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ABSTRACT This article presents a symbiotic learning-based Grey Wolf Optimizer (SL-GWO) formu-
lated through the introduction of symbiotic hunting and learning strategies to achieve a better trade-off
between exploration and exploitation while standing immune to the curse of dimensionality. The proposed
method improves the performance of the algorithm to effectively handle problems with larger dimensions
while avoiding local entrapment, accelerates convergence, and improves the precision and accuracy of
exploitation. SL-GWO’s symbiotic hunting strategies provide a major overhaul to the exiting hierarchical
hunting through population sub-grouping into attacking hunters and experienced hunters with individually
crafted dynamic adaptive tuning. The hunting mechanisms are implemented through the inclusion of
random omega wolves from the wolfpack thereby reducing the algorithm’s excessive dependence on the
three dominant wolves and enhancing the population diversity. SL-GWO is tested and validated through
a series of benchmarking, engineering and real-world optimization problems and compared against the
standard version of GWO, eight of its latest and state-of-the-art variants and five modern meta-heuristics.
Different testing scenarios are considered to analyze and evaluate the performance of the proposed method
such as the effect of dimensionality (CEC2018 benchmarking suite), convergence speeds, avoidance of
local entrapment (CEC2019 benchmarking suite) and constrained optimization problems (four standard
engineering problems). Furthermore, two power flow problems namely, the optimal power flow (13 cases for
IEEE 30 and 57-bus system) and optimal reactive power dispatch (8 cases for IEEE 30 and 57-bus system)
from the recent literature are investigated. The proposed method performed competitively compared to all
its competitors with statistically significant performance while requiring lower computational times. The
performance for the standard engineering problems and the power flow problems was excellent with good
accuracy of the solutions and the least standard deviation rates.
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INDEX TERMS Symbiotic learning grey wolf optimizer (SL-GWO), grey wolf optimizer (GWO), bench-
mark functions, CEC 2019 benchmarking, optimal power flow problems, optimal reactive power flow
problems.

I. INTRODUCTION25

Recent multi-disciplinary research and real-world scenarios26

have shown that optimization using meta-heuristics is a pow-27

erful tool for problem resolution and resource management.28

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

For its simplicity and usefulness in tackling complicated 29

issues, optimization has been accepted and promoted by 30

researchers and specialists alike. ‘‘Heuristic’’ means ‘‘ran- 31

dom’’ or ‘‘creative’’ search procedure used to find the opti- 32

mal/best solution combination to maximize or minimize 33

the desired system characteristics [1]. No previous knowl- 34

edge of the system, or in mathematical jargon, no gradient 35
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information of the mathematical objective, is required to36

determine the best set of solutions. In addition to tackling37

both single-objective and multi-objective problems, meta-38

heuristic optimization algorithms have the advantage of being39

easier to implement, robust and require lower computational40

resources. The fact that meta-heuristics are stochastic pro-41

cesses with a degree of unpredictability connected with their42

optimality has compelled many academics and specialists to43

enhance them to find the best balance of exploration and44

exploitation for the considered problem [2]. To recapitulate,45

meta-heuristic optimization techniques have improved sev-46

eral aspects of real-world problems such as resource manage-47

ment, control, operation, allocation, division of workforce,48

performance efficiency, speed of computation, error reduc-49

tion, etc. [3].50

A. DEMERITS WITH SWARM-BASED NATURE-INSPIRED51

TECHNIQUES52

In order for the swarm-based nature-inspired optimization53

algorithms to work effectively, their limitations must be54

addressed. There is no guarantee that the intelligently crafted55

search techniques can solve all optimization problems and56

a near-perfect optimization approach has eluded experts57

for years despite their diligent crafting. The development58

of better/improved variations of nature-inspired algorithms59

best suited to the complexity of problem being dealt with60

has recently become prominent through various methodolo-61

gies. At the same time, more articles on developing bet-62

ter/improved variations addressing the following issues have63

surged over the last decade.64

1) CURSE OF DIMENSIONALITY65

The deterioration in the performance (stagnation of fitness66

or sluggish convergence characteristics) of an optimization67

technique with the increasing number of problem dimen-68

sions is ascribed as ‘‘the curse of dimensionality’’, coined69

by Richard E. Bellman [4]. The manifold reasons are that70

there could be several possibilities of every decision variable71

for each combination of values and the fitness of all such72

possibilities must be computed within a limited number of73

function evaluations (NFEs) resulting in solutions very far74

from the global optimum.75

2) EXPLORATION VS. EXPLOITATION76

Achieving the perfect balance of exploration and77

exploitation is the most common issue with a multitude of78

swarm-intelligent, nature-inspired meta-heuristic optimiza-79

tion techniques. The balance of exploration (global search)80

and exploitation (local search) is intrinsic to the swarm intel-81

ligent optimization algorithms to deliver precise and diverse82

solutions across all decision variables. The algorithm must83

be devised to comprehend the condition to explore further84

or enhance current solutions such that an optimal trade-85

off between exploration (diversification) and exploitation86

(intensification) is achieved [2], [5].87

3) TUNING REQUISITES 88

Furthermore, the requirement to tune several of parameters 89

(called ‘‘algorithm-specific tuning parameters’’) to extract 90

the best possible performance is often tedious and time con- 91

suming, and improper or inappropriate tuning has often been 92

the main reason for algorithms’ failure. 93

4) NO FREE LUNCH THEOREM 94

Algorithms that work well in unconstrained instances may 95

not deliver exceptional optimality formulti-constrained tasks, 96

and vice versa. It is also possible that algorithms designed 97

for extensive global exploration may not be effective for 98

local search. ‘‘No free lunch theory’’ [6], states that no 99

meta-heuristic can perform optimally for every optimization 100

problem and that the perfect algorithm cannot be realized that 101

performs well for various scenarios. 102

B. IMPROVEMENT TECHNIQUES 103

Several improved/upgraded meta-heuristics have been devel- 104

oped over time and have gained prominence due to their 105

improved performance in terms of optimality, consistency, 106

and robustness [7]. 107

The introduction and empirical development of unique 108

techniques/operators that expand the exploration to newer 109

places within the solution space while balancing the exploita- 110

tion/local search is the norm to overcome the limitations 111

with the standard paradigms. The process of ‘‘improving’’ or 112

‘‘enhancing’’ or ‘‘modifying’’ a meta-heuristics is extensively 113

researched concerning the algorithmic structure for the con- 114

sidered optimization task [8]. The limitations of the existing 115

tuning settings are analyzed and newer tuning strategies to 116

tackle premature convergence and enhance population diver- 117

sity are also considered to improve the performance. The 118

improved versions are devised to surpass the standard version 119

of the meta-heuristic at global and local search ensuring 120

greater diversity in the population pool while converging 121

steadily and quickly to the global optimal solution and deal- 122

ing with multiple constraints effectively. 123

Another methodology approached is the hybridization of 124

two existing meta-heuristics wherein a solid meta-heuristic 125

immune to the negative aspects of the parent algorithms 126

and benefitting from the reliable aspects is worked up 127

[9]. Hybridization promotes the collective collaboration of 128

both the meta-heuristics since the advantageous aspects are 129

consolidated to such an extent that the different search 130

mechanisms help each other in dynamically exploring while 131

exploiting the search space [10]. Hybridization of the swarm- 132

intelligence-based algorithms with the evolutionary tech- 133

niques from Genetic Algorithm (GA) [11], [12] and DE 134

(Differential Evolution) [13] has been experimented with 135

several times to realize stronger synergistic hybrids. Besides 136

incorporating the evolutionary strategies, numerous other 137

combinatorial algorithms have been proposed in the past and 138

the present scenarios, e.g. The hybridization of a swarm- 139

based meta-heuristic with other swarm or nature-based/ 140
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physics-based/ metaphor-based algorithms has been actual-141

ized on various occasions.142

In short, improvement and hybridization techniques are143

approached as a suitable choice to focus on ruling out the144

multitude of problems related to tuning frameworks wherein145

effective methodologies from other contemporary/well-146

known algorithms are picked and systematically developed147

to preclude the disadvantages.148

C. RELATED WORKS149

In recent times, the need to develop improved optimizers to150

provide the best performance in terms of optimality, accuracy,151

convergence speeds, limited computational complexity and152

times has been extensively studied through various complex153

CEC (Congress on Evolutionary Computation) benchmark-154

ing suites [14], [15], [16], [17] and their efficacy at solving155

real-world multi-constrained, complex, non-linear problems156

in various domains of engineering have been demonstrated157

through numerous publications [18], [19]. In addition to158

these, the number of novel optimization algorithms inspired159

by the various forces of nature has quadrupled in the last five160

years and has provided multiple research avenues for several161

researchers across the globe to develop improved variants of162

these standard algorithms to extract the best performancewith163

limited computational budgets. A brief survey of some of the164

latest state-of-the-art improved optimizers is provided below.165

Latest improvements in the evolutionary algorithms166

include the integration of special mutation schemes and pop-167

ulation selection mechanisms to combat early entrapment168

issues. These include (i) An improved Differential evolution169

(DE) with orthogonal array-based initialization and a novel170

selection strategy with an ensemble strategy for parame-171

ter adaptation named OLSHADE-CS [20]. The performance172

evaluation with CEC2017 and CEC2020 test suites found173

OLSHADE-CS to be highly competitive and significantly174

better and demonstrated better optimality and quicker con-175

vergence rates to the global optimum. (ii) An effective multi-176

trial vector-based DE algorithm (MTDE) combining different177

search strategies in a sub-population environment incorporat-178

ing a winner-based distribution policy and life-time archive179

system has been realized in [21]. Validated against 29 test180

functions from the CEC2018 test suite and four engineer-181

ing design problems, MTDE outperformed several advanced182

variants of DE and recent nature-inspired algorithms.183

The domain of swarm-intelligence with nature-inspired184

meta-heuristics and human-behaviour inspired meta- heuris-185

tics witnessed multiple advanced versions of popular meta-186

heuristics including the Whale Optimization Algorithm187

(WOA) [22], Chimp Optimization Algorithm (ChOA) [23],188

Grey Wolf Optimizer (GWO) [24], Social Group Optimiza-189

tion (SGO) [25] etc. The developments include (i) A novel190

gaze cues learning-based grey wolf optimizer (GGWO) to191

enhance the exploitation ability and local optima avoid-192

ance through reduction of the high selective pressure and193

low diversification of the standard GWO is developed by194

Nadimi-Shahraki et al. [26]. The integration of two novel195

search strategies aided GGWO to deliver the best optimality 196

with accelerated convergence for the CEC2018 test suite, four 197

engineering problems and three cases of power flow problems 198

outperforming several other swarm-based meta-heuristics 199

and five variants of GWO. (ii) An enhanced chimp opti- 200

mization (EChOA) algorithm integrating a disruptive poly- 201

nomial mutation based-initialization and Spearman’s rank 202

correlation coefficient based ranking system is developed 203

at [27] to combat local entrapment. Validated on 12 classical 204

and 15 CEC2017 benchmark functions followed by three 205

engineering design problems and training multilayer percep- 206

tron EChOA delivered competitive results. (iii) An Effective 207

Whale Optimization Algorithm (EWOA) to solve optimal 208

power flow problems (Standard IEEE 6-bus, IEEE 14-bus, 209

IEEE 30-bus, and IEEE 118-bus test systems) through the 210

integration of Levy motion and Brownian motion into the 211

standard search mechanism of WOA to combat the curse of 212

dimensionality and maintain a proper balance between the 213

exploration and exploitation is developed in [28]. EWOA 214

outperformed the competitor algorithms and delivered solu- 215

tions with improved optimality for the several cases of OPF 216

investigated. (iv) An improved Harris Hawks Optimization 217

(IHHO) algorithm through the simplification of the search 218

strategies from a six-step decision mechanism to a four-step 219

system is realized in [29]. Benchmarked using the CEC2019 220

test suite and a three-dimensional bin packing problem 221

(3D-BPP) dataset with 320 samples, IHHO delivered statisti- 222

cally significant results. (v) A multi-strategy ensemble social 223

group optimization algorithm (ME-SGO) to enhance the pop- 224

ulation diversity from complex landscapes through the inte- 225

gration of distance-based strategy adaption and success-based 226

parameter adaption is proposed in [30]. The benchmarking 227

through CEC2019 test suite demonstratedME-SGO’s robust- 228

ness to entrapment and its application to four problems on 229

the optimization of energy management in electric vehicles 230

yielded improved results compared to its competitors. (vi) A 231

component-based framework for the automatic design of 232

Particle Swarm Optimization (PSO) Algorithms known as 233

PSO-X embodies a large number of algorithm components 234

developed over more than 25 years of research of PSO into 235

a unified framework to determine the best possible config- 236

uration is developed at [31]. Benchmarking tests with over 237

50 test functions from the various CEC test suites showcased 238

the efficiency of PSO-X at adapting to deliver the best pos- 239

sible solution quality in terms of accuracy, optimality and 240

convergence speeds. 241

D. IMPROVING GWO 242

For a more adaptable and efficient approach, the current 243

study proposes a ‘‘Symbiotic learning-based grey wolf opti- 244

mizer’’ (SL-GWO). We chose GWO over other optimization 245

methods for the following reasons. (1) The literature survey 246

shows that GWO outperforms other paradigms in several 247

multi-disciplinary applications. (2) Its simplicity allows it 248

to be implemented in any programming language and used 249

for a variety of optimization issues. (3) GWO could be 250
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experimented with for a possibly robust variant of GWO for251

the many-sided research pathways, as seen by the numer-252

ous articles where its performance has been considerably253

enhanced by application-specific upgrades or hybridization.254

(4) To increase the accuracy, population diversity and reduce255

the vulnerability to ‘‘the curse of dimensionality’’, GWO’s256

tuning has been studied extensively. (5) Complex and con-257

strained optimization problems with a higher dimensional258

count may demand further adaptations to the computational259

framework and dynamic tweaking leading to a larger search260

gradation. To maximize the algorithm’s performance, a vari-261

ety of population selection and update procedures could be262

further investigated.263

In this regard, the population improvisation strategy and264

the selection strategies are kept simple and the proposed265

method is scrutinized and an extensive comparative analysis266

with the other state-of-the-art optimizers, including the lat-267

est meta-heuristics and the variants of GWO is performed268

to assess the competence and efficacy of the proposed269

method.270

The improvement process through the symbiotic learning271

strategy proposed is computationally modest and with sim-272

pler sorting techniques to limit the computational times and273

the complexity associated with its execution. The proposed274

method intends to improve the intensification versus diver-275

sification balance while standing insusceptible to the curse276

of dimensionality and guaranteeing sped up convergence and277

quicker execution times and has been tested extensively to278

evaluate its performance across all standards. Exclusive of279

the static tuning parameters that often limit the scope of the280

search mechanism, the proposed method appends a versatile281

learning technique promoting elitism to tweak the search282

process to augment the quality of the solutions. A comprehen-283

sive description of the structure and working of the proposed284

method is given in the impending sections.285

E. ORGANIZATION OF THE MANUSCRIPT286

The manuscript is partitioned as described below. Section II287

discusses the working of GWO, followed by a comprehen-288

sive literature survey of its variants and a discussion of its289

merits and demerits. Section III focusses on the develop-290

ment of symbiotic hunting and learning strategies to improve291

GWO and a comprehensive analysis of its various attributes.292

The benchmarking analysis through 29 scalable CEC2018293

benchmark functions, CEC2019 test suite and four standard294

engineering problems is given in Section IV. A comparative295

analysis of the proposed method and other competitive algo-296

rithms for the optimal power flow problem (13 cases for IEEE297

30 and IEEE 57 bus systems) and optimal reactive power298

dispatch problem (8 cases for IEEE 30 and IEEE 57 bus299

systems) through a combination of linear incremental penalty300

function and archive-based constraint correction approaches301

is presented in Section V. The merits and demerits of302

SL-GWO are discussed Section VI. Section VII concludes303

the manuscript and discusses the future scope of the proposed304

method.305

II. GREY WOLF OPTIMIZER 306

GWO is a nature-inspired, swarm-based metaheuristic 307

optimization method inspired by grey wolves’ leadership 308

structure and hunting mechanism (Canis lupus). GWO was 309

developed in 2014 by Seyedali Mirjalili, Seyed Mohammad 310

Mirjalili and Andrew Lewis [24]. GWO is unique in that 311

it organizes grey wolves into alpha, beta, delta, and omega 312

groups and explores and exploits the search area. The GWO 313

tuning requirements are the population size, iteration count, 314

and an optional control vector. Exploration and exploita- 315

tion are balanced through a linear reduction of the control 316

vector from 2 to 0 over the hunting. Its excellent perfor- 317

mance for both unconstrained and constrained, single and 318

multi-objective optimization with improved optimality and 319

fast convergence has attracted academics and practitioners 320

from diverse domains. 321

A. WORKING OF GWO 322

To comprehend GWO, the understanding of the mathemati- 323

cal modelling of wolf social hierarchy is essential. It is the 324

dominant wolves (alpha wolves) who govern the group’s 325

functioning and are responsible for decision-making and 326

management. The second order is made up of beta wolves that 327

serve as subordinates and advisors to the other wolf orders. 328

The third category is the omega wolves, who are typically 329

used as a scapegoat or babysitters. The delta wolves are the 330

group’s scouts, sentinels, elders, hunters, and caregivers. The 331

delta wolves rule the omegas but follow the betas and alphas, 332

establishing a middle ground between the two. GWO’s fun- 333

damental activity is communal foraging based on the social 334

hierarchy. Figure 1 depicts the social dominant hierarchical 335

system of the grey wolves. 336

In GWO, the optimal solution is designated as alpha, the 337

second-optimal solution as beta, and the third-optimal solu- 338

tion as delta. The latter group is referred to as the omegas. 339

The following is a thorough discussion of the many parts of 340

GWO’s mathematical modelling. 341

1) ENCIRCLING THE PREY 342

The initial phase of GWO is dedicated to determining the 343

prey’s location. Initially assuming that the prey’s position is 344

unknown, the algorithm traverses the search space with the 345

assumption that it is situated near the optimal solution. Once 346

they have determined the position of the prey, they encircle it 347

as part of the hunting process. Grey wolves search the region 348

surrounding the site of prey to find more suitable solutions. 349

Eq. (2.1) and Eq. (2.2) represent the mathematical model 350

for prey encirclement in GWO. 351

−→
XG (t + 1) =

−−→
Xp(t)−

−→
A ×
−→
d (2.1) 352

−→
d =

∣∣∣−→B ×−−→Xp(t)−−−−→XG (t)
∣∣∣ (2.2) 353

where,
−→
XG is the position of the grey wolf,

−→
A and

−→
B are 354

coefficient vectors, t is the present iteration,
−−→
Xp(t) is the 355

position of the prey, || is the modulus operator to determine 356
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FIGURE 1. Social dominant hierarchy of the grey wolves.

the absolute value and ‘×’ represents multiplication in an357

element-to-element manner.358

Eq. (2.3) and Eq. (2.4) define themathematical formulation359

of the vectors of co-efficients
−→
A and

−→
B .360

−→
A = 2−→a ×−→r1 −

−→a (2.3)361

−→
B = 2×−→r2 (2.4)362

where, −→a is the control vector whose value tends to linearly363

decrease from an initial value of 2 to a final value of 0 over364

the course of iterations and −→r denotes a random vector in365

[0, 1].366

2) HUNTING367

Once the prey’s position is determined, the alpha initiates the368

hunt. Supported by the beta, delta, and, on rare instances,369

the omega, the locations of the omegas are repositioned as370

dictated by the alpha, beta, and delta positions. The top three371

solutions obtained are archived in the hierarchical dominance372

of the wolves in order to further predict the location of prey373

and direct the omegas in updating their locations around it in374

upcoming generations.375

Eq. (2.5) specifies the distances between the current grey376

wolf and the three dominant wolves and Eq. (2.6) specifies377

the positions derived from their distances.378

−→
dα =

∣∣∣−→B1 ×−→Xα −−→XG∣∣∣379

−→
dβ =

∣∣∣−→B2 ×−→Xβ −−→XG∣∣∣ 380

−→
dδ =

∣∣∣−→B2 ×−→Xδ −−→XG∣∣∣ (2.5) 381

−→
X1 =

−→
Pα −

−→
A1 ×

(
−→
dα
)

382

−→
X2 =

−→
Pβ −

−→
A2 ×

(
−→
dβ
)

383

−→
X3 =

−→
Xδ −

−→
A3 ×

(
−→
dδ
)

(2.6) 384

Finally, the position of the grey wolf is given by Eq. (2.7). 385

−→
XG (t + 1) =

[−→
X1 +

−→
X2 +

−→
X3

3

]
(2.7) 386

where,
−→
XG is the position of the grey wolf,

−→
Xα ,
−→
Xβ and

−→
Xδ 387

represent the positions of the alpha, beta and delta wolves, 388
−→
A and

−→
B are the co-efficient vectors. 389

a: MERITS AND DEMERITS OF GWO 390

Although GWO is effective in a variety of applications, it has 391

flaws such as a lack of population diversity, local entrapment, 392

premature convergence, and a weak exploitation mechanism, 393

to mention a few. The shortcomings of GWO have been 394

highlighted in several review publications [32], [33], [34], 395

[35], [36], [37] and there has been a greater focus on improv- 396

ing GWO to obtain a dependable and robust variant. This 397

section highlights the advantages and disadvantages of GWO 398
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based on numerous review and research publications that399

have deployed it for optimization.400

The merits of GWO include: (i) GWO follows Straight-401

forward and simple optimization approach. In comparison to402

previous swarm-based optimizers, GWO is easy to construct403

on any programming platform. (ii) Apart from the population404

size and iteration count, no further algorithm-specific tuning405

parameters are required for themajority of optimization prob-406

lems. (iii) In order to extract the maximum performance out407

of GWO, its tuning can be further experimented with for both408

continuous and discrete search environments. Binary GWO409

variations have been reported in the literature for feature410

selection and data categorization. (iv) Since GWO does not411

integrate any population sorting approach, it is quicker with412

lower computational complexity than the majority of meta-413

heuristics. Additionally, GWOhas a quicker convergence rate414

than the conventional optimization paradigms and a major-415

ity of current meta-heuristics. (v) The strategy of spending416

the first half of iterations on exploration and the second417

half on exploitation is an intriguing and effective one for418

most problems. While one may argue that this is not the419

most cutting-edge technique for achieving a healthy balance420

of diversification and intensification, this area is open for421

proposals and deserves greater investigation. (vi) As GWO422

continues to explore the search space for a better answer,423

its reliance on the initial population is minimal. GWO’s424

social order promotes dominant wolves to exert influence425

over omegas, ensuring that global and local searches are426

given equal priority for simpler unimodal and multi-modal427

landscapes. (vii) The ability to improve and enhance GWO428

in order to get a more robust variant has always been widely429

exploited and a cursory examination of the literature reveals430

a diverse range of enhancement strategies applied to GWO431

to boost its optimization capabilities. Despite the fact that432

it was published seven years ago, its reputation as a robust433

optimizer remains unmatched. (viii) Synergistic approaches434

may be developed by hybridization of the algorithm with435

the additional swarm and evolutionary meta-heuristics. Since436

its inception in 2014, a tremendous lot of research has been437

poured into developing a strong hybrid version of GWO.438

The demerits include: (i) The curse of dimensionality has439

plagued GWO in several benchmark and real-world appli-440

cations. Due to the selection and population updation tech-441

niques, performance has declined in situations with numerous442

complex problems with large number of decision variables.443

Many researchers have extended research at the problem of444

the algorithm’s incapacity to deal with numerous dimensions445

since it may not reposition all of the wolves strategically.446

(ii) Convergence speeds are slower than those of other algo-447

rithms with sorting techniques for certain benchmarking and448

real-world applications. (iii) Despite its superior performance449

in comparison to the classical paradigms, the system of split-450

ting iterations into exploratory and exploitative intensifica-451

tion phases does not guarantee that the majority of the search452

space has been covered or that the conflicting aspects of453

exploration and exploitation have been perfectly balanced.454

(iv) Complex andmulti-modal search landscapes have proven 455

a challenge since the algorithm is more prone to local entrap- 456

ment, resulting in premature convergence. (v) As exploitation 457

intensifies, the wolves’ location narrows, and they may not 458

travel far apart from each other beyond the initial stages 459

of exploration, resulting in premature convergence. (vi) The 460

wolfpack’s greater reliance on the three dominant wolves 461

localizes the population towards the end of iterations, making 462

local trapping unavoidable. GWO incorporates no adaptive 463

ways to escape entrapment if it were to happen at earlier 464

levels. 465

B. LITERATURE REVIEW OF GWO 466

GWO, published in 2014 is categorized under the nature- 467

inspired meta-heuristic optimization techniques in the 468

domain of ‘‘swarm-intelligence’’. It has been regarded as a 469

prominent and powerful stochastic optimizer with a myriad 470

of applications in various domains with an envisioned status. 471

Since its publication, it has been cited over 6500 times based 472

on the data from the SCOPUS R© database and CrossRef. The 473

growth in the citations has been overwhelming over the last 474

5 years with over 2000 citations in the year 2021 alone. The 475

surge in citations on an annual basis is provided in Figure 2. 476

The Web of Science R© database ranks the Electrical and 477

Electronics Engineering application of GWO over Com- 478

puter Science and artificial intelligence applications with 479

over 350 and 300 publications each. The list contains Com- 480

puter Science and interdisciplinary applications followed by 481

Energy fuels and Telecommunications. 482

In terms of applications relating to GWO, the SCOPUS R©
483

database holds over 1800 publications followed by 1500 pub- 484

lications indexed in the Web of Science R© database and over 485

200 publications from the other databases. The growth in the 486

publications deploying GWO to numerous applications has 487

been on the rise since 2017. As far as the recent developments 488

are concerned, over 1000 documents and 800 documents have 489

been indexed in the SCOPUS and Web of Science databases 490

respectively in 2020. The advancement in the publication 491

growth incorporating GWO is shown in Figure 2. 492

As per the SCOPUS R© database, the areas of application 493

of GWO include Computer Science, Mathematics, Engi- 494

neering, Energy, Materials Science, Physics and Astronomy, 495

Environmental Science, Bio-engineering, Decision Sciences, 496

Business, Management and Accounting, Chemical Engineer- 497

ing etc. to name a few. Computer Science and Engineering 498

emerged as the leaders in the deployment of GWO with over 499

1200 and 1000 documents respectively. 500

As far as the territories incorporating GWO in their 501

research is concerned, India and China hold the most publi- 502

cations accounting for over 400 and 300 publications respec- 503

tively. This is followed by Iran, Egypt and Malaysia. 504

C. VARIANTS OF GWO 505

The literature survey of GWO unveils multitudinous vari- 506

ants each aimed at countering the limitations of the parent 507

algorithm. Most of the variants are aimed at the commonly 508
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FIGURE 2. Annual citation count and the growth in the number of publications related to GWO over the last eight years.

tackled problem of balancing the exploration and exploita-509

tion of GWO through novel search operators or through the510

use of exiting techniques like hybridization or combining511

them with other evolutionary, swarm-based meta-heuristics,512

particle flight trajectory control through Levy Flights etc.513

The other limitations such as the susceptibility to ‘‘the514

curse of dimensionality’’, and slower convergence are dealt 515

with through the introduction of special tuning parameters, 516

chaos theory, population selection and function evaluation 517

strategies, sorting and ranking mechanism, and population 518

re-initialization, etc. The proposed variants are evaluated for 519

their efficacy and efficiency through standard benchmarking 520
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functions from the various CEC session, hybrid test func-521

tions, composition functions, constrained standard engineer-522

ing problems with statistical tests, computational times and523

convergence graphs to elucidate the performance prowess.524

Additionally, various real-world optimization problems are525

tackled through these proposed variants and compared aptly526

with the other techniques to validate the superiority in the527

performance. The variants shown in bold face have been528

chosen for the comparative analysis with SL-GWO in the529

present work.530

1) VARIANTS INCORPORATING CHAOS THEORY AND531

CHAOTIC MAPS532

The incorporation of chaos theory into meta-heuristics is533

done through various chaotic maps and has gained promi-534

nence over the years on account of its ergodicity, easy inte-535

gration and non-redundancy. In most meta-heuristics, chaos536

theory is primarily aimed to initialize the population with537

a good diversity to cover larger and diversified areas in the538

search space. The advantage of chaotic maps is that it speeds539

up the exploration of the search space while encouraging540

good population interaction. The computational speeds are at541

a higher pace in contrast to the other probability distribution542

techniques such as the uniform distribution. The other notable543

property is their dynamic nature to generate the random544

number which has often been excellent for an exhaustive545

exploration aimed at attaining the global best solution. The546

integration of chaos theory with GWO has been researched547

extensively and has over 60 documents and publications548

in the literature. Table 1 presents a few of the most cited549

and state-of-the-art variants of GWO incorporating chaos550

theory.551

2) IMPROVED/ENHANCED VARIANTS552

Improvements to meta-heuristics have been one of the553

most extensively sought-after research avenues with count-554

less variants of several meta-heuristics being published555

year after year. The improvement/enhancement techniques556

are proposed to counteract the limitations of the meta-557

heuristics, expand the exploration reachability, synergize558

the exploration and exploitation, dynamically tune the tun-559

ing criteria with respect to the problem’s landscape etc.560

As a result, the improved meta-heuristic has a good pop-561

ulation variety, is capable of circumnavigating the con-562

strained areas with the search space, quicker convergence and563

lowered susceptibility to the curse of dimensionality.564

Several improvement techniques such as Levy flights, Gaus-565

sian/random walks, opposition-based learning methods, sort-566

ing and re-initialization have been incorporated into GWO as567

reported in the literature. With over 300 publications related568

to the improved and enhanced variants of GWO, most of569

them have been aimed at delivering a good equilibrium of570

the exploration and exploitation and validated through vari-571

ous benchmarking standards. Table 2 presents a few of the572

most cited and state-of-the-art improved/enhanced variants of573

GWO.574

3) MODIFIED AND LEARNING-BASED VARIANTS 575

Modified and learning-based variants examine and scruti- 576

nize the algorithmic structure and alter the search measures 577

with the incorporation of correction mechanisms, adaptive 578

tuning systems, elitism, and so forth with a definitive objec- 579

tive of amplifying the exploratory and exploitative poten- 580

tial across all the norms. A large number of the modified 581

and learning variants restructure and incorporate special soft 582

computing techniques to tackle the problem at hand with 583

the aim of boosting the performance across multiple stan- 584

dards with various test cases and benchmarking to validate 585

that the modified variant is robust and reliable. The mod- 586

ified variations of GWO studied here are pointed toward 587

enhancing the exploratory search gradation while standing 588

immune to the curse of dimensionality. Over 200 publica- 589

tions have been found in teg literature survey bearing the 590

title modified/learning-based variants of GWO across vari- 591

ous domains and disciplines. Table 3 presents a few of the 592

most cited and state-of-the-art modified and learning-based 593

variants of GWO. 594

4) HYBRIDIZED/COMBINATORIAL VARIANTS 595

Hybridization/combinatorial variants of GWO with the 596

existing swarm and evolutionary algorithms have been an 597

ongoing trend since the publication of GWO with over 598

300 publications. The combinatorial variants operate in syn- 599

ergy combining the best aspects of both their parent algo- 600

rithms with robust and consistent performance across all 601

standards and have considerable performance improvement 602

for the conflicting cases of exploration versus exploitation. 603

Table 4 presents a few of the most cited and state-of-the-art 604

hybridized/combinatorial variants of GWO. 605

III. PROPOSED WORK: SYMBIOTIC LEARNING - GREY 606

WOLF OPTIMIZER (SL-GWO) 607

After a thorough investigation of GWO, its various state-of- 608

the-art versions, review papers, and publications on GWO 609

and its applications, this work proposes a symbiotic learn- 610

ing GWO. The enhanced algorithm, referred as SL-GWO, 611

is developed to overcome the numerous shortcomings of 612

GWO, including susceptibility to the curse of dimension- 613

ality and local entrapment, as well as to achieve an opti- 614

mum balance between global (exploration) and local search 615

(exploitation). 616

A. MOTIVATION 617

The literature survey of GWO and its variants from the pre- 618

vious section provides an overview of the different aspects 619

of the standard GWO algorithm that require improvements. 620

Considering that there have been numerous publications 621

aimed at improving the performance of GWO [57], [58], [29], 622

[60] in terms of optimality and convergence speeds for the 623

standard benchmark functions, only a handful of studies have 624

aimed at enhancing GWO for shifted and rotated complex 625

and dynamic landscapes including IGWO from [43], GGWO 626
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TABLE 1. Tabulation of the chaos theory/chaotic map integrated variants of GWO from the recent literature.

TABLE 2. Tabulation of the improved/enhanced versions of GWO from the recent literature.

from [26], RGWO from [61] with higher dimensionality (up627

to 50D). Although a few studies including HBBO-GWO [53],628

MEGWO [48], IGWO [43] GGWO [26] have analyzed their629

performance with the recent CEC test suites, performance 630

analysis with multiple benchmarking suites with different 631

requirements and computational budgets have not beenmade. 632
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TABLE 3. Tabulation of the modified and learning-based variants of GWO from the recent literature.

TABLE 4. Tabulation of the combinatorial/hybridized versions of GWO from the recent literature.

In this regard, the present work provides a comprehensive633

performance overview using two of the latest benchmark-634

ing standards i.e., the CEC2018 test suite with 10, 30 and635

50 function dimensions with limited computational budgets636

followed by the CEC2019 test suite to validate the accuracy 637

and precision with higher computational budgets. 638

The second motivating factor is the realization of a novel 639

hunting methodology inspired from the social hierarchy of 640
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the grey wolves from the standard GWO. The proposed641

SL-GWO incorporates population restructuring and sub—642

grouping to promote diversity and takes advantage of the643

greedy selection system to promote elitism. Furthermore,644

SL-GWO adopts two diverse set of control mechanisms to645

guide and tune the parameters to achieve a better balance of646

exploration and exploitation. Despite the existence of numer-647

ous advanced variants of GWO with emphasis on greedy648

selection such as GGWO, SOGWO, IGWO, IGWO-DE etc.,649

efforts at modifying the hurting mechanism of the grey650

wolves have been confined to appending the newer strategies651

over the existing hunting mechanism of grey wolves resulting652

in higher computational complexities.653

The third motivating factor is the lack of extensive com-654

parisons with previous studies aimed at improving GWO.655

Several studies have demonstrated the improved performance656

of their novel GWO variants by comparing them with clas-657

sical paradigms such as Particle Swarm Optimizer (PSO)658

[62], Krill herd (KH) [63] etc. The current study provides a659

comprehensive comparative analysis by comparing the per-660

formance of SL-GWO with eight state-of-the-art variants of661

GWO, the standard GWO algorithm and five recent modern662

swarm-intelligent nature-inspired optimization algorithms.663

B. IMPLEMENTATION664

The symbiotic hunting and learning processes in SL-GWO665

are a major overhaul to the hierarchical hunting strategy666

from the canonical GWO to improve the quality of solutions,667

expand the solution space and ensure a better balance of668

exploration and exploitation. First and foremost, the total669

population of grey wolves is divided into two sub-groups i.e.,670

the attacking hunters and experienced hunters. In order to671

preserve the social hierarchical dominance, both the groups672

are guided by the same alpha, beta and delta wolves which are673

selected based on their fitness levels from the two sub-groups.674

The key difference between the two sub-group of wolves lies675

in their hunting style and learning methodology.676

The hunting mechanism for the two sub-group of wolves,677

i.e., the attacking hunters and experienced hunters is specified678

as follows. The hunting mechanisms are kept the same for679

each sub-group, however, their control strategies are differ-680

ent. The two sub-groups are obtained by the following rule681

specified by Eq. (3.1) initially.682

Pi =

{
Attacking Hunters if i ≤ round(Np/2)
Experienced Hunters otherwise

(3.1)683

where, i denotes the current population index, Pi denotes the684

current member of the wolfpack and Np denotes the total685

population count or the size of the wolfpack.686

Each grey wolf has a learning curve associated with itself687

that helps it to learn from the various symbiotic hunting688

strategies. This learning rate is called the symbiosis rate689

(Sr ) and it dictates the reliance of the grey wolf to hunt as690

per the symbiotic hunting strategies or follow its previous691

lead. In order to enhance the diversity of the newer solutions692

obtained on a dimensional basis, Sr is associated with each 693

problem dimension and the new positions are obtained as 694

shown in Eq. (3.2). 695

P(t+1)d,i =

{
X (t+1)
d,i if rand(d) ≤ Sr

P(t)d,i if rand(d) > Sr
(3.2) 696

where, d is the current dimension and d = 1, 2, . . .D, D 697

denotes the total number of problem dimensions, rand is a 698

random number in [0, 1] generated through uniform distri- 699

bution, rand(d) denotes a matrix of random numbers with 700

the size (1,d), t is the current iteration, t = 1, 2 . . . T and 701

T denotes the total number iterations. 702

The value of Sr is dynamically varied in the range of 703

0 to 1 for the two sub-groups. The attacking group has a 704

higher affinity to follow the leaders through the various sym- 705

biotic hunting strategies and hence has a higher value of Sr . 706

However, since higher Sr may not be beneficial at all times 707

as exploiting across all dimensions may result in premature 708

convergence, a probability of 50% is chosen to dynamically 709

vary the Sr and is specified per Eq. (3.3). 710

Sr(i)=

 rand if rand ≤ 0.5

((0.99− 0.5)× rand)+ 0.5 otherwise
(3.3) 711

The experienced hunters adopt a cautious approach to fol- 712

low the leaders and their primary job is to preserve elitism and 713

diversity through their experience which is simply the mea- 714

sure of success and failures associated with their individual 715

symbiosis rates (Sr ). The values of Sr that have been proven 716

successful at generating fitter new grey wolves are retained 717

and in cases of failure to produce an elite individual, the older 718

values are incremented or decremented randomly by a value 719

of 0.1. This is specified by Eq. (3.4). 720

Sr(i) =

 SOldr(i) if f (new) < f (old)

SOldr(i) ± 0.1 otherwise
(3.4) 721

where, SOldr(i) is the symbiosis rate retained from the precious 722

iteration for the current member of the wolfpack, f (new) 723

denotes the fitnees value of the new grey wolf and f (old) 724

correpsinds to the fitness valies of the wolf from the previous 725

iteraration. 726

The symbiotic hunting strategies form the core of 727

SL-GWO as the hunting strategies require the collaboration 728

of the three dominant wolves and other randomly chosen 729

omega wolves to determine new positions that help the cur- 730

rent members of the wolf-pack advance their hunt. Four sym- 731

biotic hunting strategies are designed and these four strategies 732

are the same for both the population sub-groups. Among the 733

four symbiotic hunting strategies, the first two strategies are 734

the key to improving the hunt as both of them incorporate 735

the alpha, beta and delta wolves to guide the hunt. The first 736

strategy is an extension of the hierarchical hunting scheme 737

from the standard GWO. In this strategy, the hunting is led by 738

alpha, beta and delta wolves with two random sub-ordinates 739
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i.e., the two random omega wolves accompany the alpha,740

beta and delta wolves. Furthermore, the enhance diversity, the741

three least fitter wolves are added as a supplementary support742

with lesser emphasis on their contribution. The first hunting743

strategy is described by Eq. (3.5).744

XFirst =
Hα + Hβ + Hδ

3
(3.5)745

where, XFirst is the solution vector obtained from the first746

symbiotic hunting strategy, Hα , Hβ and Hδ are the position747

vectors obtained based on the guidance of the alpha, beta748

and delta wolves given by Eq. (3.6), Eq. (3.7) and Eq. (3.8)749

respectively.750

Hα =
−→
Pα + D1 ×

(
−−→
Pωr1 −

−−→
Pωr2

)
751

+

[
L × Dl ×

(
−−→
Pωr1 −

−−→
PW1

)]
(3.6)752

Hβ =
−→
Pβ + D1 ×

(
−−→
Pωr3 −

−−→
Pωr4

)
753

+

[
L × Dl ×

(
−−→
Pωr3 −

−−→
PW2

)]
(3.7)754

Hδ =
−→
Pδ + D1 ×

(
−−→
Pωr5 −

−−→
Pωr6

)
755

+

[
L × Dl ×

(
−−→
Pωr5 −

−−→
PW3

)]
(3.8)756

where,
−→
Pα ,
−→
Pβ and

−→
Pδ are the positions of the three dominant757

wolves,
−→
Pωr denotes a random omega wolf chosen from the758

current population, D1 is the first dynamic hunting distance759

in the range 0 and 1, Dl is the limiting distance to the worst760

performing wolves in the wolfpack, L is the limiting factor to761

control the influence of the worst performing wolves on the762

current hunt. Its value is set to 0.01 for the attacking hunters763

and 0 for the experienced hunters. The limiting distance is764

linearly decreased in the range 0.5 to 0 and is specified by765

Eq. (3.9).766

Dl =
(
0.5− t ×

(
0.5
T

))
+ 0.05 (3.9)767

The second symbiotic strategy is implemented as described768

by Eq. (3.10).769

XSecond =
−→
PG (t)+

[
D1.
−→
1 1 − D2.

−→
1 2

]
(3.10)770

where,771

−→
1 1 =

−−−→
Pω(r1) −

−→
Pα772

−→
1 2 =

−→
Pgw (t)+

(
−→
Pβ +

−→
Pδ
)

773

where,XSecond is the solution vector obtained from the second774

symbiotic hunting strategy,
−→
PG (t) is the current position of775

the grey wolf,
−−−→
Pω(r1) refers to a random omega wolf from776

the wolfpack,
−→
Pα ,
−→
Pβ and

−→
Pδ represent the positions of the777

alpha, beta and delta wolves obtained from the standard778

GWO procedure, −→r is a random vector in [0, 1],
−→
1 1 is the779

difference vector between
−−−→
Pω(r1) and

−→
Pα ,
−→
1 2 is the vector to780

represent the combined positions of
−→
PG,
−→
Pβ and

−→
Pδ .781

The second symbiotic strategy is the most important and 782

the key to maintaining a proper balance of exploration and 783

exploitation. This strategy dynamically changes from the 784

exploration phase to the exploitation phase based on the 785

position of the alpha, beta and delta wolves. In the initial 786

stages of exploration, the distance between the three wolves 787

would be greater resulting in better exploration of the search 788

space. Since one randomwolf from the omegas is also chosen 789

to determine the next position of the wolf, the complete 790

dependence on the alpha, beta and delta wolves is lowered. 791

The inclusion of the current position of the wolf from the 792

current population process ensures that the position update 793

is aimed at improving its optimality in the neighborhood as 794

it explores closer to that position for a superior solution. This 795

system encourages random omega wolves to learn from the 796

dominating alpha and the wolf from the two sub-groups and 797

compete with beta and delta wolves to further improve their 798

positions towards a better optimal solution. 799

The third and the fourth symbiotic learning strategies are 800

described below and are chosen alternatively. 801

The third symbiotic learning strategy is given by Eq. (3.11). 802

XThird =
−→
Xα + D1 ×

[
−→
Z1
]

(3.11) 803

where, 804

−→
Z1 =

−−−→
Xω(r2) −

−−−→
Xω(r3) 805

The fourth symbiotic learning strategy is given by Eq. (3.12). 806

XFourth =
−→
Xα +

[
D1 ×

[
−→
Z2
]
+ D2 ×

[
−→
Z3
]]

(3.12) 807

where, 808

−→
Z2 =

−−−→
Xω(r4) −

−−−→
Xω(r5) 809

and 810

−→
Z3 =

−−−→
Xω(r6) −

−−−→
Xω(r7) 811

where, X third is the solution vector obtained from the third 812

symbiotic hunting strategy, XFourth is the solution vector 813

obtained from the fourth symbiotic hunting strategy,
−→
Z1 ,
−→
Z2 814

and
−→
Z3 are the difference vectors between any two randomly 815

chosen omega wolves. 816

The inclusion of two random omega wolves and four ran- 817

dom omega wolves in the second and third strategies is to 818

ensure that the algorithm is prevented from being trapped at 819

a local optimum point in the early stages of its exploration. 820

As different omegas are chosen for each of the two strategies, 821

the population diversity is enhanced. 822

The hunting distances D1 and D2 are crucial at attaining 823

the right balance of exploration and exploitation. Very higher 824

values of D1 and D2 i.e., D1, D2 > 1.5 can result in the 825

solution dimensions exceeding the search boundaries and 826

extremely smaller value in the range less than 0.5 may force 827

exploitation at all times. Hence to overcome this limitation, 828

the values of D1 and D2 are set to dynamically update their 829

values in the range 0 to 1. The values of D1 and D2 for the 830

attacking hunters are designed to complement each other. D1 831
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is linearly decremented from 1 to 0 with a lower tolerance832

limit of 0.05 while D2 varies sinusoidal in the range [-0.5,833

0.5] with a periodicity of 10/π . These variations are essential834

to explore a larger search space and exploit systematically835

with respect to the progression of iterations. These are given836

by Eq. (3.13) and Eq. (3.14) respectively.837

D1 =

(
1− t ×

(
1
T

))
+ τ (3.13)838

D2 = 0.5× sin
(

10
π × t

)
(3.14)839

where, τ is a tolerance limit and is set to 0.05.840

The hunting distances D1 and D2 in for the experienced841

hunters are based on their successful generation of elite new842

wolves and the samemethod utilized to adapt Sr is once again843

adopted here. This is specified by Eq. (3.15).844

D1(i) = D2(i) =

DOld1(i) if f (new) < f (old)

DOld1(i) ± 0.1 otherwise
(3.15)845

Finally, in every iteration population is updated based through846

a random choice of one of the four symbiotic hunting strate-847

gies as per Eq. (3.16).848

X (t+1)
i =



XFirst

if r1 < 0.5
XSecond if r2 > 0.5{
XThird if r3 > 0.5
XFourth otherwise

otherwise

otherwise

(3.16)849

where, r1, r2 and r3 are three random numbers in the interval850

[0, 1] generated through uniform distribution.851

One the new solution is generated by one of the four852

symbiotic hunting strategies, its individual dimensions are853

checked and those exceeding the search boundaries are ran-854

domly re-initialized within the given lower and upper bounds.855

This is given by Eq. (3.17) and Eq. (3.18) respectively.856

Xi,d =

{
Xi,d if Xi,d > lb
Xi,d + rand × (ubd − lbd ) otherwise

(3.17)857

Xi,d =

{
Xi,d if Xi,d < ub
Xi,d − rand × (ubd − lbd ) otherwise

(3.18)858

The final step is the fitness evaluations of all the newer859

population members. The greedy selection technique is opted860

for the symbiotic learning phase to update the population861

pool with superior solutions. The greedy selection allows862

for the survival of population members from the symbiotic863

learning strategies with better fitness compared to the older864

ones. The survival of the fittest strategy is followed to select865

the fitter population members and discard the rest. In the case866

of inferior solutions, the old positions are retained as given by867

Eq. (3.19).868

−→
Xi (t + 1) =

{−→
Xi (t + 1) iff

(
−−−→
Xt(t+1)

)
< f

(
−→
Xi(t)

)
−→
Xi (t) otherwise

(3.19)869

where, f
(
−−−→
Xt(t+1)

)
is the new fitness score of the decision 870

variables obtained by the symbiotic hunting strategy and 871

f
(
−→
Xi(t)

)
fitness score of the old decision variables obtained 872

from the previous iteration. 873

1) EXPLORATION AND EXPLOITATION 874

SL-GWO achieves a good balance of exploration and 875

exploitation benefitting from the dynamic nature of the two 876

control parameters namely, Symbiosis rate (Sr ) and Hunting 877

distance (D1 and D2) respectively. Sr , in particular, is cru- 878

cial of the two as it helps diversify the population on a 879

dimensional basis. The variation of Sr is kept diverse for the 880

two population sub-groups, i.e., the first sub-group with the 881

attacking hunters work with a higher value of Sr allowing 882

them to explore the newer areas in the search space generated 883

by the different symbiotic hunting strategies. This accounts 884

for an aggressive attacking approach and allows more grey 885

wolves to quickly explore and exploit the promising areas 886

specified by the three dominant wolves. At the same time, 887

the higher values of Sr promote convergence capabilities of 888

the algorithm as more grey wolves follow the three dominant 889

wolves to exploit portions of the search space readily. The 890

hunting distances D1 and D2 in the first sub-group help in 891

controlling the exploration distance and aids the smoother 892

transition of exploration to exploitation. To be specific, D1’s 893

linear decremental strategy from 1 to 0 can be quite bene- 894

ficial to force the exploration within the search space limits 895

during the initial half of the search space and prevent early 896

cases of entrapment since the hunting distance from the three 897

dominant wolves is higher. On the other hand, the sinusoidal 898

bursts of D2 aids the systematic control of diversification and 899

intensification cycles, encouraging a controlled movement 900

within the search space. 901

2) IMPORTANCE OF THE SYMBIOTIC HUNITING STRATEGIES 902

SL-GWO’s incorporation of multiple symbiotic hinting 903

strategies is one of its strongholds at achieving an improved 904

performance in terms of optimality and convergence. Despite 905

the increased effort to code these multiple strategies, numer- 906

ous multi-strategy ensemble optimization algorithms have 907

demonstrated the necessity to incorporate multiple strate- 908

gies in a systematic yet synergetic configuration with 909

distinctive control schemes used to guide their search. Multi- 910

population ensemble differential evolution (MPEDE) [64], 911

Multi-strategy ensemble grey wolf optimizer (MEGWO) 912

[48], Multi-strategy ensemble artificial bee colony optimiza- 913

tion (ME-ABC) [65], Multi-strategy ensemble social group 914

optimization (ME-SGO) [66] etc. from the literature prove 915

that incorporating multiple search strategies can offer numer- 916

ous performance benefits as their individual effectiveness at 917

either fending off entrapment or accelerating convergence can 918

be beneficial rather than the total dependence on one strategy 919

alone. In SL-GWO, the first and second symbiotic hunting 920

strategies form the basis of achieving a better exploratory 921

reach and encouraging diversification while emphasizing 922
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local search equally. The incorporation of multiple random923

omega wolves to help advance the hunt as additional sub-924

ordinates to the alpha, beta and delta wolves forms a positive925

reinforcement to ensure that the search space around each926

wolf expand during exploration to newer areas and slowly927

contracts during exploitation as the wolves start moving close928

to each other. This strategy works effectively at preventing929

the collapse of search space particularly if the three dom-930

inant wolves originate from the same local region of the931

search space which has been one of the primary reasons for932

entrapment in the canonical GWO and its variants directly933

employing the hierarchical hunting. Furthermore, the third934

and fourth hunting strategies are carefully designed to follow935

the alpha wolf while incorporating random omega wolves936

from the population to ensure that the search process is937

rotationally invariant for search landscapes with several trans-938

lations. Another benefit of the third and fourth strategies is939

that they help accelerate the convergence towards the alpha940

wolf such the resultant position is can explore and exploit941

around the best possible solution without any interactions942

with the beta and omega wolves. This can aid the wolves to943

improve the exploitation around the alpha wolf increasing the944

accuracy and precision of the best solution while lowering the945

redundancy associated with exploiting the inferior beta and946

delta wolves.947

The system of selecting the hunting strategy is biased948

towards the first and second hunting schemes as the enhance-949

ment of diversity is emphasized throughout the search pro-950

cess. The system of selecting one out of the four hunting951

strategies corresponds to lower computational complexity952

when compared to other variants of GWOwherein the canon-953

ical GWO hunting is followed by advanced hunting schemes954

which are often implemented one after the other resulting in955

the population updation and selection process to occur twice956

in a single-iteration.957

3) POPULATION SELECTION STRATEGY958

SL-GWO relies on the greedy selection or the greedy algo-959

rithm [67] to update its population pool such that newer960

fitter wolves always replace their older counterparts and in961

case the newer wolf is inferior in fitness, the older wolf962

retains its position in the pool. This selection system is963

quite opposite to the population selection from the canonical964

GWO wherein the newer wolves always replace the older965

solutions irrespective of their fitness. Conventionally referred966

to as the Mu, Lambda selection [68], [69], [70], [71] with967

Mu denoting the parent population pool and Lambda being968

the children population pool, the Lambda population pool969

always replaces the Mu population pool such that the recent970

solutions are always included. The major disadvantage with971

the conventional Mu, Lambda selection is that personal best972

information of individual wolves is lost and the newer wolves973

are forced to occupy positions with no fitness improvements974

over time. Additionally, the need to include every newer975

member of the population after the fitness evaluation pro-976

cess adds to the complexity. Finally, the inclusion of every977

recent member is not effective at advancing the hunt of every 978

individual grey wolf to gradually improve over time and all 979

the problems coupled with the lack of adaptive and robust 980

control and diversifying schemes can trigger the avalanche 981

of stagnation leading to entrapment and ultimately premature 982

convergence. Therefore, to counter these ill-effects associated 983

with the conventional selection process, the greedy selection 984

from SL-GWO provides a robust mechanism to select the 985

best solutions while advancing their personal best fitness 986

levels at all times. The greedy selection in SL-GWO works 987

in synergy with a population sorting mechanism to sort the 988

population of the two sub-groups such that the three best 989

solutions are assigned as the alpha, beta and delta wolves 990

rather than comparing the individual fitness levels of the 991

individual wolves from the standard GWO. The major benefit 992

is that no inferior solutions make it to the population pool 993

preventing the advancement of the individual grey wolves 994

and the second being the re-organization of the population 995

pools based on the sorted population. Furthermore, the re- 996

organization system allocates the top 50 percent of the wolves 997

to the attacking hunters to explore at a faster pace and the 998

remaining 50 percent to thewolves to the experienced hunting 999

group to ensure that diversification is preserved at all times. 1000

4) TIME COMPLEXITY AND COMPUTATIONAL COMPLEXITY 1001

In SL-GWO, the position update system occurs once, fol- 1002

lowed by the sorting of all wolves from the two sub-groups 1003

after evaluating the wolves’ fitness in the previous iteration 1004

to select the alpha, beta, and delta wolves. This is followed 1005

by the parameter adaption, which occurs as a result of any 1006

of the symbiotic hunting processes. As a result, SL-GWO 1007

performs only one fitness assessment (SFEs) of each popula- 1008

tion member every iteration. The computational complexity 1009

of distinct phases for an iterative count of T iterations with a 1010

population size of N and each having aD number of decision 1011

variables/dimensions is as follows. In addition to the total 1012

computing complexity of the fitness sorting process through 1013

quick sort, which is O(N log N ), the symbiotic hunting tech- 1014

nique has an computational cost ofO(T× ( N×D)) followed 1015

by O(N × T) for the greedy selection of all the new posi- 1016

tions. To summarize, the overall computational complexity is 1017

O(ND + N log N × (T × (N × D)))). 1018

The time complexity of SL-GWO is measured considering 1019

its total run time i.e., ‘ttotal’ for one independent run. It is 1020

shown in Eq. (3.20). 1021

ttotal = t1 × O1 + t2 × O2 + . . . . . . .tN × ON (3.20) 1022

where, 1023

t1, t2 . . . ..tN are the computational times needed by GWO 1024

to complete the various operations O1, O2 . . . ..ON for N 1025

number of wolves. The various operations and the time 1026

requirements are presented in Table 5. 1027

Therefore, based on analysis from Table 5, the time com- 1028

plexity of SL-GWO is O(N). 1029

The pseudocode of SL-GWO is given below. 1030
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TABLE 5. The time complexity of SL-GWO algorithm.

IV. RESULTS AND DISCUSSIONS1031

The proposed algorithm’s performance will be evaluated1032

using a variety of benchmark functions, constrained engi-1033

neering problems, and real-world optimization problems1034

from the domain of power systems. Tests include 29 scal-1035

able benchmark functions from the CEC2018 benchmark-1036

ing suite (dimensions set to 10, 30 and 50), to verify1037

the algorithm’s immunity to the curse of dimensionality1038

and convergence characteristics. This is followed by the1039

10 fixed-dimensional functions from the CEC2019 bench-1040

mark functions to evaluate the algorithm’s ability to prevent1041

local entrapment and premature convergence. Four common1042

engineering problems (pressure vessel design, welded beam1043

design, tension/compression spring design, and 10-bar truss1044

design optimization) are used to validate the performance1045

under constrained conditions. SL-GWO and other compet-1046

ing algorithms are then applied to 13 distinct case stud-1047

ies of optimum power flow for IEEE 30 and IEEE 57-bus1048

systems followed by the optimal reactive power dispatch1049

problem IEEE 30 and 57-bus systems for 8 different case1050

studies.1051

The flowchart of SL-GWO is given by Figure 3 and1052

Figure 4 represents the flowchart for the symbiotic hunting1053

and parameter adaption in SL-GWO.1054

All experimentation evaluated for this study are con-1055

ducted on anUltrabook runningMicrosoftWindows 10 R©Pro1056

(Version 20H2 - OS Build 19042.867) and equipped1057

with 16 Gigabytes of DDR3 RAM and a quad-core Intel(R)1058

Core (TM) i7-4700MQ CPU running at 2.40GHz. MATLAB1059

R2020a is used to code all of the methods for the comparative1060

analysis.1061

A. DESCRIPTION OF THE PERFORMANCE EVALUATION1062

CRITERIA1063

The performance assessment criteria for all fourteen algo-1064

rithms, including SL-GWO, across the two benchmarking1065

suites (CEC2018 benchmarking suite and CEC2019 bench-1066

marking suite) are as follows. (1) The average (mean) and1067

standard deviation values for each algorithm are calculated1068

for 30 independent runs. (2) The first statical test, Wilcoxon’s1069

rank-sum test, is used to compare SL-GWO against the other1070

Algorithm 1 SL-GWO
1. Initialize the positions of the grey wolves through

randomization
2. Evaluate the fitness of every wolf
3. Assign the position of the grey with the best solution

to
−→
Xα

Assign the position of the grey with the second-best
solution to

−→
Xβ

Assign the position of the grey with the third-best
solution to

−→
Xδ

4. Divide the wolfpack into two groups using Eq. (3.1)
5. Increment iterations until t< maximum iterations
6. loop for all wolves in the first sub-group
7. Determine Sr using Eq. (3.3)
8. DetermineD1 andD2 using Eq. (3.13) and Eq. (3.14)
9. Calculate the position of new grey wolf using one of

the four symbiotic hunting strategies using Eq. (3.16)
10. Update the position of the current wolf using Eq (3.2)
11. Repair the solutions exceeding the search boundaries

using Eq. (3.17) and Eq. (3.18).
12. Evaluate the fitness of all the wolves
13. Perform population selection using greedy selection,

Eq. (3.19)
14. Update the population of the first sub-group
15. end for
16. loop for all wolves in the second sub-group
17. Determine Sr using Eq. (3.4)
18. Determine D1 and D2 using Eq. (3.15)
19. Calculate the position of new grey wolf using one of

the four symbiotic hunting strategies using Eq. (3.16)
20. Update the position of the current wolf using Eq (3.2)
21. Repair the solutions exceeding the search boundaries

using Eq. (3.17) and Eq. (3.18).
22. Evaluate the fitness of all the wolves
23. Perform population selection using greedy selection,

Eq. (3.19)
24. Update the population of the first sub-group
25. end for
26. Update

−→
Xα ,
−→
Xβ and

−→
Xδ

27. Return
−→
Xα and its corresponding fitness

28. end for
29. Check for termination criteria

algorithms at a 0.05 level of significance. The ‘‘+’’ symbol 1071

is used to indicate that the other algorithms perform better 1072

than SL-GWO, the ‘‘≈’’ symbol indicates that the other 1073

algorithms performed similarly to SL-GWO, and the ‘‘−’’ 1074

symbol indicates that the other algorithms perform poorly 1075

relative to SL-GWO. (3) The second statistical test, a rank- 1076

ing test using non-parametric Friedman’s test, is used to 1077

determine the best-performing algorithms. (4) Additionally, 1078

the mean absolute errors (MAE) are analyzed to determine 1079

the difference between the global optimal solution and the 1080

best solution achieved using each technique. (5) Convergence 1081
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FIGURE 3. Flowchart of SL-GWO.

graphs for the CEC2018 test suite with 50 dimensions, as well1082

as acceleration rates for fixed dimensional benchmarking1083

functions, are included to demonstrate the proposed method’s1084

convergence properties.1085

B. ALGORITHMS IN THE BENCHMARKING FRAMEWORK 1086

The performance of SL-GWO is compared and validated 1087

against the standard GWO algorithm from 2014 and eight 1088

of its latest state-of-the-art variants whose description is 1089
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FIGURE 4. Flowchart depicting the symbiotic hunting and parameter adaption process in SL-GWO.

provided in Table 6. To ensure diversity in the comparative1090

analysis, at least one variants from four categorizations are1091

chosen with the latest variants (from 2016 to 2022) consid-1092

ered based on their popularity and performance during the1093

literature survey.1094

Additionally, five modern meta-heuristics including Harris1095

Hawk optimization (HHO) [72] from 2019, Slime Mould1096

optimization Algorithm (SMA) [73] from 2020, Gorrila1097

Troops Optimizer (GTO) [74] from 2021, Whale Optimiza-1098

tion Algorithm (WOA) [22] from 2016 and Chimp Opti-1099

mization Algorithm (ChOA) [23] from 2020 are chosen for1100

the comparative analysis in the current work for the follow-1101

ing reasons. (1) A few of the prominent and state-of-the-1102

art algorithms from 2015 to 2020 are covered through the1103

selection of HHO, GTO, SMA, WOA and ChOA. (2) The1104

control mechanism of exploration and exploitation in SMA,1105

HHO andWOA is similar to the ones in GWO. (3) These five1106

techniques have similar computational complexities to that of1107

GWO. (4). The group hunting and the control mechanism in1108

ChOA are identical to the social hierarchical system in GWO.1109

(5) SOA incorporates two different phases for exploration 1110

and exploitation similar to the system in SL-GWO. (6) The 1111

tuning requisites were minimal for the selected five meta- 1112

heuristics compared to other contemporary nature-inspired 1113

meta-heuristics. 1114

Furthermore, a few other modern algorithms including 1115

SSA (Slap Swam Algorithm) [75], SOA (Seagull opti- 1116

mization algorithm) [76], MFO (Moth flame optimizer) 1117

[77] have been included for the comparison with the stan- 1118

dard engineering problems and power flow optimization 1119

problems. 1120

C. TUNING SETTINGS OF THE ALGORITHMS 1121

The algorithm-specific parametric tuning for the competitor 1122

algorithms is based on their respective publications and these 1123

settings have not been modified for the entire benchmarking 1124

and power flow optimization problems. A detailed descrip- 1125

tion of the tuning parameters and their ranges have been 1126

provided in Table 7. 1127
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TABLE 6. Description of the variants of GWO used in the comparative
analysis.

D. PERFORMANCE ANALYSIS WITH CEC20181128

BENCHAMRKING SUITE (TEST FOR THE CURSE OF1129

DIMENSIONALITY)1130

The validation of the proposed algorithm’s performance at1131

handling problems with a larger dimension count and eval-1132

uate its immunity towards the curse of dimensionality is1133

done through a set of 29 scalable/n-dimensional bench-1134

mark functions with the number of dimensions set to 10,1135

30 and 50 from CEC (Congress on Evolutionary Computa-1136

tion) 2018 test suite. This testing process aids in establish-1137

ing the performance of the algorithms towards an increased1138

number of dimensions and tracking the performance dete-1139

rioration concerning the problem dimensions. The descrip-1140

tion of the CEC2018 test functions (categorization, problem1141

dimensions, the search ranges and the global best score) and1142

the fixed dimensional benchmark functions are provided in1143

Table 8.1144

The NFEs are set based on the rules of CEC2018 test1145

suite from [79]. The maximum NFEs are set as per the rule1146

FIGURE 5. Convergence graph for function F1 with 50D.

FIGURE 6. Convergence graph for function F3 with 50D.

10000∗D (Maximum FES for 10D = 100000; for 30D = 1147

300000; for 50D = 500000) and the population size is set as 1148

per the rule 5∗D (Maximum population size for 10D= 50; for 1149

30D = 150; for 50D = 250) with the maximum NFEs being 1150

the stopping criteria. 1151

The benchmarking results (mean and standard deviation) 1152

are shown in Table 9 for the 10-dimensional case followed 1153

by Table10 for the 30-dimensional case and Table 11 for the 1154

50-dimensional case. The results ofWilcoxon’s rank-sum test 1155

are shown in Table 12 followed by the results of Friedman’s 1156

non-parametrical test shown in Table 13, the mean absolute 1157

errors (MAE) for all the fifteen algorithms are given in 1158

Table 14. The acceleration rates comparing SL-GWOwith the 1159

competitor algorithms for the 10, 30 and 50 dimensional cases 1160

are shown in Table 15, Table 16 and Table 17 respectively. 1161

Furthermore, the average computational times are shown in 1162

Table 18. The statistical results comparing SL-GWO with 1163

the recent variant of GWO (GGWO) for the CEC2018 test 1164

suite are provided in Table 19. The convergence curves for 1165

the 29 benchmark functions (50 dimensions) are shown in 1166

Figure 5 to Figure 34. 1167

The performance of SL-GWO stands out for the CEC2018 1168

benchmarking suite in terms of optimality and lower devi- 1169

ation. In table 9, SL-GWO emerged as the best-performing 1170
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TABLE 7. Description of the algorithm-specific tuning parameters for all the algorithms used in the comparative analysis.

algorithm for 24 out of the 29 functions with 10 dimensions.1171

Competitive performances were observed by MEGWO and1172

IGWO for a few composition functions, but SL-GWO1173

managed to outperform all the competitor algorithms for1174

the majority of the test functions by a greater margin.1175

On increasing the dimensions to 30, the performance of 1176

IGWO was more competitive for functions including F8, F9, 1177

F16, F19, F20 and F27 as seen in table 10. IGWO’s neigh- 1178

borhood hunting strategies proved successful at improving 1179

the convergence to the global optimum for these functions. 1180
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TABLE 8. Description of the 29 test functions from the CEC2018 benchmarking suite.

FIGURE 7. Convergence graph for function F4 with 50D.

SL-GWO’s performance is on par with IGWO for the afore-1181

mentioned functions and it outperforms IGWO for 19 out1182

of the 29 functions. On further increasing the dimensions1183

to 50 (Table 11), the performance of most of the competi-1184

tor algorithms degraded by a larger margin with SL-GWO1185

being the best performing algorithm with a higher immunity1186

towards the curse of dimensionality. The standard GWOalgo-1187

rithm and the five modern meta-heuristics including WOA,1188

HHO, SMA, GTO and ChOA quickly fell victim to entrap-1189

ment with the increasing problem dimensions. One of the1190

key reasons for the domination of SL-GWO has been its1191

diversified population management system and emphasis on1192

improving the solution quality through multiple symbiotic1193

FIGURE 8. Convergence graph for function F5 with 50D.

learning strategies that direct the grey wolves to adapt to the 1194

problem landscape. These adaptive control measures to guide 1195

the population movement with diversity-enhancing learning 1196

systems are absent in most modern meta-heuristics and these 1197

algorithms are often tested on simpler standard benchmarking 1198

functions with static landscapes where they are known to 1199

be the most competitive. Dynamic search landscapes from 1200

the CEC2018 suite help assess the quality of exploration 1201

and exploitation with the ever-present complexity of random 1202

translations to the landscape in the form of shifting and rotat- 1203

ing that tend to trap poorly designed optimizers with a higher 1204

affinity to exploit the local zones. SL-GWO’s performance is 1205

consistent through the testing with the increase in the number 1206
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TABLE 9. Comparison of mean and standard deviation (std.) of the fourteen algorithms for the CEC2018 benchmarking suite with 10 dimensions.

of problem dimensions having no effect on the efficiency1207

of the algorithm as seen in Tables 9, 10 and 11. The other1208

algorithms’ performance dwindled over the increase in the1209

dimensions with the standard GWO being the most hard-hit1210

followed by EGWO and CGWO. It is safe to conclude that1211

SL-GWO is quite efficient at handling problems with larger1212

dimensions and is immune to the curse of dimensionality. The1213

greedy search mechanism to prioritize the best solutions for 1214

the next generations could be traced back to the success of 1215

SL-GWO. Another reason could be traced back to the pres- 1216

ence of a large number of tuning parameters and no adaptive 1217

control strategy for the fourteen chosen algorithms, WOA, 1218

GWO, HHO, SMA, I-GWO required no additional tuning 1219

parameter settings while IGWO-DE, MEGWO, SOGWO, 1220
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FIGURE 9. Convergence graph for function F6 with 50D.

FIGURE 10. Convergence graph for function F7 with 50D.

FIGURE 11. Convergence graph for function F8 with 50D.

EGWO, and ChOA required the tuning of special algorithm-1221

specific parameters (2 to 4 parameters) whose values have1222

been set based on their corresponding publications. Although1223

the empirical setting favoured performance for problems with1224

a lower number of dimensions as seen in [22], [72], [73],1225

[74], [80], the same performance was not reflected for the1226

FIGURE 12. Convergence graph for function F9 with 50D.

FIGURE 13. Convergence graph for function F10 with 50D.

FIGURE 14. Convergence graph for function F11 with 50D.

larger dimensional problems. One particular reason for this 1227

is to do with the formulation of the solution set wherein 1228

every dimension/decision variable has not achieved the global 1229

best solution leading to an imbalance in the optimization and 1230

thereby producing highly non-optimal solutions. 1231
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TABLE 10. Comparison of mean and standard deviation (std.) of the fourteen algorithms for the CEC2018 benchmarking suite with 30 dimensions.

Tables 12, 13 and 14 rank the algorithms based on the1232

statistical tests including the Wilcoxon’s rank sum test at a1233

significance of 0.05 followed by the non-parametric Fried-1234

man’s test and the mean absolute error rates. In table A4,1235

the p-values indicate the statistical significance of SL-GWO’s1236

results compared to its competitors. MEGWO was the1237

only notable exception for the 10-dimensional case and the1238

disparity grew for the 30D and 50D cases. SL-GWO ranked 1239

first in the Friedman’s ranking with the least mean abso- 1240

lute errors for all the three cases of increasing problem 1241

dimensions. 1242

The acceleration rates from Tables 15, 16 and 17 for the 1243

10D, 30D and 50D cases provide an overview of the con- 1244

vergence capabilities of SL-GWO compared to the others. 1245
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TABLE 11. Comparison of mean and standard deviation (std.) of the fourteen algorithms for the CEC2018 benchmarking suite with 50 dimensions.

It is quite evident that the SL-GWO is quicker than all the1246

competitor algorithms for all the functions with the exception1247

of one or two functions. The acceleration rates are indicative1248

of the balance of exploration and exploitation achieved by1249

SL-GWO through its multi-populational management and1250

control parameters to efficiently adapt the diversification and1251

intensification rates to achieve the best possible convergence1252

to the global optimumwithin the given computational budget. 1253

The quicker convergence without the risk of entrapment in 1254

SL-GWO is made possible through the symbiotic learning 1255

schemes i.e., the linear and adaptive controls for the hunting 1256

distance and symbiosis rate. The two sub-population each 1257

with its diversified control schemes operate independently 1258

to explore and exploit around the three leader wolves and 1259
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TABLE 12. Results of the Wilcoxon’s rank sum test comparing SL-GWO with the ten modern meta-heuristics for the CEC2018 benchmarking suite.

TABLE 13. Ranking the algorithms based on Friedman’s rank for the CEC2018 benchmarking suite.

TABLE 14. Ranking the algorithms based on Mean Absolute Errors for the CEC2018 benchmarking suite.

complement each other. The advantage in SL-GWO stems1260

from the fact that either the linear control or adaptive control1261

of sub-population can be beneficial at times when the latter1262

proves ineffectual. This coupled with their dynamic nature of1263

ever-changing values can help evade entrapment in cases of1264

stagnation.1265

The computational times in Table 18 indicate that1266

SL-GWO’s times are higher compared to the standard GWO1267

and a few of its variants such as MEGWO, EGWO and1268

CGWO. However, SL-GWO’s times are competitive com-1269

pared to SOGWO, AGWO and ChOA. SL-GWO’s higher1270

computational times are a result of its population sub-1271

grouping which requires the initial population to be sorted1272

into two individual groups that operate one after the other 1273

on a single core CPU workload. SL-GWO’s diversified con- 1274

trol and adaptive tuning add additional CPU times over the 1275

existing workload. Furthermore, SL-GWO repairs the indi- 1276

vidual solution dimensions that exceed the lower or upper 1277

obtained through re-initializing them within the problem 1278

search bounds for both the sub-groups. This repair system 1279

can add to the existing CPU burden while most other variants 1280

of GWO rely on the much simpler yet ineffective corner 1281

bounding. Despite the effectiveness of corner bounding for 1282

static landscapes, the process of forcing the solutions to 1283

the corners of the search space can result in entrapment 1284

in dynamic landscapes with local optimum points at the 1285
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TABLE 15. Comparison of the acceleration rates of SL-GWO with the thirteen competitor algorithms for the CEC2018 benchmarking suite (10 dimensions).

TABLE 16. Comparison of the acceleration rates of SL-GWO with the thirteen competitor algorithms for the CEC2018 benchmarking suite (30 dimensions).

extremities of the landscape. SL-GWO’s computational times1286

are similar to SOGWO’s as both these algorithms operate1287

with two sets of populations and while SOGWO creates an1288

opposite point for each and every solution and selects the best1289

one based on fitness, SL-GWO relies on multiple symbiotic1290

strategies with adaptive control schemes to generate newer1291

population and include them into the population pool. 1292

Although the selective opposition strategy from SOGWO is 1293

promising at averting entrapment, it cannot always deliver the 1294

same level of exploration-exploitation balance in SL-GWO 1295

given that the opposite points may not be the fittest at all 1296

times. SL-GWO overcomes this disadvantage through the 1297
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TABLE 17. Comparison of the acceleration rates of SL-GWO with the thirteen competitor algorithms for the CEC2018 benchmarking suite (50 dimensions).

FIGURE 15. Convergence graph for function F12 with 50D.

constant update of fitter solutions from the newer solutions1298

while replacing the older population with fitter new wolves1299

through a greater emphasis on the three leaders at all times1300

such that the newer solutions are not too far off or too near1301

to the dominant wolves to prevent the functions evaluations1302

being futile and fall victim to early entrapment. Fortunately,1303

the higher computational times in SL-GWO can be overcome1304

through the use of parallel computational capabilities since1305

both the population groups operate independently while the1306

other variants of GWO cannot be exploited through the power1307

of parallel computational capabilities.1308

Table 19 compares the statistical results of SL-GWO with1309

the recent GGWO [26] for 10, 30 and 50 dimensions of the1310

CEC2018 test suite. It is obvious that the performances of1311

FIGURE 16. Convergence graph for function F13 with 50D.

SL-GWO and GGWO are quite competitive with each other. 1312

However, it is to be noted that GGWO utilized three times 1313

higher computational budget andGGWOhas a computational 1314

complexity (CC) which is three times that of SL-GWO as 1315

it generates three new solutions for every member of grey 1316

wolf whose fitness is evaluated every iteration to such that 1317

the best one of the three solutions survive to make it to the 1318

next iteration. SL-GWO on the other hand generates only 1319

one new solution vector for every member of the wolfpack 1320

thereby reducing its computational requirements to one fit- 1321

ness evaluation for every member in an iteration. Despite the 1322

higher computational budget, the performances of SL-GWO 1323

are identical and at times and even outperforms the GGWO 1324

algorithm for the 50-dimensional case. 1325
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TABLE 18. Comparison of the computational times (seconds)of the fourteen algorithms for the CEC2018 benchmarking suite.
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TABLE 18. (Continued.) Comparison of the computational times (seconds)of the fourteen algorithms for the CEC2018 benchmarking suite.

TABLE 19. Comparison of the statistical results of SL-GWO and GGWO for the CEC2018 benchmarking suite.

FIGURE 17. Convergence graph for function F14 with 50D.

E. PERFORMANCE ANALYSIS WITH CEC20191326

BENCHMARK FUNCTIONS (TEST FOR LOCAL MINIMA1327

AVOIDANCE)1328

The 2019 Special Session and Competition on Single1329

Objective Numerical Optimization introduced the 100-Digit1330

FIGURE 18. Convergence graph for function F15 with 50D.

Challenge, which required the minimization of ten special 1331

functions (having the global optimum fitness value of ‘‘1’’) 1332

with restricted control parameter ‘‘tuning’’ for each function 1333

[14]. The test functions were methodically constructed with 1334

several local optima and a single global optimum solution to 1335
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TABLE 20. Description of the 10 CEC2019 benchmark functions (composition functions) used to determine the algorithms’ ability to avoid local
entrapment.

FIGURE 19. Convergence graph for function F16 with 50D.

guarantee that the exploratory ability and avoidance of local1336

minima are put to the test. As with the previous CEC ses-1337

sion’s composition functions, the CEC 2019 benchmark suite1338

includes difficult exploration circumstances with their land-1339

scapes shifted and rotated to further confound an algorithm’s1340

search process. It is worth noting that these functions make it1341

extremely difficult for any global optimization algorithm to1342

determine the global optimal solution because their formu-1343

lation is intended to trap algorithms in local best positions,1344

which is especially true for algorithms with a tendency to1345

converge to the search landscape’s central point. Additionally,1346

these issues have a huge number of dimensions, making the1347

FIGURE 20. Convergence graph for function F17 with 50D.

search process even more complicated, and only algorithms 1348

with a strong exploratory inclination of the whole search 1349

space can discover the global optimal solution or solutions 1350

that are near to it. 1351

The description of the CEC2019 benchmarking suite is 1352

shown in Table 20. The benchmarking results (best, worst, 1353

mean and standard deviation) are shown in Table 21, the 1354

results of Wilcoxon’s rank-sum test are shown in Table 22, 1355

followed by the results of Friedman’s non-parametrical test 1356

are shown in Table 23, and the mean absolute errors (MAE) 1357

for all the fifteen algorithms are given in Table 24. Fur- 1358

thermore, the average computational times are shown in 1359
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FIGURE 21. Convergence graph for function F18 with 50D.

FIGURE 22. Convergence graph for function F19 with 50D.

FIGURE 23. Convergence graph for function F20 with 50D.

Table 25 and the acceleration rates comparing SL-GWOwith1360

the competitor algorithms in Table 26. The NFEs are set to1361

1,000,000 (1E+06), the population size is set to 500 and1362

the NFEs are chosen as the termination criteria for all the1363

algorithms in the test bench.1364

FIGURE 24. Convergence graph for function F21 with 50D.

FIGURE 25. Convergence graph for function F22 with 50D.

FIGURE 26. Convergence graph for function F23 with 50D.

• It is evident fromTables 21, 22, 23 and 24, that SL-GWO 1365

had the best optimal fitness for F1, F4, F5, F7, F8, F9 1366

and F10. It is indicative of the algorithm’s exploratory 1367

and local minima avoidance capabilities. The proposed 1368

method generated solutions closer to the global opti- 1369

mal solutions for F4, F5, F6, F7, F8 and F10. For the 1370
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TABLE 21. The values of best, worst, mean and the standard deviation of the fourteen algorithms for the CEC2019 benchmark functions.

FIGURE 27. Convergence graph for function F24 with 50D.

functions F2, F4 and F5, the prosed method outper-1371

formed the other variants of GWO and the modern meta-1372

heuristics.1373

• Function F2 proved to be the most challenging for all1374

the meta-heuristics in comparison except SL-GWO. All1375

FIGURE 28. Convergence graph for function F25 with 50D.

the algorithms were victims of local entrapment at some 1376

point or the other during the course of exploration. F2 1377

also has a higher dimensionality at 16 dimensions and 1378

its extrememulti-modality resulted in several optimizers 1379

including IGWO,MEGWO etc. being entrapped despite 1380
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FIGURE 29. Convergence graph for function F26 with 50D.

FIGURE 30. Convergence graph for function F27 with 50D.

FIGURE 31. Convergence graph for function F28 with 50D.

their competitive performance in the previous test suite.1381

SL-GWO’s entrapment evasion capabilities are demon-1382

strated as it generated optimal fitness scores closer to1383

the global best fitness. The linear control strategy in1384

SL-GWO enables a smoother transition from explo-1385

ration to exploitationwhile the adaptive strategy controls1386

FIGURE 32. Convergence graph for function F29 with 50D.

FIGURE 33. Convergence graph for function F30 with 50D.

FIGURE 34. Legend depicting the various algorithms.

the exploration and adapts in a dynamic manner to pre- 1387

vent stagnation. The linear control strategy also forces 1388

exploration at the initial stages of the search thereby pre- 1389

venting premature convergence and the adaptive control 1390

strategy guides the wolves to the most promising and 1391

diverse areas within the search landscape. 1392
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TABLE 22. Results of the Wilcoxon’s rank sum test comparing SL-GWO
with the ten modern meta-heuristics for the CEC2019 benchmarking suite.

TABLE 23. Ranking the algorithms based on Friedman’s rank for the
CEC2020 benchmarking suite.

TABLE 24. Ranking the algorithms based on Mean Absolute Errors for the
CEC2019 benchmarking suite.

• Besides F2, the function F7 was also one the most1393

challenging and all the other algorithms generated local1394

optimal solutions. SL-GWO had the best performance1395

for F1, F3, F6 and F10 with the perfect 10-digit accu-1396

racy while none of the other algorithms had the perfect1397

10 digits for multiple functions.1398

• Competitive performances were observed from the func- 1399

tions F4, F5, F8 and F9with SL-GWOand I-GWObeing 1400

the most successful candidates. While the CEC2019 1401

test suite does not pose any restrictions on the NFEs, 1402

it imposes restrictions on the tuning settings and it can 1403

help analyze the sensitivity of the tuning parameters to 1404

extreme search landscapes. The results demonstrate that 1405

the dynamic tuning from SL-GWO is quite efficient for 1406

complex landscapes and can provide results with good 1407

accuracy. 1408

• The effect of additional NFEs or increasing population 1409

count produced no major improvements in the perfor- 1410

mance of most algorithms and the modification in the 1411

tuning parameters has been proven to be ineffectual 1412

for such complicated search landscapes of composition 1413

functions. The same NFEs count has been useful in 1414

identifying how quickly does an algorithm adapt to 1415

escape local entrapment and it was fairly obvious that 1416

a lack of diversifying measures leads to entrapment 1417

at a very quick point in the timeframe of exploration. 1418

Although several articles have demonstrated that the 1419

global optimal solutions are attainable through multiple 1420

tuning settings each unique to different functions, the 1421

current work does not modify or suggest multiple tuning 1422

modifications to suit the functions’ landscape. Instead, 1423

all the algorithms have the same tuning settings speci- 1424

fied earlier and no modifications have been enforced to 1425

ensure that a fair comparison has been made. 1426

• Although the NFEs were higher for the CEC2019 test 1427

suite compared to the CEC2018 suite, most modern 1428

meta-heuristics fail to exploit the advantage with higher 1429

population size and quickly get entrapped and this 1430

proves that simple strategies with limited adaptive tun- 1431

ing can be detrimental despite higher computational 1432

budgets. 1433

• The MAE for SL-GWO has been the least as it managed 1434

to provide decent performances across all the test func- 1435

tions. From the rankings, it can be inferred that SL-GWO 1436

is effective at handling complex search landscapes with 1437

a good tendency for exploration and solution intensifica- 1438

tion given that no additional tuning is required compared 1439

to the other algorithms. 1440

The analysis of variance (ANOVA) through box-plots for 1441

all the CEC2019 benchmark functions are shown in Figures 1442

35 to 44 for all the 10 functions. 1443

F. PERFORMANCE ANALYSIS WITH STANDARD 1444

CONSTRAINED ENGINEERING PROBLEMS THE 1445

ALGORITHMS 1446

The analysis of the performance of the proposed method 1447

for constrained engineering problems is carried out in this 1448

sub-section to determine its ability to generate feasible 1449

solutions with the stipulated computational budget. The 1450

performance of the fourteen competitor algorithms has 1451

been considered in comparative analysis and five different 1452
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TABLE 25. Comparison of the computational times (seconds) of the fourteen algorithms for the CEC2019 benchmarking suite.

TABLE 26. Comparison of the acceleration rates of SL-GWO with the thirteen competitor algorithms for the CEC2019 benchmarking suite.

FIGURE 35. Box-plot for function F1 from CEC2019 test suite.

optimization problems with a varying number of dimensions1453

and constraints are chosen. A computational budget of 8,0001454

function evaluations (NFEs) has been allotted to all the fifteen1455

algorithms for a fair comparison.1456

The constraint handling for all the five optimization prob-1457

lems is implemented through the standard static penalty1458

approach method [81].1459

1) PRESSURE VESSEL DESIGN1460

The Pressure vessel design problem comprises four decision1461

variables (x1: length of the cylindrical section, x2: thickness1462

of the head, x3: inner radius and x4: thickness of the shell)1463

and four inequality constraints with respect to the first, third1464

and fourth decision variables and requires the total cost min-1465

imization with respect to its design [82]. Table 27 gives the1466

FIGURE 36. Box-plot for function F2 from CEC2019 test suite.

optimum costs obtained and the optimal values of decision 1467

variables by the fifteen algorithms and a comparison of the 1468

performance of the algorithms in terms of best cost, worst 1469

cost, average costs, deviation and computational times for the 1470

30 independent runs are tabulated in Table 28. 1471

2) WELDED BEAM DESIGN 1472

The welded beam design problem comprises of four decision 1473

variables (x1: weld thickness, x2: clamping bar length, x3: 1474

bar height and x4: bar thickness) and four inequality con- 1475

straints including bending stress, shear stress, buckling load, 1476

and beam end deflection are levied. The problem requires 1477

the total cost minimization with respect to its manufacturing 1478

cost [83]. Table 29 gives the optimum costs obtained and the 1479

optimal values of decision variables by the fifteen algorithms 1480
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FIGURE 37. Box-plot for function F3 from CEC2019 test suite.

FIGURE 38. Box-plot for function F4 from CEC2019 test suite.

FIGURE 39. Box-plot for function F5 from CEC2019 test suite.

and a comparison of the performance of the algorithms in1481

terms of best cost, worst cost, average costs, deviation and1482

computational times for the 30 independent runs are tabulated1483

in Table 30.1484

3) TENSION/COMPRESSION SPRING DESIGN1485

The tension/compression spring design problem comprises1486

of three decision variables (x1: wire diameter, x2: mean coil1487

diameter and x3: number of active coils) and four inequality1488

FIGURE 40. Box-plot for function F6 from CEC2019 test suite.

FIGURE 41. Box-plot for function F7 from CEC2019 test suite.

FIGURE 42. Box-plot for function F8 from CEC2019 test suite.

constraints including frequency, deflection and shear stress 1489

are levied. The problem requires the total cost minimization 1490

with respect to the weight of the spring [84]. Table 31 gives 1491

the optimum costs obtained and the optimal values of decision 1492

variables by the fifteen algorithms and a comparison of the 1493

performance of the algorithms in terms of best cost, worst 1494
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TABLE 27. The optimal costs and the optimal values of the four decision variables for the pressure vessel design obtained by the fifteen algorithms.

TABLE 28. Comparison of the best, worst, average (mean), standard deviation and the average computational times (seconds) of the fifteen algorithms
for the pressure vessel design.

TABLE 29. The optimal costs and the optimal values of the four decision variables for the welded beam design obtained by the fifteen algorithms.

cost, average costs, deviation and computational times for the1495

30 independent runs are tabulated in Table 32.1496

4) 10-BAR TRUSS1497

Truss bar optimization is optimizing the structural weight of1498

the truss bars while taking into account design restrictions1499

such as stress, deflection, and displacement [85]y. The deci- 1500

sion variables are proportional to the size of the truss bars, 1501

which can be 10, 15, 25, 50, 72, or 200 in number. The 1502

truss bar optimization is applicable to continuous and dis- 1503

crete choice variables, and the current testing considers the 1504

10-bar truss optimization for continuous variables. Article 1505
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TABLE 30. Comparison of the best, worst, average (mean), standard deviation and the average computational times (seconds) of the fifteen algorithms
for the welded beam design.

TABLE 31. The optimal costs and the optimal values of the three decision variables for the tension/compression spring design obtained by the fifteen
algorithms.

TABLE 32. Comparison of the best, worst, average (mean), standard deviation and the average computational times (seconds) of the fifteen algorithms
for the tension/compression spring design.

at [86] has a detailed description of the mathematical for-1506

mulation, the objective function. The best fitness values and1507

their accompanying optimal decision variables for all fif-1508

teen algorithms are listed in Table 33, ordered ascending1509

by fitness score. Table 34 contains a comparison table of 1510

the best, worst, average, standard deviation, and average 1511

computing times for the thirty separate runs of all fifteen 1512

algorithms. 1513
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TABLE 33. The optimal costs and the optimal values of the ten decision variables for the 10-bar truss optimization obtained by the fifteen algorithms.

TABLE 34. Comparison of the best, worst, average (mean), standard deviation and the average computational times (seconds) of the fifteen algorithms
for the 10-bar truss optimization.

FIGURE 43. Box-plot for function F9 from CEC2019 test suite.

a: ANALYSIS OF RESULTS1514

• I-GWO and SL-GWO produced similar optimal costs1515

with I-GWO having the least standard deviation. How-1516

ever, SL-GWO had a lower computational time (almost1517

FIGURE 44. Box-plot for function F10 from CEC2019 test suite.

half that of I-GWO). The neighbourhood construction 1518

strategy based on Euclidean distance calculation in 1519

I-GWO enables the algorithm to choose the best wolves 1520
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within the constructed neighbourhood favouring bet-1521

ter exploitation and hence the least standard deviation1522

for problems with low dimensions. Similarly, SL-GWO1523

works to exploit the best areas in the search space1524

through the symbiotic learning strategy while ensuring1525

that randomized omega wolves are always chosen in this1526

process. Although the inclusion of randomized omega1527

wolves could impede the search process locally by a1528

small margin resulting in slightly increased rates of1529

standard deviation in the case of SL-GWO, it is this1530

randomized selection that prevents local entrapment as1531

seen in previous benchmarking tests.1532

• The standard GWO algorithm and its other variants1533

although produced the best optimal solutionswith higher1534

cost function values, had larger standard deviations with1535

their mean fitness being far away from the best fitness.1536

ACGWO ranked last in terms of optimal fitness value1537

and had the highest standard deviation amongst the vari-1538

ants of GWO considered.1539

• WOA and ChOA, on the other hand, couldn’t deliver1540

their best performance in both the cases of optimality1541

and lower deviation rates for a lower setting of NFEs1542

considered in this work. WOA, notably had the highest1543

standard deviation for the current problem indicating1544

that the algorithm converged to a local solution in most1545

of the runs during the benchmarking process.1546

• The NFEs required by the proposed method is lower1547

than the most cases with other modern meta-heuristics1548

indicating that the proposed method is able to achieve a1549

good trade-off between the exploration and exploitation1550

quickly for constrained optimization problems.1551

• MEGWO produced infeasible solutions with constraint1552

violations in some cases and hence its optimal cost and1553

its corresponding optimal decision variable have not1554

been included in the comparison.1555

V. POWER FLOW OPTIMIZATION PROBLEMS1556

The power flow optimization problems in power systems1557

are complex and non-linear multi-constrained optimization1558

tasks and present a challenging environment to measure the1559

effectiveness of optimization algorithms. In this work13 cases1560

of optimal power flow (OPF) problem for the IEEE 30 and1561

57 bus systems and 8 cases of optimal reactive power dis-1562

patch (ORPD) problem for the IEEE 30 and 57 bus systems1563

have been investigated through a combination of linear incre-1564

mental penalty and constraint correction methods using the1565

15 optimization algorithms.1566

A. OPTIMAL POWER FLOW (13 CASES)1567

The first task is to determine the optimal power flow (OPF)1568

for the IEEE 30 and IEEE 57 bus systems using multiple OPF1569

objectives from [87]. These objectives include cost, emission,1570

power loss, and voltage stability. OPF is a highly nonlinear,1571

difficult optimization problem in which the steady-state char-1572

acteristics of an electrical network must be found in order1573

TABLE 35. Summary of the case studies of the OPF for IEEE 30 bus
system.

TABLE 36. Summary of the case studies of the OPF for IEEE 57 bus
system.

for the network to operate economically and efficiently. The 1574

complexity of the problem increases as a result of the prob- 1575

lem’s multiple equality and inequality constraints. Solving 1576

OPF continues to be a prominent yet difficult issue for power 1577

system researchers. Numerous evolutionary algorithms (EAs) 1578

and swarm intelligence-based optimization algorithms have 1579

been researched in the last couple of decades to identify 1580

optimum solutions to various OPF objectives. 1581

The OPF for IEEE 30 bus system has 24 control/decision 1582

variables and the IEEE 54 bus system has 33 control variables 1583

to be optimized. The different cases for the formulation of the 1584

objective function are provided in Table 35. The other test 1585

cases have been considered as described in Table 36. 1586

The multi-objective optimization cases have been dealt 1587

with as single-objective optimization problems through the 1588

weighing factors techniques whose weights have been set 1589

based on the modelling at [87]. 1590

The equality constraints are defined for the power balance 1591

of active and reactive power followed by three inequality 1592

constraints for the generator limits, two security constraints, 1593

transformer constraint and shunt compensator constraint. 1594

A comprehensive description of the mathematical formula- 1595

tion of the OPF, control (independent) variables, state (depen- 1596

dent) variables and the various constraints is available at [87]. 1597

Constraint handling in the current work is performed 1598

through a combination of the linear penalty incremental 1599

95268 VOLUME 10, 2022



A. K. V. K. Reddy, K. V. L. Narayana: SL-GWO for Engineering and Power Flow Optimization Problems

TABLE 37. Tabulation of the best solutions of OPF for the IEEE 30-bus system.

method (LPIM) and constraint correction approaches. The1600

LPIM is the primary constraint handling mechanism that1601

communicates with the algorithm conveying the fitness value1602

which is the sum of the objective function value and the1603

total incremental penalty levied on each population member.1604

In LPIM, the total penalty added to the fitness is dependent1605

on the individual constraint violations amplified through a1606

linearly rising penalty factor resulting in unique penalty val-1607

ues. The advantage of using an incremental penalty factor is1608

that the initial lower penalty allows initial infeasible solutions1609

to enter the population pool such that exploitation around1610

the infeasible zones is enhanced. As the penalty increases1611

with the progression of the iterations, a very large penalty1612

for minimal constraint violations forces the algorithms to1613

avoid the infeasible zones and exploit the feasible zones only1614

and as a result, the total constraint violation decreases. The1615

total penalty added to the fitness function is the total sum1616

of the products of individual constraint violations and the1617

linear incremental penalty levied on each of them. This is1618

represented by Eq. (5.1).1619

TP =
C∑
i=1

Vi × Lp (5.1)1620

where 1621

i = 1, 2, 3 . . . .C 1622

Lp = Kmin + (Kmax − Kmin)×
(

NFE t
TotalNFEs

)
1623

where, 1624

TP denotes the total penalty added to the fitness value, 1625

i = 1,2,3 . . . C, are the individual constraints, C denotes 1626

the total number of equality and inequality constraints, Vi 1627

denotes the individual constraint violation, Lp is the linear 1628

incremental penalty, Kmin and Kmax are the lower and upper 1629

penalty values set to 1E+03 and 1E+09 through empirical 1630

analysis, NFE t is the current number of function evaluations, 1631

TotalNFEs denotes the total number of function evaluations. 1632

Despite the LPIM effectiveness to prevent infeasible solu- 1633

tions from making it into the final population pool, it is 1634

necessary that the search process be guided to feasible 1635

zones for individual constraints. This is implemented through 1636

an archive-based constraint correction (ABCC) system act- 1637

ing as the secondary constraint handling mechanism which 1638

occurs after the LPIM. The two-constraint handing (CH) 1639

mechanisms are balanced based on the number of function 1640
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TABLE 38. Tabulation of the best solutions of OPF for the IEEE 57-bus system.

evaluations to prevent the additional burden of a secondary1641

mechanism for all of the available budget. LPIM is imple-1642

mented for the entire budget of the function evaluations while1643

ABCC is subject to various conditions and probabilities and1644

limited to only the last 50% of the function evaluations. This1645

is given in Eq. (5.2).1646

CH =



LPIM
if NFE t < 0.5× TotalNFEs{

ABCC if rand < 0.5
LPIM otherwise

otherwise

(5.2)1647

In ABCC, an archive constantly stores the best solu-1648

tions with the least possible constraint violations across each1649

constraint. For a newer solution to enter the archive, its indi- 1650

vidual constraint violations must be lower than that of the 1651

existing members (to prevent a very higher number of such 1652

comparisons the archive size is set to 10 in this work). This is 1653

given in Eq. (5.3). 1654

Ar(p) =

{
Xnew if V new

i=1,2..C < V p=1,2..P
i=1,2..C

Retain Xp Otherwise
(5.3) 1655

were, 1656

Ar denotes the archive of the best solutions with the least 1657

individual constraint violations, p = 1, 2 . . .P denotes the 1658

members of the archive, Xnew is the new solution vector 1659

obtained from the optimization algorithm, Xp is the current 1660

solution vector from the archive. 1661
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The advantage of the proposed elite archival system is that1662

the solutions with the least possible violations across individ-1663

ual solutions are constantly updated despite the variation in1664

the penalty. For the remaining 50% of the budget evaluations,1665

ABCC is implemented with a random probability such that1666

the solutions from LPIM with higher constraint violations1667

are corrected to accept the decision variables from a random1668

member of the archive with lesser violations across indi-1669

vidual constraints. This method has the added advantage of1670

improving the feasibility irrespective of its objective function1671

value and enables the algorithm to effectively exploit the new1672

solution with improved diversity across its decision variables.1673

The only disadvantage is the sacrifice of a fitness evalua-1674

tion to evaluate its newer fitness and incremental penalty1675

(if the violation persists). Hence, to prevent the excessive1676

modifications from the ABCC resulting in higher functions1677

evaluations utilized, a probability factor is assigned to ensure1678

that its involvement is balanced with the LPIM. This is given1679

in Eq. (5.4).1680

XCorrectedj=1,2..D =

{
Xpj if V p=1,2..P

i=1,2..C < V new
i=1,2..C

Xj Otherwise
(5.4)1681

where,1682

XCorrecctedj is the corrected solution with the corrected1683

decision variables across the j dimensions, D denotes the1684

total number of dimensions, Xpj denotes the decision variable1685

for the jth dimension from the member of archive, Xj is the1686

decision variable for the jth dimension retained from the new1687

solution.1688

Once the corrected solutions are evaluated, its possibility1689

of entering the archive is checked and the new fitness with1690

the corrected decision variables are passed on the algorithm1691

for further improvement.1692

The NFEs are set to 25,000 for both the OPFs of IEEE 301693

bus system and IEEE 57 bus systems to ensure fair compari-1694

son amongst all the algorithms.1695

The best solutions and their decision variables obtained for1696

the various cases of OPF for the IEEE 30 and IEEE 57-bus1697

system are shown in Table 37 and Table 38 respectively.1698

From Table 37 and Table 38:1699

• The performance of SL-GWO has been good for five out1700

of the nine cases for the OPF of the IEEE 30-bus systems1701

and three out of the four cases for the OPF of the IEEE1702

57-bus system.1703

• For all the 15 algorithms chosen in the current com-1704

parative analysis, no constraint violations have been1705

reported.1706

• Next to SL-GWO, I-GWO and MEGWO performed1707

well for the other cases in both the bus systems.1708

A comparison of the best results, and average computational1709

times recorded by the other algorithms chosen for the com-1710

parative analysis are provided in Table 39 and Table 40 for1711

the OPF of various cases for the IEEE 30 and IEEE 57-bus1712

system respectively.1713

From Table 39 and Table 40:1714

• The performance of I-GWO, MEGWO and GWO was 1715

competitive in most of the test cases. It can also be 1716

noticed that for the same fitness score, the other param- 1717

eters have been different for the various algorithms con- 1718

sidered. This is on account of the complexity and high 1719

non-linearity associated with the OPF problem. 1720

• The performance of SL-GWO stands out in terms of 1721

optimality, lower standard deviation and mean val- 1722

ues closer to the best values. The exploitation system 1723

through the different symbiotic learning strategies has 1724

been the stronghold for SL-GWO enabling the algorithm 1725

to intensify and further refine the quality of solutions. 1726

The neighbourhood operator-based improvement from 1727

I-GWO and the multi-strategy ensemble techniques 1728

from MEGWO also proved successful at generating 1729

optimal solutions while handling multiple constraints 1730

but performed next to SL-GWO. 1731

• The computational times of ACGWO, P-ObGWO and 1732

SOGWO were the highest followed by ChOA for the 1733

modern meta-heuristics. MEGWO and I-GWO had 1734

the lowest computational times followed by MFO and 1735

SL-GWO. 1736

A comparison of the best, worst, mean and standard deviation 1737

of the optimal costs recorded by the other algorithms chosen 1738

for the comparative analysis is provided in Table 41 and 1739

Table 42 for the OPF of various cases for the IEEE 30 and 1740

IEEE 57-bus system respectively. 1741

B. REACTIVE POWER DISPATCH (8 CASES) 1742

The second problem is that of the optimal reactive power 1743

dispatch (ORPD) on base configurations of IEEE 30-bus and 1744

57-bus systems from [88]. Optimizing reactive power flow in 1745

an electrical network is an important aspect of system study 1746

as the reactive power supports network voltage which needs 1747

to be maintained within desirable limits for system reliability. 1748

Anetwork consisting of only conventional thermal generators 1749

has been extensively studied for optimal active and reactive 1750

power dispatch. 1751

The ORPD for IEEE 30 bus system has 19 control/decision 1752

variables and the IEEE 54 bus system has 27 control vari- 1753

ables to be optimized. The objectives for case 1, case 1a, 1754

case 11 and case 11a are the minimization of the real power 1755

loss (Ploss) in the network and for case 2, case 2a, case 12 1756

and case 12a is the minimization of the aggregate voltage 1757

deviation (VD) in the network. The equality constraints are 1758

defined for the power balance of active and reactive power 1759

followed by three inequality constraints for the generator lim- 1760

its, two security constraints, transformer constraint and shunt 1761

compensator constraint. A comprehensive description of the 1762

mathematical formulation of the ORPD, control (indepen- 1763

dent) variables, state (dependent) variables and the various 1764

constraints is available at [88]. 1765

In the current work, the NFEs are set to 20,000 for all 1766

the algorithms to have a fair comparison. The best solutions 1767

and their decision variables obtained for the various cases of 1768
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TABLE 39. Tabulation of the best solutions and computational times of OPF for the IEEE 30-bus system for all the algorithms in comparative analysis.
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TABLE 40. Tabulation of the best solutions and computational times of OPF for the IEEE 50-bus system for all the algorithms in comparative analysis.

ORPD for the IEEE 30 and IEEE 57-bus system are shown in1769

Table 43 and Table 44 respectively.1770

From Table 43 and Table 44:1771

• Similar to the first problem, the performance of1772

SL-GWO has been good for two out of the four cases1773

for the ORPD of the IEEE 30-bus systems and three out1774

of the four cases for the ORPD of the 57-bus system.1775

• SL-GWO is good at handling problems with a higher1776

number of decision variables as seen from the first and1777

second problems.1778

• The adaptive symbiotic learning system is quite effective1779

at achieving a good trade-off between exploration and1780

exploitation and the static penalty approach has been1781

efficient at generating feasible solutions without any1782

violations of any of the constraints.1783

• SL-GWO exhibited better local search capabilities as it1784

was able to generate solutions with better accuracy and1785

the least deviation from the best values obtained.1786

• For all the 15 algorithms chosen in the current com-1787

parative analysis, no constraint violations have been1788

reported.1789

• Next to SL-GWO, I-GWO and MEGWO performed1790

well for the other cases in both the bus systems.1791

A comparison of the best results, and average computa-1792

tional times recorded by the other algorithms chosen for the1793

comparative analysis are provided in Table 45 and1794

Table 46 for the ORPD of various cases for the IEEE 30 and 1795

IEEE 57-bus system respectively. 1796

A comparison of the best, worst, mean and standard devia- 1797

tion of the optimal costs recorded by the other algorithms cho- 1798

sen for the comparative analysis are provided in Table 47 and 1799

Table 48 for the ORPD of various cases for the IEEE 30 and 1800

IEEE 57-bus system respectively 1801

From Table 45, Table 46, Table 47 and Table 48: 1802

• The performances of SL-GWO, MEGWO and I-GWO 1803

have been excellent for the ORPD for both IEEE 30-bus 1804

and IEEE 57-bus systems. These algorithms reported the 1805

best fitness scores and had the least standard deviations 1806

for most of the cases. The computational times of these 1807

algorithms are lower as well. This is indicative of the 1808

algorithms’ capability at handling multiple constraints 1809

with a good exploitation system. 1810

• Unlike the chaotic variants (CGWO and ACGWO), 1811

which ended up with the highest fitness scores, the 1812

performance of ChOA was notably better by a small 1813

margin. Although the computational times of ACGWO 1814

were twice that of ChOA, it could not effectively 1815

explore and exploit the search landscape. Setting aside 1816

the average performance, the chaotic variants (CGWO 1817

and ACGWO) had a good population diversity with 1818

a greater difference in the fitness score for every 1819

iteration. 1820
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TABLE 41. Comparison of the best, worst, mean and standard deviation of the fifteen considered algorithms for OPF (IEEE 30-bus system.).

TABLE 42. Comparison of the best, worst, mean and standard deviation of the fifteen considered algorithms for OPF (IEEE 57-bus system.).

• The modern meta-heuristics could not deliver on par1821

with the variants of GWO with WOA and SSA deliv-1822

ering the best performance amongst them.1823

• Similar to the previous case, the computational times 1824

of ACGWO, P-ObGWO and SOGWO were the high- 1825

est followed by ChOA for the modern meta-heuristics. 1826
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TABLE 43. Tabulation of the best solutions of ORPD for the IEEE 30-bus system.

TABLE 44. Tabulation of the best solutions of ORPD for the IEEE 57-bus system.

MEGWO and I-GWO had the lowest computational1827

times followed by SSA and SL-GWO.1828

VI. MERITS AND DEMERITS1829

Meta-heuristic improvement and enhancement strategies1830

have benefited researchers in extending the potential of opti-1831

mization to new heights. While the improvement tactics1832

are frequently highly successful and efficient, they are not1833

without their share of criticism and challenges. Thus, in order 1834

to provide a balanced and unprejudiced assessment, the pros 1835

and demerits of SL-GWO are outlined below. 1836

A. MERITS 1837

• SL- GWO’s performance was unaffected by the increas- 1838

ing number of problem dimensions. The standard GWO 1839

algorithm or any of its variants could match SL- GWO’s 1840
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TABLE 45. Tabulation of the best solutions and computational times of ORPD for the IEEE 30-bus system for all the algorithms in comparative analysis.

TABLE 46. Tabulation of the best solutions and computational times of ORPD for the IEEE 57-bus system for all the algorithms in comparative analysis.

TABLE 47. Comparison of the best, worst, mean and standard deviation of the fifteen considered algorithms for ORPD (IEEE 30-bus system.).

performance and the five modern meta heuristics used1841

in the comparison show that it is impervious to the1842

curse of dimensionality. There are two reasons for1843

this: the symbiotic phase of learning and the greedy1844

selection technique, which promotes elitism and 1845

avoids local trapping while essentially relocating the 1846

wolf’s location from the standard GWO process. The 1847

other reason for its superior performance in every 1848
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TABLE 48. Comparison of the best, worst, mean and standard deviation of the fifteen considered algorithms for ORPD (IEEE 57-bus system.).

benchmarking scenario is the equilibrium of the explo-1849

ration and exploitation system by the three symbiotic1850

learning strategies.1851

• A good exploration and exploitation balance has been1852

possible through the dynamic and adaptive control of1853

the Sr and D1. The proposed method delivered solutions1854

at the global optimum or closer to it in most complex1855

benchmarking cases avoiding local entrapment and also1856

had good convergence characteristics with the empiri-1857

cally tuned parametric settings.1858

• The system of population sub-grouping of the wolfpack1859

into attacking hunters and experienced hunters has been1860

a positive reinforcement, allowing the hunting strategies1861

and adaptive control mechanisms to work in synergy1862

and assist in repositioning omega wolves with increased1863

population diversity, thereby increasing coverage of the1864

search landscape.1865

• The first and second symbiotic learning strategies, com-1866

bined with the Greedy selection strategy, promoted1867

elitism by selecting the best wolves, and the best solution1868

is assigned as the alpha wolf and passed to the next itera-1869

tion to refine and explore the solutions further, as well as1870

to assist the algorithm in gaining a better understanding1871

of the search landscape.1872

• SL-GWO reduces GWO’s reliance on alpha, beta, and1873

delta wolves to relocate each omega wolf. The addi-1874

tion of randomized omegawolves facilitates information1875

transmission between the various wolves and minimizes1876

local trapping that occurs in the standard GWO’s popu-1877

lation system with less diversity.1878

• The greedy selection technique encourages elitism and1879

accelerates convergence times by directing the algo-1880

rithm’s search to the possibly best places within the1881

search landscape.1882

B. DEMERITS1883

• The inclusion of sorting the wolves based on the fitness1884

in every iteration can append an additional layer of1885

computational complexity and can result in slightly 1886

higher computational times. 1887

• SL-GWO’s reliance on greedy selection during the sym- 1888

biotic learning phase may have an effect on its local 1889

search capabilities. The greedy selection technique tries 1890

to promote elitism by selecting only superior solutions 1891

while discarding inferior alternatives. This can some- 1892

times result in slower convergence for a certain hybrid 1893

landscape (hybrid test functions) as seen in the CEC2018 1894

test suite. 1895

• Due to SL- GWO’s reliance on random omegas (at 1896

least seven distinct omega wolves), the population size 1897

must always be more than seven. With a population 1898

size of less than seven, the algorithm may fail to 1899

operate. 1900

VII. CONCLUSION AND FUTURE SCOPE 1901

This article realizes an improved meta-heuristic optimiza- 1902

tion technique known as SL-GWO to combat the curse of 1903

dimensionality and improve population diversity through dif- 1904

ferent symbiotic hunting and learning strategies. SL-GWO 1905

restructures the standard hierarchical hunting system inGWO 1906

through population sub-grouping such that each group acts 1907

individually with its own uniquely crafted hunting and control 1908

mechanisms. Dynamic tuning through linear and adaptive 1909

tuning mechanisms for the two sub-groups of wolves aid 1910

the hunt of individual wolves to evolve stronger and fit- 1911

ter over time with diverse hunting instances for the solu- 1912

tion dimensions. Despite the computational complexity of 1913

SL-GWO being slightly higher than the standard GWO due 1914

to the addition of a quick sort mechanism, the revised algo- 1915

rithmic structure achieves excellent local optima avoidance 1916

and limits the stagnation occurring within the wolfpack at an 1917

individual level. The uniquely crafted four symbiotic hunt- 1918

ing schemes incorporating random omega wolves extend the 1919

scope of exportation of every grey wolf preventing their 1920

collapse into the vicinity of the three dominant wolves. The 1921

first and second symbiotic strategies contribute significantly 1922

to driving the wolfpack to all the corners of the search 1923
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landscape to explore and exploit adaptively while the third1924

and fourth hunting strategies encourage convergence capa-1925

bilities while ensuring that the search mechanism is rota-1926

tionally invariant. The population selection and progression1927

preserve the personal best contributions of individual grey1928

wolves and encourage the fittest wolves to emerge as the1929

dominant wolves to guide the next generation of wolves to1930

hunt effectively while preserving elitism and diversity.1931

The proposed method has a better performance in han-1932

dling constrained and unconstrained problems and has been1933

effective at avoiding local entrapment in complex search1934

landscapes. Extensive benchmarking analysis with the 29 test1935

functions from the CEC2018 benchmarking suite with 10,1936

30 and 50 dimesons reinforce the algorithms’ immunity1937

towards the curse of dimensionalitywhile operating on a lim-1938

ited computational budget. The validation with the CEC20191939

test suite provides a comprehensive outlook of the algo-1940

rithm’s ability to adapt to complex landscapes proving an1941

enhanced balance at exploration and exploitation while being1942

less prone to local entrapment. A better balance of explo-1943

ration and exploitationwith accelerated convergence has been1944

witnessed across the various test cases with statistically sig-1945

nificant performance. Following comprehensive and exten-1946

sive testing and validation through multiple benchmarking1947

standards and complex real-world optimization problems,1948

the efficiency and efficacy of SL-GWO is validated and its1949

performance is compared against the standard GWO, eight of1950

its latest advanced variants and five recent meta-heuristics.1951

SL-GWO stands out as the best performing meta-heuristic1952

with improved optimality and higher consistency for the1953

various test cases and ranked in the top spots for most of1954

the testing reinforcing its supremacy as an improved and1955

advanced variant of GWO.1956

SL-GWO may be used to solve a wide range of issues1957

in AI, power systems, machine learning, and related fields.1958

The suggested approach may be customized by practitioners1959

to meet their specific needs, hence SL-GWO was designed1960

with an eye toward extensibility. Other optimization areas in1961

power systems, such as EV optimization, power electronics,1962

smart grid integration, distribution systems, power dispatch1963

issues and control systems can also benefit from the proposed1964

method. The proposed approach may be used to train neural1965

networks (NN) in computer science (feed-forward NNs and1966

convolution NNs). Images, data, and patterns may all be clas-1967

sified more effectively using SL-GWO. Currently, a support1968

vector classifier-based technique for detecting COVID-191969

infection from X-ray images is being considered for deploy-1970

ment. This method’s binary SL-GWO formulation might be1971

used to make feature selection more efficient. The implemen-1972

tation of a multi-objective variant is a possibility for dealing1973

with issues that need a Pareto-optimal front. A project has1974

been designed to build amulti-objective option for optimizing1975

energy management in electric vehicles. Symbiotic learn-1976

ing methodologies can be used for different meta-heuristics1977

in order to conduct experiments that will enhance the1978

system.1979
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