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ABSTRACT In the production of aluminum, the regenerative aluminum smelting process is an important
part for energy efficiency and product quality. Aluminum liquid temperature is a significant variable in the
aluminum smelting process, and it is costly to measure timely because it requires protective temperature
sensor. To handle this problem, a kind of modeling framework which combine a mechanism model with
multi-scale kernel technique is proposed. First, the mechanism model is built for the aluminum liquid
temperature by the energy conservation law and heat transfer mechanism. Since the mechanism model is
based on some assumptions, it often results in unknown variables. Thus, the multi-scale kernel technique is
used to obtain the unknown variables. Finally, a hybrid temperature prediction model is built by combining
the multi-scale kernel and the mechanism model. The parameter identification of the hybrid model is
described as an optimization problem, and a hybrid strategy-based sparrow search algorithm (HSSA) is
proposed to solve this problem. The experiment results show that HSSA has higher convergence accuracy
and stronger global search ability than the original sparrow search algorithm (SSA), and the proposed hybrid
model can correctly estimate the aluminum liquid temperature.
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INDEX TERMS Regenerative aluminum smelting, mechanismmodeling, multi-scale kernel, sparrow search
algorithm.

I. INTRODUCTION16

Aluminum has good ductility, plasticity, recyclability and17

oxidation resistance. Based on excellent physical and chemi-18

cal properties, aluminum alloys arewidely applied in automo-19

bile, aviation and military industries. The aluminum smelting20

process is an important part for the production of recycled21

aluminum. This process mainly smelts the scrap aluminum22

parts and aluminum smelting trimmings, and then recycled23

aluminum is produced through thermal insulation, casting24

and other processes. Besides, aluminum smelting can also be25

used for the remelting and reprocessing of various aluminum26

ingots. Aluminum smelting furnace is the key equipment for27
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aluminum smelting and the main energy consuming equip- 28

ment of the process. The traditional recuperative smelting 29

technology has high fuel consumption, while the regenerative 30

smelting technology has low energy consumption [1]. In the 31

production of aluminum, the regenerative aluminum smelt- 32

ing process is an important part for energy efficiency and 33

product quality. Aluminum liquid temperature is a significant 34

variable in the aluminum smelting process, and it is costly 35

to measure timely because it requires protective temperature 36

sensor. Therefore, it is of practical significance to study the 37

online prediction method of aluminum liquid temperature for 38

monitoring the state of the aluminum smelting process. 39

Aluminum smelting is one of the typically complex indus- 40

trial furnace production process. Many scholars have con- 41

ducted a lot of related research on the modeling of complex 42
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industrial furnaces. Gao et al. [2] modeled the pyrolysis and43

gasification processes of oil-bearing sludge to study the heat44

transfer characteristics of an industrial furnace. In this model-45

ing, material equations of motion, heat transfer equations and46

kinetic equations were used to describe the pyrolysis process,47

while mass and energy equations were used to describe the48

gasification process. Alshehhi and Ali [3] presented a val-49

idated 3D Computational Fluid Dynamics (CFD) model to50

study the effects of burner position and orientation, chimney51

position and flow momentum on heat transfer of hot gas and52

furnace thermal efficiency, and the optimal design parameters53

were obtained. Li et al. [4] calculated the slag iron heat index54

by using the heat, carbon and oxygen balance in the high tem-55

perature zone of the blast furnace. Then, using the relation-56

ship between iron liquid temperature and slag iron heat index,57

the furnace temperature parameters are calculated when pro-58

duction conditions are changed. Zhou et al. [5] developed59

various CFD models to simulate complex multi-phase reac-60

tive flows in three regions of furnace, shaft, raceway and61

hearth for fault diagnosis and operational optimization of62

blast furnaces. Although the physical significance of this63

kind of mechanism modeling approach is relatively clear, for64

complex systems such as industrial furnaces, modeling often65

suffers from computational complexity and time consump-66

tion. Besides, certain assumptions or idealized modeling in67

order to study a particular problem leads to a reduction in68

the accuracy of the model. Hence, it is difficult to meet the69

requirements of experiment with only a single mechanism70

model.71

Currently, more research on the modeling of industrial72

furnaces and similar processes is focused on data-driven73

approaches. In the aluminum smelting process, the collected74

data is highly non-linear and time-varying due to the fluc-75

tuating composition of the incoming material, the variety of76

metal impurities contained in aluminum and the complexity77

of the smelting process. For modeling strongly nonlinear78

processes such as industrial furnaces, Chen et al. [6] pro-79

posed a soft sensor modeling framework based on a double80

locally weighted kernel principal component regression with81

approximate linear correlation, and applied it to tempera-82

ture prediction in a roller kiln furnace for lithium battery83

cathode materials. Chen et al. [7] considered more accu-84

rate predictions based on the paper [6] and constructed a85

data-driven error compensation model using real-time opera-86

tional data. For the strongly non-linear, highly redundant and87

time-varying characteristics, an error compensation model88

was developed using a double locally weighted kernel prin-89

cipal component regression based on a dynamic window.90

Finally, the compensation model was combined with the91

mechanistic model to obtain a hybrid temperature predic-92

tion model. Wu et al. [8] proposed a stacked auto-encoder93

deep learning method based on just-in-time learning, and94

applied it to the modeling of industrial hydrocracking pro-95

cesses. Yang et al. [9] combined a mechanistic model of the96

smelting process with a data-driven approach using artifi-97

cial intelligence technology. The uncertainty and error of98

the mechanism model were modeled by a neural network 99

of unknown order. To effectively combine the mechanism 100

model and the data-driven model, a new saturation alter- 101

nation identification strategy was proposed. With the goal 102

of obtaining accurate silicon content online to improve the 103

quality of iron, a soft sensor method based on an adaptive 104

stacked polymorphismmodel was proposed in the paper [10]. 105

Considering the process time variability of blast furnace iron 106

and silicon content prediction models, Li et al. [11] proposed 107

a new data-driven modeling approach to ensure the accuracy 108

of the model. First, a nonlinear T-S fuzzy model was con- 109

structed for the silicon content of iron liquid, and then the 110

subsequent parameters of the fuzzy model were identified 111

using a Bayesian approach to obtain probabilistic outputs. 112

Saxén et al. [12] reviewed a data-driven time-discrete model 113

for short-term time-discrete prediction of silicon content in 114

blast furnace hotmetal. Gultekin et al. [13] used a data-driven 115

dynamic mode-following control decomposition method to 116

model an inverter-fed induction motor. These papers above 117

provided ideas for dealing with the time variability of alu- 118

minum smelting process. Qu et al. [14] proposed an artificial 119

bee colony algorithm to optimize the classifier model of 120

the kernel extreme learning machine. The introduction of 121

the kernel method was beneficial to the classification and 122

identification of power quality disturbance signals. Tang and 123

Tian [15] could flexibly and stably process multi-source het- 124

erogeneous datasets through automatic adjustment of kernel 125

parameters. In addition, using multiple kernels could enhance 126

the interpretability of the model and improve the general- 127

ization performance of the classifier. Troncoso et al. [16] 128

introduced a kernel function for time series data and used 129

it for any data mining task that relies on similarity or dis- 130

tance measures. Bao et al. [17] established multi-scale ker- 131

nels approach through a multi-kernel learning framework. 132

This approach generalized well not only the dispersed regions 133

of the training set but also the dense regions of the dataset. 134

Huang et al. [18] extracted themain components of the neural 135

network input by the kernel principal component analysis 136

method and built a prediction model for furnace temperature 137

by an improved extreme learning machine, obtaining better 138

prediction capability and higher generalization capability. 139

These papers provided the basic ideas for the research of this 140

paper. Although this type of data-driven modeling approach 141

enhanced the accuracy of model, it still had some disadvan- 142

tages. Firstly, it required a large amount of data. Secondly, 143

the distribution of data must include most of the situations 144

in the actual factory, otherwise the data-driven model may 145

not be applicable in some cases. Therefore, it is necessary to 146

further study the mechanism and data in the process modeling 147

to describe the aluminum smelting process more accurately. 148

Parameter identification is an important process in mod- 149

ern industrial process modeling. By properly optimizing and 150

adjusting model parameters, it can guide the operation of 151

the production process as much as possible. The problem of 152

parameter identification usually can be described as an opti- 153

mization problem. In recent decades, the swarm intelligence 154
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optimization algorithm has become the main technology to155

solve the global optimization problem due to its simplicity,156

flexibility and efficiency. To date, many algorithms such as157

the firefly algorithm [19], the bat algorithm [20], the gray158

wolf algorithm [21], the ant lion algorithm [22], the whale159

algorithm [23], the salp swarm algorithm [24] and sparrow160

search algorithm (SSA) have been successively proposed by161

scholars. Among them, the sparrow algorithm (SSA) is a162

new swarm intelligence algorithm developed by Xue and163

Shen [25] based on the foraging and anti-predatory behav-164

ior of sparrows. SSA is capable of satisfying the global165

exploration and local exploitation abilities required by an166

optimization algorithm, hence it is widely applied in the167

identification of parameters in complex models. Yan and168

Song [26] used SSA to optimize Back-propagation (BP)169

neural network and applied it to coal mine water source170

data processing. Yuan and Zhao [27] proposed a distributed171

maximum power point tracking method based on improved172

sparrow search algorithm. Tuerxun and Chang [28] used the173

SSA for optimizing the penalty factor and kernel function174

parameters of support vector machines, and constructed a175

sparrow search algorithm-support vector machine wind tur-176

bine fault diagnosis model. Nevertheless, there are still prob-177

lems such as slow convergence, weak global search ability,178

and the tendency to fall into local optimality when solving179

the optimization problem. In order to improve the perfor-180

mance of the SSA, Liu and Ye [29] used the Levy flight181

strategy to simulate the bat search predation behavior, thus182

essentially improving the optimization performance of the183

algorithm and reducing the algorithm parameters. Simula-184

tion tests with standard functions showed that the bat algo-185

rithm with Levy flight characteristics effectively improved186

the individual bat search ability, and convergence perfor-187

mance and search accuracy were significantly improved. Fur-188

thermore, Ma and Lu [30] combined SSA with improved189

tent chaos mutation, Levy flight mutation, learning muta-190

tion based on elite opposition, and variable radius mutation191

inter-combination to obtain SSA variants of the optimal algo-192

rithm. Lee and Kim [31] proposed a hybrid algorithm of par-193

allel simulated annealing, which learns the Bayesian network194

structure through a greedy algorithm. Specifically, simulated195

annealing was then parallelized with memory to speed up the196

search process. In each step of local search, a hybrid search197

method combining simulated annealing and greedy algo-198

rithm improved the convergence accuracy. Elgamal et al. [32]199

introduced the chaotic initialization and simulated annealing200

mechanism into the Harris Eagle algorithm, which was com-201

pared with the grasshopper optimization algorithm, particle202

swarm optimization, genetic algorithm, butterfly optimiza-203

tion algorithm and ant lion algorithm one by one. A com-204

parison of six learning algorithms through a neuron model205

was made by Gao et al. [33], including particle swarm opti-206

mization, genetic algorithm, ant colony optimization, evolu-207

tionary strategy and population-based incremental learning.208

In order to obtain larger data volume, better data utilization209

and higher proxy accuracy, Li et al. [34] proposed a new210

evolutionary algorithm framework. For the problem of com- 211

plex material grinding factors and difficulty in accurately 212

predicting yield particle size, Zhang et al. [35] introduced a 213

chaotic initialization population to promote the global search 214

ability. At the same time, the Cauchy mutation strategy was 215

introduced to solve the local optimal problem, effectively 216

improving the algorithm’s search ability. Together, swarm 217

intelligence methods have been improved by the above schol- 218

ars extremely. However, in the face of complex industrial 219

processes, swarm intelligence algorithms still suffer from 220

unsatisfactory global search ability and a tendency to fall into 221

local optimum. Therefore, it is necessary to further explore 222

the application of swarm intelligence algorithm in combina- 223

tion with the characteristics of industrial furnaces. SSA is 224

a new meta-heuristic algorithm with fewer control param- 225

eters and superior local search capability. Compared with 226

other algorithms, the introduction of some strategies such as 227

the simulated annealing mechanism and weighting factors, 228

allows the SSA to avoid falling into local optima while 229

ensuring convergence. Subsequent experimental simulations 230

also show that the hybrid strategy-based sparrow algorithm 231

outperforms other algorithms in terms of convergence and 232

convergence speed, and is more suitable for handling similar 233

non-linear optimization problems in industrial furnaces. 234

In summary, many scholars have proposed a great variety 235

of methods on the modeling and parameter optimization of 236

industrial furnaces and complex industrial processes. How- 237

ever, due to the complex thermodynamics of the aluminum 238

smelting process and the large fluctuation of incoming mate- 239

rials, these approaches are difficult to be directly applied to 240

aluminum smelting process. Therefore, this paper designs 241

a process hybrid modeling approach that combines process 242

mechanics and data to predict aluminum liquid tempera- 243

ture. Besides, a hybrid strategy-based sparrow search algo- 244

rithm (HSSA) is proposed to identify the parameters of the 245

model. The subsequent subsections of this paper are struc- 246

tured as follows. Section 2 analyzes the problems existing in 247

the aluminum smelting process. In the third section, a hybrid 248

modeling approach for aluminum smelting process is pro- 249

posed. The fourth section describes the parameter identifica- 250

tion problem of the hybrid model, and proposes an improved 251

sparrow optimization algorithm. Section 5 verifies the effects 252

of the proposed model and algorithm through experiments. 253

Section 6 is the conclusion. 254

II. ANALYSIS OF PROBLEMS IN ALUMINUM SMELTING 255

PROCESS 256

As shown in the flow chart of recycled aluminum smelting 257

(Fig. 1), the smelting is the critical process and aluminum 258

smelting furnace is the main equipment in aluminum recycle. 259

The structure of regenerative aluminum smelting furnace is 260

shown in Fig. 2, consisting of a furnace chamber, a regener- 261

ative burner (containing a burner and a regenerative pool), 262

a reversing device and a smoke exhaust device. The two 263

burners are not in the same working condition during normal 264

operation of the regenerative burner. When one of the burners 265
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is in the combustion operation, its fuel channel is open, and266

cold air through the incandescent heat accumulator is heated267

to hot air for fuel combustion. At the same time, another268

burner in the heat storage state, its fuel channel is closed,269

and the combustion products enter into the heat accumulator270

under the action of the fan through the combustion channel.271

Hence, the heat accumulates in the heat accumulator and272

is discharged through the smoke exhaust device. From the273

analysis of aluminum smelting production process and field274

experience, the temperature of aluminum liquid is a key vari-275

able in the aluminum smelting process. In actual production,276

the temperature of aluminum liquid needs to be measured277

by a thermocouple with a protective jacket, and the life of278

the thermocouple is short, which increases the production279

cost.280

FIGURE 1. Flow chart of recycled aluminum smelting.

To handle the problems in the aluminum smelting process,281

this paper proposes a hybrid modeling method that combine282

a mechanism model with multi-scale kernels to predict the283

aluminum liquid temperature. Firstly, through heat transfer284

analysis and energy conservation principle, the mechanism285

model between aluminum liquid temperature and input vari-286

ables is established. In this mechanism model, there are some287

variables that cannot be measured. Multi-scale kernel tech-288

nology is introduced to estimate these unknown variables.289

Then, HSSA is proposed to optimize the model parameters.290

Finally, the accuracy and efficiency of the proposed approach291

are verified by actual industrial data.292

FIGURE 2. Working structure diagram of regenerative smelting furnace.

III. HYBRID MODELING OF THE ALUMINUM SMELTING 293

PROCESS 294

A. MODELING OF ALUMINUM LIQUID TEMPERATURE 295

BASED ON HEAT TRANSFER MECHANISM 296

Through heat transfer mechanism, the relationship between 297

temperature change and heat change is established. Firstly, 298

the furnace is considered as a heat balance system, and the 299

heat income and heat outcome in the smelting furnace are 300

analyzed. As shown in Fig. 3. Q1, Q2, Q3, Q4, and Q5 are 301

heat income, and Q6, Q7, Q8, Q9, and Q10 are heat outcome. 302

FIGURE 3. Energy change in aluminum smelting process.

According to the energy conservation law and heat transfer 303

mechanism, the relational equation of Q1-Q10 is established. 304

The specific equations are shown in Table 1, and some of 305

the variables involved are shown in Table 2. The follow- 306

ing assumptions are made: the temperature of the material 307

entering the furnace, the temperature of air before enters 308

the furnace, the gas temperature, and the temperature of the 309

ambient air are regarded as the temperature of the material 310

entering the furnace. The assumptions can be represented as 311
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Trl(t) = Tk (t) = Tr (t) = Tf (t). Cs represents the average312

specific heat capacity (J/kg· ◦C) corresponding to each heat,313

and ms represents the corresponding mass (kg) of each heat,314

where s ∈ [1, 10].315

As shown in Fig. 3, Q1 is the heat brought in by the316

material, Q2 is the heat brought in by the air, Q3 is the heat317

brought in by the natural gas, Q4 is the heat generated by318

the combustion reaction, and Q5 is the heat generated by the319

burning loss of the aluminum liquid. Heat outcome items: Q6320

is the heat of material smelting, Q7 is the heat dissipation of321

the furnace body, Q8 is the heat taken away by the flue gas,322

Q9 is the heat taken away by the slag, and Q10 is the heat323

dissipation of the furnace.324

TABLE 1. Heat calculation table.

According to the heat income and heat outcome in the325

smelting furnace, equation (1) is used to establish the differ-326

ential equation of aluminum liquid temperature:327

dT
dt
= h(Qincome − Qoutcome) (1)328

TABLE 2. Variable comparison.

Combined with Table 1 and equation (1), the dynamic329

model of aluminum liquid temperature is got by some math-330

ematical operations, and it is established as331

f (t) =
dT̂ (t)
dt
= h1Trl(t)+ h2Tm(t)+ h3Tcl(t)+ h4Ty(t)332

+ h5Tz(t)+ h6To (t)+ h7T̂ (t)+ h8 (2)333

where h1, h2, h3, h4, h5, h6, h7, h8 are the influence coeffi- 334

cients. In this model, the smelting temperature of material Tm, 335

the temperature of the materials entering the furnace Trl and 336

the temperature of flue gas Ty can be obtained from the 337

industrial data. With regard to the material discharge temper- 338

ature Tcl , slag temperature Tz and outer wall temperature To, 339

it is difficult to measure online and they are related to various 340

factors such as combustion air flow, gas flow, air-fuel ratio 341

and so on. At the same time, it is difficult to obtain the three 342

temperatures through mechanism analysis. Therefore, we use 343

the data of combustion air flow, gas flow, air-fuel ratio and 344

other data to estimate Tcl,Tz and To in the mechanism model 345

through the kernel function method. 346

B. UNMEASURED TEMPERATURE ESTIMATION METHOD 347

BASED ON MULTI-SCALE KERNEL 348

The material discharge temperature, slag temperature, and 349

outer wall temperature are difficult to measure online and are 350

related to many factors. The functional relationship of these 351

three temperatures cannot be directly measured or obtained 352

through data calculation, and the unknown functional rela- 353

tionship in the mechanism model can be constructed by the 354

kernel function. While it is difficult for a single kernel func- 355

tion to handle the data with different temporal characteristics. 356

Hence, a multi-scale kernel method is proposed to deal with 357

this problem. The Gaussian kernel function is used to build 358

a multi-scale kernel function. Then, the unknown functional 359

relationship in the mechanism model is constructed through 360

the Gaussian kernel function. Taking the slag temperature as 361

an example, a function is constructed to estimate the slag 362

temperature, described as follows: 363

T̂z(t) = Q(ϕ(t)) (3) 364

The slag temperature is related to the combustion air flow 365

rate ϕ1, the gas flow rate ϕ2, and the air-fuel ratio ϕ3, so the 366

function ϕ(t) can be described as: 367

ϕ(t) = [ϕ1(t), ϕ2(t), ϕ3(t)]T (4) 368

The kernel functions with different scales are fused 369

together to obtain the function Q. The increments of ϕ1, ϕ2 370

and ϕ3 are used as the variables of the kernel function, 371

represented as 372

Kz(ϕ(t), ϕ(t − 1)) = exp(−
‖ϕ(t)− ϕ(t − 1)‖2

2δ2
) (5) 373

where δ is the bandwidth of the kernel function. By using 374

m different δ, we can obtain multi-scale Gaussian kernel 375

functions: 376

exp(−
‖ϕ(t)− ϕ(t − 1)‖2

2δ21
), . . . exp(−

‖ϕ(t)− ϕ(t − 1)‖2

2δ2m
), 377

(6) 378

where δ1 < . . . < δm. When the bandwidth δ is small, the 379

kernel function becomes steeper and is suitable for samples 380

with large variation. Conversely, kernel function with larger 381

bandwidth is suitable for samples that vary less. Through the 382
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combination of multiple scale kernel functions, the model383

can achieve good performance for data with different trends,384

thus getting better generalization ability. To improve the effi-385

ciency of multi-scale kernel learning, the method of weighted386

summation kernel is adopted. Assume that K is a multi-scale387

kernel function, which is obtained by synthesizing m basic388

kernel functions of different scales.389

K = ε1K1 + ε2K2 + . . .+ εmKm,
m∑
j=1

εj = 1, εj ≥ 0390

(7)391

where εj is the weighting coefficient of the kernel392

function Kj.393

Kj = exp(−
‖ϕ(t)− ϕ(t − 1)‖2

2δ2j
),394

j = 1, 2, . . .m, δ1 < δ2 < · · · < δm (8)395

By using the multi-scale kernel to estimate Tcl,Tz and To,396

the hybrid model can be obtained as follows397

f (t) =
dT (t)
dt
= h1Trl(t)+ h2Tm(t)+ h3Kcl + h4Ty(t)398

+ h5KZ + h6Ko + h7T (t)+ h8 (9)399

Kcl =
m∑
j=1

εcljKj (10)400

KZ =
m∑
j=1

εzjKj (11)401

Ko =
m∑
j=1

εojKj (12)402

The parameter identification of model (9) is described as403

an optimization problem:404

min
θ

J (θ ) =

√√√√ N∑
i=1

(Ti − T̂i(θ ))2405

s.t θ ∈
(
Pmin,Pmax

)
406

dT̂i(θ )
dt
= f (t) (13)407

where T̂i is the predicted temperature of the aluminum408

liquid, Ti is the temperature of actual aluminum liq-409

uid, N is the number of samples. θ is the parameter410

to be identified in the model, and can be described as411

θ = [εz1, εz2, . . . εzm, εcl1, εcl2, . . . εclm, εo1, εo2, . . . εom,412

δ1, δ2, . . . δm, h1 . . . h8]. Pmin and Pmax are the upper and413

lower bounds of θ .414

Since the optimization problem contains a nonlinear model415

as an equation constraint, the traditional gradient-based416

method is difficult to find the global optimal solution. The417

sparrow algorithm has the advantages of high solution accu-418

racy, fast convergence, and good stability in dealing with419

the optimization-seeking problem, However, it still has the420

problems of low accuracy, slow speed, and easy to be421

trapped in local optimumwhen facing the multi-peaked prob- 422

lem. Hence, based on the sparrow optimization algorithm, 423

an improved sparrow optimization algorithm is proposed to 424

solve the above problems. 425

IV. BATTERY TEST SYSTEM AND MODEL PARAMETER 426

IDENTIFICATION 427

SSA is mainly inspired by the foraging behavior and anti- 428

predation behavior of sparrows. Individuals in SSA are 429

divided into three types: discoverers, followers and sparrows 430

who are aware of the danger. The identity of discoverers and 431

followers is dynamic and changing. The discoverer provides 432

the foraging area and direction for the population, the fol- 433

lower follows the discoverer to forage, and the sparrowwho is 434

aware of the danger is responsible for the surveillance around. 435

During the foraging process, the positions of three types of 436

individuals will be continuously updated to obtain the optimal 437

food source, and the position of the optimal food source is the 438

found optimal solution [25]. In this paper, we improve SSA 439

in terms of improving the initialization position, updating 440

the position iterations, and avoiding local convergence as 441

follows. 442

A. IMPROVING CHAOS FACTOR INITIALIZATION 443

POPULATIONS 444

The sparrow algorithm starts by randomly initializing the 445

sparrow population and defining the relevant parameters, 446

as well as defining the maximum number of iterations. The 447

initialized population is. 448

X0
=


x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x2,d
...

...
...

...

xn,1 xn,2 · · · xn,d

 (14) 449

where n is the number of sparrows, d shows the dimension 450

of the variables to be optimized. The improvement is done by 451

introducing a chaos factor to update the initialized population, 452

X v+1i,j = sin(
bπ
X vi,j

) (15) 453

where v indicates the current iteration, b ∈ (0, 1) ,X vi,j rep- 454

resents the value of the jth dimension of the ith sparrow at 455

the vth iteration. The search space is made to have better 456

uniformity and increase the population diversity. The fitness 457

of the initial population is then calculated and ranked to select 458

the current best and worst values. 459

B. IMPROVEMENT OF NON-INERTIAL WEIGHTING 460

FACTOR STRATEGY 461

The location update strategy of the discoverer is described as 462

follows. 463

X v+1i,j =

X vi,j exp
(
−

i
α × itermax

)
if R2 < ST

X vi,j + Q× L if R2 ≥ ST
(16) 464
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where v indicates the current iteration, j = 1, 2, . . . , d .465

itermax is the maximum number of iterations, which takes the466

value of 1000. i ∈ (0, 100) , α ∈ (0, 1) are a random number.467

R2 (R2 ∈ (0, 1)) and ST (ST ∈ [0.5, 1]) represent the alarm468

value and the safety threshold, respectively. Q is a random469

number that follows a normal distribution. L shows a 1 × d470

of the matrix, where each element inside is 1.When R2 < ST ,471

it means that there are no predators around and the finder472

goes into wide search mode. If R2 ≥ ST , it means that473

some sparrows found the predator and all sparrows need to474

fly quickly to other safe areas. By introducing a nonlinear475

inertia weighting factor.476

w(v) = 0.01×
(
2
itermax−v
itermax − 1

)
477

X v+1i,j =


X vi,j exp

(
−

i
α × itermax

)
× w(v) if R2 < ST(

X vi,j + Q× L
)
× w(v) if R2 ≥ ST

478

(17)479

where v is the number of the current iterations, 0.01 is the480

weighting factor. X vi,j denotes the value of the jth dimension481

of the ith sparrow at the v iteration. The weights will decrease482

nonlinearly as the number of iterations increases. Larger483

nonlinear weights in the early iterations are good for global484

search, and smaller nonlinear weights in the later iterations485

are good for local search.486

C. IMPROVEMENT OF LEVY FLIGHT STRATEGY487

The location update strategy of the follower is described as488

follows489

X v+1i,j =

Q exp

(
Xworst − X vi,j

i2

)
if i >

n
2

X v+1p + Q× L otherwise

(18)490

where Xp is the optimal position occupied by the finder.491

Xworst denotes the current global worst location. A indicates a492

1×d of the matrix for which each element inside is randomly493

assigned to 1 or −1, A+ = AT (AAT )−1. When i > n/2, it494

represents that the ith follower with the worse fitness value495

is not getting food and is in a very hungry state, Hence,496

it needs to fly to other places to forage for more energy.When497

i ≤ n/2, the sparrow moves around the optimal location.498

Add Levy flight strategy when i ≤ n/2.499

Levy(d) = 0.01×
r1 × λ

|r2|
(
1
ρ

)500

λ =

 0(1+ ρ)× sin πρ2

0( 1+ρ2 )× ρ × 2

(
(ρ−1)

2

)

(
1
ρ

)

(19)501

where d denotes the dimension of the variables to be opti-502

mized. ρ is a constant. r1, r2 are random numbers in the503

range [0,1]. Gamma function on the set of real numbers for504

positive integers is x, where 0(x) = (x − 1)!. In the process505

of finding the optimal solution, Levy flight strategy can not 506

only perform local search in short distance but also global 507

search in long distance. Therefore, when searching near the 508

optimal value, Levy can enhance the local search ability and 509

effectively solve the problem of standard sparrow algorithm 510

falling into local optimum. 511

Then update the location of the sparrowwho is aware of the 512

danger, the location update strategy is described as follows. 513

X v+1i,j =


X vbest + β

∣∣∣X vi,j − X vbest ∣∣∣ if fi > fg

X vi,j + K̂


∣∣∣X vi,j − X vworst∣∣∣
(fi − fw)+ ε

 if fi = fg
(20) 514

where X vbest is the current global optimal position. β, as the 515

step control parameter, is a normal distribution of random 516

numbers with a mean value of 0 and a variance of 1. 517

K̂ ∈ [−1, 1] is a random number. fi is the current fitness value 518

of the sparrow. fg and fw are the best and worst fitness values 519

calculated for the current global, respectively. ε is the smallest 520

constant to avoid zero-division-error. For simplicity, when 521

fi > fg indicates that the sparrow is at the edge of the group. 522

Xbest represents the location of the sparrow center, the sur- 523

rounding area is safe. The farther X vi,j is from Xbest , the more 524

the position needs to move. fi = fg shows that the sparrows in 525

the middle of the population are aware of the danger and need 526

to get close to others. K̂ is the direction in which the sparrow 527

moves and is also the step control factor coefficient. 528

D. INTRODUCTION OF SIMULATED ANNEALING 529

MECHANISM 530

To prevent the sparrow algorithm from falling into local 531

optimum, a simulated annealing mechanism is introduced. 532

That is, when the fitness value of the next iteration position is 533

greater than the fitness value of the current global optimum 534

position, there is still a certain probability of accepting an 535

inferior solution. The annealing temperature T̃ determines the 536

probability of receiving an inferior solution for the sparrow 537

population, and T̃ decreases with the number of iterations. 538

The expression of T̃ is 539

T̃ (v+ 1) = α̂T̃ (v) (21) 540

where v denotes the number of iterations, α̂ denotes the 541

annealing coefficient and takes the value of [0.9, 1]. Com- 542

paring the new position Fv+1 adaptation with the original 543

adaptation Fv. 544

1F = Fv+1 − Fv (22) 545

When 1F ≤ 0, accept the new position. When 1F > 0, 546

judging from the following formula, 547

exp
(
−1F

T̃

)
≥ rand(0, 1) (23) 548

If the equation (23) holds, the new position is accepted, and 549

vice versa, the new position is not accepted. 550

Table 3 is the pseudocode form of HSSA. 551
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E. TIME COMPLEXITY ANALYSIS OF HSSA552

The time complexity of SSA [25] is t = O(d+ f̂ (d)), d shows553

the dimension of the variables to be optimized. n is the num-554

ber of sparrows. f̂ (d) denotes the objective function solving555

time. The time of HSSA population initialization parameters556

isψ1. The chaotic mapping time of each dimension isψ2. The557

initialization time is t1 = O(ψ1 + n(f̂ (d) + ψ2d)). The time558

to update the producer location to generate a random number559

is ψ3. The time for each dimension position update of the560

producer is ψ4. The generation time of adaptive coefficients561

is ψ5. The total time of the producer location update is t2 =562

O(n(ψ3 + ψ4 + ψ5)d)). The time to update the follower563

location to generate a random number isψ6, The time for each564

dimension position update of the follower is ψ7. The time to565

introduce the Levy flight coefficient is ψ8. The total time of566

the follower location update is t3 = O(n(ψ6 + ψ7 + ψ8)d)).567

The time to update the location of the aware of the dangerous568

sparrow has not changed, for t4. In the simulated annealing569

mechanism, the time to generate random numbers is ψ9.570

The time for the annealing temperature update is ψ10. The571

total time spent by the simulated annealing mechanism is572

t5 = O(ψ9 + ψ10). The total time complexity of HSSA is573

t ′ = t1 + itermax(t2 + t3 + t4 + t5) = O(d + f̂ (d)) = t .574

Because HSSA has the same time complexity as SSA, it does575

not improve performance by sacrificing extra time.576

V. SIMULATION EXPERIMENTS577

A. HSSA PERFORMANCE COMPARISON AND ANALYSIS578

In this section, to test the hybrid model, it is applied to an579

industrial regenerative smelting furnace. 1000 samples are580

collected from November 1 to 3, 2017, of which 800 samples581

are used as training samples, and 200 samples are used as582

testing samples. MAX, MSE, the root mean squared error583

(RMSE), the mean absolute error (MAE), and the decision584

coefficient (R2), are used as the performance indices, which585

are shown in Equations (24)-(28).586

MAX = max(Y − y) (24)587

MSE =
1

N̂

N̂∑
i=1

(Y − y)2 (25)588

RMSE =

√√√√√ 1

N̂

N̂∑
i=1

(Y − y)2 (26)589

MAE =
1

N̂

N̂∑
i=1

|Y − y| (27)590

R2 = 1−
MSE(Y , y)
Var(y)

(28)591

where N̂ is the number of samples, Y is the predicted592

value of the aluminum liquid temperature. y is the actual593

value of the aluminum liquid temperature. Var(y) is the594

variance of y.595

1) ANALYSIS ON SIMULATION OF DIFFERENT 596

IMPROVEMENT STRATEGIES FOR HSSA 597

First, analyze different improvement strategy on algorithm 598

performance. The sparrow algorithm with a single improve- 599

ment strategy refers to the introduction of only one of the 600

chaos factor, weight factor, Levy flight strategy and simulated 601

annealing mechanism. The predictions of the hybrid model 602

optimized by the four improved strategy on the 200 testing 603

samples are tested 50 times for each strategy. The four meth- 604

ods are denoted as CSSA (chaos factor), NSSA (weighting 605

factor), LSSA (Levy flight) and SSSA (simulated annealing 606

mechanism). In the parameter identification of the hybrid 607

model, the dimension of the variables is set to 36, the number 608

of sparrows is set to 100, and the max iterations is set to 1000. 609

It can be seen from the Table 4 that the prediction results of 610

the four methods are significantly improved compared with 611

the original algorithm. 612

2) COMPARISON OF DIFFERENT KINDS OF INTELLIGENT 613

OPTIMIZATION ALGORITHMS 614

To further show the performance of HSSA, the original 615

SSA [25], the grey wolf algorithm (GWO) [21] and the sine 616

cosine algorithm (SCA) [36] are used to optimize the hybrid 617

model. The performance comparison on the testing samples 618

is shown in Table 5. It can be seen from the Table 5, HSSA 619

outperforms the original SSA,GWO, and SCA in each perfor- 620

mance index. The detailed predictions are given in Fig. 4 and 621

Fig. 5. From the two figures, the results show that the hybrid 622

model optimized by HSSA has better compensation results 623

than SSA, GWO, and SCA in predicting the aluminum liquid 624

temperature. 625

The convergence curves of each algorithm are given in 626

Fig. 6. The results show that SSA and HSSA converge faster 627

than the GWO and SCA algorithms. It can be seen from the 628

first 100 convergence curves that HSSA is slightly slower 629

than the original SSA due to the introduction of the simulated 630

annealing algorithm to accept the local optimal solution. 631

However, the previous results show that in terms of time 632

complexity, the improvement of HSSA performance does not 633

come at the expense of time. And HSSA has better prediction 634

accuracy. 635

FIGURE 4. Comparison of different algorithms for temperature prediction.

B. MODEL VERIFICATION 636

To evaluate the performance of the proposed hybrid mod- 637

eling method, the number m of multi-scale kernels should 638
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TABLE 3. Pseudocode form of HSSA.

TABLE 4. Results of different improvement strategies.

TABLE 5. Comparison of the results of different algorithms.

be determined first. By changing the number m, Table 6639

shows the prediction accuracy of the hybrid model on testing640

samples. From Table 6, m is set as a proper value of 7.641

After the number of multi-scale kernels is determined, the642

parameters in the model need to be identified as a whole643

in order to obtain the optimal performance. The parame- 644

ters to be identified include the weight coefficients of the 645

multi-scale kernel εj, the bandwidth δj and the impact coef- 646

ficients h. Let the vector of parameters to be identified as 647

θ = [εz1, εz2, . . . εzm, εcl1, εcl2, . . . εclm, εo1, εo2, . . . εom, δ1, 648

δ2, . . . δm, h1, . . . h8]. The number of sparrows is set to 649

N = 100. The proportion of discoverers and followers of 650

the sparrow algorithm is set as 20%. The alarm threshold 651

ST is chosen to be 0.8. The upper and lower limits are 652

set as [−100,100], and the dimension of the variables is 653

set as 36. The search ranges of the kernel function width 654

parameter δj and the weight parameter εj are set as [−10,10] 655

and [−50,50], respectively. By applying HSSA algorithm, the 656

optimal parameter combination is obtained, the results are 657

shown in the Table 7. 658

FIGURE 5. Comparison of prediction errors of different algorithms.

FIGURE 6. Convergence curve of different algorithms.

TABLE 6. Experiments on the number of multi-scale kernel functions1.

For performance comparison, the initial mechanism model 659

is used to predict the aluminum liquid temperature. The three 660

temperatures that cannot be directly measured in the initial 661

mechanism model are treated as parameters. After optimized 662

by HSSA, the compared results between the initial mecha- 663

nism model and the hybrid model are shown in the Table 8. 664

The detailed prediction results are showed as Fig. 7 and Fig. 8. 665
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TABLE 7. Results of optimal parameter combination.

In Fig. 7 and Fig. 8, the red line is the predicted temperature666

and the black line is the actual temperature.667

FIGURE 7. Temperature prediction results of the initial model.

TABLE 8. Comparison of prediction results on different models.

FIGURE 8. Temperature prediction results of the hybrid model.

It can be seen from Fig. 7 and Fig. 8, the prediction curves668

of the hybrid model are closer to the actual curves. From669

Table 8, the five performance indices of the hybrid model are670

better than the initial mechanismmodel. The results show that671

the proposed hybrid modeling has a better performance for672

the prediction of the aluminum liquid temperature.673

VI. CONCLUSION 674

To handle the problem of aluminum liquid temperature pre- 675

diction in smelting furnaces, a prediction modeling methods 676

that combine a mechanism model with multi-scale kernels 677

is proposed. In this modeling framework, due to the high 678

nonlinearity of the input and output variables of the aluminum 679

smelting process, the initial mechanism model of the process 680

is established by the energy conservation law and heat trans- 681

fer mechanism. For the three temperatures in the mechanism 682

model that are difficult tomeasure online, amulti-scale kernel 683

method is proposed to deal with this problem, and the hybrid 684

model is obtained. In addition, the problem of parameter 685

identification for the hybrid model is described as an opti- 686

mization problem. A hybrid strategy-based sparrow search 687

algorithm is designed to solve the optimization problem, 688

effectively improving themodel performance. The simulation 689

experiments results show the effectiveness of the proposed 690

method. 691
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