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ABSTRACT Preoperative planning is mandatory for successful total hip arthroplasty (THA). In planning,
the operating surgeon should decide the best type and size of THA components for the patient. However,
most digital templating software only simulates acetate templating by overlaying the shape of the prosthesis
components on a radiograph; the selection and positioning of the prostheses are performed manually
depending on the operator’s experience. Determining the optimal type and size of THA components is a
repetitive and time-consuming task for digital and acetate templating. This study proposes a novel approach
to automatically select and position THA components that are most suitable for the patient’s bone anatomy.
The approach consists of two phases: segmenting a hip anteroposterior (AP) radiographic image into five
predefined anatomical regions using a fully convolutional neural network, and estimating the optimal sizes
and positions of THA components using deep learning and computer vision technology. The experiments
demonstrated that the accuracy of acetabular and femoral component size prediction within one size error
was 78.9% and 70.9%, respectively. Compared with meta-analysis results from previous studies, our results
are close to human level. An automated digital templating prototype system was developed using our research
results and tested in a clinical setting to evaluate field adaptability. These processes are introduced in this
study.

INDEX TERMS Artificial intelligence (AI), automated 2-D templating, hip joint segmentation, implant size
estimation, prostheses recommendation, total hip arthroplasty (THA).

I. INTRODUCTION

An arthroplasty that replaces the joint with a prosthesis is
required when a patient has end-stage arthritis of the hip joint.
Preoperative planning is of paramount importance to obtain
reproducible results in modern total hip arthroplasty (THA)
[1], [2]. In THA planning, an orthopedic surgeon decides the
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shape and size of the prostheses (AC; acetabular component,
FC; femoral component) most suitable to the patient’s bone
anatomy. The preoperative planning process usually involves
acetate or digital templating on medical images such as 2-D
and 3-D radiography, and computed tomography (CT) [2],
[4], [5]. Digital templating enables an operator to manually
select from different types and sizes of prostheses and val-
idate them by overlaying them on images, the acetate tem-
plating process performed in a digital environment. That is,
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(a) Acetate templating

(b) Automated templating

Desc. Size Neck Eror
1 Minima $ no.1 lat  0.000
2 Minima S no.2 lat 1002

3 Minima § no.3 std 5620

(c) Actual operation

FIGURE 1. Comparison of conventional acetate templating and proposed automated templating. (a) and (b) are samples of conventional
acetate templating and proposed Al-based automated templating, respectively, on the side opposite the side to be operated on. (c) is the

actual operation result on the same patient.

the selection and positioning of the prostheses are performed
manually depending on the operator’s experience.

With recent breakthroughs in computer vision and deep
learning technologies, automatic decision-making for many
medical imaging problems can be achieved with practical
performance [6], [7], [8], [9], [10], [11]. Segmentation prob-
lems are more complicated than classification problems [12].
However, the advent of deep learning has changed the overall
picture, making high-performance segmentation easier [13],
[14], [15], [16]. The use of deep learning in natural image
segmentation has led to significant advances in medical
image segmentation [17], [18], [19], [20]. In 2015, U-net
was proposed for segmenting medical images, becoming the
most popular tool for medical image segmentation [8], [10],
[21], [22].

Arthroplasty can benefit from these efforts and progress in
medical imaging, leading to fully automatic decision-making
for prosthesis selection. However, our literature survey found
few studies related to decision automation [50], [54], [60].
Most of the published studies have investigated hip joint seg-
mentation or compared the accuracy and reliability of manual
preoperative THA planning [24], [25], [26], [27], [28], [29],
(301, [311, [321], [33], [33], [34], [35], [36], [37], [38], [39],
(401, [41], [42], [43], [44], [45], [46], [47], [48], [49], [501,
[51], [52], [53], [541, [55], [56], [57], [58], [59]. A detailed
literature survey is presented in Section 2.

Fig. 1(a) illustrates a conventional 2-D acetate templat-
ing procedure in which a doctor manually chooses the
protheses to fit the patient. First, the displayed magnifica-
tion of the hip anteroposterior (AP) radiographic image was
adjusted to match the magnification of the acetate template.
By overlaying the template on the hip AP image, the optimal
shape, size, and position of the components are estimated
by the surgeon [1], [2], [3]. Because the morphology of the
human acetabulum and proximal femur is diverse, manually
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selecting the most suitable prosthesis for the hip joint is
inefficient and time-consuming. Moreover, owing to differ-
ences in magnification, applying the template provided by the
manufacturer to the digital image displayed on a computer
monitor was inconvenient, and simultaneously comparing
multiple templates from different families was impossible.
If the process is automated and augmented by deep learning
with computer vision technology, the operating surgeon can
obtain higher-level surgical planning results using artificial
intelligence (Al)-based automated preoperative templating to
select the proper prosthesis, restore natural biomechanics,
and decrease operation time, ultimately leading to greater
patient satisfaction.

This study proposes a novel approach for intelligent
decision-making on patient-specific prosthesis selection in
hip AP radiographs, as shown in Fig. 1(b). The THA com-
ponents most suitable for the patient’s bone anatomy are
automatically selected and located, and a list is presented to
the operating surgeon in order of suitability. We adopted a
conventional thinking process by an experienced arthroplasty
surgeon. Our approach has two stages: segmenting the rel-
evant regions from an input radiographic image and fitting
prostheses on the segmented regions, as shown in Fig. 2.
We annotated five regions in a pixel-wise manner for 151 hip
AP images for segmentation. Fig. 3 shows an example of the
annotation of the five regions. Then, we trained U-net with the
annotated data to segment regions. The second phase fitted
prostheses. To predict the size of the AC, we employed trans-
fer learning, which reused the feature extraction path (first
half) of the U-net learned for segmentation. We adopted var-
ious computer vision algorithms and developed several rules
for selecting the FC size and placement of the AC and FC
in the segmented regions. Deep learning trained-templating
software was built for a field test incorporating the mod-
ules described in this study. The accuracy of the proposed

VOLUME 10, 2022



M. Kim et al.: Deep Learning and Computer Vision Techniques for Automated THA Planning on 2-D Radiographs

IEEE Access

automated templating method was retrospectively evaluated
in 128 patients who underwent THA. In addition, the system
is virtually located in an actual operating theater at Jeon-
buk National University Hospital. The clinical feasibility and
applicability are being evaluated.

In summary, the main contribution of this work is three-
fold. (1) We propose an Al-based automated preoperative
THA planning system. To the best of our knowledge, this is
the first attempt at disclosing an entire workflow that auto-
matically determines the size and location of ACs and FCs.
(2) To increase applicability and accessibility, we use simple
radiographic images. Previous studies have focused more
on 3-D CT and MR data than on 2-D radiographic images.
Simple radiographs have several advantages over MRI and
CT images including real-time insight, cost-effectiveness,
and intraoperative reproducibility. (3) The proposed auto-
mated planning system is applicable to all prostheses man-
ufacturers. That is, various types of acetate and digital
templates can be imported and reviewed simultaneously,
regardless of the magnification of each template.

Il. RELATED RESEARCH
Accurate hip joint segmentation from medical images (radio-
graphs, CT, MR) is a prerequisite for computer-assisted
diagnosis and preoperative planning in orthopedic surg-
eries [23]. In this regard, automatic segmentation of the
pelvis and femur from 3-D data has been a major concern
in recent decades. These methods can be roughly catego-
rized as supervised or unsupervised approaches based on
prior knowledge. Unsupervised approaches that do not use
prior knowledge can be further categorized as region grow-
ing [24], thresholding [25], [26], graph-cut [27], surface fit-
ting [28], and harmonic field approaches [29]. Supervised
approaches using prior knowledge can be further categorized
as statistical shape models (SSM) [30], [31], [32], active
shape models (ASM) [33], atlas-based [34], [35], and patch-
based approaches [36]. In recent years, deep learning-based
approaches have also been used [37], [38], [39]. Deniz et al.
devised a deep learning-based method that exploited the pow-
erful feature extraction ability of CNNs and the advantage of
end-to-end learning ability [38]. They compared two types
of U-nets: 2-D U-nets applied to each 2-D slice of the MR
image, combining the results, and 3-D U-nets applied once to
the MR image. Zeng et al. proposed a deeply supervised 3-D
U-net-like fully convolutional network for femur segmenta-
tion from MR images [37]. They introduced multilevel deep
supervision and partial transfer learning to boost training
efficiency. Chen et al. presented a 3-D feature-enhanced net-
work to achieve fast and accurate femur segmentation from
CT images [39]. The feature-enhanced network used skip
connections to fuse multiscale feature maps as a U-net and
fused the edge detection task to optimize femur segmentation
through joint learning.

Automatic hip joint segmentation of 2-D radiographs has
been studied less than segmentation of 3-D images. Conven-
tional methods find contours of the pelvis and femur using
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SSM [40], [41], [43], ASM [44], shortest path [45], and
generic 3-D model projection and registration [46]. Tradition-
ally, segmentation of 2-D radiographic images has been ben-
eficial but rarely studied owing to its difficulties, including
poor and non-uniform image contrast, noise, occlusions, and
overlap of neighboring structures. Recently, deep learning-
based methods widely used for medical image segmentation
have been applied to hip joint segmentation, with excel-
lent results [47], [48]. Shen ef al. proposed a pure dilated
residual U-net that improved the accuracy and convergence
of vanilla U-net [21] in segmenting femurs and tibias [47].
Rouzrokh et al. proposed a method for the automated radio-
graphic measurement of AC inclination and version after
THA [48]. They segmented the AC and ischial tuberosities
using U-net. The AC angle was measured on the predicted
segmentation map using image processing techniques.

Most published studies directly related to preoperative
templating of THA have evaluated the accuracy and reli-
ability of 2-D acetate and 2-D/3-D digital templating by
comparing preoperative templating results with actual sur-
gical results, prospectively [49], [50], [51] and retrospec-
tively [52], [53], [54], [55], [56], [57]. Systematic reviews
and meta-analyses of these studies have also been published
[4], [58], [59]. In summary, 1) 2-D and 3-D digital templat-
ing are reliable techniques for preoperative THA planning;
2) templating results are accurate in order of 3-D digital,
2-D digital, and 2-D acetate; and 3) templating is less accurate
with uncemented prostheses than with cemented prostheses.
For preoperative THA planning, 2-D digital templating is still
a standard despite the superior accuracy of 3-D templating,
as it involves a smaller radiation dose and lower imaging and
software costs [59].

Few studies have been published on automated preop-
erative THA templating. In an early study, Otomaru et al.
proposed automated AC planning using 3-D CT data [60].
They used two statistical atlases, a combined pelvis and cup
statistical shape model (PC-SSM), and a statistical map of
bone thickness (SM-BT) to detect the pelvis surface from
CT data. The AC size and position were estimated from the
segmentation results. Huo et al. and Ding et al. presented
prospective and retrospective studies on the value of Al-based
3-D preoperative planning software (AI-HIP) for THA
[50], [54]. AI-HIP consists of a segmentation module based
on U-net for segmentation of the pelvis and femur from a
3-D CT, a landmark detection module based on a neural
network, and an automatic search engine based on big data
and reinforcement learning for proper prosthesis selection.
They reported that AI-HIP with 3-D CT data is more accurate
and reliable for preoperative THA planning than 2-D digital
templating and 3-D mimics software.

ill. METHODS

This section describes the deep learning architecture, learning
schemes, and rule-based computer vision techniques for seg-
menting osseous structures and fitting ACs and FCs, as shown
in Fig. 2. The datasets are also described as the data and
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FIGURE 2. Overview of proposed Al-based automated preoperative templating procedure. We trained U-net to segment five predefined
anatomical regions on hip AP images. To predict the size of the acetabular component (AC), we employ transfer learning, which reuses the
feature extraction path (first half) of the U-net learned for segmentation. We use various computer vision algorithms and developed several
rules for selecting the femoral component (FC) size and placement of the AC and FC in the segmented regions.

augmentation methods are significant in designing and imple-
menting deep learning models.

A. DATASETS

To prepare a training set for a deep learning model to achieve
osseous structure segmentation, we manually segmented the
contralateral side of a hip AP radiographic image into five
regions, as shown in Fig. 3, using Adobe Photoshop. Unilat-
eral hip and pelvis AP images were cropped into the proximal
femur and hemipelvis. The proximal femur was divided into
two regions: HC (head and canal; femoral head, medullary
canal, and greater trochanter) and C (cortex; inferior neck cor-
tex, lesser trochanter, and diaphyseal cortex). The hemipelvis
was divided into three regions: pelvis (P), joint space (J), and
teardrop (T). Each region was stored in a separate map; thus,
a hip radiograph had five maps as the ground truth. A total
of 151 AP images of THA patients were labeled, 115 for
training and 36 for validation.

FIGURE 3. Five regions of radiographic image: P; Pelvis, T; Teardrop,
J; Joint space and saucily, HC; Femoral head and canal, C; Cortex.

To alleviate overfitting caused by data scarcity, we aug-
mented the image 100 times to obtain 15100 images for the
segmentation task. We placed the cropping box, including
the main components of the proximal femur and hemipelvis
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(red box in Fig. 2), and randomly translated, rotated
(—=7°=7°), and scaled (0.85—1.15) the cropping box. The box
was cropped and resized as input for the network. If the
osseous structures to be segmented were on the right side (left
hip and pelvis) of the image, the cropped image was flipped
such that the model inputs were consistent.

To predict the AC size, we chose 110 images from
151 images labeled with the AC size information used in
the actual operation, and placed a ruler inside the image.
We calculated the actual dots per inch (dpi) to determine the
magnification using the ruler. Each radiographic image was
labeled with the AC sizes using medical records collected
retrospectively. The distribution of the labeled AC sizes is
shown in Table 1. The number of images was highly unbal-
anced between classes. Of the ten AC sizes, two sizes had no
images, and sizes 44, 56, and 58 had only three, two, and one
image(s), respectively.

TABLE 1. Distribution of acetabular component sizes in dataset used for
size prediction.

Class Number Training Validation
(Component of

Size) Images Original Augmentation . Original ~Augmentation
44 3 2 930 1 10
46 13 10 930 3 30
48 19 16 930 3 30
50 29 26 930 3 30
52 12 10 930 2 20
54 31 28 930 3 30
56 2 1 930 1 10
58 1 0 930 1 10
60 0 0 930 0 0
62 0 0 930 0 0

Total 110 93 9300 17 170

To address the imbalanced data, we generated synthetic
samples of nine other sizes from an image with size i,
as shown in Fig. 4. That is, ten samples (nine synthetic
samples and one real sample) are generated from one image
for ten sizes. Our AC size estimation model assumes that the
input image patches have a fixed resolution (70 dpi) to predict
their actual size in millimeters. Thus, we generated synthetic
samples for the other nine sizes by changing the resolution
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of the input image patches. For the synthetic sample with
target size j from the image with AC size i, the input res-
olution was calculated as 70 * j/i dpi. Patch cropping was
performed by slightly shifting and rotating (-7°-7°) to further
augment the images. The amount of shifting and rotation was
randomly chosen within a small range. Random cropping
was performed ten times. A total of 100 patches belonging
to ten classes were generated from an image. The cropped
patches were resized and flipped for input into the network.
Fig. 4 shows an example with an original resolution of 200 dpi
and an actual AC size of 46.

[J real sample of size 46
[ synthetic sample of size 48

synthetic sample of size 62

Original Radiographs
[

Translate + Rotate + Crop + Resize + Flip

Size 44

Size 46 Size 48

Size 62

FIGURE 4. Data augmentation for acetabular component size estimation.
A sample of a real component size and nine synthetic samples of
different sizes are produced from one image.

To evaluate our method for predicting AC and FC size,
we prepared a test set with the ground truth from the sur-
geon during the actual operation. Hip AP radiographs were
collected before surgery from 128 THA patients; AC and FC
sizes were extracted from the medical records. The collection
was not used, and different patients were used for training and
validating our deep learning models. Sixty-five patients had
end-stage arthrosis of the left hip; the remaining 63 patients
had end-stage arthrosis of the right hip.

B. SEGMENTATION OF HEMIPELVIS AND
PROXIMAL FEMUR
We used U-net for segmentation of a hip AP radiographic
image into five regions, as shown in Fig. 5. U-net receives
a medical image as input and outputs a segmentation map.
The input to our network was a patch cropped and resized
from the radiographic image shown in the red box in Fig. 2.
The resized input patch was 512 x 384 in size. The output
of the network was five feature maps 512 x 384 in size; the
output was represented as a 5 x 512 x 384 tensor, with each
tensor representing the C, HC, P, J, and T regions. Cropping
is performed by the user in the test phase, and U-net performs
segmentation.

The architecture of U-net is shown in Fig. 5; the contracting
and expanding paths produce symmetry. The role of the con-
tracting path is to extract rich features from the input image.
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The feature map was maintained at a constant size through
padded convolution at each level. A total of 1024 feature
maps were generated, each with a size of 32 x 24 at the
bottom level. The expanding path uses the generated fea-
ture maps to synthesize segmentation maps, represented as a
5 x 512 x 384 tensor. It has skip connections to transfer
the high-resolution features of the contracting path to the
expanding process. The transferred feature maps are concate-
nated to the maps generated by the layers on the expanding
path. Skip connections are the core concept of U-net, and
are critical in generating high-quality segmentation maps for
medical images. For U-net training, binary cross-entropy was
used as the loss function; a stochastic gradient descent (SGD)
optimizer was used with a learning rate of 0.0001, momentum
of 0.99, and batch size of 1.

C. ACETABULAR COMPONENT SIZE PREDICTION

AND POSITIONING

Predicting the AC involves two steps: estimating the opti-
mal size using a convolutional neural network (CNN), and
using rule-based landmark detection on the segmentation
results for proper placement. Component size estimation is
performed as an ordinal classification problem. We used
transfer learning, reusing the parameter value learned from
training the segmentation U-net to train the CNN for AC size
estimation. We considered the contracting path of the learned
U-net shown in Fig. 5 and attached the fully connected layers
for classification. Fig. 6 illustrates the architecture of CNN
classification. The output layer had ten nodes corresponding
to ten AC sizes (44, 46, 48, ..., 62), and used softmax as
the activation function. For training, CNN cross-entropy was
used as the loss function, and the SGD optimizer was used
with a learning rate of 0.0001, momentum of 0.9, and batch
size of 10.

After determining the AC size, the position and place-
ment were calculated based on the segmentation information.
To this end, two landmarks (L1 and L2) were automatically
determined using segmented regions, shown as red points in
Fig. 7(b). L1 was the most lateral point of the J (joint space)
region. L2 was the lowest point of the J region, adjacent to
the HC region (femoral head and canal). The baseline of the
AC was aligned with the line connecting L1 and L2 such that
their centers coincided.

D. FEMORAL COMPONENT SIZE PREDICTION

AND POSITIONING

Determining the FC size and placement was based on the
segmentation results. The algorithm was designed using three
rules relevant to the actual operation.

1) The central axis of the FC should be aligned with that
of the proximal femur.

2) The FC should not intrude into the C (cortex) region
extracted by segmentation and should be placed deep
in the cancellous HC region.

3) The FC trunk should be sufficiently close to the cup
center.
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FIGURE 5. U-net for segmenting hip AP radiograph image into five regions.
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FIGURE 6. CNN for classification of acetabular component size prediction.

(a) Input image patch

(b) Positioning result

FIGURE 7. Position and placement calculation for acetabular component.
Two landmarks (L1 and L2) were automatically determined using
segmented regions and serve as the basis for placing the acetabular
component.

To satisfy the first rule, we determined the central axis
of the proximal femur. The C region is the diaphyseal cor-
tex of the proximal femur; its central axis is regarded as
the central axis of the femur. Applying the distance trans-
form operation to C [61], we obtained the distance map
in Fig. 8(a). The distance transform computes the shortest
distance from each pixel in region C. We obtained the green
area in Fig. 8(a) by extracting the ridge points from the
distance map. We obtained the central axis of the femur by
fitting a straight line to the ridge points, indicated by the

94150

blue line in Fig. 8(b). The second rule was used to insert the
FC deep inside the cancellous bone region of the medullary
canal (HC). By aligning the central axes of the FC and femur,
we slid the FC as deep as possible without intruding into the
diaphyseal cortex (C) region. Fig. 8(b) shows the completed
insertion.

The third rule was used to evaluate the placement of the
FC in terms of the matching error. The matching error was
measured by calculating the angle between two straight lines,
OstemEneck and OgyeOcyp. Fig. 8(c) illustrates the match-
ing error calculation process. The algorithm exhaustively
searches for all available FCs of different sizes and shapes.
The FCs are recommended to the operating surgeon in order
of smallest matching error.

IV. EXPERIMENTS AND RESULTS

A. EXPERIMENT ENVIRONMENT

The experiments were conducted on an AMD Ryzen7 2700X
with a 3.7 GHz CPU, 32 GB of memory, and a GTX 1080 Ti
GPU. We aimed to quantitatively and qualitatively evaluate
the quality of bone segmentation and AC and FC size predic-
tion. The deep learning component was implemented using
Keras with a TensorFlow backbone.

Hip AP radiography was taken at a distance of approxi-
mately 120 cm from the X-ray tube to the cassette, and the
osseous structure was magnified by approximately 110 %.
To determine the correct magnification of the radiographs,
aruler was placed at the center level of the femur. To offset the
femoral version, preoperative templating was filmed in the
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(a) Determining central axis of femur
using distance transform

(b) Inserting femoral component
deep inside cancellous bone

(c) Measuring matching error

FIGURE 8. Determining and placing femoral component of prosthesis. The femoral component is inserted along the
central axis of the femur and evaluated for how close the trunk is to the center of the acetabular component.

state of internal rotation maximally with the lower extremity.
In addition, internal rotation is difficult with a diseased hip;
thus, templating was performed on the side opposite to the
side to be operated on.

The prostheses used for performance evaluation was the
AC (DELTA PF, LimaCorporate, Italy) and FC (Minima S
and MASTER SL, LimaCorporate, Italy), as shown in Fig. 9.
The AC has 12 sizes from 44 to 66 in 2 unit increments,
but a size of 64 or higher is rarely used; therefore, we used
10 steps from 44 to 62 for templating. The FC Minima S and
MASTER SL stems consist of 12 and 13 steps, respectively,
and are all considered in templating. All prostheses used in
this study were uncemented.

HEADS SIZES
VALID FOR
632,036 AND 940

o

?5
D

UM

L INER ME

STEM #3
TAPER 12/14

STEM #3
TAPER 12/14

(a) DELTA PF (250) (b) Minima S (#3) (c) MASTER SL (#3)

FIGURE 9. Design samples of acetabular and femoral components used
for evaluation. The template from a medical device company is a
simplified outline of the prosthesis; the length and offsets are indicated.

We evaluated the segmentation and prediction accuracies
of the AC and FC sizes. For the quantitative evaluation
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of the segmentation radiographs, we employed intersection
over union (IOU) and Dice similarity coefficient scores [19].
We calculated the IOU and Dice scores for every five regions
and then averaged them over all regions. For the AC and
FC size prediction accuracy, we employed the mean absolute
error (MAE) and adjacent accuracy. The prediction of AC and
FC sizes is an ordinal classification problem with an inherent
order between classes. The MAE is a commonly used metric
in ordinal classification. We calculated the MAE as aver-
age differences between the predicted and ground-truth class
labels (0-9 for DELTA PF, 0-11 for Minima S, and 0-12 for
MASTER SL). Adjacent accuracy is often used to evaluate
ordinal classification algorithms in various research fields;
however, it has been described using different terminologies
[62], [63]. Adjacent accuracy is similar to the exact accuracy
used in nominal classification problems, which allows predic-
tions to adjacent classes within distance ¢ to also be correct.
We express the adjacent accuracy as ACC*! with distance .
ACC™0 is the exact accuracy that considers only predictions
identical to the ground truth as correct. The accuracy within
one size error, ACC*!, is commonly used for evaluating
preoperative THA templating accuracy [58], [59].

B. SEGMENTATION

U-net was trained using a training dataset for segmentation.
The best model was selected by evaluating the mean 10U
score for the validation dataset at each epoch of the train-
ing process. Fig. 10 shows the changes in training loss and
validation IOU scores according to model learning. Table 2
presents the IOU and Dice scores for the five regions. Small
regions such as J and T had lower IOU and Dice scores.
In deep learning-based segmentation, a small region is diffi-
cult because of an imbalanced problem [19], [20]. Addition-
ally, the J and T regions had blurry boundaries in the original
hip AP radiographs. Specifically, the T region often does not
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FIGURE 10. Curves of training loss and validation 10U scores during
model training for region segmentation. The 10U scores are high in the
order of HC,P, C,J,and T.

TABLE 2. 10U scores and dice coefficients for each of five regions for the
train and validation sets.

Region Training ; Validation.
10U Dice 10U Dice
C (Cortex) 0.970 0.985 0.932 0.965
HC (Head and Canal) 0.992 0.996 0.967 0.983
P (Pelvis) 0.988 0.994 0.949 0.974
J (Joint space) 0.965 0.982 0.850 0.919
T (Teardrop) 0.909 0.952 0.639 0.780
Mean 0.965 0.982 0.868 0.924

appear on radiographs, depending on the patient’s age and
pose when acquiring the image.

We analyzed the cases of success and failure. Fig. 11
presents two successful cases with the highest IOU scores
and two failure cases with the lowest IOU scores. Failures
often occur when input images with different characteristics
from the training data are used, such as bones appearing
blurry or overlapping obstacles such as tubes in the original
radiographic image. Fortunately, templating was correctly
performed in most segmentation failure cases because the
segmentation result identified most of the C, J, and femoral
head (HC) regions.

C. ACETABULAR AND FEMORAL COMPONENT

SIZE PREDICTIONS

We trained the CNN for AC size classification using the train-
ing dataset and evaluated the MAE using verification datasets
at each epoch in the training process to select the best model.
The training loss and validation accuracy curves are depicted
in Fig. 12. We then evaluated the entire proposed procedure.
Our templating program was designed to predict and place
the most relevant THA components on AP hip radiographs.
We evaluated the accuracy of predicting the sizes of the AC
and FC using the test dataset. This experiment was applied to
the healthy contralateral hip joint of the radiographs, accord-
ing to the procedure shown in Fig. 2. As a result, the AC
size prediction was generated for all 128 patients, whereas
the FC was not generated and rejected for one patient because
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of a significant matching error. Fig. 13 presents the confusion
matrix of the prediction results for the AC and FC, and Table 3
shows the MAE and adjacent accuracies calculated from the
confusion matrix.

The MAE for the AC and FC were 0.898 and 1.016,
respectively. Most predictions, 94.1% for all components,
were within two size differences. The exact accuracy ACC*°
was low at 35.2% and 37.0% for the AC and FC, respec-
tively. However, the adjacent accuracy ACC*! is acceptable
at 78.9% for the AC and 70.9% for the FC. This result
is reasonable compared with the meta-analysis of existing
templating methods [58], [59]. As a result of the proposed
method for all prostheses, ACC 0 was 36.1 %, which is higher
than 35% (min=25%; max=36%) of 2D acetate and lower
than 48% (min=43%; max=61%) of 2D digital. Similarly,
ACC®! of the proposed method is 74.9%, which is higher
than the 72% (min=45%; max=78%) of 2D acetate and
lower than the 80% (min=75%; max=82%) of 2D digital
by meta-analysis [59]. In particular, we obtained 78.9% and
70.9% ACC*! for each of the AC and FC using uncemented
prostheses, comparable to 73% and 74% of meta-analyses,
respectively [58].

V. DISCUSSION

Obtaining a true pelvis AP radiography is clinically essential
to evaluate anatomical landmarks as radiological ones. Radi-
ologic landmarks can be changed by rotations and tilts of the
pelvis or directions of the X-ray beam. In addition, obtaining
a true AP image of the proximal femur is crucial because
it has a wide morphological variation, including neck-shaft
angle, offset, and torsion. Insufficient internal rotation of the
lower extremity is one common cause of decreasing femoral
offset. Therefore, the hip AP view should be obtained with an
appropriate internal rotation to detect native femoral offset.
It should be filmed by neutralizing the native femoral torsion
and version to express the anatomical femoral offset well.

Difficulty in obtaining datasets is a limitation of this study.
For the segmentation task, each region to be segmented
must be labeled to train the U-net, which is tedious and
time-consuming. To the best of our knowledge, there is no
open- source hip joint segmentation data. Thus, we created
151 labeled image datasets for segmentation; however, they
were small and insufficiently diverse. For this reason, seg-
mentation may be unsatisfactory for an image with a charac-
teristic different from the dataset, as shown in Fig. 11.

For AC size estimation, small and imbalanced datasets
were used to train the CNN. The AC size clinically used is
biased towards 50 and 54 mm. This is a characteristic of THA
prostheses and its influence on surgical philosophy. THA
surgeons tend to use a large ball head to improve the surgical
outcome. Small and imbalanced datasets were improved by
data augmentation and synthetic data generation.

FCs for prostheses differ in shape and size; ACs have
similar shapes. It is difficult to construct a training dataset
to classify different FCs. Although two types of FC families
were used in the experiment, we aim to use the proposed
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(a) Successful cases

(b) Failure cases

FIGURE 11. Segmentation results chosen concerning the 10U scores (left: input image patch, middle: ground-truth,
right: segmentation result). Each colored region is as follows: P: Pelvis, T: Teardrop, J: Joint space and saucily,
HC: Femoral head and canal, and C: Cortex.
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TABLE 3. Performance of the acetabular and femoral component size estimation for the test dataset.

Method Target MAE ACCt AcCct! ACCt?
Acetabular DELTA PF 0.898 0.352 0.789 0.961
DA q Femoral Minima S 1.054 0.304 0.750 0.911
utomate MASTER SL 098 0423 0.676 0.930
(Proposed)
Sub-total 1.016 0.370 0.709 0.921
All components 0.957 0.361 0.749 0.941
2D Acetate [59] All components - 0.35 0.72 -
2D Digital [59] All components - 0.48 0.80 -
Acetabular Uncemented - - 0.73 -
2D Digital [58] Cemented - - 0.78 -
1g1ta.
g Femoral Uncemented - - 0.74 -
Cemented - - 0. 89 -
+-Train Loss ACC+0 ACCx1 ACC+2 Prediction
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FIGURE 12. Curves of training loss and validation accuracies during B 0 e [ e [
model training to predict acetabular component size. ACC+0 is the exact 1 /3 [1]11]10}10]0]0/0]0]0[0]0
accuracy, and ACC+1 and ACC=2 are the accuracies within one and two 2 0 10}211/11010]010]0101]60
size errors, respectively. @3 0 | 1131231 1/110/0]0101}0
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. e . 8 | 0 oloJolo|lo[o[2]o0o[1]0]0
we developed mclu'des 12 EC families. Thus, we first used 9o ToTololoTololorTlolol0o
a handcrafted algorithm to fit the FCs, and we will gradually 10 oJoJofof[ofJoJoJof[ofoJo]o
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With segmentation, there was a difference in IOU scores . i
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according to the anatomical region. The highest IOU scores
were observed in the diaphyseal cortex and femoral canal St
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This is consistent with actual physician insight. The T region, 1 [1[olofofofololofolofofo]o
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ing results using the deep learning-based prototype soft-
ware developed by the authors than with previously used
2-D acetate methods. The results were consistent with
those reported in recently published meta-analysis studies
[58], [59]. The accuracy of the proposed method is acceptable
considering its automation and completion within 30 s; the
methods used in the meta-analysis are manual and require
more time.
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(c) LimaCorporate MASTER SL stem

FIGURE 13. Confusion matrix of the acetabular and femoral component
size prediction for the test dataset.

Another advantage of this method is that it follows
the thought process of a surgeon using radiologic land-
marks used in actual hip surgery. This means that the deep
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FIGURE 14. Preoperative THA planning prototype system.

learning-trained prototype software can be used in many dif-
ferent types of surgeries. For example, if the ROl is expanded,
it can be applied to periacetabular osteotomy, intramedullary
nailing, and fracture surgery. If the ROI is reduced and seg-
mentation precision is enhanced, it can be applied to hip
arthroscopy for femoroacetabular impingement.

Based on the programs developed in Section 3, we imple-
mented a user interface and developed automated preop-
erative THA planning software, as shown in Fig. 14. The
software provides functions for determining the ruler in the
input image to measure the resolution, automatically pre-
dicting the THA component size in millimeters, and placing
it in the proper position. Adjusting automatic templating
results and manual templating is also possible. Addition-
ally, the segmentation results can measure the femoral head
size, sphericity, cortical thickness index, and canal-to-calcar
ratio [64]. To evaluate its field adaptability, the software
is being tested in an operation theater at Jeonbuk National
University Hospital.

The main weaknesses of this work are the small and
unbalanced datasets, rule-based algorithms that are easy to
implement but struggle to provide above-human-level per-
formances, and difficulties in positioning accuracy analysis.
Based on the prototype system, our future research is intended
to consider three aspects: (1) improving accuracy, (2) intra-
and post-operative utilization, and (3) evaluation of clinical
effectiveness. To improve accuracy, we plan to obtain more
data and apply improved deep learning techniques. In addi-
tion, we will collect the logs of the planning results when
orthopedic surgeons use our prototype system. These data
can be used as training and validation data to predict the
proper size and positioning of prostheses using deep learning,
thereby replacing the rule-based methods. To increase the uti-
lization of the proposed method, we consider using landmark
detection and registration techniques to superimpose preop-
erative planning results on the intra-/post-operative images.

VOLUME 10, 2022

VI. CONCLUSION

This study proposes an automated 2-D digital templating
method for preoperative THA planning. The method con-
sists of deep learning models for hip joint segmentation,
AC size estimation, and handcrafted algorithms to fit the
FC. Computer-aided surgery (CAS) software based on these
methods has been developed and evaluated for field adapt-
ability. The system widens the coverage of image analysis
for AC and FC size estimation, and broadens applicability to
all patients using simple inexpensively obtained radiographic
images. The proposed data augmentation method is effective
in preventing overfitting. The high segmentation and pre-
diction accuracy of deep learning models can help advance
preoperative structural templating into clinical practice for
total hip arthroplasty. Critical future research will evaluate
the clinical effectiveness of the CAS software and report it
to the clinical community. Other research should focus on
improving the system accuracy by using larger datasets and
improved deep-learning techniques. Both are actively being
conducted.
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