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ABSTRACT Preoperative planning is mandatory for successful total hip arthroplasty (THA). In planning,
the operating surgeon should decide the best type and size of THA components for the patient. However,
most digital templating software only simulates acetate templating by overlaying the shape of the prosthesis
components on a radiograph; the selection and positioning of the prostheses are performed manually
depending on the operator’s experience. Determining the optimal type and size of THA components is a
repetitive and time-consuming task for digital and acetate templating. This study proposes a novel approach
to automatically select and position THA components that are most suitable for the patient’s bone anatomy.
The approach consists of two phases: segmenting a hip anteroposterior (AP) radiographic image into five
predefined anatomical regions using a fully convolutional neural network, and estimating the optimal sizes
and positions of THA components using deep learning and computer vision technology. The experiments
demonstrated that the accuracy of acetabular and femoral component size prediction within one size error
was 78.9% and 70.9%, respectively. Compared with meta-analysis results from previous studies, our results
are close to human level. An automated digital templating prototype systemwas developed using our research
results and tested in a clinical setting to evaluate field adaptability. These processes are introduced in this
study.
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INDEX TERMS Artificial intelligence (AI), automated 2-D templating, hip joint segmentation, implant size
estimation, prostheses recommendation, total hip arthroplasty (THA).

I. INTRODUCTION18

An arthroplasty that replaces the joint with a prosthesis is19

required when a patient has end-stage arthritis of the hip joint.20

Preoperative planning is of paramount importance to obtain21

reproducible results in modern total hip arthroplasty (THA)22

[1], [2]. In THA planning, an orthopedic surgeon decides the23

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Jiang .

shape and size of the prostheses (AC; acetabular component, 24

FC; femoral component) most suitable to the patient’s bone 25

anatomy. The preoperative planning process usually involves 26

acetate or digital templating on medical images such as 2-D 27

and 3-D radiography, and computed tomography (CT) [2], 28

[4], [5]. Digital templating enables an operator to manually 29

select from different types and sizes of prostheses and val- 30

idate them by overlaying them on images, the acetate tem- 31

plating process performed in a digital environment. That is, 32
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FIGURE 1. Comparison of conventional acetate templating and proposed automated templating. (a) and (b) are samples of conventional
acetate templating and proposed AI-based automated templating, respectively, on the side opposite the side to be operated on. (c) is the
actual operation result on the same patient.

the selection and positioning of the prostheses are performed33

manually depending on the operator’s experience.34

With recent breakthroughs in computer vision and deep35

learning technologies, automatic decision-making for many36

medical imaging problems can be achieved with practical37

performance [6], [7], [8], [9], [10], [11]. Segmentation prob-38

lems are more complicated than classification problems [12].39

However, the advent of deep learning has changed the overall40

picture, making high-performance segmentation easier [13],41

[14], [15], [16]. The use of deep learning in natural image42

segmentation has led to significant advances in medical43

image segmentation [17], [18], [19], [20]. In 2015, U-net44

was proposed for segmenting medical images, becoming the45

most popular tool for medical image segmentation [8], [10],46

[21], [22].47

Arthroplasty can benefit from these efforts and progress in48

medical imaging, leading to fully automatic decision-making49

for prosthesis selection. However, our literature survey found50

few studies related to decision automation [50], [54], [60].51

Most of the published studies have investigated hip joint seg-52

mentation or compared the accuracy and reliability of manual53

preoperative THA planning [24], [25], [26], [27], [28], [29],54

[30], [31], [32], [33], [33], [34], [35], [36], [37], [38], [39],55

[40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50],56

[51], [52], [53], [54], [55], [56], [57], [58], [59]. A detailed57

literature survey is presented in Section 2.58

Fig. 1(a) illustrates a conventional 2-D acetate templat-59

ing procedure in which a doctor manually chooses the60

protheses to fit the patient. First, the displayed magnifica-61

tion of the hip anteroposterior (AP) radiographic image was62

adjusted to match the magnification of the acetate template.63

By overlaying the template on the hip AP image, the optimal64

shape, size, and position of the components are estimated65

by the surgeon [1], [2], [3]. Because the morphology of the66

human acetabulum and proximal femur is diverse, manually67

selecting the most suitable prosthesis for the hip joint is 68

inefficient and time-consuming. Moreover, owing to differ- 69

ences in magnification, applying the template provided by the 70

manufacturer to the digital image displayed on a computer 71

monitor was inconvenient, and simultaneously comparing 72

multiple templates from different families was impossible. 73

If the process is automated and augmented by deep learning 74

with computer vision technology, the operating surgeon can 75

obtain higher-level surgical planning results using artificial 76

intelligence (AI)-based automated preoperative templating to 77

select the proper prosthesis, restore natural biomechanics, 78

and decrease operation time, ultimately leading to greater 79

patient satisfaction. 80

This study proposes a novel approach for intelligent 81

decision-making on patient-specific prosthesis selection in 82

hip AP radiographs, as shown in Fig. 1(b). The THA com- 83

ponents most suitable for the patient’s bone anatomy are 84

automatically selected and located, and a list is presented to 85

the operating surgeon in order of suitability. We adopted a 86

conventional thinking process by an experienced arthroplasty 87

surgeon. Our approach has two stages: segmenting the rel- 88

evant regions from an input radiographic image and fitting 89

prostheses on the segmented regions, as shown in Fig. 2. 90

We annotated five regions in a pixel-wise manner for 151 hip 91

AP images for segmentation. Fig. 3 shows an example of the 92

annotation of the five regions. Then, we trainedU-net with the 93

annotated data to segment regions. The second phase fitted 94

prostheses. To predict the size of the AC, we employed trans- 95

fer learning, which reused the feature extraction path (first 96

half) of the U-net learned for segmentation. We adopted var- 97

ious computer vision algorithms and developed several rules 98

for selecting the FC size and placement of the AC and FC 99

in the segmented regions. Deep learning trained-templating 100

software was built for a field test incorporating the mod- 101

ules described in this study. The accuracy of the proposed 102
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automated templating method was retrospectively evaluated103

in 128 patients who underwent THA. In addition, the system104

is virtually located in an actual operating theater at Jeon-105

buk National University Hospital. The clinical feasibility and106

applicability are being evaluated.107

In summary, the main contribution of this work is three-108

fold. (1) We propose an AI-based automated preoperative109

THA planning system. To the best of our knowledge, this is110

the first attempt at disclosing an entire workflow that auto-111

matically determines the size and location of ACs and FCs.112

(2) To increase applicability and accessibility, we use simple113

radiographic images. Previous studies have focused more114

on 3-D CT and MR data than on 2-D radiographic images.115

Simple radiographs have several advantages over MRI and116

CT images including real-time insight, cost-effectiveness,117

and intraoperative reproducibility. (3) The proposed auto-118

mated planning system is applicable to all prostheses man-119

ufacturers. That is, various types of acetate and digital120

templates can be imported and reviewed simultaneously,121

regardless of the magnification of each template.122

II. RELATED RESEARCH123

Accurate hip joint segmentation from medical images (radio-124

graphs, CT, MR) is a prerequisite for computer-assisted125

diagnosis and preoperative planning in orthopedic surg-126

eries [23]. In this regard, automatic segmentation of the127

pelvis and femur from 3-D data has been a major concern128

in recent decades. These methods can be roughly catego-129

rized as supervised or unsupervised approaches based on130

prior knowledge. Unsupervised approaches that do not use131

prior knowledge can be further categorized as region grow-132

ing [24], thresholding [25], [26], graph-cut [27], surface fit-133

ting [28], and harmonic field approaches [29]. Supervised134

approaches using prior knowledge can be further categorized135

as statistical shape models (SSM) [30], [31], [32], active136

shape models (ASM) [33], atlas-based [34], [35], and patch-137

based approaches [36]. In recent years, deep learning-based138

approaches have also been used [37], [38], [39]. Deniz et al.139

devised a deep learning-based method that exploited the pow-140

erful feature extraction ability of CNNs and the advantage of141

end-to-end learning ability [38]. They compared two types142

of U-nets: 2-D U-nets applied to each 2-D slice of the MR143

image, combining the results, and 3-D U-nets applied once to144

the MR image. Zeng et al. proposed a deeply supervised 3-D145

U-net-like fully convolutional network for femur segmenta-146

tion from MR images [37]. They introduced multilevel deep147

supervision and partial transfer learning to boost training148

efficiency. Chen et al. presented a 3-D feature-enhanced net-149

work to achieve fast and accurate femur segmentation from150

CT images [39]. The feature-enhanced network used skip151

connections to fuse multiscale feature maps as a U-net and152

fused the edge detection task to optimize femur segmentation153

through joint learning.154

Automatic hip joint segmentation of 2-D radiographs has155

been studied less than segmentation of 3-D images. Conven-156

tional methods find contours of the pelvis and femur using157

SSM [40], [41], [43], ASM [44], shortest path [45], and 158

generic 3-Dmodel projection and registration [46]. Tradition- 159

ally, segmentation of 2-D radiographic images has been ben- 160

eficial but rarely studied owing to its difficulties, including 161

poor and non-uniform image contrast, noise, occlusions, and 162

overlap of neighboring structures. Recently, deep learning- 163

based methods widely used for medical image segmentation 164

have been applied to hip joint segmentation, with excel- 165

lent results [47], [48]. Shen et al. proposed a pure dilated 166

residual U-net that improved the accuracy and convergence 167

of vanilla U-net [21] in segmenting femurs and tibias [47]. 168

Rouzrokh et al. proposed a method for the automated radio- 169

graphic measurement of AC inclination and version after 170

THA [48]. They segmented the AC and ischial tuberosities 171

using U-net. The AC angle was measured on the predicted 172

segmentation map using image processing techniques. 173

Most published studies directly related to preoperative 174

templating of THA have evaluated the accuracy and reli- 175

ability of 2-D acetate and 2-D/3-D digital templating by 176

comparing preoperative templating results with actual sur- 177

gical results, prospectively [49], [50], [51] and retrospec- 178

tively [52], [53], [54], [55], [56], [57]. Systematic reviews 179

and meta-analyses of these studies have also been published 180

[4], [58], [59]. In summary, 1) 2-D and 3-D digital templat- 181

ing are reliable techniques for preoperative THA planning; 182

2) templating results are accurate in order of 3-D digital, 183

2-D digital, and 2-D acetate; and 3) templating is less accurate 184

with uncemented prostheses than with cemented prostheses. 185

For preoperative THA planning, 2-D digital templating is still 186

a standard despite the superior accuracy of 3-D templating, 187

as it involves a smaller radiation dose and lower imaging and 188

software costs [59]. 189

Few studies have been published on automated preop- 190

erative THA templating. In an early study, Otomaru et al. 191

proposed automated AC planning using 3-D CT data [60]. 192

They used two statistical atlases, a combined pelvis and cup 193

statistical shape model (PC–SSM), and a statistical map of 194

bone thickness (SM–BT) to detect the pelvis surface from 195

CT data. The AC size and position were estimated from the 196

segmentation results. Huo et al. and Ding et al. presented 197

prospective and retrospective studies on the value of AI-based 198

3-D preoperative planning software (AI–HIP) for THA 199

[50], [54]. AI–HIP consists of a segmentation module based 200

on U-net for segmentation of the pelvis and femur from a 201

3-D CT, a landmark detection module based on a neural 202

network, and an automatic search engine based on big data 203

and reinforcement learning for proper prosthesis selection. 204

They reported that AI–HIPwith 3-DCT data is more accurate 205

and reliable for preoperative THA planning than 2-D digital 206

templating and 3-D mimics software. 207

III. METHODS 208

This section describes the deep learning architecture, learning 209

schemes, and rule-based computer vision techniques for seg- 210

menting osseous structures and fittingACs and FCs, as shown 211

in Fig. 2. The datasets are also described as the data and 212
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FIGURE 2. Overview of proposed AI-based automated preoperative templating procedure. We trained U-net to segment five predefined
anatomical regions on hip AP images. To predict the size of the acetabular component (AC), we employ transfer learning, which reuses the
feature extraction path (first half) of the U-net learned for segmentation. We use various computer vision algorithms and developed several
rules for selecting the femoral component (FC) size and placement of the AC and FC in the segmented regions.

augmentationmethods are significant in designing and imple-213

menting deep learning models.214

A. DATASETS215

To prepare a training set for a deep learning model to achieve216

osseous structure segmentation, we manually segmented the217

contralateral side of a hip AP radiographic image into five218

regions, as shown in Fig. 3, using Adobe Photoshop. Unilat-219

eral hip and pelvis AP images were cropped into the proximal220

femur and hemipelvis. The proximal femur was divided into221

two regions: HC (head and canal; femoral head, medullary222

canal, and greater trochanter) and C (cortex; inferior neck cor-223

tex, lesser trochanter, and diaphyseal cortex). The hemipelvis224

was divided into three regions: pelvis (P), joint space (J), and225

teardrop (T). Each region was stored in a separate map; thus,226

a hip radiograph had five maps as the ground truth. A total227

of 151 AP images of THA patients were labeled, 115 for228

training and 36 for validation.229

FIGURE 3. Five regions of radiographic image: P; Pelvis, T; Teardrop,
J; Joint space and saucily, HC; Femoral head and canal, C; Cortex.

To alleviate overfitting caused by data scarcity, we aug-230

mented the image 100 times to obtain 15100 images for the231

segmentation task. We placed the cropping box, including232

the main components of the proximal femur and hemipelvis233

(red box in Fig. 2), and randomly translated, rotated 234

(−7◦–7◦), and scaled (0.85–1.15) the cropping box. The box 235

was cropped and resized as input for the network. If the 236

osseous structures to be segmented were on the right side (left 237

hip and pelvis) of the image, the cropped image was flipped 238

such that the model inputs were consistent. 239

To predict the AC size, we chose 110 images from 240

151 images labeled with the AC size information used in 241

the actual operation, and placed a ruler inside the image. 242

We calculated the actual dots per inch (dpi) to determine the 243

magnification using the ruler. Each radiographic image was 244

labeled with the AC sizes using medical records collected 245

retrospectively. The distribution of the labeled AC sizes is 246

shown in Table 1. The number of images was highly unbal- 247

anced between classes. Of the ten AC sizes, two sizes had no 248

images, and sizes 44, 56, and 58 had only three, two, and one 249

image(s), respectively. 250

TABLE 1. Distribution of acetabular component sizes in dataset used for
size prediction.

To address the imbalanced data, we generated synthetic 251

samples of nine other sizes from an image with size i, 252

as shown in Fig. 4. That is, ten samples (nine synthetic 253

samples and one real sample) are generated from one image 254

for ten sizes. Our AC size estimation model assumes that the 255

input image patches have a fixed resolution (70 dpi) to predict 256

their actual size in millimeters. Thus, we generated synthetic 257

samples for the other nine sizes by changing the resolution 258
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of the input image patches. For the synthetic sample with259

target size j from the image with AC size i, the input res-260

olution was calculated as 70 ∗ j/i dpi. Patch cropping was261

performed by slightly shifting and rotating (-7◦–7◦) to further262

augment the images. The amount of shifting and rotation was263

randomly chosen within a small range. Random cropping264

was performed ten times. A total of 100 patches belonging265

to ten classes were generated from an image. The cropped266

patches were resized and flipped for input into the network.267

Fig. 4 shows an examplewith an original resolution of 200 dpi268

and an actual AC size of 46.269

FIGURE 4. Data augmentation for acetabular component size estimation.
A sample of a real component size and nine synthetic samples of
different sizes are produced from one image.

To evaluate our method for predicting AC and FC size,270

we prepared a test set with the ground truth from the sur-271

geon during the actual operation. Hip AP radiographs were272

collected before surgery from 128 THA patients; AC and FC273

sizes were extracted from the medical records. The collection274

was not used, and different patients were used for training and275

validating our deep learning models. Sixty-five patients had276

end-stage arthrosis of the left hip; the remaining 63 patients277

had end-stage arthrosis of the right hip.278

B. SEGMENTATION OF HEMIPELVIS AND279

PROXIMAL FEMUR280

We used U-net for segmentation of a hip AP radiographic281

image into five regions, as shown in Fig. 5. U-net receives282

a medical image as input and outputs a segmentation map.283

The input to our network was a patch cropped and resized284

from the radiographic image shown in the red box in Fig. 2.285

The resized input patch was 512 × 384 in size. The output286

of the network was five feature maps 512 × 384 in size; the287

output was represented as a 5 × 512 × 384 tensor, with each288

tensor representing the C, HC, P, J, and T regions. Cropping289

is performed by the user in the test phase, and U-net performs290

segmentation.291

The architecture of U-net is shown in Fig. 5; the contracting292

and expanding paths produce symmetry. The role of the con-293

tracting path is to extract rich features from the input image.294

The feature map was maintained at a constant size through 295

padded convolution at each level. A total of 1024 feature 296

maps were generated, each with a size of 32 × 24 at the 297

bottom level. The expanding path uses the generated fea- 298

ture maps to synthesize segmentation maps, represented as a 299

5 × 512 × 384 tensor. It has skip connections to transfer 300

the high-resolution features of the contracting path to the 301

expanding process. The transferred feature maps are concate- 302

nated to the maps generated by the layers on the expanding 303

path. Skip connections are the core concept of U-net, and 304

are critical in generating high-quality segmentation maps for 305

medical images. For U-net training, binary cross-entropy was 306

used as the loss function; a stochastic gradient descent (SGD) 307

optimizer was used with a learning rate of 0.0001, momentum 308

of 0.99, and batch size of 1. 309

C. ACETABULAR COMPONENT SIZE PREDICTION 310

AND POSITIONING 311

Predicting the AC involves two steps: estimating the opti- 312

mal size using a convolutional neural network (CNN), and 313

using rule-based landmark detection on the segmentation 314

results for proper placement. Component size estimation is 315

performed as an ordinal classification problem. We used 316

transfer learning, reusing the parameter value learned from 317

training the segmentation U-net to train the CNN for AC size 318

estimation. We considered the contracting path of the learned 319

U-net shown in Fig. 5 and attached the fully connected layers 320

for classification. Fig. 6 illustrates the architecture of CNN 321

classification. The output layer had ten nodes corresponding 322

to ten AC sizes (44, 46, 48, . . . , 62), and used softmax as 323

the activation function. For training, CNN cross-entropy was 324

used as the loss function, and the SGD optimizer was used 325

with a learning rate of 0.0001, momentum of 0.9, and batch 326

size of 10. 327

After determining the AC size, the position and place- 328

ment were calculated based on the segmentation information. 329

To this end, two landmarks (L1 and L2) were automatically 330

determined using segmented regions, shown as red points in 331

Fig. 7(b). L1 was the most lateral point of the J (joint space) 332

region. L2 was the lowest point of the J region, adjacent to 333

the HC region (femoral head and canal). The baseline of the 334

AC was aligned with the line connecting L1 and L2 such that 335

their centers coincided. 336

D. FEMORAL COMPONENT SIZE PREDICTION 337

AND POSITIONING 338

Determining the FC size and placement was based on the 339

segmentation results. The algorithmwas designed using three 340

rules relevant to the actual operation. 341

1) The central axis of the FC should be aligned with that 342

of the proximal femur. 343

2) The FC should not intrude into the C (cortex) region 344

extracted by segmentation and should be placed deep 345

in the cancellous HC region. 346

3) The FC trunk should be sufficiently close to the cup 347

center. 348
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FIGURE 5. U-net for segmenting hip AP radiograph image into five regions.

FIGURE 6. CNN for classification of acetabular component size prediction.

FIGURE 7. Position and placement calculation for acetabular component.
Two landmarks (L1 and L2) were automatically determined using
segmented regions and serve as the basis for placing the acetabular
component.

To satisfy the first rule, we determined the central axis349

of the proximal femur. The C region is the diaphyseal cor-350

tex of the proximal femur; its central axis is regarded as351

the central axis of the femur. Applying the distance trans-352

form operation to C [61], we obtained the distance map353

in Fig. 8(a). The distance transform computes the shortest354

distance from each pixel in region C. We obtained the green355

area in Fig. 8(a) by extracting the ridge points from the356

distance map. We obtained the central axis of the femur by357

fitting a straight line to the ridge points, indicated by the358

blue line in Fig. 8(b). The second rule was used to insert the 359

FC deep inside the cancellous bone region of the medullary 360

canal (HC). By aligning the central axes of the FC and femur, 361

we slid the FC as deep as possible without intruding into the 362

diaphyseal cortex (C) region. Fig. 8(b) shows the completed 363

insertion. 364

The third rule was used to evaluate the placement of the 365

FC in terms of the matching error. The matching error was 366

measured by calculating the angle between two straight lines, 367

OstemEneck and OstemOcup. Fig. 8(c) illustrates the match- 368

ing error calculation process. The algorithm exhaustively 369

searches for all available FCs of different sizes and shapes. 370

The FCs are recommended to the operating surgeon in order 371

of smallest matching error. 372

IV. EXPERIMENTS AND RESULTS 373

A. EXPERIMENT ENVIRONMENT 374

The experiments were conducted on an AMDRyzen7 2700X 375

with a 3.7 GHz CPU, 32 GB of memory, and a GTX 1080 Ti 376

GPU. We aimed to quantitatively and qualitatively evaluate 377

the quality of bone segmentation and AC and FC size predic- 378

tion. The deep learning component was implemented using 379

Keras with a TensorFlow backbone. 380

Hip AP radiography was taken at a distance of approxi- 381

mately 120 cm from the X-ray tube to the cassette, and the 382

osseous structure was magnified by approximately 110 %. 383

To determine the correct magnification of the radiographs, 384

a ruler was placed at the center level of the femur. To offset the 385

femoral version, preoperative templating was filmed in the 386
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FIGURE 8. Determining and placing femoral component of prosthesis. The femoral component is inserted along the
central axis of the femur and evaluated for how close the trunk is to the center of the acetabular component.

state of internal rotation maximally with the lower extremity.387

In addition, internal rotation is difficult with a diseased hip;388

thus, templating was performed on the side opposite to the389

side to be operated on.390

The prostheses used for performance evaluation was the391

AC (DELTA PF, LimaCorporate, Italy) and FC (Minima S392

and MASTER SL, LimaCorporate, Italy), as shown in Fig. 9.393

The AC has 12 sizes from 44 to 66 in 2 unit increments,394

but a size of 64 or higher is rarely used; therefore, we used395

10 steps from 44 to 62 for templating. The FC Minima S and396

MASTER SL stems consist of 12 and 13 steps, respectively,397

and are all considered in templating. All prostheses used in398

this study were uncemented.399

FIGURE 9. Design samples of acetabular and femoral components used
for evaluation. The template from a medical device company is a
simplified outline of the prosthesis; the length and offsets are indicated.

We evaluated the segmentation and prediction accuracies400

of the AC and FC sizes. For the quantitative evaluation401

of the segmentation radiographs, we employed intersection 402

over union (IOU) and Dice similarity coefficient scores [19]. 403

We calculated the IOU and Dice scores for every five regions 404

and then averaged them over all regions. For the AC and 405

FC size prediction accuracy, we employed the mean absolute 406

error (MAE) and adjacent accuracy. The prediction of AC and 407

FC sizes is an ordinal classification problem with an inherent 408

order between classes. The MAE is a commonly used metric 409

in ordinal classification. We calculated the MAE as aver- 410

age differences between the predicted and ground-truth class 411

labels (0-9 for DELTA PF, 0-11 for Minima S, and 0-12 for 412

MASTER SL). Adjacent accuracy is often used to evaluate 413

ordinal classification algorithms in various research fields; 414

however, it has been described using different terminologies 415

[62], [63]. Adjacent accuracy is similar to the exact accuracy 416

used in nominal classification problems, which allows predic- 417

tions to adjacent classes within distance t to also be correct. 418

We express the adjacent accuracy as ACC±t with distance t . 419

ACC±0 is the exact accuracy that considers only predictions 420

identical to the ground truth as correct. The accuracy within 421

one size error, ACC±1, is commonly used for evaluating 422

preoperative THA templating accuracy [58], [59]. 423

B. SEGMENTATION 424

U-net was trained using a training dataset for segmentation. 425

The best model was selected by evaluating the mean IOU 426

score for the validation dataset at each epoch of the train- 427

ing process. Fig. 10 shows the changes in training loss and 428

validation IOU scores according to model learning. Table 2 429

presents the IOU and Dice scores for the five regions. Small 430

regions such as J and T had lower IOU and Dice scores. 431

In deep learning-based segmentation, a small region is diffi- 432

cult because of an imbalanced problem [19], [20]. Addition- 433

ally, the J and T regions had blurry boundaries in the original 434

hip AP radiographs. Specifically, the T region often does not 435
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FIGURE 10. Curves of training loss and validation IOU scores during
model training for region segmentation. The IOU scores are high in the
order of HC, P, C, J, and T.

TABLE 2. IOU scores and dice coefficients for each of five regions for the
train and validation sets.

appear on radiographs, depending on the patient’s age and436

pose when acquiring the image.437

We analyzed the cases of success and failure. Fig. 11438

presents two successful cases with the highest IOU scores439

and two failure cases with the lowest IOU scores. Failures440

often occur when input images with different characteristics441

from the training data are used, such as bones appearing442

blurry or overlapping obstacles such as tubes in the original443

radiographic image. Fortunately, templating was correctly444

performed in most segmentation failure cases because the445

segmentation result identified most of the C, J, and femoral446

head (HC) regions.447

C. ACETABULAR AND FEMORAL COMPONENT448

SIZE PREDICTIONS449

We trained the CNN for AC size classification using the train-450

ing dataset and evaluated theMAE using verification datasets451

at each epoch in the training process to select the best model.452

The training loss and validation accuracy curves are depicted453

in Fig. 12. We then evaluated the entire proposed procedure.454

Our templating program was designed to predict and place455

the most relevant THA components on AP hip radiographs.456

We evaluated the accuracy of predicting the sizes of the AC457

and FC using the test dataset. This experiment was applied to458

the healthy contralateral hip joint of the radiographs, accord-459

ing to the procedure shown in Fig. 2. As a result, the AC460

size prediction was generated for all 128 patients, whereas461

the FC was not generated and rejected for one patient because462

of a significant matching error. Fig. 13 presents the confusion 463

matrix of the prediction results for the AC and FC, and Table 3 464

shows the MAE and adjacent accuracies calculated from the 465

confusion matrix. 466

The MAE for the AC and FC were 0.898 and 1.016, 467

respectively. Most predictions, 94.1% for all components, 468

were within two size differences. The exact accuracy ACC±0 469

was low at 35.2% and 37.0% for the AC and FC, respec- 470

tively. However, the adjacent accuracy ACC±1 is acceptable 471

at 78.9% for the AC and 70.9% for the FC. This result 472

is reasonable compared with the meta-analysis of existing 473

templating methods [58], [59]. As a result of the proposed 474

method for all prostheses,ACC±0 was 36.1%,which is higher 475

than 35% (min=25%; max=36%) of 2D acetate and lower 476

than 48% (min=43%; max=61%) of 2D digital. Similarly, 477

ACC±1 of the proposed method is 74.9%, which is higher 478

than the 72% (min=45%; max=78%) of 2D acetate and 479

lower than the 80% (min=75%; max=82%) of 2D digital 480

by meta-analysis [59]. In particular, we obtained 78.9% and 481

70.9% ACC±1 for each of the AC and FC using uncemented 482

prostheses, comparable to 73% and 74% of meta-analyses, 483

respectively [58]. 484

V. DISCUSSION 485

Obtaining a true pelvis AP radiography is clinically essential 486

to evaluate anatomical landmarks as radiological ones. Radi- 487

ologic landmarks can be changed by rotations and tilts of the 488

pelvis or directions of the X-ray beam. In addition, obtaining 489

a true AP image of the proximal femur is crucial because 490

it has a wide morphological variation, including neck-shaft 491

angle, offset, and torsion. Insufficient internal rotation of the 492

lower extremity is one common cause of decreasing femoral 493

offset. Therefore, the hip AP view should be obtained with an 494

appropriate internal rotation to detect native femoral offset. 495

It should be filmed by neutralizing the native femoral torsion 496

and version to express the anatomical femoral offset well. 497

Difficulty in obtaining datasets is a limitation of this study. 498

For the segmentation task, each region to be segmented 499

must be labeled to train the U-net, which is tedious and 500

time-consuming. To the best of our knowledge, there is no 501

open- source hip joint segmentation data. Thus, we created 502

151 labeled image datasets for segmentation; however, they 503

were small and insufficiently diverse. For this reason, seg- 504

mentation may be unsatisfactory for an image with a charac- 505

teristic different from the dataset, as shown in Fig. 11. 506

For AC size estimation, small and imbalanced datasets 507

were used to train the CNN. The AC size clinically used is 508

biased towards 50 and 54 mm. This is a characteristic of THA 509

prostheses and its influence on surgical philosophy. THA 510

surgeons tend to use a large ball head to improve the surgical 511

outcome. Small and imbalanced datasets were improved by 512

data augmentation and synthetic data generation. 513

FCs for prostheses differ in shape and size; ACs have 514

similar shapes. It is difficult to construct a training dataset 515

to classify different FCs. Although two types of FC families 516

were used in the experiment, we aim to use the proposed 517
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FIGURE 11. Segmentation results chosen concerning the IOU scores (left: input image patch, middle: ground-truth,
right: segmentation result). Each colored region is as follows: P: Pelvis, T: Teardrop, J: Joint space and saucily,
HC: Femoral head and canal, and C: Cortex.

VOLUME 10, 2022 94153



M. Kim et al.: Deep Learning and Computer Vision Techniques for Automated THA Planning on 2-D Radiographs

TABLE 3. Performance of the acetabular and femoral component size estimation for the test dataset.

FIGURE 12. Curves of training loss and validation accuracies during
model training to predict acetabular component size. ACC±0 is the exact
accuracy, and ACC±1 and ACC±2 are the accuracies within one and two
size errors, respectively.

method regardless of shape. In fact, the prototype system518

we developed includes 12 FC families. Thus, we first used519

a handcrafted algorithm to fit the FCs, and we will gradually520

replace them with learning-based methods in future research.521

With segmentation, there was a difference in IOU scores522

according to the anatomical region. The highest IOU scores523

were observed in the diaphyseal cortex and femoral canal.524

This is consistent with actual physician insight. The T region,525

although an anatomically important structure, has individual526

variations, resulting in a low IOU score. Segmentation failure527

primarily occurs when there is little difference in opacity528

between soft tissue and bone, such as in osteoporotic bone529

quality or muscular patients. To improve performance, the530

radiation dose should be optimized to increase the difference531

in opacity, or the dataset should be expanded.532

The accuracy was higher for the preoperative templat-533

ing results using the deep learning-based prototype soft-534

ware developed by the authors than with previously used535

2-D acetate methods. The results were consistent with536

those reported in recently published meta-analysis studies537

[58], [59]. The accuracy of the proposedmethod is acceptable538

considering its automation and completion within 30 s; the539

methods used in the meta-analysis are manual and require540

more time.541

FIGURE 13. Confusion matrix of the acetabular and femoral component
size prediction for the test dataset.

Another advantage of this method is that it follows 542

the thought process of a surgeon using radiologic land- 543

marks used in actual hip surgery. This means that the deep 544
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FIGURE 14. Preoperative THA planning prototype system.

learning-trained prototype software can be used in many dif-545

ferent types of surgeries. For example, if the ROI is expanded,546

it can be applied to periacetabular osteotomy, intramedullary547

nailing, and fracture surgery. If the ROI is reduced and seg-548

mentation precision is enhanced, it can be applied to hip549

arthroscopy for femoroacetabular impingement.550

Based on the programs developed in Section 3, we imple-551

mented a user interface and developed automated preop-552

erative THA planning software, as shown in Fig. 14. The553

software provides functions for determining the ruler in the554

input image to measure the resolution, automatically pre-555

dicting the THA component size in millimeters, and placing556

it in the proper position. Adjusting automatic templating557

results and manual templating is also possible. Addition-558

ally, the segmentation results can measure the femoral head559

size, sphericity, cortical thickness index, and canal-to-calcar560

ratio [64]. To evaluate its field adaptability, the software561

is being tested in an operation theater at Jeonbuk National562

University Hospital.563

The main weaknesses of this work are the small and564

unbalanced datasets, rule-based algorithms that are easy to565

implement but struggle to provide above-human-level per-566

formances, and difficulties in positioning accuracy analysis.567

Based on the prototype system, our future research is intended568

to consider three aspects: (1) improving accuracy, (2) intra-569

and post-operative utilization, and (3) evaluation of clinical570

effectiveness. To improve accuracy, we plan to obtain more571

data and apply improved deep learning techniques. In addi-572

tion, we will collect the logs of the planning results when573

orthopedic surgeons use our prototype system. These data574

can be used as training and validation data to predict the575

proper size and positioning of prostheses using deep learning,576

thereby replacing the rule-based methods. To increase the uti-577

lization of the proposed method, we consider using landmark578

detection and registration techniques to superimpose preop-579

erative planning results on the intra-/post-operative images.580

VI. CONCLUSION 581

This study proposes an automated 2-D digital templating 582

method for preoperative THA planning. The method con- 583

sists of deep learning models for hip joint segmentation, 584

AC size estimation, and handcrafted algorithms to fit the 585

FC. Computer-aided surgery (CAS) software based on these 586

methods has been developed and evaluated for field adapt- 587

ability. The system widens the coverage of image analysis 588

for AC and FC size estimation, and broadens applicability to 589

all patients using simple inexpensively obtained radiographic 590

images. The proposed data augmentation method is effective 591

in preventing overfitting. The high segmentation and pre- 592

diction accuracy of deep learning models can help advance 593

preoperative structural templating into clinical practice for 594

total hip arthroplasty. Critical future research will evaluate 595

the clinical effectiveness of the CAS software and report it 596

to the clinical community. Other research should focus on 597

improving the system accuracy by using larger datasets and 598

improved deep-learning techniques. Both are actively being 599

conducted. 600
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