il. ANALYSIS OF PROBLEMS IN ALUMINUM SMELTING
PROCESS

As shown in the flow chart of recycled aluminum smelting
(Fig. 1), the smelting is the critical process and aluminum
smelting furnace is the main equipment in aluminum recycle.
The structure of regenerative aluminum smelting furnace is
shown in Fig. 2, consisting of a furnace chamber, a regener-
ative burner (containing a burner and a regenerative pool),
a reversing device and a smoke exhaust device. The two
burners are not in the same working condition during normal
operation of the regenerative burner. When one of the burners

101151



IEEE Access

Y. Luo et al.: Hybrid Modeling Method for Aluminum Smelting Process Based on a HSSA

is in the combustion operation, its fuel channel is open, and
cold air through the incandescent heat accumulator is heated
to hot air for fuel combustion. At the same time, another
burner in the heat storage state, its fuel channel is closed,
and the combustion products enter into the heat accumulator
under the action of the fan through the combustion channel.
Hence, the heat accumulates in the heat accumulator and
is discharged through the smoke exhaust device. From the
analysis of aluminum smelting production process and field
experience, the temperature of aluminum liquid is a key vari-
able in the aluminum smelting process. In actual production,
the temperature of aluminum liquid needs to be measured
by a thermocouple with a protective jacket, and the life of
the thermocouple is short, which increases the production
cost.
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FIGURE 1. Flow chart of recycled aluminum smelting.

To handle the problems in the aluminum smelting process,
this paper proposes a hybrid modeling method that combine
a mechanism model with multi-scale kernels to predict the
aluminum liquid temperature. Firstly, through heat transfer
analysis and energy conservation principle, the mechanism
model between aluminum liquid temperature and input vari-
ables is established. In this mechanism model, there are some
variables that cannot be measured. Multi-scale kernel tech-
nology is introduced to estimate these unknown variables.
Then, HSSA is proposed to optimize the model parameters.
Finally, the accuracy and efficiency of the proposed approach
are verified by actual industrial data.
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FIGURE 2. Working structure diagram of regenerative smelting furnace.

lIl. HYBRID MODELING OF THE ALUMINUM SMELTING
PROCESS

A. MODELING OF ALUMINUM LIQUID TEMPERATURE
BASED ON HEAT TRANSFER MECHANISM

Through heat transfer mechanism, the relationship between
temperature change and heat change is established. Firstly,
the furnace is considered as a heat balance system, and the
heat income and heat outcome in the smelting furnace are
analyzed. As shown in Fig. 3. Q1, Q2, Q3, Q4, and Q5 are
heat income, and Q6, Q7, Q8, Q9, and Q10 are heat outcome.

Aluminum liquid

FIGURE 3. Energy change in aluminum smelting process.

According to the energy conservation law and heat transfer
mechanism, the relational equation of Q1-Q10 is established.
The specific equations are shown in Table 1, and some of
the variables involved are shown in Table 2. The follow-
ing assumptions are made: the temperature of the material
entering the furnace, the temperature of air before enters
the furnace, the gas temperature, and the temperature of the
ambient air are regarded as the temperature of the material
entering the furnace. The assumptions can be represented as
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T,(t) = Ty(t) = T,(t) = T¢(t). Cs represents the average
specific heat capacity (J/kg- °C) corresponding to each heat,
and my represents the corresponding mass (kg) of each heat,
where s € [1, 10].

As shown in Fig. 3, Q1 is the heat brought in by the
material, Q2 is the heat brought in by the air, Q3 is the heat
brought in by the natural gas, Q4 is the heat generated by
the combustion reaction, and Q5 is the heat generated by the
burning loss of the aluminum liquid. Heat outcome items: Q6
is the heat of material smelting, Q7 is the heat dissipation of
the furnace body, Q8 is the heat taken away by the flue gas,
Q9 is the heat taken away by the slag, and Q10 is the heat
dissipation of the furnace.

TABLE 1. Heat calculation table.

Symbol  Calculation Symbol  Calculation
Ql Q=CmT,0 Q6 Quy =Cymy (T,(0)=T,(0))
0,,=m,L
Qs = Cymy (T,()=T,,(1))
Q2 0,=C,mT,(t) Q7 0, =3.6K,(T,()-1, (1) 47
Q3 o, =CmT(t) Q8 0, =C,m,T,(t)
Q4 0,=m0,, Q0 0,=Cm.T.(1)
® o osMeo, OO g,=Kd()-T,()

According to the heat income and heat outcome in the
smelting furnace, equation (1) is used to establish the differ-
ential equation of aluminum liquid temperature:

dar

E = h(Qincome - Qoutcome) (1)

TABLE 2. Variable comparison.

Symbol Instruction Symbol Instruction
Combustion air T Slag
4 ;
flow temperature
Flue gas
T
¢ Gas flow ! temperature
@, Air-fuel ratio T Outer wall
temperature
- Furnace chamber T Mater_lal
T . smelting
temperature
temperature
Temperature of Material
T, material into the T, discharge
furnace temperature

Combined with Table 1 and equation (1), the dynamic
model of aluminum liquid temperature is got by some math-
ematical operations, and it is established as

dt ()
f@) = = " Ty (t) + hoTy(t) + h3 Ty (t) + haTy(t)

+ hsT,(t) + heT, (t) + hiT (1) + hg  (2)
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where hy, hy, h3, hg, hs, hg, h7, hg are the influence coeffi-
cients. In this model, the smelting temperature of material 7;,,
the temperature of the materials entering the furnace 7,; and
the temperature of flue gas 7\, can be obtained from the
industrial data. With regard to the material discharge temper-
ature T, slag temperature 7, and outer wall temperature 7,,
it is difficult to measure online and they are related to various
factors such as combustion air flow, gas flow, air-fuel ratio
and so on. At the same time, it is difficult to obtain the three
temperatures through mechanism analysis. Therefore, we use
the data of combustion air flow, gas flow, air-fuel ratio and
other data to estimate T, T; and T, in the mechanism model
through the kernel function method.

B. UNMEASURED TEMPERATURE ESTIMATION METHOD
BASED ON MULTI-SCALE KERNEL

The material discharge temperature, slag temperature, and
outer wall temperature are difficult to measure online and are
related to many factors. The functional relationship of these
three temperatures cannot be directly measured or obtained
through data calculation, and the unknown functional rela-
tionship in the mechanism model can be constructed by the
kernel function. While it is difficult for a single kernel func-
tion to handle the data with different temporal characteristics.
Hence, a multi-scale kernel method is proposed to deal with
this problem. The Gaussian kernel function is used to build
a multi-scale kernel function. Then, the unknown functional
relationship in the mechanism model is constructed through
the Gaussian kernel function. Taking the slag temperature as
an example, a function is constructed to estimate the slag
temperature, described as follows:

To(1) = Q(p(1)) 3)

The slag temperature is related to the combustion air flow
rate @1, the gas flow rate ¢, and the air-fuel ratio @3, so the
function ¢(¢) can be described as:

(1) = [p1(1), p2(0), 93(0)]" “)

The kernel functions with different scales are fused
together to obtain the function Q. The increments of ¢1, @2
and ¢3 are used as the variables of the kernel function,
represented as

lp() — ot — DII?
K (o), ot — 1)) = exp(— 252 ) )
where § is the bandwidth of the kernel function. By using
m different §, we can obtain multi-scale Gaussian Kernel
functions:

g — 9t = DI

g =9t = DI?

exp( 26]2 ), ...exp( 28%1 ),
(6)
where 61 < ... < §,;. When the bandwidth § is small, the

kernel function becomes steeper and is suitable for samples
with large variation. Conversely, kernel function with larger
bandwidth is suitable for samples that vary less. Through the
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combination of multiple scale kernel functions, the model
can achieve good performance for data with different trends,
thus getting better generalization ability. To improve the effi-
ciency of multi-scale kernel learning, the method of weighted
summation kernel is adopted. Assume that K is a multi-scale
kernel function, which is obtained by synthesizing m basic
kernel functions of different scales.

m
K =K1+ &Ky + ...+ ,Kpy, Zejz I, £=>0
j=1

@)
where ¢&; is the weighting coefficient of the kernel
function K.

e = ot = DI
2

25;
j=12,...m,

Kj = exp(

),
5]<52<'--<8m (8)

By using the multi-scale kernel to estimate 7, 7, and 7T,
the hybrid model can be obtained as follows

dT(t)

f@) = el h Ty (t) + hoTn(t) + haKer + haTy(t)
+hsKz + heKo + h1T (1) + hg ©)
m
K=Y ecjK; (10)
j=1
m
Kz =) eK; (11)
j=1
m
Ko = eoK; (12)
j=1

The parameter identification of model (9) is described as
an optimization problem:

N A

D (T - T10))?
i=1

5.t 60 € (Pmin,Pmax)

ati(6) _
—— =f0 (13)

II1011’1 J(©) =

where 7; is the predicted temperature of the aluminum
liquid, 7; is the temperature of actual aluminum lig-
uid, N is the number of samples. 6 is the parameter
to be identified in the model, and can be described as
0 = [e7,822,.--Em, Ecils Ecl2s - - - Eclm» Eol> €025 « - - Eoms
81,82, ...8m, hy ... hg]. Puip and Py, are the upper and
lower bounds of 6.

Since the optimization problem contains a nonlinear model
as an equation constraint, the traditional gradient-based
method is difficult to find the global optimal solution. The
sparrow algorithm has the advantages of high solution accu-
racy, fast convergence, and good stability in dealing with
the optimization-seeking problem, However, it still has the
problems of low accuracy, slow speed, and easy to be
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trapped in local optimum when facing the multi-peaked prob-
lem. Hence, based on the sparrow optimization algorithm,
an improved sparrow optimization algorithm is proposed to
solve the above problems.

IV. BATTERY TEST SYSTEM AND MIODEL PARAMETER
IDENTIFICATION

SSA is mainly inspired by the foraging behavior and anti-
predation behavior of sparrows. Individuals in SSA are
divided into three types: discoverers, followers and sparrows
who are aware of the danger. The identity of discoverers and
followers is dynamic and changing. The discoverer provides
the foraging area and direction for the population, the fol-
lower follows the discoverer to forage, and the sparrow who is
aware of the danger is responsible for the surveillance around.
During the foraging process, the positions of three types of
individuals will be continuously updated to obtain the optimal
food source, and the position of the optimal food source is the
found optimal solution [25]. In this paper, we improve SSA
in terms of improving the initialization position, updating
the position iterations, and avoiding local convergence as
follows.

A. IMPROVING CHAOS FACTOR INITIALIZATION
POPULATIONS

The sparrow algorithm starts by randomly initializing the
sparrow population and defining the relevant parameters,
as well as defining the maximum number of iterations. The
initialized population is.

X1,1 X1,2 t X1,d

0 X2,1 X2,2 t X2.d
X'=| . ) ) ) (14)

Xn, 1 Xn,2 o Xnd

where 7 is the number of sparrows, d shows the dimension
of the variables to be optimized. The improvement is done by
introducing a chaos factor to update the initialized population,

Xl.fjl = sin(%) (15)
i

where v indicates the current iteration, » € (0, 1) ,Xi‘fj rep-
resents the value of the jth dimension of the ith sparrow at
the vth iteration. The search space is made to have better
uniformity and increase the population diversity. The fitness
of the initial population is then calculated and ranked to select
the current best and worst values.

B. IMPROVEMENT OF NON-INERTIAL WEIGHTING
FACTOR STRATEGY

The location update strategy of the discoverer is described as
follows.

i
XV.exp| ————— if R, < ST
XZ].H: b p( axitermax> f Ry (16)
X\ +0xL if Ry > ST
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where v indicates the current iteration, j = 1,2,...,d.
iter;qy 1s the maximum number of iterations, which takes the
value of 1000. i € (0, 100), @ € (0, 1) are a random number.
Ry (Ry € (0, 1)) and ST (ST € [0.5, 1]) represent the alarm
value and the safety threshold, respectively. Q is a random
number that follows a normal distribution. L shows a 1 x d
of the matrix, where each element inside is 1. When R, < ST,
it means that there are no predators around and the finder
goes into wide search mode. If R, > ST, it means that
some sparrows found the predator and all sparrows need to
fly quickly to other safe areas. By introducing a nonlinear
inertia weighting factor.

w(v) = 0.01 x ( 2 — 1)
Xivj exp (—;> X W(V) lf R2 < ST
! = . o X itermax
i
if Ry > ST
(17)

(XZVJ- 40 x L) X W(v)

where v is the number of the current iterations, 0.01 is the
weighting factor. X! V] denotes the value of the jth dimension
of the ith sparrow at the v iteration. The weights will decrease
nonlinearly as the number of iterations increases. Larger
nonlinear weights in the early iterations are good for global
search, and smaller nonlinear weights in the later iterations
are good for local search.

C. IMPROVEMENT OF LEVY FLIGHT STRATEGY
The location update strategy of the follower is described as

follows
Xworst - X,}jj . n
—=a ) Tiz3

xrl = | 2exp i 2 (18)

Xl‘,’H +0xL otherwise

where X, is the optimal position occupied by the finder.
Xworst denotes the current global worst location. A indicates a
1 xd of the matrix for which each element inside is randomly
assigned to 1 or —1, AT = AT(AAT)"!. When i > n/2, it
represents that the ith follower with the worse fitness value
is not getting food and is in a very hungry state, Hence,
it needs to fly to other places to forage for more energy. When
i < n/2, the sparrow moves around the optimal location.
Add Levy flight strategy when i < n/2.

A
Levy(d) = 0.01 x 1=

2t (3)

I'(l+ p) x sinZ2
s (I'+p) ) (19)

Fe) x p x 2((‘721))

where d denotes the dimension of the variables to be opti-
mized. p is a constant. rj, rp are random numbers in the
range [0,1]. Gamma function on the set of real numbers for
positive integers is x, where I'(x) = (x — 1)!. In the process
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of finding the optimal solution, Levy flight strategy can not
only perform local search in short distance but also global
search in long distance. Therefore, when searching near the
optimal value, Levy can enhance the local search ability and
effectively solve the problem of standard sparrow algorithm
falling into local optimum.

Then update the location of the sparrow who is aware of the
danger, the location update strategy is described as follows.

Xbest Xbest lfﬁ >fg
+1 _
le] XV T K ’XV Xv‘iforst ff f (20)
L 1) =
(fi—fw) +¢ l ¢
where X}, is the current global optimal position. 8, as the

step control parameter, is a normal distribution of random
numbers with a mean value of 0 and a variance of 1.
K e [—1, 1]is arandom number. f; is the current fitness value
of the sparrow. f, and f,, are the best and worst fitness values
calculated for the current global, respectively. ¢ is the smallest
constant to avoid zero-division-error. For simplicity, when
fi > f, indicates that the sparrow is at the edge of the group.
Xpest represents the location of the sparrow center, the sur-
rounding area is safe. The farther X'; is from Xj,,, the more
the position needs to move. f; = f, shows that the sparrows in
the middle of the population are aware of the danger and need
to get close to others. K is the direction in which the sparrow
moves and is also the step control factor coefficient.

D. INTRODUCTION OF SIMULATED ANNEALING
MECHANISM

To prevent the sparrow algorithm from falling into local
optimum, a simulated annealing mechanism is introduced.
That is, when the fitness value of the next iteration position is
greater than the fitness value of the current global optimum
position, there is still a certain probability of accepting an
inferior solution. The annealing temperature T determines the
probability of receiving an inferior solution for the sparrow
population, and 7 decreases with the number of iterations.
The expression of T is

T+ 1)=aT®) 1)

where v denotes the number of iterations, & denotes the
annealing coefficient and takes the value of [0.9, 1]. Com-
paring the new position F,;; adaptation with the original
adaptation F,.

AF =Fyy — F, (22)

When AF < 0, accept the new position. When AF > 0,
judging from the following formula,

exp (#) > rand(0, 1) (23)

If the equation (23) holds, the new position is accepted, and
vice versa, the new position is not accepted.
Table 3 is the pseudocode form of HSSA.
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E. TIME COMPLEXITY ANALYSIS OF HSSA

The time complexity of SSA [25]ist = O(d +f(d)), d shows
the dimension of the variables to be optimized. n is the num-
ber of sparrows. f (d) denotes the objective function solving
time. The time of HSSA population initialization parameters
is ¥r1. The chaotic mapping time of each dimension is ;. The
initialization time is #; = O(y1 + n(f(d) + Y»d)). The time
to update the producer location to generate a random number
is Yr3. The time for each dimension position update of the
producer is 4. The generation time of adaptive coefficients
is ¥s. The total time of the producer location update is r, =
On(Y3 + Y4 + Y¥s)d)). The time to update the follower
location to generate a random number is 1/, The time for each
dimension position update of the follower is yr7. The time to
introduce the Levy flight coefficient is 1g. The total time of
the follower location update is t3 = O(n(¥e + V7 + ¥3)d)).
The time to update the location of the aware of the dangerous
sparrow has not changed, for #4. In the simulated annealing
mechanism, the time to generate random numbers is V9.
The time for the annealing temperature update is y19. The
total time spent by the simulated annealing mechanism is
ts = O(Y9 + ¥r10). The total time complexity of HSSA is
1 =1 +itermax(ta + 13 + 14 + 15) = Od + f(d)) = 1.
Because HSSA has the same time complexity as SSA, it does
not improve performance by sacrificing extra time.

V. SIMULATION EXPERIMENTS

A. HSSA PERFORMANCE COMPARISON AND ANALYSIS

In this section, to test the hybrid model, it is applied to an
industrial regenerative smelting furnace. 1000 samples are
collected from November 1 to 3, 2017, of which 800 samples
are used as training samples, and 200 samples are used as
testing samples. MAX, MSE, the root mean squared error
(RMSE), the mean absolute error (MAE), and the decision
coefficient (R2), are used as the performance indices, which
are shown in Equations (24)-(28).

MAX = max(Y —y) (24)
N
MSE = > —yy (25)
N
LA
RMSE = |—> (¥ —y)? (26)
N i=1
LA
MAE = =YY —y| Q27)
N
2 MSE(Y.y) 08)

Var(y)

where N is the number of samples, Y is the predicted
value of the aluminum liquid temperature. y is the actual
value of the aluminum liquid temperature. Var(y) is the
variance of y.

101156

1) ANALYSIS ON SIMULATION OF DIFFERENT
IMPROVEMENT STRATEGIES FOR HSSA

First, analyze different improvement strategy on algorithm
performance. The sparrow algorithm with a single improve-
ment strategy refers to the introduction of only one of the
chaos factor, weight factor, Levy flight strategy and simulated
annealing mechanism. The predictions of the hybrid model
optimized by the four improved strategy on the 200 testing
samples are tested 50 times for each strategy. The four meth-
ods are denoted as CSSA (chaos factor), NSSA (weighting
factor), LSSA (Levy flight) and SSSA (simulated annealing
mechanism). In the parameter identification of the hybrid
model, the dimension of the variables is set to 36, the number
of sparrows is set to 100, and the max iterations is set to 1000.
It can be seen from the Table 4 that the prediction results of
the four methods are significantly improved compared with
the original algorithm.

2) COMPARISON OF DIFFERENT KINDS OF INTELLIGENT
OPTIMIZATION ALGORITHMS

To further show the performance of HSSA, the original
SSA [25], the grey wolf algorithm (GWO) [21] and the sine
cosine algorithm (SCA) [36] are used to optimize the hybrid
model. The performance comparison on the testing samples
is shown in Table 5. It can be seen from the Table 5, HSSA
outperforms the original SSA, GWO, and SCA in each perfor-
mance index. The detailed predictions are given in Fig. 4 and
Fig. 5. From the two figures, the results show that the hybrid
model optimized by HSSA has better compensation results
than SSA, GWO, and SCA in predicting the aluminum liquid
temperature.

The convergence curves of each algorithm are given in
Fig. 6. The results show that SSA and HSSA converge faster
than the GWO and SCA algorithms. It can be seen from the
first 100 convergence curves that HSSA is slightly slower
than the original SSA due to the introduction of the simulated
annealing algorithm to accept the local optimal solution.
However, the previous results show that in terms of time
complexity, the improvement of HSSA performance does not
come at the expense of time. And HSSA has better prediction
accuracy.

Prediction comparison
1000

temperature/C

800! !
800 820 840 860 880 900 920 940 960 980 1000

sample

FIGURE 4. Comparison of different algorithms for temperature prediction.

B. MODEL VERIFICATION

To evaluate the performance of the proposed hybrid mod-
eling method, the number m of multi-scale kernels should
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TABLE 3. Pseudocode form of HSSA.

Algorithm 1 The framework of the HSSA

Input: G: the maximum iteration
PD: the number of the producers
SD: the number of the sparrows who perceive the danger

R2: the alarm value Establish an objective function f(X),
where variable X;(i=1, 2, ..., d) .

Initialize a population of n sparrows and define its relevant parameters.

Output: X;.,(Optimal solution) and fy(Fitness value)

1: while the maximum iterations G is not met do

2: Rank the fitness values and find the current best
3: R2 =rand(1)
4: for i=1:PD do

Update the sparrow location by Eq.(17)

S: end for
6: for i=(PD+1):n do
Update the sparrow location by Eq.(19)
7: end for
8: for i=1:SD do

Update the sparrow location by Eq.(20)

9: end for
10: Get the current new location;
11: If the new location is better than before, update it;
12: t=1t+1;

13: end while
14: return X/,

TABLE 4. Results of different improvement strategies.

Method ~ MAX MSE RMSE MAE R2
SSA 27.6745 62.6521 7.9153 6.1486 0.9850

in order to obtain the optimal performance. The parame-
ters to be identified include the weight coefficients of the
multi-scale kernel ¢;, the bandwidth §; and the impact coef-
ficients h. Let the vector of parameters to be identified as
0 = [e21, €2, ... Ezms Ecils Eci2s - - - Eclms Eols €02 - - - Eom» O,
82, ...08m, h1,...hg]. The number of sparrows is set to
N = 100. The proportion of discoverers and followers of
the sparrow algorithm is set as 20%. The alarm threshold
ST is chosen to be 0.8. The upper and lower limits are
set as [—100,100], and the dimension of the variables is
set as 36. The search ranges of the kernel function width
parameter §; and the weight parameter ¢; are set as [—10,10]
and [—50,50], respectively. By applying HSSA algorithm, the
optimal parameter combination is obtained, the results are
shown in the Table 7.

Prediction error

=
—~—HSSA|

temperature/'C

1
800 820 840 860 880 900 920 940 960 980 1000
sample

FIGURE 5. Comparison of prediction errors of different algorithms.

Objective space

—HSSA|
—SSA
—GWO
—SCA

Best score obtained so far

0 50 100 150 200 250 300 350 400 450 500
Iteration

FIGURE 6. Convergence curve of different algorithms.

CSSA 24.6907 48.9808 6.9986 5.5263 0.9883 TABLE 6. Experiments on the number of multi-scale kernel functions1.
NSSA 25.7401 45.4734 6.7434 5.2772 0.9891
LSSA 25.1301 43.5980 6.6029 5.1700 0.9896
SSSA 22.9969 37.3792 6.1139 4.8390 0.9911 m MAX MSE RMSE MAE R2
3 24.2451 35.3373 5.9445 4.7567 0.9915
4 23.2024 43.7053 6.6110 5.2595 0.9895
TABLE 5. Comparison of the results of different algorithms. 5 27.1500 58.6747 7.6599 6.1130 0.9860
6 25.3631 31.8081 5.6399 4.4796 0.9924
- 7 23.4543 30.9526 5.5635 4.3409 0.9926
Algorithms MAX  MSE _ RMSE MAE R2 TIME 8 278122 66.8492 8.1761 67202 0.9840
SSA 264596 627795 79233 62083 0.9850 146.641 0 274004  S8.6719 76598 61459  0.9860
HSSA 156921 28.1627 53069 42225 09933 143229 10 278951 605372 77806 60371 0.9855
GWO 30.4156  56.0971 7.4898 5.8705 0.9866 123.918
SCA 29.8919  32.1015 6.4150 4.7381 0.9901  120.763

be determined first. By changing the number m, Table 6
shows the prediction accuracy of the hybrid model on testing
samples. From Table 6, m is set as a proper value of 7.
After the number of multi-scale kernels is determined, the
parameters in the model need to be identified as a whole

VOLUME 10, 2022

For performance comparison, the initial mechanism model
is used to predict the aluminum liquid temperature. The three
temperatures that cannot be directly measured in the initial
mechanism model are treated as parameters. After optimized
by HSSA, the compared results between the initial mecha-
nism model and the hybrid model are shown in the Table 8.
The detailed prediction results are showed as Fig. 7 and Fig. 8.
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TABLE 7. Results of optimal parameter combination.

Parameters  Solutions  Parameters Solutions  Parameters Solutions
€2 0.6998 Eus 0.8925 0, 0.6871
£, 165927 &, 0.8597 5 0.8961
€3 0.8474 £y 2.3681 0, 0.1229
o 2.3689 £, 6.5071 0, 09118
E.s 0.7658 £y -2.9006 hy 1.1581
£ 0.8857 £y 1.1679 h 0.0108
&9 -26.4831 E,5 1.5981 hy 0.3687
Ean 0.8908 £y 1.0251 h, -0.1931
En 0.5828 £y -19.0671 h 0.7991
Eu3 1.2881 0, 0.8204 hy -37.1861
N 3.0199 0, 0.4393 h, 1.2541
Eus 0.7298 0, 0.3814 hy 0.1684

In Fig. 7 and Fig. 8, the red line is the predicted temperature
and the black line is the actual temperature.

Prediction comparison

temperature/C

sample

FIGURE 7. Temperature prediction results of the initial model.

TABLE 8. Comparison of prediction results on different models.

Model MAX MSE RMSE MAE R2
Initial
mechanism 87.2465 453.1490  21.2873 16.5612 0.8915
model
Hybrid model 22.4941 30.3056 5.5051 4.3558 0.9927
Prediction comparison
1000 - al

temperature/ C
©
[=]
3

©
o
S

800 -
800 820 840 860 880 900 920 940 960 980 1000

sample

FIGURE 8. Temperature prediction results of the hybrid model.

It can be seen from Fig. 7 and Fig. 8, the prediction curves
of the hybrid model are closer to the actual curves. From
Table 8, the five performance indices of the hybrid model are
better than the initial mechanism model. The results show that
the proposed hybrid modeling has a better performance for
the prediction of the aluminum liquid temperature.

101158

VI. CONCLUSION

To handle the problem of aluminum liquid temperature pre-
diction in smelting furnaces, a prediction modeling methods
that combine a mechanism model with multi-scale kernels
is proposed. In this modeling framework, due to the high
nonlinearity of the input and output variables of the aluminum
smelting process, the initial mechanism model of the process
is established by the energy conservation law and heat trans-
fer mechanism. For the three temperatures in the mechanism
model that are difficult to measure online, a multi-scale kernel
method is proposed to deal with this problem, and the hybrid
model is obtained. In addition, the problem of parameter
identification for the hybrid model is described as an opti-
mization problem. A hybrid strategy-based sparrow search
algorithm is designed to solve the optimization problem,
effectively improving the model performance. The simulation
experiments results show the effectiveness of the proposed
method.
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