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ABSTRACT This study investigates various methods for autonomous traffic signal control. We look into
different types of control methods, including fixed time, adaptive, analytic, and reinforcement learning
approaches. Machine learning approaches are compared with the ‘‘analytic’’ approach, which is used as
‘‘gold standard’’ for performance assessment. We find that conventional machine learning approaches are
better than the analytic approach, but require a lot more computer power. We, therefore, introduce a novel
hybrid method called ‘‘analytically guided reinforcement learning’’ or shorter ‘‘α-RL’’. This approach is
implemented in our ‘‘GuidedLight agent’’ and tends to outperform both, classical machine learning and the
analytic approach, while largely improving convergence. This method is therefore suited as a ‘‘green IT’’
solution that improves environmental impact in a two-fold way: by reducing (i) traffic congestion and (ii) the
processing power needed for the learning and operation of the traffic light control algorithm.

11

12

INDEX TERMS Green AI, complex systems, reinforcement learning, smart cities, sustainability, traffic light
control.

I. INTRODUCTION13

Traffic congestion is one of the most widespread problems14

of cities today, leading to losses in productivity, avoidable15

CO2 emissions, environmental pollution, and reduced quality16

of life. Along with the world’s population growth and pro-17

gressive urbanization, these problems are expected to amplify18

further.19

While in the long term, a technological shift to less prob-20

lematic forms of transportation is likely, traffic congestion21

will remain a challenge for the foreseeable future.22

A. CONTRIBUTION23

Traffic light control is a complex optimization problem,24

which is NP-hard [1], i.e. not solvable exactly in real-time,25

if problems get realistically big. Hence, it is required to apply26

approximationmethods. Suchmethods comprise, among oth-27

ers, fixed (time) scheduling [2], analytic methods [3], [4],28

[5], [6], [7], [8], adaptive methods [9], [10], [11], [12], [13],29
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[14], [15], [16], and genetic algorithms [17], [18]. Moreover, 30

there exist methods which assume all or some of the vehicles 31

in the network to be autonomous [19], [20]. Recently, with 32

the spread of powerful machine learning (ML) and artificial 33

intelligence (AI) applications, reinforcement learning (RL) 34

approaches have attracted much interest [21], [22], [23], 35

[24], [25]. However, while the feasibility of the RL approach 36

got much attention, the related issues and limitations have 37

not yet been investigated in full [3], [10]. Furthermore, the 38

potential benefits of ‘‘hybrid’’ approaches, which combine 39

analytic knowledge and RL methods, have not yet been 40

explored in depth. Also, the assessment of the ecological 41

footprint of machine learning approaches has been often 42

neglected. Therefore, the main contribution of this paper 43

is to: 44

• highlight the performance and limitations of machine 45

learning approaches considering ecological issues, 46

• propose an improved, hybrid machine learning approach 47

called ‘‘analytically guided reinforcement learning’’ or 48

‘‘α-RL’’, which converges much more quickly than con- 49

ventional machine learning methods. 50
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In the following sections, we will present the background51

of the field and current state of the art, focusing on the com-52

parison between adaptive and learning methods. We will also53

propose an analytic benchmark for machine learning meth-54

ods. Finally, we will discuss the potential benefits of combin-55

ing reinforcement learning (RL) and analytic approaches in a56

hybrid method (‘‘α-RL’’).57

II. BACKGROUND58

One of the simplest method of traffic signal control is fixed59

time scheduling [2], which is usually predefined and operated60

in a periodic way. For the sake of simplicity, it is sometimes61

furthermore assumed that the same amount of green time62

is assigned to each phase. This approach is obviously quite63

limited, but often considered as a baseline to compare the64

performance of various traffic light control approaches to.65

An adaptive extension of fixed time scheduling is able to66

select a traffic plan from a predefined list of plans in response67

to the respective traffic conditions [26], but the assumption of68

repetitive service patterns is usually still applied. In contrast,69

fully adaptive approaches are also possible, which respond to70

data from induction loops placed before and after intersec-71

tions, that detect arriving and departing vehicles [27]. Such72

approaches do not rely on predefined plans, but rather adapt in73

real-time to the particular local traffic conditions. They, how-74

ever, often lack coordination among intersections. Recently,75

a lot of interest has also been paid to employing data-driven76

machine learning approaches to traffic light control [28].77

In the following section, we will introduce the traffic78

light control problem in more detail and typical solution79

approaches including fixed time, analytic, and reinforcement80

learning methods. For a comprehensive survey of differ-81

ent traffic control approaches, we recommend to read, for82

example, [29].83

A. GLOSSARY OF TERMS84

Here we provide definitions of the key terms used in formal-85

izing traffic intersections.86

• Approach: a road crossing other roads at an intersection.87

There are ‘‘incoming approaches’’, i.e. the ones through88

which cars arrive at the intersection, and ‘‘outgoing89

approaches’’ through which cars depart.90

• Lane: a single approach can be subdivided into lanes.91

The lanes on the incoming approach are referred to as92

‘‘incoming lanes’’ (short: ‘‘in-lanes’’), the one on the93

outgoing approach as ‘‘outgoing lanes’’ (short: ‘‘out-94

lanes’’).95

• Movement: consists of an incoming approach and an96

outgoing approach, through which vehicles can move97

from in-lane(s) to out-lane(s). Usually three types of98

movements are considered: left turns, right turns and99

moving straight (‘‘through traffic’’).100

• Movement signal: signal indicating whether the given101

movement is allowed (green) or not (red). The yel-102

low signal indicates the change from green to red and,103

depending on national law, may allow or block the104

FIGURE 1. Representation of an intersection with four approaches: North,
West, East, South. There are 3 separate lanes on each approach: one for
through traffic, one for turning left, and one for turning right. Here, the
traffic lights are assumed to be in phase 1 as per the numbering
introduced in Figure 2. Green arrows indicate movements that are
allowed, while red arrows indicate movements that are disallowed in the
current phase.

FIGURE 2. Possible phases to be selected from by a control mechanism,
here, for intersections with four approaches: North, West, East, South. For
all the phases, a right-turn from each approach is also assumed to be
possible, when there are no conflicting traffic flows.

movement (in this work we assume the yellow signal 105

allows for movement). A conditional green signal is usu- 106

ally assumed for the right turn, allowing for movement 107

when there is currently no conflicting traffic. 108

• Phase: a combination of movement signals. A phase 109

can only consist of no conflicting movement signals. 110

A movement signal is conflicting, if a related move- 111

ments crosses another movement. 112

B. PROBLEM DESCRIPTION 113

In this paper we are looking for methods to change traffic 114

lights at intersections such that the resulting traffic perfor- 115

mance is as high as possible. To assess the performance, one 116

often studies quantities such as the throughput and average 117

travel time. The methods we are interested in should work for 118

different traffic intensities. They should also work for a large 119

number of intersections with a reasonable computational 120

effort. In this connection, an important distinction to make 121

is whether one attempts to optimize traffic flow locally on 122

the level of single intersections or over extended parts of the 123

entire road network. A network-wide approach requires much 124

more computational resources than an intersection-based 125

approach and is often practically intractable. In this paper, 126

we will focus on local control approaches due to the focus on 127

green IT and for the sake of comparability with previous pub- 128
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lications such as [22], [23]. Note, however, that this does not129

exclude the possibility of coordination between neighboring130

intersections.131

III. RELATED WORK132

In this section we will discuss relevant related work.133

A. FIXED TIME CONTROL134

A classical method of traffic control is to generate central-135

ized schedules, which are imposed on all intersection in the136

city [2]. In its simplest form each intersection cycles through137

all its phases with no off-sets. Each intersection at a given138

time has the same phases, and each phase is given the same139

amount of time. We refer to this simplistic method as Fixed140

TimeControl.More advanced versions of thismethod include141

the implementation of different green times periods for each142

phase and suitably calibrated off-sets [2].143

B. ADAPTIVE METHODS144

A typical adaptive method is able to select the next phase145

based on the current state of the intersection controlled. One146

of the simplest adaptive methods is ‘‘demand-based’’ control.147

This approach adapts its actions based on the ‘‘demand of148

a phase’’, which is defined as the sum of the demands of149

all movements belonging to the phase. The ‘‘demand of150

a movement’’ corresponds to the number of cars that are151

present on all incoming lanes belonging to the movement.152

C. SELF-ORGANIZATION153

An important aspect in local traffic optimization is the avoid-154

ance of negative interactions between neighboring intersec-155

tions. In general, a decision that is optimal at one intersection156

may cause sub-optimal traffic flows at neighboring intersec-157

tions, for example, due to spill-over effects. To address this158

problem, the concept of self-organized traffic light control159

has been developed, which promotes a coordination among160

neighboring intersections [30].161

A self-organizing system is a system where its adjacent162

elements interact in a way that gives rise to a collective163

behavior. This can be coordinated behavior over the entire164

system or extended parts of it. If the interactions are well165

chosen, the resulting self-organized system dynamics can166

perform extremely well. Therefore, the emphasis is to make167

the interactions between the individual system elements168

mutually positive (synergistic). In [10], it is demonstrated that169

a method, called ‘‘Self-Organizing Traffic Light’’ (SOTL),170

based on the above concepts, can reach significant improve-171

ments even over state-of-the-art methods to produce green172

waves, which attempt global traffic flow optimization by173

synchronizing traffic lights and supporting vehicle platoons174

that rarely need to stop [31].175

D. ANALYTIC APPROACH176

Analytic methods rely on models and formulas derived from177

a theory (e.g. queuing theory or traffic physics) and focus on178

showing that the proposed control scheme locally optimizes 179

the selected performance criterion. 180

A very effective analytic, adaptive approach, which relies 181

on concepts from traffic physics as well as self-organization 182

principles, has been proposed in [5]. The method consists 183

of two elements: an optimization rule and a stabilization 184

rule. The optimization rule (see Appendix) is based on the 185

short-term anticipation of future arrivals of vehicles to the 186

queue and on calculating the green time needed to clear 187

the expected queue. A priority score is used by the optimiza- 188

tion rule to select the movement or phase that needs to be 189

switched to. 190

The stabilization rule overrides the optimization rule in 191

situations when a queue has grown too large or some phases 192

have not been activated for a long time [6]. This helps to 193

prevent spill-over effects at neighboring intersections. 194

The short-term anticipation of this analytic approach pro- 195

motes a self-organized coordination between flows and traffic 196

lights at neighboring intersections. Due to the resulting self- 197

organization, the two rules lead to a spontaneous emergence 198

of green waves, much like in [30]. The method has been 199

successfully implemented in real life settings in the cities 200

of Dresden, Germany, and Lucerne, Switzerland [32], [33]. 201

In the following, for the sake of simplicity, our implemen- 202

tation of the analytic method will use the optimization rule 203

only, while the stabilization rule will be neglected, possibly 204

at the cost of losing some performance. (We will focus on its 205

role in a follow-up study.) 206

E. REINFORCEMENT LEARNING (RL) 207

Due to the complexity of traffic light optimization, many 208

recent publications have proposed to use machine learn- 209

ing approaches. Instead of deriving analytic models, these 210

propose to use an iterative, neural-network-based learning 211

method, often called a ‘‘black box’’, which is fed with 212

lots of data. Significant success has been demonstrated by 213

multi-agent deep reinforcement learning models, which we 214

discuss below.We focus on models which, like the previously 215

described approaches, optimize traffic flows locally on the 216

level of a single intersection, mainly for the sake of compar- 217

ison with previously published results [22], [23]. 218

In the machine learning models, an ‘‘agent’’ represents 219

an intersection of the road network. The agent is fed with 220

data from observations of the environment and takes actions 221

based on them. The agent is also given rewards that reflect 222

the desirability of the actions it had taken [34]. The data 223

included in the observations as well as the choice of the 224

reward function may have a strong influence on the efficiency 225

of the learning process. 226

In [22], a learning algorithm called ‘‘IntelliLight’’ uses the 227

queue length, number of vehicles, waiting time and an image 228

representation of the intersection as its state. 229

In [35], an analysis of the reward and state design in 230

reinforcement learning is applied to traffic light control. 231

Moreover, the ‘‘LIT’’ method is proposed to simplify the state 232

description. 233
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In [24], the authors propose ‘‘CoLight’’, which uses graph234

attentional networks to facilitate communication between235

traffic lights. The method considers a spatial and temporal236

interaction of neighboring agents.237

The state representation is studied in depth in [36] and a238

‘‘FRAP’’ model is proposed. The model addresses the prob-239

lem of limited adaptive potential of most learning approaches240

(e.g. a model trained with morning traffic may not adapt well241

to evening traffic, because the prevailing direction of traffic242

is reversed). It decides the competition between alternative243

phases based on demand. FRAP is able to achieve invariance244

to rotation and flipping. Moreover, FRAP can be applied to245

intersections with different numbers of incoming lanes as246

well as a different number of possible phases. FRAP shows247

very good performance (in terms of average travel times) for248

a simple, single intersection setting. However, in a realistic249

setting with many intersections its performance deteriorates.250

Another learning algorithm is described in [23].251

‘‘PressLight’’ simplifies the state to consist only of cars on252

incoming and outgoing lanes and the current phase. The253

reward is the ‘‘pressure’’ at an intersection [3], which is254

explained in detail in subsection IV-B.255

The PressLight method outperforms both IntelliLight256

and LIT in both synthetic and realistic scenarios in terms257

of average travel time. PressLight outperforms the FRAP258

model in scenarios with more than one intersection as well.259

PressLight’s performance appears to be comparable with260

CoLight although no direct comparison has yet been pub-261

lished.262

The publications mentioned above achieve convincing263

results. With the help of computer simulations, it is shown264

that reinforcement learning has great potential to help265

mitigate the problem of traffic congestion. It is less clear,266

however, how themachine learning approaches perform com-267

pared to previous adaptive approaches, also in terms of the268

computational resources needed. Similarly, the environmen-269

tal costs of training the RL models are often left unreported.270

This will be the focus of our further investigation.271

IV. METHODS272

In this section we will specify the design of the Guid-273

edLight agent implementing ‘‘analytically guided rein-274

forcement learning’’ (short: ‘‘α-RL’’). We will specifically275

describe the basis of the α-RL approach which, as we will276

see, combines the benefits of the analytic approach with those277

of machine learning.278

A. DEEP Q-LEARNING279

In the approach called Q-learning, the agents’ decisions are280

guided by a Q-function, which takes the current state and an281

action as arguments and maps them to the reward space. The282

mapping is according to the Bellman equation based on the283

expected future rewards as in Equation 1, where Qnew is the284

Q-value after the update for the given state-action pair (St ,At285

at time t in this case); Q is the old Q-value for the same286

state-action pair; l represents the learning rate; γ weights the287

importance of long-term vs. short-term gains. Rt is the reward 288

at time t and maxA Q(St+1,A) is the estimate of the optimal 289

future value, more specifically it is the estimate of the highest 290

Q value that can be obtained starting from state St+1 and 291

taking optimal actions. The term in the square brackets is also 292

known as temporal difference [34]. 293

Qnew(St ,At ) = Q(St ,At )+ l ∗ [Rt + γ ∗ 294

max
A

Q(St+1,A)− Q(St ,At )] (1) 295

In deep Q-learning, the Q-function is approximated using 296

a deep neural network. For most complex problems, it is 297

impossible to specify the Q-function explicitly (that is why 298

one speaks of a ‘‘black box’’ approach). The Q-function 299

is learned by the agent as the training process advances. 300

In modern implementations, the agent stores the previous 301

action A, current state S, and reward R in its memory. Mini- 302

batches of these data triplets are sampled from the memory at 303

intervals and used to learn the Q-function [37]. 304

In deep-Q-learning, a neural network referred to as Deep 305

Q-Network (DQN) is used to approximate theQ-function that 306

estimates the reward, given a state-action pair. 307

Our GuidedLight implements a more advanced version 308

of the DQN known as Double Deep Q-Network (DDQN), 309

to avoid the overestimation of the action values. This is 310

done by leveraging two parallel DQNs, which are updated 311

with a different frequency using ‘‘soft updates’’ (see [38] for 312

details). 313

We implement thememory replay [37] and train theDDQN 314

periodically with mini-batches sampled from the memory. 315

While the data is generated on the individual level of every 316

intersection, thememory is shared between all agents to speed 317

up convergence, by increasing the number of training sam- 318

ples. The details of the DDQN and memory implementations 319

can be found in Appendix . 320

B. PRESSURE-BASED LEARNING 321

Drawing on the good results of [23], [25], and the theoretical 322

background of [3], we incorporate a ‘‘pressure’’ concept in 323

the reward design of ‘‘GuidedLight’’. Intuitively, the pressure 324

can be interpreted as an imbalance in the distribution of vehi- 325

cles over the incoming and outgoing lanes of an intersection. 326

Specifically the pressure of an intersection is defined in 327

Equation 2, where i denotes the intersection, l the incoming 328

lane of a given movement and o the outgoing lane of the 329

same movement. w(l, o) represents the pressure of a single 330

movement from lane l to lane o. The pressure of a single 331

movement is simply the difference between the number of 332

cars on the incoming lane l and the outgoing lane o, weighted 333

by the maximum number of cars possible on the correspond- 334

ing lanes. This is summarized in Equation 3, where x(a) 335

denotes the number of cars on lane a and xmax(a) denotes the 336

maximum possible number of cars on that lane: 337

Pi = |
∑
(l,o)∈i

w(l, o)|, (2) 338
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where339

w(l, o) =
x(l)

xmax(l)
−

x(o)
xmax(o)

. (3)340

Based on the results in [3], we conjecture that, optimizing341

the pressure at the level of individual intersections leads to342

the global throughput also being optimized, under certain343

constraints. Thus, we expect, the emergence of coordination344

between the intersection as long as they are optimizing their345

individual pressures.346

C. ANALYTIC COMPONENT347

Our main goal is to build on the benefits of the analytic348

approach in order to improve the efficiency and accuracy of349

our learning method. An area that can benefit from analytic350

insights is the exploration strategy chosen by our agent.351

In reinforcement learning, exploration is a key concept that352

allows the agent to learn more about its environment and353

avoid getting stuck in local optima. The learning methods354

mentioned in subsection III-E rely on the epsilon-greedy (ε-355

greedy) exploration method [34] explained in the following.356

1) EPSILON-GREEDY EXPLORATION357

In this approach, every time the agent acts, with probability358

ε it chooses a random action rather than the action sug-359

gested by itsQ-function. This probability is usually relatively360

high in the beginning, in order to allow the agent to thor-361

oughly explore the state-action space and generate enough362

experience to train its deep Q-network. However, as the363

training progresses, the value of ε is gradually decreased364

to some minimal value, which is typically greater than 0 in365

order to provide a chance of further exploration even to366

trained agents. The value of ε, its decrease rate and mini-367

mum value must be specified in a problem-dependent way,368

see Appendix .369

2) ANALYTIC EXPLORATION370

In this paper we propose an alternative, analytic exploration371

process, where the exploration of the agent is guided by372

the results of some analytic method. The design extends the373

epsilon-greedy approach. Every time the agent acts, there is374

a probability ε of choosing a random action. However, there375

is also some probability α that the chosen value will not be376

random but an action that would be chosen by some analytic377

approach. Hence the overall probability to deviate from the378

action proposed by the Q-function is ε and then there is the379

probability α that the action will be analytically derived.380

The intuition behind this approach is that we inject knowl-381

edge from the analytic approach, in order to guide our explo-382

ration into areas of the state-action space that are likely to383

be performing highly. The analytic approach is based on384

implications of the physical laws underlying traffic flows385

(‘‘traffic physics’’), which can be expressed by precise math-386

ematical formulas. In comparison, the data-driven reinforce-387

ment learning approach, is only able to provide approximate388

relationships.389

By injecting precise analytic knowledge into the explo- 390

ration, we hope to accelerate the convergence of our method 391

as compared to alternative, ‘‘blind’’ (i.e. unguided) learning 392

methods. We expect that, with our new approach, the agent 393

needs to explore less states to find the optimal state-action 394

pairs. Nevertheless, we still allow random exploration to 395

make sure the agent does not get stuck in local optima. The α 396

value, much like the ε, can also be specified to decrease over 397

time. The interplay between the two values might have a sig- 398

nificant influence on the convergence. Furthermore, by rely- 399

ing on analytic exploration, the agent could even be allowed 400

to safely explore in deployment, as most of the exploring 401

actions would not be random, but analytically motivated (and 402

so more likely to be efficient). 403

Note that the analytic exploration can be understood in 404

terms of the heuristic-exploration paradigm [39]. In our case, 405

the exploration uses a problem-specific heuristic - that of an 406

analytic model. In that sense it can be considered a concrete 407

application of the general heuristic exploration approach, 408

which has been shown to achieve good results for many 409

problems [39]. 410

The details of the analytic approach used for the ana- 411

lytically guided exploration in this paper can be found in 412

Appendix . Note that, for simplicity, we have restricted our- 413

selves to the optimization rule of the analytic self-control 414

approach proposed in [5], while the stabilization rule has been 415

neglected, here (which may lead to higher densities, as we 416

will see). 417

D. GuidedLight AGENT 418

In this subsection we summarize the design of the ‘‘Guid- 419

edLight’’ agent implementing the analytically guided explo- 420

ration paradigm (α-RL) 421

• Agent: An agent is a decision-making entity that rep- 422

resents a single intersection in the traffic network and 423

controls the traffic lights at that intersection. 424

• State: The state of the agent, also referred to as ‘‘obser- 425

vations’’ according to [23], consists of the percentage 426

coverage of vehicles on the incoming lanes. We use 427

the percentage coverage of the lane, as it implicitly 428

includes the length of the respective lane: Three cars 429

of approximately 5 meters each on a 30 meters lane 430

should be considered differently from such cars on a 431

300 meters long lane. Furthermore each incoming lane 432

is divided into 3 segments of equal length: closest to the 433

intersection, middle and furthest. Such an approach has 434

been shown to give superior results as compared to the 435

unsegmented approach [23].Moreover the state includes 436

the percentage coverage of cars on each of the outgoing 437

lanes and the current phase at the intersection. 438

• Actions: The actions, from which the agent selects, 439

consist of the possible phases for the given intersection. 440

• Reward: The reward Ri uses the pressure concept [3] 441

and is equal to the negative of the pressure Pi defined in 442
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Equation 2:443

Ri = −Pi (4)444

In other words, the reward follows Equation 4, where445

i represents the specific intersection. The negative is446

taken, as we aim at minimizing the pressure, which447

corresponds to maximizing its negative.448

V. SIMULATION EXPERIMENTS449

The goal of our computer-based simulation experiments is to450

test the machine learning approaches described above against451

the fixed time and the analytic approach. We will, therefore,452

conduct simulation experiments in several virtual city envi-453

ronments and compare the results to each other. We will also454

specifically evaluate the number of learning episodes needed455

for the learning approaches to achieve convergence.456

The specific details of all parameters used in our experi-457

ments can be found in Appendix .458

A. METHODS COMPARED459

Our simulation experiments will compare the following460

methods:461

• Fixed Time: A fixed traffic light schedule, where we462

give 10 seconds to each phase with a 2 seconds clearing463

phase in between the phases as described in [2]. The464

same order of phases is followed by all agents. Hence,465

at a given time all intersections have the same phase.466

This is obviously a low baseline which, however, has467

repeatedly been used to compare the relative perfor-468

mance of various reinforcement learning approaches.469

• Demand: A simple adaptive method, which always470

chooses the phaseswith the highest demand as expressed471

by the number of cars on the incoming lanes.472

• Analytic: A state-of-the-art analytic approach relying473

on the optimization rule described in [4] and [5]. The474

method calculates both, the phase to be chosen and the475

amount of green time to be given following the details476

in Appendix .477

• PressLight: A popular reinforcement learning478

approach [23] with a reward based on pressure [3]479

and an action-state space similar to the description in480

subsection IV-D, but considering the number of vehicles481

instead of the percentage coverage. For the purpose of482

the study, the ‘‘PressLight agent’’ was re-implemented.483

The results obtained by our implementation were com-484

pared with the open-sourced PressLight implementation485

and were found to be well consistent. Small differences486

might occur due to the use of a larger neural network, the487

use of a newer version of the CityFlow simulator, smaller488

set-up times as well as a larger number of actions-phases489

available to the agent.490

• GuidedLight: A reinforcement learning approach491

using analytic insights for exploration, as proposed in492

section IV of this paper.493

All the agents in all scenarios have 8 actions to select from.494

The actions correspond to all 8 non-conflicting phases avail-495

TABLE 1. Traffic flows assumed in the four synthetic simulation scenarios.

able at a 12 movement intersection. Both learning methods 496

(GuidedLight and PressLight) explore the environment with 497

the same probability ε. The main difference is that Guided- 498

Light chooses an analytically derived action with probability 499

α while PressLight always chooses a random action when 500

exploring. 501

B. COMPUTER SIMULATIONS 502

As simulation environment we use CityFlow [40] due to the 503

availability of a large number of synthetic and realistic scenar- 504

ios as well as the higher computational efficiency compared 505

to SUMO [41]. 506

1) SCENARIOS 507

In our experiments we compare the aforementioned methods 508

in a variety of scenarios. Four of them are based on synthetic 509

configurations specified in Table 1, which follow the research 510

design in [23]. The first setting is a 4 by 4 artificial road 511

grid with 16 intersection agents. The distances between the 512

intersections are assumed to be 100 meters. 513

At each intersection, the amount of vehicles turning left is 514

set to 10%, the amount going straight to 60%, and the amount 515

turning right to 30%. The specification of the synthetic traffic 516

data follows [25]. 517

The second simulation scenario is based on real-world traf- 518

fic and a real world network: the 16 by 1 grid with 16 agents 519

based on the 8th Avenue in Manhattan, New York. The road 520

network is based on the road network data extracted from 521

OpenStreetMap and flow data based on open-sourced taxi 522

trip data as presented in [23]. The arrival rate is 1.886 vehi- 523

cles/second with standard deviation of 0.009. 524

The third setting is also based on Manhattan, New York. 525

However, it consists of 196 intersections of the Upper 526

East Side. The vehicle flow, also based on taxi trip data, 527

is set at 0.803 vehicles/second with a standard deviation of 528

0.0336. Since the taxi data provides only origin-destination 529

data, the shortest path between two points is generated 530

following [24]. 531

In all scenarios, the vehicles arrive at the terminal edges 532

of the road network. Moreover, the action frequency for the 533

demand agents and learning agents is set to 10 simulation 534

steps, where 1 simulation step corresponds to 1 second. If the 535

phase is changed, a clearing phase is initiated first for a fixed 536

time period of 2 seconds. During that time, only right turns 537

are allowed, which is possible in all phases, following the 538

custom in many countries. The traffic is bidirectional in all 539

scenarios. 540
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FIGURE 3. The five road networks used in the experiments, blue dots indicate intersections, black lines indicate roads.

The synthetic scenarios are included for better compara-541

bility with previously published learning methods [23]. The542

performance in the NY196 scenario is of greater interest to543

us, as it is realistically complex both, in terms of the road544

network and the traffic flows.545

Each scenario is run for 1800 seconds, that is 30 minutes546

of real-world time. An ‘‘episode’’ is a full run of a simulation547

for the entire period of 1800 seconds, which corresponds to548

1800 simulation steps.549

C. PERFORMANCE METRICS550

The main performance metrics that we use for compar-551

ison are the average travel time (in seconds) and the552

throughput (in number of vehicles over the entire simula-553

tion period). The average travel time as well as throughput554

is calculated using the methods available in the CityFlow555

simulator [40].556

For the machine learning methods, we present the mini-557

mum of the average travel time and maximum of the through-558

put along with the standard deviations in the last ten episodes559

of training, which can be treated as an indicator of the meth-560

ods’ stability. We also provide data on the number of episodes561

needed for convergence of the learningmethods. The learning562

methods are trained for 150 episodes.563

D. FURTHER ANALYSIS564

In addition to studying the performance of different methods565

in different scenarios we also include an ablation study, where566

we validate the benefits of analytic exploration. We further567

investigate the influence of the α parameter on the perfor-568

mance of the GuidedLight method.569

Furthermore, we analyze the action space induced by the570

three best performing methods. We present a histogram of571

the actions taken by the agent controlling the intersection 572

to compare the similarity of the action space for different 573

methods. 574

VI. SIMULATION RESULTS 575

In this section we present the results of our simulation exper- 576

iments described in the previous section. 577

A. AVERAGE TRAVEL TIME AND THROUGHPUT 578

In Table 2 we can see the performance of the various traffic 579

light control methods in terms of the average travel time 580

and throughput for the four configurations of the synthetic 581

scenario (I-IV) and the two real-world scenarios. As can be 582

seen in the table, the GuidedLight method achieves the best 583

results for all configurations. 584

If we compare the different approaches in Figure 4, we can 585

see that the differences between the analytic and the Guided- 586

Light approaches are especially significant for the synthetic 587

scenarios and NY196. Interestingly, for the NY16 scenario, 588

the simple Demand-basedmethod is able to reach comparable 589

results to the learning and analytic methods. Furthermore, 590

the standard deviations of the PressLight method are higher 591

than that of GuidedLight for the two realistic scenarios, 592

suggesting that the training is less stable for PressLight than 593

for GuidedLight. 594

Similarly, by consulting Figure 5 we find that the travel 595

time improvement over the Fixed Time method is significant 596

for all methods tested. GuidedLight gives the best ratio of 597

improvement in all scenarios. It is also worth noting that, for 598

all methods, the travel time improvement over the Fixed Time 599

method is lowest in the NY196 scenario. 600
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TABLE 2. Average travel time and throughput of different traffic signal control methods for the four configurations of tbe 4 × 4 synthetic scenarios and
two real-world scenarios. The values in brackets are standard deviations. Best results are presented in bold.

FIGURE 4. Throughput of various traffic light control methods relative to
the throughput of fixed time control for the four configurations of the
4 × 4 synthetic scenarios and two real-world scenarios. Higher values are
better.

FIGURE 5. Average travel time of various traffic light control methods
relative to the average travel time for fixed time scheduling for the four
configurations of the 4 × 4 synthetic scenarios and two real-world
scenarios. Lower values are better.

B. CONVERGENCE OF LEARNING METHODS601

Here, we compare the convergence of the machine learn-602

ing approach PressLight to the α-RL method GuidedLight.603

As can be seen in Figure 6, GuidedLight converges to a604

stable result significantly faster in all the tested settings than605

PressLight. This showcases the benefits of the analytically606

guided exploration (α-RL). It is worth noting that the training607

of PressLight in most scenarios (I-IV) becomes unstable—608

unlike GuidedLight. This is likely due to the overestimation609

FIGURE 6. Throughput achieved as a function of the number of learning
episodes for the conventional machine learning method PressLight and
the analytically guided method GuidedLight.

TABLE 3. Results of the ablation study on the NY196 scenario run to
validate. the benefits of α-exploration (with standard deviations
determined over the last 10 training epochs). −α-exploration indicates a
model using random exploration.

of the action values, which is avoided in GuidedLight by 610

using the Double Deep Q-Network. 611

C. ABLATION STUDY 612

To validate the benefits of α-exploration, we perform 613

an ablation study. We compare the GuidedLight without 614

α-exploration with PressLight with α-exploration and both 615

normal GuidedLight and PressLight. In Table 3 we can 616

see that indeed GuidedLight without α-exploration performs 617

much worse to GuidedLight with it. Similarly, PressLight 618

with α-exploration is superior to PressLight but not as good 619

as GuidedLight, due to differences in DQN and state-space 620

design (the use of DDQN instead of DQN and the use of 621

percentage coverage instead of absolute number of vehicles 622

in the state description). 623
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TABLE 4. Throughput achieved by GuidedLight in the NY196 scenario
with different starting and end values and changing rates of the α

parameter (with the standard deviations over the last 10 training epochs).

FIGURE 7. Histograms of actions taken by a single agent in the NY196
scenario according to each of the three methods. Different colors indicate
different actions.

D. α PARAMETER STUDY624

In Table 4, we present the study of the effects of differ-625

ent values of the α parameter, controlling the frequency of626

analytically guided exploration, on the results achieved by627

GuidedLight. We compare different starting and end values628

for the α parameter, as well as different rates of change.629

It seems it is beneficial to initialize α at 1 and decrease it to630

0 gradually. Also, decreasing the α parameter slowly appears631

to be favorable. Setting alpha to 1 and not decreasing the632

parameter corresponds to ε exploration and obtains the worst633

results among the settings compared.634

E. ACTION SPACE ANALYSIS635

In order to further understand the differences and character-636

istics of the compared methods. we study the action space of637

the Reinforcement Learning and analytic methods. Actions638

correspond to the possible phases such as indicated in Fig-639

ure 2. The agents using the analytic method favors action 7,640

PressLight appears to favor action 6 and 7 heavily, while641

GuidedLight favors actions 2 and 6. Furthermore, the analytic642

approach appears to select a greater variety of actions as643

compared to PressLight and GuidedLight. It is important644

to note that the analytic method selects more actions, as it645

adjusts the green time given to each action.646

VII. SUMMARY, CONCLUSIONS, DISCUSSION,647

AND OUTLOOK648

In this paper, we have compared different performance indi-649

cators of various adaptive traffic light control approaches650

and some alternative reinforcement learning methods. It turns651

out that the analytic method performs well, especially in652

real-world inspired scenarios, and can, thus, serve as bench- 653

mark for novel reinforcement learning (RL)methods.We also 654

note that the analytic method becomes less effective in highly 655

congested traffic as in the synthetic scenarios, at least if 656

the stabilization rule is neglected. Our results further show 657

that α-RL methods can significantly outperform the analytic 658

approach after a sufficient number of learning episodes. Even 659

though these results have been gained for somewhat idealized 660

traffic scenarios, we expect qualitatively similar findings for 661

irregular road networks and more complex traffic scenarios 662

(as is to be shown in follow-up work). 663

The performance of the analytic method results from the 664

use of mathematical formulas derived from traffic physics, 665

which allow one to determine the green time needed to clear 666

the entire vehicle queue, considering the arrivals of further 667

vehicles based on a sophisticated short-term prediction. This 668

mechanism also promotes coordinated traffic flows and emer- 669

gent green waves, while not being restricted to repetitive 670

service patterns. 671

Reinforcement learning misses analytic insight into the 672

physical laws underlying traffic dynamics - it has to rely on 673

guessing the dynamics based on traffic patterns that occurred 674

in the past. α-RL combines the good parts of RL and the ana- 675

lytic method, hence, outperforming both of these methods. 676

In summary we find that: 677

• In order to find superior solutions, one needs a ‘‘hybrid’’ 678

approach, where the scientific knowledge behind the 679

analytic approach is fed into the machine learning 680

approach. 681

• Therefore, even in the age of Artificial Intelligence, 682

analytic approaches remain important, but hybrid 683

approaches are best. 684

A. GREEN IT 685

A recently highlighted issue in connection with the UN 686

Sustainability Development Goals (SDGs) are the energy 687

consumption and environmental footprint of technologies. 688

While digital technologies contributed just about 3-5% to the 689

world’s electricity consumption some years ago, the share is 690

expected to grow beyond 20% by the year 2030 [42]. In some 691

cities, the share of electricity spent on data centers is already 692

higher than that. 693

These developments have caused a call for ‘‘green IT’’, 694

i.e. Information Technology solutions that have a low envi- 695

ronmental footprint. This is of particular importance for 696

machine learning methods [43], which are computationally 697

quite expensive. Deep learning, including deep reinforcement 698

learning, relies heavily on deep neural networks. This often 699

requires vast amounts of GPU processing time, which trans- 700

lates into significant amounts of energy consumed. 701

It is, therefore, relevant to consider the ecological impact 702

of reinforcement learning (RL) models used for traffic light 703

control, since one of its goals is reducing emissions. It would 704

be questionable to employ models to solve a problem, if they 705

would actually exacerbate that problem. Some of the models 706

we have mentioned take dozens of hours of training time 707
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on a state of the art computational architecture until they708

converge [24], then reach a performance achieved by the709

analytic approach from the very beginning. Unfortunately,710

this is combined with limited generalization abilities to modi-711

fied scenarios, for example, involving accidents or temporary712

building sites. Such typical disruptions of the regular opera-713

tion would call for frequent retraining in order to avoid sub-714

optimal performance. The related ecological footprint should,715

hence, be taken into account, particularly considering the fact716

that highly performing analytic approaches exist, which are717

computationally cheap and environment-friendly.718

At least it seems pressing to work on novel methods that719

use analytic knowledge, speed up convergence, and improve720

the ability to generalize. For these reasons, we have proposed721

a novel, hybrid machine learning method called ‘‘Guided-722

Light’’, which combines the benefits of machine learning723

and analytic approaches by analytically guided exploration.724

We have shown that the proposed ‘‘α-RL’’ method achieves725

considerably faster convergence than conventional reinforce-726

ment learning methods, leading to decreased training times.727

This in turn is expected to reduce the environmental footprint.728

Moreover, we were able to show that GuidedLight performs729

better than the analytic approach and better than the other730

reinforcement learning approaches studied in this paper. This731

applies particularly to the performance measures of aver-732

age travel time and throughput. We believe that analytically733

guided machine learning would have benefits also in many734

other application areas, which are to be explored in the future.735

APPENDIX. MODEL PARAMETERS736

For both, PressLight and GuidedLight, we use a737

fully-connected neural network with two hidden layers of738

128 and 64 hidden units, each. We use a learning rate of739

0.0005, batch size of 64, a starting ε of 1, a minimum ε of740

0.01. ε is decreased by a factor of 0.00005 per each action741

taken by an agent. The size of the memory buffer is set742

to 100000, the discount factor to 0.999 and the soft update743

parameter to 0.0001. The network update frequency is set to744

10. For GuidedLight, the value of α is set to the value of ε in745

each episode. Finally, for the analytic approach’s stabilization746

strategy we use T = 180 and Tmax = 240.747

APPENDIX. ANALYTIC METHOD748

In the study presented here, the analytic approach used to749

guide the exploration is the optimization rule proposed in [5].750

We have selected this method because of its superior results751

among all analytic approaches we have tested. Specifically752

the analytic approach selects the next phase based on a prior-753

ity score, which itself is related to the required green time ĝ to754

clear a given lane [5]. This value is derived from Equation 5,755

where N exp(t) represents the expected number of cars that756

arrive at the intersection by time t , N out (t) the number of757

vehicles that depart from the upstream intersection by time758

t , qmax is the maximum flow of the movement (‘‘saturation759

rate’’), and τ the set up time needed to switch phases: 760

N exp(t + τ + ĝ) = N out (t)+ ĝqmax (5) 761

The additional data needed to perform the analytic com- 762

putations consist of the arrival and departure rates. This data 763

is easily available to any intersection equipped with cameras, 764

induction loops, or other suitable sensors. Therefore, the over- 765

head of performing the analytic computations is negligible 766

due to their low complexity, data availability and, lastly, 767

because they are performed only with low frequency. 768
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