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ABSTRACT This study investigates various methods for autonomous traffic signal control. We look into
different types of control methods, including fixed time, adaptive, analytic, and reinforcement learning
approaches. Machine learning approaches are compared with the ‘“analytic” approach, which is used as
“gold standard” for performance assessment. We find that conventional machine learning approaches are
better than the analytic approach, but require a lot more computer power. We, therefore, introduce a novel
hybrid method called “analytically guided reinforcement learning” or shorter “«-RL”. This approach is
implemented in our “GuidedLight agent™ and tends to outperform both, classical machine learning and the
analytic approach, while largely improving convergence. This method is therefore suited as a “green IT”
solution that improves environmental impact in a two-fold way: by reducing (i) traffic congestion and (ii) the
processing power needed for the learning and operation of the traffic light control algorithm.

INDEX TERMS Green Al complex systems, reinforcement learning, smart cities, sustainability, traffic light

control.

I. INTRODUCTION
Traffic congestion is one of the most widespread problems
of cities today, leading to losses in productivity, avoidable
CO; emissions, environmental pollution, and reduced quality
of life. Along with the world’s population growth and pro-
gressive urbanization, these problems are expected to amplify
further.

While in the long term, a technological shift to less prob-
lematic forms of transportation is likely, traffic congestion
will remain a challenge for the foreseeable future.

A. CONTRIBUTION

Traffic light control is a complex optimization problem,
which is NP-hard [1], i.e. not solvable exactly in real-time,
if problems get realistically big. Hence, it is required to apply
approximation methods. Such methods comprise, among oth-
ers, fixed (time) scheduling [2], analytic methods [3], [4],
[5], [6], [7], [8], adaptive methods [9], [10], [11], [12], [13],
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[14], [15], [16], and genetic algorithms [17], [18]. Moreover,
there exist methods which assume all or some of the vehicles
in the network to be autonomous [19], [20]. Recently, with
the spread of powerful machine learning (ML) and artificial
intelligence (AI) applications, reinforcement learning (RL)
approaches have attracted much interest [21], [22], [23],
[24], [25]. However, while the feasibility of the RL approach
got much attention, the related issues and limitations have
not yet been investigated in full [3], [10]. Furthermore, the
potential benefits of “hybrid” approaches, which combine
analytic knowledge and RL methods, have not yet been
explored in depth. Also, the assessment of the ecological
footprint of machine learning approaches has been often
neglected. Therefore, the main contribution of this paper
is to:

« highlight the performance and limitations of machine
learning approaches considering ecological issues,

o propose an improved, hybrid machine learning approach
called “‘analytically guided reinforcement learning” or
“o-RL”, which converges much more quickly than con-
ventional machine learning methods.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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In the following sections, we will present the background
of the field and current state of the art, focusing on the com-
parison between adaptive and learning methods. We will also
propose an analytic benchmark for machine learning meth-
ods. Finally, we will discuss the potential benefits of combin-
ing reinforcement learning (RL) and analytic approaches in a
hybrid method (“«-RL”).

Il. BACKGROUND

One of the simplest method of traffic signal control is fixed
time scheduling [2], which is usually predefined and operated
in a periodic way. For the sake of simplicity, it is sometimes
furthermore assumed that the same amount of green time
is assigned to each phase. This approach is obviously quite
limited, but often considered as a baseline to compare the
performance of various traffic light control approaches to.
An adaptive extension of fixed time scheduling is able to
select a traffic plan from a predefined list of plans in response
to the respective traffic conditions [26], but the assumption of
repetitive service patterns is usually still applied. In contrast,
fully adaptive approaches are also possible, which respond to
data from induction loops placed before and after intersec-
tions, that detect arriving and departing vehicles [27]. Such
approaches do not rely on predefined plans, but rather adapt in
real-time to the particular local traffic conditions. They, how-
ever, often lack coordination among intersections. Recently,
a lot of interest has also been paid to employing data-driven
machine learning approaches to traffic light control [28].

In the following section, we will introduce the traffic
light control problem in more detail and typical solution
approaches including fixed time, analytic, and reinforcement
learning methods. For a comprehensive survey of differ-
ent traffic control approaches, we recommend to read, for
example, [29].

A. GLOSSARY OF TERMS
Here we provide definitions of the key terms used in formal-
izing traffic intersections.

e Approach: aroad crossing other roads at an intersection.
There are ““incoming approaches”, i.e. the ones through
which cars arrive at the intersection, and ‘‘outgoing
approaches” through which cars depart.

e Lane: a single approach can be subdivided into lanes.
The lanes on the incoming approach are referred to as
“incoming lanes” (short: “in-lanes’), the one on the
outgoing approach as ‘“‘outgoing lanes” (short: “out-
lanes™).

e Movement: consists of an incoming approach and an
outgoing approach, through which vehicles can move
from in-lane(s) to out-lane(s). Usually three types of
movements are considered: left turns, right turns and
moving straight (“‘through traffic™).

o Movement signal: signal indicating whether the given
movement is allowed (green) or not (red). The yel-
low signal indicates the change from green to red and,
depending on national law, may allow or block the
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FIGURE 1. Representation of an intersection with four approaches: North,
West, East, South. There are 3 separate lanes on each approach: one for
through traffic, one for turning left, and one for turning right. Here, the
traffic lights are assumed to be in phase 1 as per the numbering
introduced in Figure 2. Green arrows indicate movements that are
allowed, while red arrows indicate movements that are disallowed in the
current phase.
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FIGURE 2. Possible phases to be selected from by a control mechanism,

here, for intersections with four approaches: North, West, East, South. For

all the phases, a right-turn from each approach is also assumed to be
possible, when there are no conflicting traffic flows.

=t

movement (in this work we assume the yellow signal
allows for movement). A conditional green signal is usu-
ally assumed for the right turn, allowing for movement
when there is currently no conflicting traffic.

e Phase: a combination of movement signals. A phase
can only consist of no conflicting movement signals.
A movement signal is conflicting, if a related move-
ments crosses another movement.

B. PROBLEM DESCRIPTION

In this paper we are looking for methods to change traffic
lights at intersections such that the resulting traffic perfor-
mance is as high as possible. To assess the performance, one
often studies quantities such as the throughput and average
travel time. The methods we are interested in should work for
different traffic intensities. They should also work for a large
number of intersections with a reasonable computational
effort. In this connection, an important distinction to make
is whether one attempts to optimize traffic flow locally on
the level of single intersections or over extended parts of the
entire road network. A network-wide approach requires much
more computational resources than an intersection-based
approach and is often practically intractable. In this paper,
we will focus on local control approaches due to the focus on
green IT and for the sake of comparability with previous pub-
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lications such as [22], [23]. Note, however, that this does not
exclude the possibility of coordination between neighboring
intersections.

lll. RELATED WORK
In this section we will discuss relevant related work.

A. FIXED TIME CONTROL

A classical method of traffic control is to generate central-
ized schedules, which are imposed on all intersection in the
city [2]. In its simplest form each intersection cycles through
all its phases with no off-sets. Each intersection at a given
time has the same phases, and each phase is given the same
amount of time. We refer to this simplistic method as Fixed
Time Control. More advanced versions of this method include
the implementation of different green times periods for each
phase and suitably calibrated off-sets [2].

B. ADAPTIVE METHODS

A typical adaptive method is able to select the next phase
based on the current state of the intersection controlled. One
of the simplest adaptive methods is ““demand-based” control.
This approach adapts its actions based on the ‘“demand of
a phase”, which is defined as the sum of the demands of
all movements belonging to the phase. The “demand of
a movement” corresponds to the number of cars that are
present on all incoming lanes belonging to the movement.

C. SELF-ORGANIZATION

An important aspect in local traffic optimization is the avoid-
ance of negative interactions between neighboring intersec-
tions. In general, a decision that is optimal at one intersection
may cause sub-optimal traffic flows at neighboring intersec-
tions, for example, due to spill-over effects. To address this
problem, the concept of self-organized traffic light control
has been developed, which promotes a coordination among
neighboring intersections [30].

A self-organizing system is a system where its adjacent
elements interact in a way that gives rise to a collective
behavior. This can be coordinated behavior over the entire
system or extended parts of it. If the interactions are well
chosen, the resulting self-organized system dynamics can
perform extremely well. Therefore, the emphasis is to make
the interactions between the individual system elements
mutually positive (synergistic). In [10], it is demonstrated that
a method, called *“Self-Organizing Traffic Light” (SOTL),
based on the above concepts, can reach significant improve-
ments even over state-of-the-art methods to produce green
waves, which attempt global traffic flow optimization by
synchronizing traffic lights and supporting vehicle platoons
that rarely need to stop [31].

D. ANALYTIC APPROACH
Analytic methods rely on models and formulas derived from
a theory (e.g. queuing theory or traffic physics) and focus on
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showing that the proposed control scheme locally optimizes
the selected performance criterion.

A very effective analytic, adaptive approach, which relies
on concepts from traffic physics as well as self-organization
principles, has been proposed in [5]. The method consists
of two elements: an optimization rule and a stabilization
rule. The optimization rule (see Appendix) is based on the
short-term anticipation of future arrivals of vehicles to the
queue and on calculating the green time needed to clear
the expected queue. A priority score is used by the optimiza-
tion rule to select the movement or phase that needs to be
switched to.

The stabilization rule overrides the optimization rule in
situations when a queue has grown too large or some phases
have not been activated for a long time [6]. This helps to
prevent spill-over effects at neighboring intersections.

The short-term anticipation of this analytic approach pro-
motes a self-organized coordination between flows and traffic
lights at neighboring intersections. Due to the resulting self-
organization, the two rules lead to a spontaneous emergence
of green waves, much like in [30]. The method has been
successfully implemented in real life settings in the cities
of Dresden, Germany, and Lucerne, Switzerland [32], [33].
In the following, for the sake of simplicity, our implemen-
tation of the analytic method will use the optimization rule
only, while the stabilization rule will be neglected, possibly
at the cost of losing some performance. (We will focus on its
role in a follow-up study.)

E. REINFORCEMENT LEARNING (RL)

Due to the complexity of traffic light optimization, many
recent publications have proposed to use machine learn-
ing approaches. Instead of deriving analytic models, these
propose to use an iterative, neural-network-based learning
method, often called a ‘“black box’’, which is fed with
lots of data. Significant success has been demonstrated by
multi-agent deep reinforcement learning models, which we
discuss below. We focus on models which, like the previously
described approaches, optimize traffic flows locally on the
level of a single intersection, mainly for the sake of compar-
ison with previously published results [22], [23].

In the machine learning models, an ‘““agent” represents
an intersection of the road network. The agent is fed with
data from observations of the environment and takes actions
based on them. The agent is also given rewards that reflect
the desirability of the actions it had taken [34]. The data
included in the observations as well as the choice of the
reward function may have a strong influence on the efficiency
of the learning process.

In [22], a learning algorithm called “IntelliLight” uses the
queue length, number of vehicles, waiting time and an image
representation of the intersection as its state.

In [35], an analysis of the reward and state design in
reinforcement learning is applied to traffic light control.
Moreover, the “LIT”’ method is proposed to simplify the state
description.
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In [24], the authors propose “CoLight”, which uses graph
attentional networks to facilitate communication between
traffic lights. The method considers a spatial and temporal
interaction of neighboring agents.

The state representation is studied in depth in [36] and a
“FRAP” model is proposed. The model addresses the prob-
lem of limited adaptive potential of most learning approaches
(e.g. a model trained with morning traffic may not adapt well
to evening traffic, because the prevailing direction of traffic
is reversed). It decides the competition between alternative
phases based on demand. FRAP is able to achieve invariance
to rotation and flipping. Moreover, FRAP can be applied to
intersections with different numbers of incoming lanes as
well as a different number of possible phases. FRAP shows
very good performance (in terms of average travel times) for
a simple, single intersection setting. However, in a realistic
setting with many intersections its performance deteriorates.

Another learning algorithm is described in [23].
“PressLight” simplifies the state to consist only of cars on
incoming and outgoing lanes and the current phase. The
reward is the ‘““pressure” at an intersection [3], which is
explained in detail in subsection IV-B.

The PressLight method outperforms both IntelliLight
and LIT in both synthetic and realistic scenarios in terms
of average travel time. PressLight outperforms the FRAP
model in scenarios with more than one intersection as well.
PressLight’s performance appears to be comparable with
CoLight although no direct comparison has yet been pub-
lished.

The publications mentioned above achieve convincing
results. With the help of computer simulations, it is shown
that reinforcement learning has great potential to help
mitigate the problem of traffic congestion. It is less clear,
however, how the machine learning approaches perform com-
pared to previous adaptive approaches, also in terms of the
computational resources needed. Similarly, the environmen-
tal costs of training the RL models are often left unreported.
This will be the focus of our further investigation.

IV. METHODS

In this section we will specify the design of the Guid-
edLight agent implementing ‘‘analytically guided rein-
forcement learning” (short: “«w-RL’). We will specifically
describe the basis of the «-RL approach which, as we will
see, combines the benefits of the analytic approach with those
of machine learning.

A. DEEP Q-LEARNING

In the approach called Q-learning, the agents’ decisions are
guided by a Q-function, which takes the current state and an
action as arguments and maps them to the reward space. The
mapping is according to the Bellman equation based on the
expected future rewards as in Equation 1, where Q" is the
Q-value after the update for the given state-action pair (S;, A;
at time ¢ in this case); Q is the old Q-value for the same
state-action pair; / represents the learning rate; y weights the
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importance of long-term vs. short-term gains. R; is the reward
at time ¢t and max4 Q(Sy+1, A) is the estimate of the optimal
future value, more specifically it is the estimate of the highest
Q value that can be obtained starting from state S;;; and
taking optimal actions. The term in the square brackets is also
known as temporal difference [34].

Q" (S, A) = O(Sy, A + 1 [Ri +y %
max Q(S;+1.4) — Q8. Al (1)

In deep Q-learning, the Q-function is approximated using
a deep neural network. For most complex problems, it is
impossible to specify the Q-function explicitly (that is why
one speaks of a “black box’ approach). The Q-function
is learned by the agent as the training process advances.
In modern implementations, the agent stores the previous
action A, current state S, and reward R in its memory. Mini-
batches of these data triplets are sampled from the memory at
intervals and used to learn the Q-function [37].

In deep-Q-learning, a neural network referred to as Deep
O-Network (DQN) is used to approximate the Q-function that
estimates the reward, given a state-action pair.

Our GuidedLight implements a more advanced version
of the DQN known as Double Deep Q-Network (DDQN),
to avoid the overestimation of the action values. This is
done by leveraging two parallel DQNs, which are updated
with a different frequency using ““soft updates” (see [38] for
details).

We implement the memory replay [37] and train the DDQN
periodically with mini-batches sampled from the memory.
While the data is generated on the individual level of every
intersection, the memory is shared between all agents to speed
up convergence, by increasing the number of training sam-
ples. The details of the DDQN and memory implementations
can be found in Appendix .

B. PRESSURE-BASED LEARNING
Drawing on the good results of [23], [25], and the theoretical
background of [3], we incorporate a “pressure’’ concept in
the reward design of “GuidedLight”. Intuitively, the pressure
can be interpreted as an imbalance in the distribution of vehi-
cles over the incoming and outgoing lanes of an intersection.
Specifically the pressure of an intersection is defined in
Equation 2, where i denotes the intersection, / the incoming
lane of a given movement and o the outgoing lane of the
same movement. w(l, o) represents the pressure of a single
movement from lane / to lane o. The pressure of a single
movement is simply the difference between the number of
cars on the incoming lane / and the outgoing lane o, weighted
by the maximum number of cars possible on the correspond-
ing lanes. This is summarized in Equation 3, where x(a)
denotes the number of cars on lane a and x;,,(a) denotes the
maximum possible number of cars on that lane:

Pi=|Y_ wd, o)l )

(l,0)ei
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where
x() x(0)

Xmax(D)  Xmax(0) -

Based on the results in [3], we conjecture that, optimizing
the pressure at the level of individual intersections leads to
the global throughput also being optimized, under certain
constraints. Thus, we expect, the emergence of coordination
between the intersection as long as they are optimizing their
individual pressures.

w(l, 0) = 3)

C. ANALYTIC COMPONENT

Our main goal is to build on the benefits of the analytic
approach in order to improve the efficiency and accuracy of
our learning method. An area that can benefit from analytic
insights is the exploration strategy chosen by our agent.
In reinforcement learning, exploration is a key concept that
allows the agent to learn more about its environment and
avoid getting stuck in local optima. The learning methods
mentioned in subsection III-E rely on the epsilon-greedy (e-
greedy) exploration method [34] explained in the following.

1) EPSILON-GREEDY EXPLORATION

In this approach, every time the agent acts, with probability
€ it chooses a random action rather than the action sug-
gested by its Q-function. This probability is usually relatively
high in the beginning, in order to allow the agent to thor-
oughly explore the state-action space and generate enough
experience to train its deep Q-network. However, as the
training progresses, the value of € is gradually decreased
to some minimal value, which is typically greater than O in
order to provide a chance of further exploration even to
trained agents. The value of ¢, its decrease rate and mini-
mum value must be specified in a problem-dependent way,
see Appendix .

2) ANALYTIC EXPLORATION
In this paper we propose an alternative, analytic exploration
process, where the exploration of the agent is guided by
the results of some analytic method. The design extends the
epsilon-greedy approach. Every time the agent acts, there is
a probability € of choosing a random action. However, there
is also some probability « that the chosen value will not be
random but an action that would be chosen by some analytic
approach. Hence the overall probability to deviate from the
action proposed by the Q-function is € and then there is the
probability « that the action will be analytically derived.
The intuition behind this approach is that we inject knowl-
edge from the analytic approach, in order to guide our explo-
ration into areas of the state-action space that are likely to
be performing highly. The analytic approach is based on
implications of the physical laws underlying traffic flows
(““traffic physics’’), which can be expressed by precise math-
ematical formulas. In comparison, the data-driven reinforce-
ment learning approach, is only able to provide approximate
relationships.
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By injecting precise analytic knowledge into the explo-
ration, we hope to accelerate the convergence of our method
as compared to alternative, “‘blind” (i.e. unguided) learning
methods. We expect that, with our new approach, the agent
needs to explore less states to find the optimal state-action
pairs. Nevertheless, we still allow random exploration to
make sure the agent does not get stuck in local optima. The «
value, much like the €, can also be specified to decrease over
time. The interplay between the two values might have a sig-
nificant influence on the convergence. Furthermore, by rely-
ing on analytic exploration, the agent could even be allowed
to safely explore in deployment, as most of the exploring
actions would not be random, but analytically motivated (and
so more likely to be efficient).

Note that the analytic exploration can be understood in
terms of the heuristic-exploration paradigm [39]. In our case,
the exploration uses a problem-specific heuristic - that of an
analytic model. In that sense it can be considered a concrete
application of the general heuristic exploration approach,
which has been shown to achieve good results for many
problems [39].

The details of the analytic approach used for the ana-
lytically guided exploration in this paper can be found in
Appendix . Note that, for simplicity, we have restricted our-
selves to the optimization rule of the analytic self-control
approach proposed in [5], while the stabilization rule has been
neglected, here (which may lead to higher densities, as we
will see).

D. GuidedLight AGENT
In this subsection we summarize the design of the “Guid-
edLight” agent implementing the analytically guided explo-
ration paradigm («-RL)

o Agent: An agent is a decision-making entity that rep-
resents a single intersection in the traffic network and
controls the traffic lights at that intersection.

« State: The state of the agent, also referred to as “‘obser-
vations” according to [23], consists of the percentage
coverage of vehicles on the incoming lanes. We use
the percentage coverage of the lane, as it implicitly
includes the length of the respective lane: Three cars
of approximately 5 meters each on a 30 meters lane
should be considered differently from such cars on a
300 meters long lane. Furthermore each incoming lane
is divided into 3 segments of equal length: closest to the
intersection, middle and furthest. Such an approach has
been shown to give superior results as compared to the
unsegmented approach [23]. Moreover the state includes
the percentage coverage of cars on each of the outgoing
lanes and the current phase at the intersection.

o Actions: The actions, from which the agent selects,
consist of the possible phases for the given intersection.

o Reward: The reward R; uses the pressure concept [3]
and is equal to the negative of the pressure P; defined in
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Equation 2:
Ri=—P; “)

In other words, the reward follows Equation 4, where
i represents the specific intersection. The negative is
taken, as we aim at minimizing the pressure, which
corresponds to maximizing its negative.

V. SIMULATION EXPERIMENTS
The goal of our computer-based simulation experiments is to
test the machine learning approaches described above against
the fixed time and the analytic approach. We will, therefore,
conduct simulation experiments in several virtual city envi-
ronments and compare the results to each other. We will also
specifically evaluate the number of learning episodes needed
for the learning approaches to achieve convergence.

The specific details of all parameters used in our experi-
ments can be found in Appendix .

A. METHODS COMPARED

Our simulation experiments will compare the following
methods:

o Fixed Time: A fixed traffic light schedule, where we
give 10 seconds to each phase with a 2 seconds clearing
phase in between the phases as described in [2]. The
same order of phases is followed by all agents. Hence,
at a given time all intersections have the same phase.
This is obviously a low baseline which, however, has
repeatedly been used to compare the relative perfor-
mance of various reinforcement learning approaches.

e Demand: A simple adaptive method, which always
chooses the phases with the highest demand as expressed
by the number of cars on the incoming lanes.

o Analytic: A state-of-the-art analytic approach relying
on the optimization rule described in [4] and [5]. The
method calculates both, the phase to be chosen and the
amount of green time to be given following the details
in Appendix .

o PressLight: A popular reinforcement learning
approach [23] with a reward based on pressure [3]
and an action-state space similar to the description in
subsection IV-D, but considering the number of vehicles
instead of the percentage coverage. For the purpose of
the study, the “PressLight agent” was re-implemented.
The results obtained by our implementation were com-
pared with the open-sourced PressLight implementation
and were found to be well consistent. Small differences
might occur due to the use of a larger neural network, the
use of a newer version of the CityFlow simulator, smaller
set-up times as well as a larger number of actions-phases
available to the agent.

o GuidedLight: A reinforcement learning approach
using analytic insights for exploration, as proposed in

section IV of this paper.
All the agents in all scenarios have 8 actions to select from.

The actions correspond to all 8 non-conflicting phases avail-
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TABLE 1. Traffic flows assumed in the four synthetic simulation scenarios.

Configuration Demand Arrival rate
(variance)  (vehicles/s)

1 Flat (0.3) 0.388

11 Peak (0.6)  0.388

I Flat (0.3) 0.416

v Peak (0.6) 0.416

able at a 12 movement intersection. Both learning methods
(GuidedLight and PressLight) explore the environment with
the same probability €. The main difference is that Guided-
Light chooses an analytically derived action with probability
o while PressLight always chooses a random action when
exploring.

B. COMPUTER SIMULATIONS

As simulation environment we use CityFlow [40] due to the
availability of a large number of synthetic and realistic scenar-
ios as well as the higher computational efficiency compared
to SUMO [41].

1) SCENARIOS

In our experiments we compare the aforementioned methods
in a variety of scenarios. Four of them are based on synthetic
configurations specified in Table 1, which follow the research
design in [23]. The first setting is a 4 by 4 artificial road
grid with 16 intersection agents. The distances between the
intersections are assumed to be 100 meters.

At each intersection, the amount of vehicles turning left is
set to 10%, the amount going straight to 60%, and the amount
turning right to 30%. The specification of the synthetic traffic
data follows [25].

The second simulation scenario is based on real-world traf-
fic and a real world network: the 16 by 1 grid with 16 agents
based on the 8th Avenue in Manhattan, New York. The road
network is based on the road network data extracted from
OpenStreetMap and flow data based on open-sourced taxi
trip data as presented in [23]. The arrival rate is 1.886 vehi-
cles/second with standard deviation of 0.009.

The third setting is also based on Manhattan, New York.
However, it consists of 196 intersections of the Upper
East Side. The vehicle flow, also based on taxi trip data,
is set at 0.803 vehicles/second with a standard deviation of
0.0336. Since the taxi data provides only origin-destination
data, the shortest path between two points is generated
following [24].

In all scenarios, the vehicles arrive at the terminal edges
of the road network. Moreover, the action frequency for the
demand agents and learning agents is set to 10 simulation
steps, where 1 simulation step corresponds to 1 second. If the
phase is changed, a clearing phase is initiated first for a fixed
time period of 2 seconds. During that time, only right turns
are allowed, which is possible in all phases, following the
custom in many countries. The traffic is bidirectional in all
scenarios.
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(a) 4x4 synthetic scenario used for configurations I-IV [25].

(b) NY 16, inspired by Upper East Side in New York [23].

(c) NY196, inspired by Manhattan in New York [24].

FIGURE 3. The five road networks used in the experiments, blue dots indicate intersections, black lines indicate roads.

The synthetic scenarios are included for better compara-
bility with previously published learning methods [23]. The
performance in the NY 196 scenario is of greater interest to
us, as it is realistically complex both, in terms of the road
network and the traffic flows.

Each scenario is run for 1800 seconds, that is 30 minutes
of real-world time. An “episode” is a full run of a simulation
for the entire period of 1800 seconds, which corresponds to
1800 simulation steps.

C. PERFORMANCE METRICS

The main performance metrics that we use for compar-
ison are the average travel time (in seconds) and the
throughput (in number of vehicles over the entire simula-
tion period). The average travel time as well as throughput
is calculated using the methods available in the CityFlow
simulator [40].

For the machine learning methods, we present the mini-
mum of the average travel time and maximum of the through-
put along with the standard deviations in the last ten episodes
of training, which can be treated as an indicator of the meth-
ods’ stability. We also provide data on the number of episodes
needed for convergence of the learning methods. The learning
methods are trained for 150 episodes.

D. FURTHER ANALYSIS
In addition to studying the performance of different methods
in different scenarios we also include an ablation study, where
we validate the benefits of analytic exploration. We further
investigate the influence of the « parameter on the perfor-
mance of the GuidedLight method.

Furthermore, we analyze the action space induced by the
three best performing methods. We present a histogram of
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the actions taken by the agent controlling the intersection
to compare the similarity of the action space for different
methods.

V1. SIMULATION RESULTS
In this section we present the results of our simulation exper-
iments described in the previous section.

A. AVERAGE TRAVEL TIME AND THROUGHPUT

In Table 2 we can see the performance of the various traffic
light control methods in terms of the average travel time
and throughput for the four configurations of the synthetic
scenario (I-IV) and the two real-world scenarios. As can be
seen in the table, the GuidedLight method achieves the best
results for all configurations.

If we compare the different approaches in Figure 4, we can
see that the differences between the analytic and the Guided-
Light approaches are especially significant for the synthetic
scenarios and NY196. Interestingly, for the NY16 scenario,
the simple Demand-based method is able to reach comparable
results to the learning and analytic methods. Furthermore,
the standard deviations of the PressLight method are higher
than that of GuidedLight for the two realistic scenarios,
suggesting that the training is less stable for PressLight than
for GuidedLight.

Similarly, by consulting Figure 5 we find that the travel
time improvement over the Fixed Time method is significant
for all methods tested. GuidedLight gives the best ratio of
improvement in all scenarios. It is also worth noting that, for
all methods, the travel time improvement over the Fixed Time
method is lowest in the NY 196 scenario.
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TABLE 2. Average travel time and throughput of different traffic signal control methods for the four configurations of tbe 4 x 4 synthetic scenarios and
two real-world scenarios. The values in brackets are standard deviations. Best results are presented in bold.

Model Throughput (cars) Avg. Travel Time (s)
1 I 1T v NY16 NY196| I I 1T v NY16 NY196
Fixed 3056 3026 2968 3107 1387 1254 457 411 493 427 486 734
Demand 4404 3269 3821 3153 2644 2128 203 274 267 322 227 649
Analytic 4209 4118 4319 3713 2629 2257 198 214 224 264 232 640
PressLight 5154 4887 5278 4966 2691 2259 185 176 208 206 221 665
(218) (135) (387) (286) (38) (102) (13) 8) (23) 21 @) (7)
GuidedLight 5269 4975 5427 5095 2722 2687 165 167 185 190 211 626
(114)  402)  427)  (52) (16) (39) (12) (24) (30) (5) @) (6)
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FIGURE 4. Throughput of various traffic light control methods relative to
the throughput of fixed time control for the four configurations of the

4 x 4 synthetic scenarios and two real-world scenarios. Higher values are
better.
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FIGURE 5. Average travel time of various traffic light control methods
relative to the average travel time for fixed time scheduling for the four
configurations of the 4 x 4 synthetic scenarios and two real-world
scenarios. Lower values are better.

B. CONVERGENCE OF LEARNING METHODS

Here, we compare the convergence of the machine learn-
ing approach PressLight to the «-RL method GuidedLight.
As can be seen in Figure 6, GuidedLight converges to a
stable result significantly faster in all the tested settings than
PressLight. This showcases the benefits of the analytically
guided exploration («-RL). It is worth noting that the training
of PressLight in most scenarios (I-IV) becomes unstable—
unlike GuidedLight. This is likely due to the overestimation
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FIGURE 6. Throughput achieved as a function of the number of learning
episodes for the conventional machine learning method PressLight and
the analytically guided method GuidedLight.

TABLE 3. Results of the ablation study on the NY196 scenario run to
validate. the benefits of «-exploration (with standard deviations
determined over the last 10 training epochs). —«-exploration indicates a
model using random exploration.

Model [[ Throughput (cars))
GuidedLight 2687 £ 89
GuidedLight—a-exploration 2408 + 108
PressLight+a-exploration 2317 92
PressLight 2259 + 102

of the action values, which is avoided in GuidedLight by
using the Double Deep Q-Network.

C. ABLATION STUDY

To validate the benefits of «-exploration, we perform
an ablation study. We compare the GuidedLight without
a-exploration with PressLight with «-exploration and both
normal GuidedLight and PressLight. In Table 3 we can
see that indeed GuidedLight without o-exploration performs
much worse to GuidedLight with it. Similarly, PressLight
with «-exploration is superior to PressLight but not as good
as GuidedLight, due to differences in DQN and state-space
design (the use of DDQN instead of DQN and the use of
percentage coverage instead of absolute number of vehicles
in the state description).
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TABLE 4. Throughput achieved by GuidedLight in the NY196 scenario
with different starting and end values and changing rates of the o
parameter (with the standard deviations over the last 10 training epochs).

astart oend «change Throughput (cars) £ std
1 0 -5e5 2687 £ 89
1 0 -5e6 2634 £ 96
0 1 +5e4 2665 + 76
0 1 +5e5 2575 £ 59
0 1 +5e6 2440 £+ 111
1 1 0 2408 £ 108
Analytic GuidedLight PressLight
100 A E E
80 - 1 1
60 - 1 1
40 4 - -
20 . .
0 - B B

012345678 012345678

Actions

012345678

FIGURE 7. Histograms of actions taken by a single agent in the NY196
scenario according to each of the three methods. Different colors indicate
different actions.

D. o« PARAMETER STUDY

In Table 4, we present the study of the effects of differ-
ent values of the o parameter, controlling the frequency of
analytically guided exploration, on the results achieved by
GuidedLight. We compare different starting and end values
for the o parameter, as well as different rates of change.
It seems it is beneficial to initialize « at 1 and decrease it to
0 gradually. Also, decreasing the o parameter slowly appears
to be favorable. Setting alpha to 1 and not decreasing the
parameter corresponds to € exploration and obtains the worst
results among the settings compared.

E. ACTION SPACE ANALYSIS

In order to further understand the differences and character-
istics of the compared methods. we study the action space of
the Reinforcement Learning and analytic methods. Actions
correspond to the possible phases such as indicated in Fig-
ure 2. The agents using the analytic method favors action 7,
PressLight appears to favor action 6 and 7 heavily, while
GuidedLight favors actions 2 and 6. Furthermore, the analytic
approach appears to select a greater variety of actions as
compared to PressLight and GuidedLight. It is important
to note that the analytic method selects more actions, as it
adjusts the green time given to each action.

VIl. SUMMARY, CONCLUSIONS, DISCUSSION,

AND OUTLOOK

In this paper, we have compared different performance indi-
cators of various adaptive traffic light control approaches
and some alternative reinforcement learning methods. It turns
out that the analytic method performs well, especially in
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real-world inspired scenarios, and can, thus, serve as bench-
mark for novel reinforcement learning (RL) methods. We also
note that the analytic method becomes less effective in highly
congested traffic as in the synthetic scenarios, at least if
the stabilization rule is neglected. Our results further show
that «-RL methods can significantly outperform the analytic
approach after a sufficient number of learning episodes. Even
though these results have been gained for somewhat idealized
traffic scenarios, we expect qualitatively similar findings for
irregular road networks and more complex traffic scenarios
(as is to be shown in follow-up work).

The performance of the analytic method results from the
use of mathematical formulas derived from traffic physics,
which allow one to determine the green time needed to clear
the entire vehicle queue, considering the arrivals of further
vehicles based on a sophisticated short-term prediction. This
mechanism also promotes coordinated traffic flows and emer-
gent green waves, while not being restricted to repetitive
service patterns.

Reinforcement learning misses analytic insight into the
physical laws underlying traffic dynamics - it has to rely on
guessing the dynamics based on traffic patterns that occurred
in the past. «-RL combines the good parts of RL and the ana-
lytic method, hence, outperforming both of these methods.

In summary we find that:

o Inorder to find superior solutions, one needs a ‘‘hybrid”’
approach, where the scientific knowledge behind the
analytic approach is fed into the machine learning
approach.

o Therefore, even in the age of Artificial Intelligence,
analytic approaches remain important, but hybrid
approaches are best.

A. GREENIT

A recently highlighted issue in connection with the UN
Sustainability Development Goals (SDGs) are the energy
consumption and environmental footprint of technologies.
While digital technologies contributed just about 3-5% to the
world’s electricity consumption some years ago, the share is
expected to grow beyond 20% by the year 2030 [42]. In some
cities, the share of electricity spent on data centers is already
higher than that.

These developments have caused a call for “green IT”,
i.e. Information Technology solutions that have a low envi-
ronmental footprint. This is of particular importance for
machine learning methods [43], which are computationally
quite expensive. Deep learning, including deep reinforcement
learning, relies heavily on deep neural networks. This often
requires vast amounts of GPU processing time, which trans-
lates into significant amounts of energy consumed.

It is, therefore, relevant to consider the ecological impact
of reinforcement learning (RL) models used for traffic light
control, since one of its goals is reducing emissions. It would
be questionable to employ models to solve a problem, if they
would actually exacerbate that problem. Some of the models
we have mentioned take dozens of hours of training time
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on a state of the art computational architecture until they
converge [24], then reach a performance achieved by the
analytic approach from the very beginning. Unfortunately,
this is combined with limited generalization abilities to modi-
fied scenarios, for example, involving accidents or temporary
building sites. Such typical disruptions of the regular opera-
tion would call for frequent retraining in order to avoid sub-
optimal performance. The related ecological footprint should,
hence, be taken into account, particularly considering the fact
that highly performing analytic approaches exist, which are
computationally cheap and environment-friendly.

At least it seems pressing to work on novel methods that
use analytic knowledge, speed up convergence, and improve
the ability to generalize. For these reasons, we have proposed
a novel, hybrid machine learning method called “Guided-
Light”, which combines the benefits of machine learning
and analytic approaches by analytically guided exploration.
We have shown that the proposed “«a-RL” method achieves
considerably faster convergence than conventional reinforce-
ment learning methods, leading to decreased training times.
This in turn is expected to reduce the environmental footprint.
Moreover, we were able to show that GuidedLight performs
better than the analytic approach and better than the other
reinforcement learning approaches studied in this paper. This
applies particularly to the performance measures of aver-
age travel time and throughput. We believe that analytically
guided machine learning would have benefits also in many
other application areas, which are to be explored in the future.

APPENDIX. MODEL PARAMETERS

For both, PressLight and GuidedLight, we use a
fully-connected neural network with two hidden layers of
128 and 64 hidden units, each. We use a learning rate of
0.0005, batch size of 64, a starting € of 1, a minimum € of
0.01. € is decreased by a factor of 0.00005 per each action
taken by an agent. The size of the memory buffer is set
to 100000, the discount factor to 0.999 and the soft update
parameter to 0.0001. The network update frequency is set to
10. For GuidedLight, the value of « is set to the value of € in
each episode. Finally, for the analytic approach’s stabilization
strategy we use 7' = 180 and T}, = 240.

APPENDIX. ANALYTIC METHOD

In the study presented here, the analytic approach used to
guide the exploration is the optimization rule proposed in [5].
We have selected this method because of its superior results
among all analytic approaches we have tested. Specifically
the analytic approach selects the next phase based on a prior-
ity score, which itself is related to the required green time g to
clear a given lane [5]. This value is derived from Equation 5,
where N“P(¢) represents the expected number of cars that
arrive at the intersection by time z, N°“(¢) the number of
vehicles that depart from the upstream intersection by time
t, g™ is the maximum flow of the movement (*‘saturation
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rate’’), and 7 the set up time needed to switch phases:
N(t +7+8) = N"(1) + 34" §)

The additional data needed to perform the analytic com-
putations consist of the arrival and departure rates. This data
is easily available to any intersection equipped with cameras,
induction loops, or other suitable sensors. Therefore, the over-
head of performing the analytic computations is negligible
due to their low complexity, data availability and, lastly,
because they are performed only with low frequency.
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