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ABSTRACT Wireless Sensor Networks (WSNs) represent a key component in emerging distributed
computing paradigms such as IoT, Ambient Intelligence, and Smart Cities. In these contexts, the difficulty
of testing, verifying, and monitoring applications in their intended scenarios ranges from challenging to
impractical. Current simulators can only be used to investigate correctness at source code level and with
limited accuracy. This paper proposes a system and a methodology to model and verify symbolic distributed
applications running onWSNs. The approach allows to complement the distributed application code at a high
level of abstraction in order to test and reprogram it, directly, on deployed network devices. The proposed
intelligent architecture enables the execution of distributed applications and the verification of the supplied
correctness conditions. This paper shows the feasibility of the proposed approach and its effectiveness
even when networks include resource-constrained nodes with some sample applications and quantitative
experiments measuring the overhead introduced by the monitoring operations.
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INDEX TERMS Distributed applications, embedded systems, fault detection, Internet of Things, knowledge
based systems, software monitoring, wireless sensor networks.

I. INTRODUCTION14

Emerging distributed computing paradigms, such as the15

Internet of Things (IoT), Ambient Intelligence, and Smart16

Cities, envision complex distributed applications running on17

heterogeneous networks of devices ranging from resource-18

constrained to specialized high-performance ones. Wireless19

Sensor Networks (WSNs), which can be easily seen as20

foundational for these paradigms, are usually composed of21

nodes of the former type, providing a baseline for evaluat-22

ing methodologies to develop distributed applications in the23

aforementioned contexts.24

Traditionally, WSNs have been successfully employed in25

many applications such as smart farming, transport con-26

trol, and industrial process management [1], to name a few.27
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The potential of their integration in the IoT paradigm has 28

been shown in the context of smart home [2] and healthcare 29

monitoring [3] to improve quality of life and safety [4]. For 30

instance, applications for localization and tracking of objects 31

and people [5], e.g. through range-free connectivity infor- 32

mation, multilateration, and angulation [6] are particularly 33

useful for security and safety purposes. Also, Smart Cities can 34

benefit from pervasive data collection provided by WSNs for 35

vehicular traffic and congestion management through traffic 36

lights control [7]. 37

Setting up a distributed application running on a large 38

number of devices, which store, process, and exchange 39

data, imposes an accurate selection among different net- 40

works, applications, and data protocols. However, evaluat- 41

ing the performance and comparing distributed applications 42

in different real scenarios is far from being easy. Physical- 43

world dynamics, device mobility, and resource constraints 44
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often make the repeatability of experiments in real contexts45

impractical [8].46

Simulated environments ensure test reproducibility in a47

precise way, but fail in capturing and integrating physical48

world phenomena [9]. As simulation-based solutions depend49

on the evaluation environment, models and simulation param-50

eters, misleading results could be observed for the same51

application when the simulation tool changes [10].52

For accurate verification results, execution models of sin-53

gle nodes also need to be taken into account, especially54

when resource-constrained devices are considered. Namely,55

simulations do not include processing delays, for example for56

packet processing, while substantial differences in the exe-57

cution time between real and emulated resource-constrained58

nodes are quite common [11].59

Testbeds enable prototyping and verifying distributed60

applications in large and realistic environments [12], [13],61

[14], [15]. They are sometimes deployed in smart cities [16],62

however they are usually limited to restricted and controlled63

areas [17]. Nevertheless, management and scheduling func-64

tionalities, which are usually implemented for testbeds, are65

strictly bound both to the specific deployment and to the66

sensor node operating system. This makes reusability partic-67

ularly unfeasible [18].68

Simulators have been diffusely used to evaluate the perfor-69

mance of distributed applications for WSNs [19], [20], [21].70

However, the main limit of these tools is that the applica-71

tion under test must be adapted to run in the simulation72

environment on hardware which is generally very differ-73

ent from the targeted one. The compliance of the appli-74

cation to the specifications can thus only be tested before75

deployment.76

Letting some real nodes be integrated in simulations is77

the strategy adopted in hybrid verification. However, the78

resulting mixture of real and virtual nodes makes tim-79

ing problems more and more evident, especially in large80

networks [22].81

All of these solutions put in place post processing meth-82

ods to perform evaluation at the end of the implementation83

work, before the network is deployed in a real-world envi-84

ronment. However, the capability of verifying applications85

at each stage of design, deployment, and implementation is86

desirable [23].87

In particular, after a network has been deployed for an88

extended period of time, its characteristics may be substan-89

tially different from the testing condition during implementa-90

tion and initial evaluation. Typical variations in the network91

behavior are due to nodes running out of power [24], suf-92

fering failures in their communication modules, or otherwise93

malfunctioning [25].94

Moreover, WSNs are often deployed in inaccessible areas,95

or may comprise thousands of nodes. In both cases, manually96

checking that each node behaves properly may simply be97

unfeasible. Thus, post-deployment [26] monitoring systems98

are valuable tools to diagnose malfunctions without stopping99

the system and to acquire information about the WSN 100

operation [27]. 101

In this work, we present a WSN monitoring platform for 102

the debugging of symbolic distributed applications. The main 103

contributions and novelties of this work are: 104

• the proposed system does not require any extra pre- 105

installed debugging code or hardware on the deployed 106

nodes, reducing the burden on resource-constrained 107

devices, and potentially prolonging the WSN lifes- 108

pan and leaving more resources available for ordinary 109

operations; 110

• the interactive approach enabled by symbolic program- 111

ming allows multiple verification modes that can be 112

added to the system long after the network has been 113

deployed with greater flexibility than currently existing 114

solutions; 115

• the symbolic computation model permits verifica- 116

tion operations on heterogeneous devices unlike the 117

platform-specific tools commonly used; 118

• knowledge on the network and modeling of the dis- 119

tributed application are used to automatically verify 120

whether the application was executed correctly, with- 121

out the need for human intervention in monitoring 122

network logs. 123

The software platform used in this work is DC4CD [28]. 124

This platform was proposed to enable the development of 125

distributed applications on resource-constrained WSN nodes 126

through executable high-level code exchange [28]. 127

In this work, symbolic computation plays a key role in the 128

evaluation of distributed applications during their execution 129

on deployed devices. To this end a rule-based modeling and 130

verification system is introduced. 131

The proposed system relies on: 132

1) a knowledge base that includes applications and net- 133

work specifications and ties application operations to 134

the corresponding verification code; 135

2) an intelligent agent that uses inference rules to concate- 136

nate snippets of symbolic code in the knowledge base 137

to produce verification messages; 138

3) a communication module that sends application and 139

verification code to deployed nodes; 140

4) a symbolic verifier that checks that results satisfy 141

expectations and collects necessary metrics. 142

Development and verification of an application are both per- 143

formed in terms of executable symbols that are exchanged 144

among entities. Symbolic test programs are executed on the 145

deployed devices as soon as they are received. 146

The rest of the article is organized as follows. Section II 147

goes over some related works. Section III details the com- 148

putational paradigm, the architecture of the modeling and 149

verification system, and describes the system operation. 150

Section IV presents case studies concerning various appli- 151

cations. Section V presents experimental results. Finally, 152

Section VI reports our conclusions and discusses future 153

research directions. 154
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II. RELATED WORKS155

In this section we discuss related research on WSN mon-156

itoring and debugging platforms, and the use of symbolic157

programming to overcome some of their limitations.158

A. MONITORING PLATFORMS159

Some WSN monitoring platforms have been presented in the160

literature. Sensor NetworkManaging System (SMNS) [29] is161

one of the first WSN monitoring platforms. It was developed162

for the TinyOS environment with the design goals of minimal163

memory footprint and reduced network traffic overhead. Its164

networking architecture supports collection of health data165

from the network and dissemination of management com-166

mands and queries following a predefined schema.167

The authors of [30] proposed a passive WSN monitoring168

tool. A sniffer device captures packets, timestamps them, and169

forwards them to an analysis software. The developed inter-170

face shows the contents of the packets along with metadata171

and the tool also monitors link quality. However, the analysis172

is limited to the network characteristics, leaving out the actual173

distributed application.174

Hybrid Monitoring Platform (HMP) [31] is a hybrid175

(hardware/software, active/passive) WSN monitoring plat-176

form. Three main components make up this system: 1) mon-177

itor nodes that record events and related metadata from each178

node; 2) sniffer nodes that cover portions of the WSN and179

capture transmissions; 3) a monitor server that collects the180

information obtained. Themonitor nodes are connected to the181

WSN nodes and require special-purpose code for the node to182

send data through a wired interface. This extra code increases183

the memory occupation by about 1 KB. The monitor server184

only displays the acquired trace ordered by timestamp.185

B. REMOTE DEBUGGERS186

Clairvoyant [32] is a GDB-based source-level remote debug-187

ger that works through dynamic binary instrumentation. The188

use of this tool entails numerous flash rewrites, which may189

wear out the node storage eventually leading to shortened190

network lifetime. Moreover, it occupies 32 KB of program191

memory and 1 KB of data memory, making the debugging of192

large programs impossible on resource-constrained nodes.193

In [33] the remote source-level debugger approach is pro-194

posed. Correct application behavior is verified by running195

a simulation of a single remote node on a host PC. The196

simulation is updated using sensing data packets retrieved197

from the remote node and is kept in sync through ‘‘clock’’198

packets. Behavior of the remote node is compared with the199

simulated execution of the same code on the host. This200

approach generates frequent traffic throughout the distributed201

application execution and can only monitor a single node.202

In the Stethoscope [34] debugging system every deployed203

node has a debug agent that receives, interprets, and executes204

debugging commands sent by the command generator run-205

ning on the sink node. Debugging commands work by chang-206

ing the address of indirect function calls to run some prepro-207

grammed debugging routine before normal actions. Interrupts 208

are hijacked so that they do not interfere with debugging 209

operations. The proposed debugger occupies 10 KB of flash 210

memory compared to the 33 KB commonly occupied by 211

GDB-based debuggers. 212

TheHDFHybrid Debugging Framework [35] uses external 213

debugging devices (D2-Box) in a one-to-one mapping to the 214

nodes of the WSN. The D2-Boxes act as debug agents and 215

record data from the sensor nodes, and can send control sig- 216

nals to the node. The debug agents have a wired connection to 217

their sensor node and use a separate communication channel 218

from that of the WSN. Debug agents can also reprogram the 219

connected node through JTAG. This approach can minimize 220

intrusion on the network, however the external debugging 221

device imposes an extra burden on the limited WSN node 222

energy and two separate communication channels are needed. 223

C. CURRENT LIMITATIONS AND THE SYMBOLIC 224

PROGRAMMING APPROACH 225

Overall, the monitoring platforms proposed so far present 226

some issues that limit their use cases: 227

• extra debugging hardware on the nodes increases energy 228

consumption and costs; 229

• the debugging code on the nodes occupies memory and 230

storage that might be needed for the correct functioning 231

of the distributed applications in execution on the nodes; 232

• the debugging operations are specified at deployment 233

time and cannot be changed later on without repro- 234

gramming the nodes, limiting the effectiveness of 235

these platforms when the WSN incurs in unforeseen 236

issues; 237

• frequent flash write/erase cycles shorten the lifetime of 238

nodes; 239

• the data obtained from the nodes need to be analyzed and 240

interpreted separately. 241

The underlying limitation from which most of these issues 242

stem is that the development and deployment of WSNs usu- 243

ally follows the flashing-rebooting-reloading cycle. To over- 244

come these issues, symbolic distributed computation has been 245

proposed as a promising solution that naturally supports inter- 246

active programming. This approach makes reprogramming 247

deployed networks feasible [36] and, in turn, also permits 248

tests to take place both during and after development, even 249

on resource-constrained devices [37], [38]. The complexity of 250

embedded system programming is supported by a high level 251

of abstraction provided by existing software platforms [28]. 252

Moreover, accurate monitoring and verification of individual 253

devices is also feasible at runtime [39]. Additionally, adoption 254

of a symbolic development platform inWSNswould augment 255

the scope of activities that can be performed by a mobile 256

agent in maintenance operations. For instance, Unmanned 257

Aerial Vehicle (UAV)-enabled maintenance of WSNs has 258

been proposed to recharge WSN nodes [40]. Besides these 259

activities, by exploiting symbolic distributed computation a 260

UAV could also act as a probing node able to query status 261

information and even reprogram nodes on the fly. 262
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Symbolic programming has been already adopted to under-263

take interactive experiments and to verify real hardware264

instruments through the use of an interpreter [41] and for265

complex activities such as automatic program synthesis [42].266

Evaluation tools for symbolic distributed applications in267

real scenarios using actual target hardware have been still268

largely underexplored. As a contribution to filling this gap,269

this work presents an approach supporting verification of270

symbolic distributed applications during their execution on271

real hardware.272

III. INTELLIGENT MONITORING SYSTEM273

In the following, the proposed system for application model-274

ing and verification is described in both functional and struc-275

tural terms. Preliminary, the symbolic environment, adopted276

for the network programming, is presented. Finally, some277

implementation details are discussed.278

A. SYMBOLIC EXECUTION PLATFORM279

Deployed nodes run the DC4CD symbolic environment,280

which is based on the Forth stack-oriented language.281

Programs are composed of a sequence of symbols, either282

words or numeric constants. A program is executed by an283

interpreter which evaluates symbols in the order they are284

provided. Numeric constants are pushed on top the stack,285

words are used to search for executable code in a data struc-286

ture called word dictionary. The execution of a word returns287

values by leaving them on top of the stack. For instance,288

a sensor could have the word temperature defined in its289

dictionary so that its execution would leave the measured290

temperature value on top of the stack.291

Words can also access the values left on the stack and292

consume them. Thus, through this stack mechanism words293

can pass each other parameters. For instance, when the Forth294

interpreter evaluates the code295

2 3 +296

2 and 3 are pushed on the stack, then the symbol +, which297

is a predefined standard Forth word, is executed, popping the298

two operands and leaving on top of the stack the result of299

the addition which can then be used for further computation.300

The evaluation process follows the postfix notation.301

The dictionary can be easily expanded with user-defined302

words. A user-defined word consists of a chain of words303

already in the dictionary, the evaluation of such a word304

causes the sequential execution of the words in its definition.305

Colon (:) and semicolon (;) are the Forth words to start and306

end the definition of a new word in terms of a sequence of307

already-defined executable words. As a simple example, let308

us define the word twotimes to double the value currently309

on top of the stack:310

: twotimes dup + ;311

Also dup is a standard Forth word. Its execution duplicates312

the top stack item. The stack effects caused by the execution313

of 4 twotimes are shown in Fig. 1.314

FIGURE 1. Effects of the stack execution of 4 twotimes. The symbol 4 is
recognized as a numeric value and placed on the stack. Then the word
twotimes is expanded into dup +. The value on top of the stack is
duplicated by dup. The word + executes the arithmetic operation and
leaves the result on top of the stack.

The dictionary can be be implemented as a linked list of 315

word definitions allocated one after another in memory, the 316

last pointing to the previously defined one. This way the word 317

lookupmechanism can be implemented as a simple backward 318

search from the last to the first definition. Special symbols, 319

called markers, can be used to create restore points in the 320

word dictionary. When a marker word is defined, it is placed 321

at the current end of the dictionary as any new user-defined 322

word would be. The execution of a marker removes from the 323

dictionary stack the marker itself and all the words that were 324

defined after, rolling back the dictionary to the state it had 325

right before the definition of the marker. Variables are also 326

stored in the dictionary, their execution leaves their memory 327

address on top of the stack. Values can be read from amemory 328

address through the fetch (@) word and written to a specified 329

memory location using the store (!) word. 330

In order to support distributed applications, and to facilitate 331

the exchange of symbolic code, the DC4CD platform natively 332

provides support to distributed computing schemes through a 333

special-purpose construct: 334

tell: <symbolic code to be sent> :tell 335

These two words build IEEE 802.15.4-2003-compliant mes- 336

sages, as required by the node radio (see Section V), contain- 337

ing the symbolic code enclosed between them as payload of 338

datalink level packets. The sequence of words to be sent are 339

encoded as plain ASCII characters. 340

When the tell: word is executed, it consumes the value 341

on top of the stack, and interprets it as the MAC address of 342

the receiver node, placing that value in the destination address 343

field of the packet. Upon receiving a message, the destination 344

node immediately executes the received instruction without 345

any further translation step. The samewords might be defined 346

differently depending on the underlying hardware of a node. 347

Each node then executes the words received through mes- 348

sages using the definition in its own dictionary. Exchanging 349

executable symbolic code thus abstracts the characteristics 350

and the representation of target hardware easing interoper- 351

ability on networks composed of heterogenous devices. 352

Inside the tell: :tell construct, the symbol tilde (~) 353

is treated as a symbolic placeholder and replaced with the 354

value currently on the top of the stack. This mechanism 355

permits to include computed values in outbound messages. 356

For example, to tell a remote node with id 7 to measure the 357
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temperature, send the response back (reply), and make the358

requesting node print its value, the requesting node executes:359

7 tell: temperature reply tell:360

∼ . :tell :tell361

where the word dot (.) pops the topmost value of the stack362

and prints it. The effects of the stack execution of this code363

are shown in Fig. 2. The code is sent as a sequence of364

words, as simple text. The tell construct can send any Forth365

code: nested tells, definitions of new words, markers, and366

any arbitrary command. This mechanism allows nodes to367

exchange data, symbolic rules, simple commands, or com-368

plete algorithms.369

Through a similar mechanism, nodes can perform multi-370

hop communication relying on the routing tables of the inter-371

mediate nodes using the forward: :forward construct.372

B. MONITORING MODES373

Considering the symbolic computational paradigm presented374

in the previous subsection, a distributed application is defined375

as sets of sequence of executable symbols in a concatena-376

tive programming model supported by all the nodes of the377

network.378

The aim of our work is to allow an accurate monitoring of379

distributed application execution in order to discover unde-380

sired behaviors and errors through the use of a monitoring381

agent. The monitoring agent is described in the following382

sections.383

The system can perform verification both during and at the384

end of execution. The proposed architecture implements four385

monitoring modes:386

• Targeted: at the end of execution a single request to387

retrieve the values of the local variables is transmitted to388

one of the network nodes that is known to be reliable.389

Verification consists in checking that the number of390

received values is correct and that the values of the vari-391

ables coincidewith the ones computed by themonitoring392

agent with available a priori knowledge.393

• Global: at the end of the execution all the nodes are394

requested to send the values of some local variables.395

Then, the monitoring agent waits for the responses.396

On their arrival, the agent verifies that all the tuples of397

retrieved values are consistent with each other and with398

the prior available knowledge.399

• On demand: each node is queried both during the exe-400

cution of the application under test, possibly more than401

once, and then at the end of the execution as in the global402

monitoring mode. This strategy enables early failure403

detection by monitoring the evolving state of some or404

all nodes while they are executing the application.405

• Stepwise: similarly to the on demand strategy, nodes406

are queried during the execution. In this strategy,407

no message to start the application execution is sent.408

Instead, nodes receive executable code from the moni-409

toring agent to execute a single step of the distributed410

FIGURE 2. Stack execution of the 7 tell: temperature reply
tell: ∼ . :tell :tell symbolic code on Node 6: a) the symbol 7 is
recognized as a numeric value and placed on the top of the stack, then
the outer tell: ...:tell construct uses this value as destination node
address making Node 6 send the inner code (temperature reply
tell: ∼ . :tell) to Node 7; stack on Node 6 gets back to the initial
state; b) Node 7 receives the code and executes it; temperature leaves a
temperature reading (23) on the stack; reply pushes the address of the
sender of the received message on the top of the stack; the inner tell:
...:tell construct uses this value to send Node 6 a message containing
the reading (23), extracted by the tilde (∼) placeholder, followed by the
word dot (.); c) Node 6 receives 23 . ; the symbol 23 is again
recognized as a numeric value and put on the top of the stack, then the
word dot (.) uses this value to produce an output representation of the
reading. The exchanged messages are shown in d).

application. The verification proceeds as in the on 411

demand case. This strategy overcomes the difficul- 412

ties of monitoring the state of the network while it 413

is actively changing due to a running application. 414
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FIGURE 3. Functional blocks composing the verification system and its
interaction with the target WSN running the application under test.

Moreover, it enables on-demand verification for appli-415

cations where the execution order is nondeterminis-416

tic or nodes send messages too frequently to execute417

queries without incurring in collisions. This verifica-418

tion scheme can be used to perform record-and-replay419

debugging [43].420

C. SYSTEM ARCHITECTURE421

We exploited logic programming in order to implement the422

monitoring and verification agent.423

The modular system architecture is shown in Fig. 3.424

An intelligent monitoring agent represents the core element425

of the system, and is in turn composed by a Knowledge Base426

(KB) and several subagents.427

From a structural perspective, the system includes three428

main components: a Rule System implementing the monitor-429

ing agent running on a host computer, a bridge node, and the430

network of deployed nodes.431

The KBmaintains both the static knowledge on the domain432

(network description) and that acquired during the application433

execution (verification rules and partially inferred results).434

The distributed application programmers, in the wake of435

Dijkstra’s 1975 ideas [44], together with the code, provide436

sets of predicates (verification rules) that characterize the437

intermediate and final states of the execution of the appli-438

cation on each node. The executable application code is439

stored directly on the nodes as symbolic programs, while the440

monitoring agent operates on the predicates in the KB.441

The monitoring agent is responsible, on the basis of the442

operating mode set, to choose the appropriate verification443

rules and to generate the equivalent symbolic code to be444

executed on the nodes for the purpose of monitoring the445

operations. The interaction between the verification system446

and end devices is enabled by the Communication Manager447

(CM), which acts as a bidirectional interface with already448

deployed end devices. The CM interacts with the network449

through a bridge node, which is physically connected to the450

monitoring agent. Nodes exchange executable symbolic code 451

through the device wireless communication interface. The 452

bridge node has the same specifications of the other nodes in 453

the network, and communicates with the CM through a wired 454

serial interface. All the information exchanges between the 455

monitoring agent and theWSN goes through the bridge node. 456

Using one of the nodes in the network as a bridge is conve- 457

nient since it allows to leverage the flexibility of symbolic 458

code execution on this node too as well as the other facili- 459

ties of the development environment. The Symbolic Code 460

Producer (SCP) automatically produces symbolic verification 461

code. The SCP is a decision agent that takes as input the 462

network structure and the verification rules related to a dis- 463

tributed application to appropriately concatenate snippets of 464

symbolic code. The verification code makes the sensor node 465

perform some application-specific computation and send the 466

results back to the monitoring agent at one or more points 467

during the execution of the application. Verification is thus 468

carried out in virtue of this declared association between sym- 469

bolic high-level code describing high-level operations and 470

similarly written code verifying the outcome of the former. 471

To this purpose, in the KB are defined rules of this type: 472

verific_code(Label, VerificCode) 473

in which Label specifies the operation to be verified, and 474

VerificCode indicates the verification code to be trans- 475

mitted by the monitoring agent to the bridge node so that its 476

execution on arrival retrieve the desired results. 477

Once the SCP has produced the verification code, the 478

CM starts the application execution by sending the initiating 479

code to the network through the bridge node. Then it sends 480

the verification code to the nodes accordingly to one of the 481

monitoring modes. 482

Before the application execution begins, during the ini- 483

tialization phase, the SCP can inject executable code in the 484

network targeting some or all the nodes. This is useful when 485

debugging a WSN to ensure reproducibility of the performed 486

tests by explicitly setting the configuration of the nodes, and 487

to ensure that some preconditions are verified before the 488

application execution. When the monitoring agent sends the 489

initialization code to the network, it may also override some 490

application-specific words to include debug functionalities. 491

Moreover, this code can also be defined differently for each 492

node. By sending a marker before the new definitions, at the 493

end of the application execution, it is possible to revert the 494

dictionary to its previous state. 495

The core element of the system is the Symbolic Code 496

Verifier (SCV), which examines the results of the execution 497

and ascertains the correctness of the application execution 498

using the verification rules in the KB. Metrics about the 499

distributed application execution and verification time as well 500

as exchanged data are also recorded. 501

The verification process is detailed in Fig. 4. For the on 502

demand and stepwise strategies, which are based on fine- 503

grained evaluation during application execution, all nodes are 504

queried for verification data at the end of the process. 505
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FIGURE 4. Flowchart of the verification process.

Remote nodes execute both application and verification506

code, once received. By executing the received verifica-507

tion code, networked devices collect the requested informa-508

tion and send back the actual results to the CM. Finally,509

results can be gathered and analyzed by the SCV subagent.510

In all the operating modes, the monitoring agent, through the511

SCV, goes through a decision-making process that takes into512

account assertions and facts in the knowledge base to auto-513

matically determine whether the application was executed514

correctly.515

D. THE INFERENCE MODEL516

According to the used monitoring mode, several verifica-517

tion rules in the knowledge base describe the relationships518

between the states of all the nodes in the network. These rules519

are appropriately selected by the monitoring agent to verify520

several post-conditions in specificmoments during the execu-521

tion of certain phases of the application, and eventually at its522

end, to ascertain whether the predicates describing the appli-523

cation state are satisfied. These predicates can be very flexible524

and of varying complexity. According to the application being525

tested, verification might entail ensuring that a variable in526

the remote nodes has a specific, predetermined, value, or it527

could need extensive reasoning that takes into consideration528

factors such as the topology of the network and the relation-529

ship between nodes. Moreover, the flexibility granted by the530

adopted symbolic approach and logic programming permits531

the verification of the correctness of some computation even532

if said computation cannot be reproduced locally. Verification533

rules can describe the relationship between values returned by534

the nodes without requiring the exact knowledge of what the535

computation result will be, either because of some stochastic 536

component in the application or because the measurement 537

of physical quantities is involved. Depending on the result 538

of this verification process, the monitoring agent can take 539

appropriate actions, such as stopping the verification process 540

to report failure or testing the validity of additional predicates. 541

The KB allows for defining nodes as reliable, that is nodes 542

whose response and behavior are assumed to be always cor- 543

rect. Rules defining primitives for communication, such as 544

messages, and their storage and transmission among nodes, 545

are also defined in the KB as well as routes and transmission 546

timings. 547

The KB also models the distribution within the network 548

and placement of nodes using a two-dimensional Cartesian 549

coordinate system. The network structure is also modeled in 550

the KB in terms of topology and connectivity as facts for each 551

node in the KB. 552

Some of the predicates that can be used by the monitor- 553

ing agent as conditions in its decision making process are 554

shown in Table 1. These predicates take as input one or more 555

node IDs and report some information regarding their status. 556

This information can be used as conditions to determine the 557

actions to pursue during the verification process. For instance, 558

some nodes could be excluded from the verification process 559

to avoid burdening nodes with low remaining charge or to 560

respect a limit on the number of hops for the verification mes- 561

sages. Furthermore, in networks with heterogeneous devices, 562

the available computational resources of each node and the 563

available hardware peripheral can limit or expand the scope 564

of the verification process. 565

TABLE 1. Examples of predicates that can be used as conditions by the
monitoring agent.

Once the queried values are retrieved from the nodes, 566

the KB is enriched with additional information that the 567
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TABLE 2. Examples of verification actions that can be performed by the
monitoring agent.

TABLE 3. Examples of verification rules that the monitoring agent uses to
verify the correct application execution. If the condition node_active is
false, no action is performed irrespectively of sensor_status.

monitoring agent can use in order to make decisions dur-568

ing the verification process. The predicates in Table 2 are569

examples of verification actions that might be performed570

by the monitoring agent to assess whether some conditions571

are satisfied by the values returned by the queried nodes.572

Specifically, the reported verification predicates assess if all573

the specified nodes replied to the verification message, and574

verify the validity of some relationships among the returned575

values.576

Table 3 shows a possible decision rule that can be used577

by the monitoring agent to select the appropriate verification578

actions according to the status of a specific node. Given579

a node, if it is currently active the monitoring agent will580

check whether it replied to the verification messages, but the581

correctness of the returned values is only checked if a sensor582

on the node is not known to be defective. Inactive nodes are583

not queried and thus no verification action is performed on584

them, regardless of the sensor status. Verification rules can585

have an arbitrary number of combinations of conditions and586

actions and can involvemultiple nodes. For the sake of brevity587

more complex rules are not presented.588

Based on the symbolic code exchange mechanism, the CM589

sends application and verification code as plain text, without590

intermediate translation steps. Since words are interpreted by591

nodes, verification can be performed on-board by end devices592

during application execution, while the CM is responsible of593

collecting final results.594

The same symbol may have different implementations on595

nodes to address hardware heterogeneity while still maintain-596

ing the same semantic meaning.597

IV. SAMPLE APPLICATIONS 598

In order to test and validate the verification system, in this 599

section, we present its adoption for developing some dis- 600

tributed applications of different complexity. For the sake of 601

brevity, in the following we present some meaningful frag- 602

ments together with the code provided for their verification. 603

The proposed tool can monitor both code and network func- 604

tionality. For the second application fragment only, which 605

concerns network functionality, we describe in detail the 606

logical reasoning process implemented for verification. 607

A. APPLICATION 1—AVERAGING 608

This application is a short fragment belonging to a more com- 609

plex application for the distributed aggregation of physical 610

quantities, in this specific case, instantiated to collect tem- 611

perature data. The distributed application can be decomposed 612

in the following steps: 613

1) the monitoring agent commands the bridge node 614

to execute the symbolic code: bcst tell: 0 0 615

update: tell 616

The bcst keyword specifies that the message be 617

broadcast to the network, update is an application- 618

specific word; 619

2) each listening node receives the message and executes 620

it. As specified, the two zeros are interpreted as numeric 621

values and put on the stack. The update symbol is 622

defined to pick these two values from the stack and 623

store them in two of its local variables. The first vari- 624

able (num) holds the number of nodes that already 625

carried out the temperature measurement. The second 626

(aggr) holds the current aggregate temperature value, 627

which is the sum of the measurements communicated 628

by the nodes so far. The execution of the message 629

thus commands the nodes to perform the initialization 630

of the application by resetting their local values. The 631

complete definition of update, which includes the 632

wait-and-reply symbol that actually implements 633

the rest of the distributed procedure (step 3), is: 634

num ! aggr ! wait-and-reply 635

3) In order to synchronize the distributed execution, 636

each node waits for a time proportional to its integer 637

identifier. Subsequently, the node acquires the cur- 638

rent temperature and updates the values of the two 639

variables accordingly. Furthermore, the node updates 640

the value of another local variable (avg) containing 641

the average value of the temperatures just acquired. 642

Then the node executes the symbolic code bcst 643

tell: <num> <aggr> update :tell, that 644

broadcasts the updated values of the variables num 645

and aggr. All the other nodes, when receiving this 646

message, execute the code updating the values of the 647

two corresponding local variables, as in step 1. 648

4) The distributed execution terminates when all the net- 649

work nodes have performed step 3. Knowing the node 650
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FIGURE 5. WSN graph with ratio of messages delivered in point-to-point
transmissions shown on the connecting arcs.

identifier values, the monitoring agent can thus esti-651

mate when the distributed application has ended by652

comparing the elapsed time with the reply time of the653

node with the largest identifier value.654

For the above distributed application, a simple verification655

consists in checking that all the network nodes converged to656

the same value and no update messages were lost. To this end,657

the following verification code is sent to the queried nodes:658

num @ aggr @ avg @ reply tell:659

∼ ∼ ∼ :tell660

B. APPLICATION 2—NETWORK QUALITY MONITORING661

The second sample application is a code portion of the net-662

work monitoring activity.663

For this application, the KB holds information on the664

message delivery ratio for each pair of nodes in the net-665

work (Fig. 5), available through themessage_delivery_666

ratio predicate shown in Table 1. However, a WSN may667

be deployed for an extended period and the connectivity668

characteristics may vary in time. The system monitors the669

current state of the network in order to plan more appropriate670

message routing. The procedure involves the following steps:671

1) the bridge node broadcasts the initialization message:672

0 net-quality673

2) each listening node receives the initialization message674

and executes it. Again, the 0 is interpreted as a numeric675

value and put on the stack. The net-quality676

symbol is defined to either reset the counter of677

received messages or to increment it if the value678

on top of the stack is either 0 or 1 respectively679

(reset-or-increment symbol). The counter is680

held in the rcvd-msg variable. In this step the coun-681

ters of all the listening node are thus reset. Finally, the682

node start executing the next step (3) defined in the683

wait-and-reply-nq symbol as it can be seen in684

the definition of net-quality:685

reset-or-increment wait-and-reply-nq686

3) The wait-and-reply-nq symbol starts a timer 687

letting the node idle for a time proportional to its ID. 688

When the timer expires, the node broadcasts the update 689

message: 690

1 net-quality 691

4) as described before, the definition of net-quality 692

is such that whenever a node receives the above 693

message from any other node, it increments its own 694

counter. 695

Once the application execution is terminated, the monitor- 696

ing agent starts the verification process. In order to monitor 697

the connectivity of the network, verification is performed 698

on the number of messages received by each node. To this 699

end, the SCPwill select the appropriate snippet of verification 700

code for this application. According to Table 4 the agent 701

will use the‘‘rcvd-msg @’’ snippet to extract the required 702

counter value from each node. 703

TABLE 4. Predicates in the KB to associate applications and verification
code snippets.

To make each node report the number of received mes- 704

sages, the SCP concatenates the appropriate communication 705

primitives. After the verification code snippet, a tell con- 706

struct is used to send back the computed values. For every 707

node to be verified, the SCP merges the verification code into 708

a tell construct addressed to the correct destination node. 709

The code that the CM sends to the bridge node in order to 710

query a node is the following: 711

NodeID tell: rcvd-msg @ reply tell: 712

∼ :tell :tell 713

with NodeID the address of the node the verification code is 714

sent to. 715

If the nodes_connected(bridge, NodeID) con- 716

dition is not satisfied, meaning that in the KB there is no 717

information reporting a direct link between the bridge and 718

the target node, the SCP selects the forward construct 719

instead of the tell communication primitive to ensure that 720

messages can be correctly delivered. 721

Once the nodes are queried, the SCV performs verification 722

actions for all the nodes that satisfy the node_active 723

condition in Table 1 through the following predicates: 724

findall(X, node_active(X,true), 725

ActiveNodes), 726

verify_nodes(network-quality, 727

ActiveNodes, Replies) 728
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The monitoring agent, exploiting its knowledge of the con-729

nection graph and the previous estimated message delivery730

rate, can compare the received values with its estimation731

of the average number of messages that each node should732

receive. The monitoring agent can perform different verifica-733

tion actions depending on whether all node pairs have a 100%734

message reception rate.735

If each link in the network is lossless, at the end of736

the application execution the i-th node will receive Ni737

messages, with Ni the number of nodes satisfying the738

nodes_connected condition with node i. The counter of739

node i will then hold said value. As an extreme case, in a740

network topology where all nodes can communicate directly,741

all counters will show the same value.742

When not all node pairs have a 100%, the reception of743

each message by a specific node is a Bernoulli trial, with744

chances of success depending on the message source. The745

total amount of messages received by a node, then, is the746

outcome of a series of independent Bernoulli trials with747

different distributions, and it can be modeled as a Poisson748

binomial distribution. Accordingly, each node has a different749

probability of receiving messages from a source, hence they750

can have different expected values.751

In case links are lossless the monitoring agent selects752

the match_nth_value verification action from Table 2753

with value N . Otherwise, verification is performed using the754

expected number of received messages computed for each755

node. Moreover, if the stochastic model is used, the monitor-756

ing agent can also perform the is_in_range verification757

action, using the computed expected value and standard devi-758

ation to obtain a range.759

As previously stated, in this example the verification tool is760

only used to monitor variations in the status of the hardware.761

For the sake of brevity, only a brief overview of the appli-762

cation and the verification actions are described in the other763

sample applications.764

C. APPLICATION 3—NETWORK DISCOVERY765

The third sample application is based on the network discov-766

ery protocol described in [45] and used to construct a network767

topology tree. The application execution entails the following768

steps:769

1) the bridge node starts the application by broadcasting770

the following code:771

-1 network-discovery772

every node within communication range of the bridge773

node will receive this message;774

2) each receiving node will record the source of the mes-775

sage as its parent node in the topology tree and starts a776

timer proportional to its ID;777

3) when the timer expires, the node broadcasts the ID of778

its parent node by executing the following code:779

parent @ bcst tell:780

∼ network-discovery :tell781

4) one of three cases can happen when a node receives this 782

message: 783

a) the node is the broadcast parent node: the receiv- 784

ing node records that it is not a leaf node in the 785

topology tree; 786

b) the node currently has no parent node: in this case 787

the receiving node starts executing the distributed 788

application from step 2; 789

c) in all the other circumstances the message is 790

ignored. 791

5) the distributed application terminates when all the net- 792

work nodes have performed step 3. 793

For this application, the test is about whether each node 794

computed its correct position on the network topology tree. 795

To this end, the following verification code is sent to the 796

queried nodes: 797

leaf @ parent @ reply tell: ∼ ∼ :tell 798

D. APPLICATION 4—HVAC CONTROL 799

In this last sample application we face some issues related 800

to non-determinism. An appropriate monitoring of non- 801

deterministic behaviors is a crucial issue since many appli- 802

cations, for instance those of IoT systems, are often charac- 803

terized by uncertainties. IoT devices typically execute spe- 804

cific actions on the basis of their sensor readings. However, 805

measurements can be inaccurate or actuators might mal- 806

function. Furthermore, these applications are characterized 807

by the unpredictability of message exchanges. Finally, these 808

applications might not necessarily terminate after a definite 809

time as, for instance, when implementing control loops for 810

physical processes. All these considerations underline the dif- 811

ficulty of monitoring the correct behavior of IoT applications 812

while minimizing undue interference. For these reasons, the 813

stepwise monitoring mode, as described in Section III-B, can 814

be a valuable tool. 815

The following application fragment implements a temper- 816

ature control in a smart environment. 817

1) On startup all the nodes acquire a temperature sample; 818

2) Each node, acquired its first sample, classifies it as: 1) 819

belonging to the user predefined comfort range, 2) cold, 820

or 3) warm, and broadcasts the classification value; this 821

step is encoded as such: 822

temperature @ classify bcst tell: 823

∼ temperature-update :tell 824

3) All the nodes periodically perform the same measure- 825

ments. Only when the classification of new acquired 826

temperature is different from the previous one, the 827

nodes broadcast a message with the new classification; 828

4) According to the classification emerging from the 829

majority of nodes, a collector node sends opportune 830

commands to the HVAC system so to guarantee that 831

most of the nodes obtain readings in the comfort range. 832
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FIGURE 6. The home environment used for the tests. Circles represent
nodes. The node acting as a bridge to the host is indicated with a dashed
circled.

The verification of correct functioning entails querying all833

nodes for the latest temperature sample together with its clas-834

sification and retrieving the signal sent to the HVAC system835

in order to assess whether the temperatures are classified836

correctly and the current HVAC setting is addressing the837

requirements of most of the nodes.838

In order to acquire the verification data, the following839

symbolic code is sent to the queried nodes:840

temperature @ dup classify HVAC-signal841

@ reply tell: ∼ ∼ ∼ :tell842

V. EXPERIMENTAL EVALUATION843

We evaluated our approach by performing experiments on844

three 10-node WSNs differently arranged to provide a repre-845

sentative sample of real topologies. The first network setting846

was a linear topology with each node able to communicate847

only with the two closest peers. The second network was848

arranged in an L-shaped topology with the bridge placed849

in the middle of the segment connecting the two extreme850

nodes. The third network was built by deploying nodes in a851

home environment (Fig. 6). In the latter, two networks the852

bridge was able to exchange messages with any node in one853

hop. In all the arrangements, each node was a Crossbow854

IRIS mote equipped with an IEEE 802.15.4 compliant radio855

transceiver, an Atmega1281 8-bit Harvard RISC 16 MHz856

processor, 128 KB of Flash memory, 8 KB of static RAM,857

and a 4 KB EEPROM provided with sensors to read physical858

quantities such as temperature, light, and ambient noise.859

For every combination of application, topology, and ver-860

ification strategy, fifteen runs of verification were carried861

out, measuring the number of exchanged messages, the bytes862

sent through serial line to the bridge node, and the average863

required time. Since for most of the tested applications the864

execution time depends on the node IDs, the ability of the 865

monitoring agent to virtualize IDs was exploited to randomly 866

assign MAC values in the range 0–65535. Being the ID ran- 867

domization functionality based on a fixed pool of seeds, each 868

combination was evaluated on the same fifteen sets of IDs. 869

The assigned IDs were set on the nodes through executable 870

code sent by the verification system in the initialization phase. 871

The overhead from these operations does not contribute to 872

verification time measurements because an already deployed 873

network does not generally require these steps. 874

In the linear topology setting, randomizing the addresses 875

presented an extra challenge. Before each experiment the 876

routing tables in the whole network required to be set up with 877

the randomized addresses. Due to the flexibility of the system, 878

this was simply solved by having the monitoring agent send 879

each node executable code defining its routing table in the 880

initialization phase, before the start of the application. To ease 881

the practicality of the experiments, during the initialization 882

phase the nodes were gathered in close proximity to ensure 883

that a correct configuration was quickly achieved. With no 884

loss of generality regarding the evaluation of the overhead 885

introduced by the monitoring agent, the topology was though 886

linear from the point of view of the verification system. 887

Table 5 collects the results of all the tests: 888

• tp is the time elapsed from the moment the message 889

starting application execution is sent to the moment the 890

application terminates and global verification can begin. 891

It can be computed by the system before starting the 892

application and is not influenced by the verification 893

modality. It does not apply to the stepwise modality. 894

• tp+ tv is the time from the moment the message starting 895

the application execution is sent to the verification end. 896

• the messages column reports the number of exchanged 897

messages during application execution and verification. 898

Themessages considered are only those needed to verify 899

the application itself, not those exchanged by the nodes 900

during the normal application execution, as those are not 901

related to the verification tool. In multi-hop topologies 902

each message forwarding is counted separately. 903

• the bytes column reports the bytes sent through serial 904

line to the bridge node 905

The targeted strategy, interrogating only a reliable remote 906

node, is the most efficient. Nevertheless, besides the intrin- 907

sic difficulty of selecting a subset of the nodes as reliable, 908

especially for long executions, not every application can be 909

verified with knowledge about the state of a single node. 910

The global strategy can ensure that the application produce 911

the correct final result but at the cost of higher verification 912

time and number of exchanged messages. Moreover, if the 913

final result is not correct, it may not be possible to determine 914

what caused the failure. 915

The on demand strategy entails even more exchanged mes- 916

sages and may potentially introduce timing issues. However, 917

this strategy provides more detailed information during the 918

application execution, for instance about error conditions, 919

which could be detected before the end of the process. 920
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TABLE 5. Experimental results.

The stepwise scheme, by essentially pausing the applica-921

tion execution at each step, enables the possibility of moni-922

toring the internal state of all the nodes; this capability can be923

leveraged to obtain fine-grained information. This strategy,924

however, has the highest intrusion on the WSN and alters the925

normal network behavior.926

From the tp + tv column, in the averaging application,927

it can be seen that the stepwise verification modality reduces928

the waiting time with respect to the on demand modality929

because the tp component is dominated by idle waiting times.930

An application with more frequent messages exchanges931

would be slowed down.932

The HVAC control application was only tested in the933

stepwise modality because of its non-deterministic nature.934

The non-deterministic update mechanism does not allow for935

determining safe timings to sendmessages without collisions.936

For the sake of ease of testing, temperature readings were937

simulated.938

The network quality monitoring application is meant to939

assess the state of the whole network, for this reason the940

targeted modality makes little sense. Moreover, verification941

is performed on the final results of the application so we did 942

not perform the on demand and stepwise verifications. 943

The relationship between the number of queries performed 944

by the rule system and the other tracked metrics is reported in 945

Fig. 7. As expected, the chart shows a noticeable linear corre- 946

lation between the number of queries required for verification 947

and the time spent to perform it. 948

The number of messages propagated through the net- 949

work, on the other hand, shows high variability between the 950

two 1-hop topologies (L-shaped and Home) and the linear 951

one: in the latter, for each message sent from the moni- 952

toring agent several messages are generated by the nodes 953

contributing to the overall message count. In the stepwise 954

verification scheme for the HVAC control application the 955

non-deterministic execution order of the nodes makes the 956

number of exchanged messages highly variable. 957

Despite the noticeable influence of topology and appli- 958

cation in the number of messages propagated through the 959

network, a noticeable linear correlation between the number 960

of queries performed by the monitoring agent and the tv com- 961

ponent of the verification time can be observed. In fact, the 962
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FIGURE 7. Relationship between tv and the number of queries with
varying topologies for all applications and verification schemes. The
verification time mainly depends from the number of queries even if the
generated messages may vary substantially depending on topology and
tested application.

FIGURE 8. The linear relationship between the number of queries and tv
roughly holds even with an increased network size. The highlighted area
in the chart contains the results of the simulations with the same
network size of the tests on deployed WSNs.

main bottleneck is not the transmission of messages among963

nodes but the 9600 bit/s rate of the serial connection between964

the CM and the bridge node: dynamic code execution enables965

the propagation of a message through the network with little966

extra burden. The amount of code sent from the CM to the967

bridge to be dispatched to the network for a query is similar968

in all the conditions as shown in the rightmost chart.969

Higher bitrates with such constrained resources, would not970

be feasible. This is not a limitation of the monitoring agent.971

FIGURE 9. Compared with the number of messages that need to travel
through the network, verification time depends almost exclusively from
the number of queries.

In fact, the actual throughput would be limited by the low 972

computational power of the nodes and their tiny amounts of 973

RAM for buffers that would trigger control-flowmechanisms 974

anyway. All in all, the fact that our approach is feasible 975

even when targeting such a resource-poor platform shows its 976

effectiveness. 977

To asses the applicability of the proposed methodology 978

in networks with more nodes we also performed numerical 979

simulations for each verification scheme. The simulations 980

were carried out with multiple network topologies: 981

• connected topologies where the bridge node could 982

directly query each node; 983

• linear topologies with the bridge node at one end of the 984

line; 985

• ramified topologies where each node could directly 986

communicate with at least four other nodes. 987

The networks were generated in different sizes: 10, 20, 50, 988

and 100 nodes. Fig. 8 reports tv and performed queries for 989

all the performed simulations showing the linear relationship: 990

each query to a node had a cost of ∼ 15 s. The simulation 991

results for networks of size 10 closely match the tests per- 992

formed on the deployed networks. 993

Fig. 9 summarizes the simulation results, and shows that 994

the previously identified relationships hold even at increased 995

network size. In particular, the impact of the transmissions of 996

the generated messages on tv is negligible when compared 997

to the communication through serial line with the bridge 998

node. Since the rate at which queries were performed was 999

far lower than the maximum throughput of the network, 1000

the verification process minimally interfered with the WSN 1001

operations. Moreover, the number of bytes sent through the 1002

serial interface for each query was constant, thus the burden 1003

on the bridge node was the same regardless of the topology 1004

and the application under test. 1005
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Results also show that verification time does not depend1006

on network topology but only on the number of queries per-1007

formed. This finding may be used to develop more advanced1008

verification schemes that only select a subset of nodes to1009

query in order to comply with constraints time available for1010

verification. In addition to the specific ability of the tool to1011

test distributed applications on deployed WSNs, its viability1012

is also supported by the linear scaling of verification time1013

with respect to the number of queries and, by extension,1014

the number of nodes, the capability of performing verifi-1015

cation operations in different topologies, and the absence1016

of any need of special-purpose debugging hardware or1017

software.1018

VI. CONCLUSION1019

In this paper, a system supporting modeling and verifica-1020

tion of distributed applications running on WSN nodes was1021

introduced. The system is based on a symbolic programming1022

paradigm that enables modeling applications with a high level1023

of abstraction even on resource-constrained devices.1024

The core feature of the proposed system is represented by1025

the use of logical reasoning to assess network functionality1026

and code correctness. The functionalities of the monitoring1027

agent have also been shown through four running examples1028

of application fragments.1029

The experimental results concerning several applications1030

in multiple deployed networks and extensive simulations1031

support the feasibility of the approach to test distributed1032

applications running on resource-constrained WSN nodes as1033

the time spent in application verification was comparable to1034

application execution time.1035

Future work will consider running the experiments on1036

virtualized nodes alongside physical ones and verification of1037

hybrid simulations of distributed applications: taking advan-1038

tage of the easy reconfigurability of the nodes, a node may be1039

automatically reconfigured during the application execution1040

to act as a different node in the simulated network, enabling1041

complex analyses on relatively small networks.1042
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