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ABSTRACT The purpose of this study is to explore the design of a robust control strategy for regulating
the magnetic levitation system, which is affected by model uncertainty and surrounding disturbance. This
paper integrates a fixed-time extended state observer (ESO) with a fixed-time integral sliding mode control
(ISMC) design. The fixed-time ESO is employed to estimate the total disturbance within the system in a
fixed time. The estimated output is then fed to the composite control law to cancel the actual disturbance
in the system. Consequently, it avoids large gain for switching function in the ISMC law, thus suppressing
the chattering from the control input. It also avoids employing a conservative condition on the advance
information of disturbance bound. In addition, the proposed ISMC design ensures fixed time convergence
of closed-loop signals. Moreover, since the integral sliding surface has no reaching phase; therefore the
proposed composite scheme has a better invariance behavior from the initial time. The Lyapunov stability
theory proves the fixed time stability of sliding variable and relative states. Furthermore, the effectiveness of
the presented methodology is validated using numerical analysis with a comparative performance of state-
of-the-art control schemes. The numerical results of these schemes are judged based on convergence time,
residual bound, energy consumption, and total input variation.

INDEX TERMS Extended state observer, Maglev system, integral sliding mode control, fixed time
convergence.

I. INTRODUCTION

The concept of magnetic levitation is employed in a wide
range of fields. From simple laboratory setups for benchmark
problems to huge magnetic levitation (maglev) vehicles like
high-speed train transportation. Maglev vehicles operate on
the notion of contactless mobility, which has made them a
popular mode of transit [1]. The maglev system has also
been explored in the research field to study the control of the
maglev-based wind turbines [2], high-speed maglev train [3],
active magnetic bearings [4], etc. In the engineering sector,
maglev technology is a burning topic of research. As the pop-
ulation in metropolitan cities is increasing rapidly, demand
for faster and more efficient public transportation has also
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increased. Hence, the transportation systems need to be more
rapid, dependable, and safe to benefit the public while coping
with the new generational challenges. Moreover, these sys-
tems need to be user-friendly, low-maintenance, environmen-
tal friendly, light-weight, and convenient for transportation
of large masses [3]. After 40 years of research in the field
of maglev systems around the world, it has gained signifi-
cant maturity, and now its result is visible in the real-time
application of ultrahigh-speed train transportation [5]. For
the transportation need, a superconducting maglev system
was designed which runs at an ultrahigh speed. The maglev
system has successfully been tested at a top speed of around
550 km/hr by the Japanese maglev transportation system,
and the commercial service is expected by 2025 [6]. The
high-speed maglev Transrapid line in Shanghai and the
low-speed Tobu Kyuryo maglev high-speed surface transport
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line in Nagoya display that the magleyv is still in its emerging
phases of development [7]. Furthermore, an urban maglev
system is being developed to run at speeds up to 110 km/hr
between Seoul and Incheon Airport in Korea.

Although maglev technology is heading towards a promis-
ing transformation, still maglev system faces some serious
challenges while designing the control scheme. First, the
maglev dynamics has a non-linear characteristic, open-loop
design is unstable, and there is always a threat of unknown
and unwanted uncertainties and external disturbances that
may destabilize the whole dynamics. So, it is difficult for tra-
ditional control algorithms to achieve high-performance cri-
teria, viz. higher precision, better accuracy, fast convergence,
and invariance against multiple uncertainties and disruptions.

Recently, several control methodologies have been uti-
lized to regulate and track the position of maglev system,
namely model predictive control [2], feedback linearization
control [8], robust control [9], intelligent control [10], sliding
mode control (SMC) [3], adaptive control [11], etc. These
modern schemes enhance the control system response while
fulfilling various controller design standards. The key fea-
tures of an ideal control system are fast response, ease of con-
trol design structure, and it should be invariant to disturbance
and system uncertainties. The SMC method is an effective
robust method for controller design of maglev system since it
is widely explored for nonlinear systems with matched uncer-
tainty, provides excellent robust behavior, and has a faster
system dynamics response [12], [13], [14], [15], [16].

The SMC control scheme operates in two phases: the
reaching mode phase and the sliding mode phase [13]. During
the reaching mode, the system solution moves from the initial
state to the sliding surface. While the system is in the reaching
phase, it is susceptible to system uncertainties, which may
result in under-performance of control response [17]. When
the system enters the sliding phase, then the output of the
system becomes invariant to model uncertainties and distur-
bances [18]. The concept of integral sliding surface design is
proposed to ensure robustness from the initial time ¢+ = 0.
In the integral SMC (ISMC) method, the system enters the
sliding phase from ¢+ = 0 and thus eliminates the reaching
phase. The system output slides on the sliding surface from
the beginning, or s = 0 is achieved from the initial time [19].

Despite having desirable features of the SMC technique,
the input chattering phenomenon is its major drawback. Due
to the high gain switching function (signum function), the
high-frequency component in the discontinuous control law
exists. The signum function is employed to suppress the
unknown disturbances within the system dynamics and help
the solutions to slew over the sliding surface. Although, high-
frequency chattering has drastic repercussions if not tack-
led properly. It could potentially harm the actuator or even
destroy it, deteriorate the system performance or eventually
destabilize the whole system [20], [21], [22].

Several techniques have been suggested in the litera-
ture to overcome chattering, including the boundary layer
technique [20], [21] the high-order sliding mode control
(HOSMC) technique [23], [24], [25], composite disturbance
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observer-based technique [26], [27], and integrated extended
state observer-based technique [28], [29], to name a few.
In the boundary layer method, the effect of chattering is
eliminated at the cost of the robust property by employing
a continuous estimation of the discontinuous signum func-
tion. As a result, the robustness behavior inside the bound-
ary gets compromised. This method is also susceptible to
the faster unmodeled dynamics, which might lead to subpar
results [30], [31]. On the other hand, the HOSMC strategy
solves the chattering issue more efficiently without com-
promising the robust nature of SMC [32], [33]. However,
it is mathematically intensive to design and implement for
the real-time application. Further, it requires a differential
observer to estimate the higher-order derivatives of state vari-
ables [34], [35]. Lastly, the disturbance compensation strat-
egy rejects the disturbance directly without sacrificing SMC
performance. In this approach, the gain of switching function
is selected to be small to avoid chattering. Consequently,
a composite control methodology is developed by integrating
the disturbance estimator output with an SMC design [36].
The disturbance compensation technique is primarily based
on designing a disturbance observer or estimator. That esti-
mated disturbance is then applied as a feedforward com-
pensation. The extended state observer (ESO), disturbance
observer, and the equivalent input disturbance are examples
of disturbance estimators [27], [37], [38], [39].

Lately, many integrated SMC techniques for the uncer-
tain maglev system have been reported [40], [41], [42], [43],
[44], [45]. A cascaded SMC approach for the maglev system
is introduced in [40], and in [41], a terminal sliding mode
control (TSMC) method is proposed to enhance convergence
rate of the system with finite-time stability. A comprehensive
literature review on the recent advancement in the field of
sliding mode control strategies has been reported in [46].
A twin-reaching algorithm with the ISMC method is pro-
posed [42] to mitigate chattering from the input at the cost
of disturbance attenuation characteristic. In [43], the control
for the maglev system employs an adaptive learning method
to enhance the system robustness by real-time estimation
of unknown disturbances through feed-forward compensa-
tion. The implementation of a disturbance and state based
SMC control scheme [44] also enhances system robustness.
A recent study has integrated an adaptive terminal SMC with
an ESO design to obtain an improved reduction in input
chattering along with globally uniformly ultimate bounded
results [45]. A super-twisting like fractional controller is
proposed in [47] for enhancing the performance of surface
mounted PMSM system. To reduce the response time for the
PMSM drive, a composite control is designed in [48] using
the improved non-singular fast terminal sliding mode con-
trol. A finite time disturbance observer based backstepping
NTSMC control is proposed in [49] with the objective of
robustly regulating the speed of PMSM drive. In [50], distur-
bance observer based adaptive ISMC is discussed to regulate
the speed of PMSM system having matched and mismatched
disturbance. Only a few results of closed-loop finite-time
stability are reported for the maglev system. Although the
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finite-time theory ensures a predefined settling time of the
state trajectories, its convergence time depends on the initial
condition of state variables. Consequently, the convergence
time is different for different initial states within the region
of attraction [51]. As a result, there is no fixed or general-
ized predefined convergence time under finite-time stability
criteria. The solution to this problem is addressed in [52] by
proposing a fixed time convergence theory.

Recently, the fixed-time stability theory has gained signif-
icant attention from control researchers due to the general-
ized fixed-time convergence bound, stronger stability, faster
convergence rate, and it is independent of the initial condition
within a compact set. One can look into these useful literature
review papers for a thorough overview of finite and fixed
time stability results [51], [53]. Therefore, fixed/finite time
super-twisting high-order sliding mode observers are pro-
posed [54], [55], [56] where the settling time has upper bound
values, and it is independent of the initial condition. A fixed-
time observer with a dual-limit homogeneous approach is
developed in [57]. The application of fixed-time concept to
the ESO design has only been studied very recently [58],
[59], and there is still a wide area of research for further
exploration. Inspired from the above literature, this work
investigates the application of a fixed-time ESO merged
with a fixed-time integral SMC for the uncertain maglev
system.

The major contributions of this paper include:

o The proposed composite control scheme stabilizes the
position of levitating ball in the maglev system under
model ambiguity and exogenous disturbance.

o The structure of the proposed control algorithm is con-
stituted by integrating the output of fixed-time ESO with
the fixed-time integral SMC technique. The ESO design
helps estimate and directly cancel the lumped distur-
bance within a fixed time. As a result, a small gain for
discontinuous switching control is enough to ensure the
fixed-time stability of the closed-loop states.

o The problem of chattering in the SMC is significantly
alleviated from the proposed control input response,
thanks to the application of ESO. In addition, the ESO
also helps in avoiding the conservative assumption on
the upper bound knowledge of total disturbance.

« Moreover, the integral sliding surface for the proposed
control design also improves robustness by guaranteeing
invariance behavior from the initial time.

« Lastly, detailed theoretical and numerical analysis is pre-
sented to prove and validate the stability and effective-
ness of the designed methodology.

The organization of remaining paper is as follows.
Section II presents the dynamics of the maglev system and
the problem statement with few useful Assumptions and
Lemmas. Section III demonstrates the proposed composite
control design using fixed-time ESO and fixed-time ISMC
techniques. The stability analysis using Lyapunov theory
for the closed-loop system is established in Section IV.
A detailed discussion of the numerical results has been illus-
trated in Section V and Section VI concludes the paper.
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Il. DYNAMICS OF MAGLEV SYSTEM
Newton’s law of motion can be used to obtain the dynamics
of the maglev system, which is expressed as [60]

My =F—F,, (1)

where M > 0 € R represents the levitating ball’s mass,
y € R denotes the displacement in vertical axis, /' € R
stands for electromagnetic levitation force, and F, € R is
the gravitational force. Equation (1) can also be written as

My = Hu — Mg, ©))

where H > 0 € R is the current amplifier gain that dictates
the magnitude of F, u € R is the control input, and g is the
acceleration due to gravity.

The exact knowledge of system parameters like M and
‘H is not always accessible. Therefore, model uncertainties,
i.e., AM and AH, must be considered in (2). Further, the
maglev system experiences external disturbances that should
also include in the system dynamics. In light of these uncer-
tainties and disturbances, the maglev system equation (2) can
be redefined as

M+ AMY =H+ AH)u— M+ AM)g+dy, (3)

where AM and AH are the parametric uncertainties of M
and H, respectively, and dyp € R is the surrounding distur-
bances. All the uncertainties and disturbances can be lumped
together as a single variable d, and termed as total disturbance
or lumped disturbance. Therefore, Equation (3) can now be
written as

y=au—g+d, “4)
where a = H/M > 0, and

1
d = Si(do + AHu — AMg — AM). )

The dynamics equation in double derivative (4) can be sim-
plified into single derivative equations using the state trans-
formation of y by selecting the new variables as

Xy =y, (6a)
X2 = . (6b)

Now, substituting (6) into the dynamics (4), which yields

X1 = x2, (7a)
Xy = au—g+d. (7b)

Now, for tracking or regulation problem, let us define the
relative states as

X1 = X1 — X,
Xp = X1 — X, (8

where x, is the reference signal. Therefore, the relative error
dynamics can be expressed as

)Lq = Xy, (9a)
Y =au—g—3% +d. (9b)
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A. PROBLEM STATEMENT

This paper investigates the application of fixed time ESO with
the ISMC technique to achieve a fixed time stabilization of
the maglev system under total disturbance. To put it another
way, the relative state trajectories x| and X, must converge to
zero within a fixed time #r under the action of the proposed
control algorithm, i.e.,

lim x1(t) = 0, (10)
t—tf
lim x,(¢) = 0. (11)
t—tf

The following paragraph introduces system assumptions
and some useful lemmas that will later be used for stability
analysis.

Assumption 1: The measurement of variables x| and x, are
accessible while executing the control law.

Assumption 2: The upper bound of d is finite, i.e., I|d|| <
d, where d € (0, +00) is unknown.

Remark 1: The reason for considering the lumped distur-
bance d in (5) to be bounded is because of the physical design
restriction of the maglev system. The position and velocity of
levitating ball are finite due to the structural design of maglev
system. Further, the electromagnetic control input is derived
from a saturated electric power converter, which can only
supply a finite output current.

Lemma 1: [52] Consider a continuous system

x(1) =fx), x0)=0, f(0)=0. (12)
Suppose 3 a Lyapunov function V(x) : R" — R U{0}. If the

inequality (13) is satisfied withn > 0, u > 0,y € (0, 1), and
£ >1
V< =V (@) = uV (o). (13)
Then, origin is a globally fixed time stable point and the
bound of settling time T}, for the state x(¢) is given as
T, < T, ! + ! (14)
h < = .
T —y) e -1
Lemma 2: [61] Considering a chain of integrator system

2 = 2,
2 = z3,
i = V). (15)
Here, the input variable v(¢) is given as
v(t) = vii(@) + vi2(), (16)

where
vii(®) = qi(®) + qa(t) + - - + qan(?),
vi2(t) = wi(®) + wa() + - - + wy(1),
qit) = —kilzi(t)|'sign(z;(1)) for i=1,....n,
wi(t) = —I;|z;(1)|“sign(z;(¢)) for i=1,...,n. (17)
The parameter b; satisfies b; € (0, 1) and holds the relation
bi_1 = bibiy1/2biy1 — b)) fori =2,...,n. by = 1 and
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b, = b where b € (1 — €, 1) for significantly small value of
€ > 0. Similarly, ¢; > 1 fori =1, ..., n satisfies the relation
Ci—1 = CiCH_]/(ZCH_l — C,‘), i = 2, e,y Cpy1 = 1 and
¢, = c where ¢ € (1, 1 + €1) for a small value of €; > 0. The
controller gains k; and /; are selected according to Hurwitz
polynomials. Matrices that complies the Hurwitz conditions
are given below.

The above system design will achieve a fixed time conver-
gence of state variable [z1, 22, . . ., zu]T to zero. The time of
convergence T, satisfies the following inequality

)\&ax(Pl ) + 1
rop ror® ’

where p = (1 — b)/b, » = (c — 1)/c, rg = tﬂ—(d%ii r o=
;‘2:;—((%;, 7 < Amin(P2) > 0, and Apin(-) and Apax(-) represents
the minimum and maximum eigenvalues of the correspond-
ing matrices. The parameter Q1, 0>, P1, and P, are sym-
metric positive definite matrices that satisfies the following

equations

T, <

(18)

PiA; +ATP) = -0y,

PyAy + AV Py = —0, (19)
where
r o 1 0
0 0 1 -0
Ay =| - , (20)
0 0 0 I |
L—ki —k —k3 —ky
ro 1 0 0
0 0 1 0
Ay = | - . @1
0 0 o -+ 1
L-li —bh =& - =1,

IlIl. PROPOSED CONTROL DESIGN

This section proposes a composite control scheme by inte-
grating a new fixed-time ESO with a fixed-time integral
SMC design. Figure 1 presents the schematic diagram of the
proposed control algorithm. The proposed approach has the
following benefits. The ESO estimates the total disturbance
within a fixed time, and the output of ESO, i.e., the distur-
bance estimation variable, is fed to the composite control law.
Consequently, the ESO output attenuates the majority of sys-
tem disturbances in fixed time without depending on the large
switching gain of discontinuous SMC component. As a result,
the input chattering gets alleviated significantly. At the same
time, the proposed ISMC achieves a fixed time convergence
of sliding surface and relative state. Moreover, it offers the
resilience property against unknown disturbances from the
very initial time ¢ = 0 since there is no reaching phase.

A. FIXED-TIME EXTENDED STATE OBSERVER

This subsection talks about the modeling of fixed-time ESO
that estimates the total disturbance in the maglev system
within a fixed time. Moreover, the convergence analysis of
the given ESO is also illustrated.
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Proposed composite control law

Unom = g — & — ki |T1]|“ sign(Z1) — ka|T2|"?sign(Z2)

(2, @) 4 (@1, Z9) R 3 = i . Ui =y, (X1, X2) -
_’Q > — Uy %1 | sign(Zq) — lo|T2|"?sign(Z2) — d ¥ dp— e = g - >
A Ugise = —C1|o|tsign(o) — ea|o|?sign(o) Maglev System
/:‘:: (‘;217 :E?)v J 1(1 \4
= &y = au — g — u|é|"sign(&r) — palE| Msign(ér) +d, | 12

+01 |71 |P1sign(F1) + lo|To|P2sign(Zs)

[ . |01aio- pod .. bl a2.q o e
S +/ <k1|:61| sign(@1) + ko|Za|*2sign (3 2)> it

d = —p3|és|“2sign(és) — pa|éa|Psign(és) — xsign(éy) |

Fixed-time integral sliding surface

Fixed-time extended state observer

FIGURE 1. Block diagram of the composite ESO-ISMC design.

Suppose X; is the estimate of xp, which is obtained from
the fixed-time ESO. Further, estimation error in x; is given as

&) =Xy — xp. (22)

Then, the equations of fixed-time ESO is defined as [59]

X2 = au — g — p1]é2|“ sign(@) — pales|Psign(@r) + d,
(23a)

d = —u3lex|®2sign(e2) — walex|P2sign(e) — xsign(@r),
(23b)

where d is the estimate of disturbance d , &3 denotes the esti-
mation error, the parameter o1 € (0, 1), 81 > 1,0 = 201 —1,
B =281 —1,x > |ld|l,and u; > 0, uo > 0, u3 > 0, and
a4 > 0 are the observer gains to be designed.

The following theorem establishes the fixed time conver-
gence of disturbance estimation error to zero.

Theorem 1: Considering the maglev dynamics (7) with
Assumption 2. The given fixed-time ESO (23) will estimate
the total disturbance d within a fixed time. Further, the esti-
mation error will converge to the origin within the following
convergence time bound T,

< )\max(Al)(lial) 1
T om—an) k(B - HwAmD
Where }\‘1 — Amin(Q1) )\2 — Amin(Q2) A

T @1)? 2 = T Amin = W > 0, and O,
02, A1, and A; are positive definite matrices that satisfies

(24)

APy +PIA) = -0y,

AoPy + PYA> = —0s, (25)
where
P = [:Z; é} Py = [:Zi (1)] (26)
Proof: Defining the error variables as
e = Xy — x2, (27a)
d=d—d. (27b)

Error dynamics of x» can be defined using (23) and (27) as
& =X — 1o,
= au — g — p1]e2|*'sign(e2) — p2|22|P1sign(ey)
+d — au + g—d,
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= (d — d) — p112,|* sign(@y) — p2|2,|" sign(@y),

= d — pile2|“sign(@) — walea|Psign(@).  (28)
Similarly, the disturbance estimation error dynamics is
d=d-d,
= —u3le2|sign(@2) — pale2lPsign(@) — d. (29)

Therefore, the relative dynamics of ESO is given as

e2 = d — pilez|“sign(@) — palea| ' sign(ey),
d = —p3e;|*2sign(22) — pale2|Psign(@2) — d. (30)

Now, according to the fixed-time convergence analysis
of non-recursive observer given in [54], the error dynamics
&, and d is guaranteed to converge to zero in a fixed time.
As aresult, the lumped disturbance can be estimated within a
fixed time bound 7., which is defined in (24). Thus, the proof
of Theorem 1 is completed. [

In the next part, the output of fixed-time ESO, i.e., the
variable d ,is combined with the fixed-time ISMC structure to
formulate the proposed composite control law for the maglev
system.

B. COMPOSITE CONTROL STRUCTURE USING FIXED-TIME
ESO AND ISMC
First, an integral sliding surface is constructed using the
system error variables. Then, the fixed-time integral sliding
mode control is designed using the inverse dynamics tech-
nique by taking the derivative of the sliding surface. Later, the
output of fixed-time ESO is combined with the given integral
sliding mode control law to obtain the proposed composite
control scheme.

Inspired from [62], the structure of the integral sliding
surface o € R is given as

o= ot ky|X1|*sign(X1) + ka|X2|“2sign(x2)
2 +11131 Pt sign(®)) + b|F2 |2 sign(3n)

)dt (31)
where a; € (0,1),a, € (0,1), by > 1, and by > 1 are
exponents, and they are designed as per the condition of
Lemma 2. Further, gain parameters k1 > 0, k» > 0, ] > 0,

and /> > 0 need to be designed.
The time derivative of ¢ yields

& =X + kil “sign(E)) + ko|F2|“2sign(¥2)
1131 |P sign(Er) + bl%Psign(Rr).  (32)
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Substituting )ch from (9b) into (32) gives
0 = au—g — Xy + k1|x1]|“'sign(x1) + ka|x2|?sign(x2)
+1 |71 |Prsign(F) + L% |P2sign(F) +d. (33)

The proposed composite control law u comprises two parts:
nominal component uyom and discontinuous component Ugigc-
The objective of nominal control is to cancel all the unwanted
parts of the closed-loop dynamics and drive the system trajec-
tories to the intended position and velocity. Meanwhile, the
discontinuous control achieves the fixed time convergence
result and attenuates the impact of remaining uncertainties
and disturbances from the ESO approach.

The proposed fixed-time ESO-ISMC law u is designed
using generalized dynamic inversion method as

1
u= ;(Mnom =+ Udisc), (34)
where
Unom = g — Xr — ky|X1|“'sign(¥1) — k2 |X2|*2sign(x2)
—1|%1|"'sign(¥)) — L% | sign(¥) — d, (35)
ugise = —cilo|"sign(o) — c2|o|?sign(o), (36)

where ¢c; > 0 and ¢; > 0 are small gains, which handle
the residual errors and determine the rate of convergence.
Further, parameters y; and y, are the exponents that satisfy
0<yr<landy, > 1.

Remark 2: Since the proposed scheme is a combination of
fixed-time ESO and fixed-time ISMC, it enjoys the benefits
of both approaches. Therefore, the ESO helps in estimating
the system disturbance within a fixed time and the observed
disturbance attenuates the actual disturbance using the feed-
forward compensation. Thus, it avoids the application of a
large value of switching gain in the ISMC approach, which
in turn reduces the input chattering. In addition, the proposed
sliding surface structure ensures the fixed time convergence
of relative state trajectories. Moreover, the integral surface
design enables the closed-loop system to start from the sliding
phase from the initial time. As a result, the robustness of the
proposed methodology is reinforced from the starting time,
which is also beneficial since ESO initially takes a short time
to estimate the disturbance.

Remark 3: The parameters ¢ and c¢; are positive constants
that dictate the convergence time of system trajectories. How-
ever, large values of c¢; and ¢, can create input chattering.
Therefore, one needs to make a trade-off between the desired
rate of convergence and the allowable limit of chattering.

IV. CLOSED-LOOP STABILITY ANALYSIS

Theorem 2: Consider the sliding dynamics (33) under
Assumption 2 and the composite control law (34). The pro-
posed methodology will attain the sliding phase (sigma = 0)
within a fixed time. Likewise, the error states will also force
to the origin in a fixed time.

Proof: The proof of the above theorem is given in two parts.
In the first part, sliding surface convergence is established,
and the second part proves the fixed time convergence of the
relative states.

VOLUME 10, 2022

Part I: Defining a Lyapunov function V; as
Vi = 12 (37)
2
The derivative of V| with respect to time is

Vi =06. (38)
Putting ¢ from (33) to (38) yields

!

Vi = o (au—g+ ki 1|/ sign(F)) + ko |%2|“sign(i2)

+h | sign(h) + bI%a|sign(Ra) — &+ d ) . (39)
Substituting the expression of u from (35) and (36) into (39)

Vi=0(d—d—ci|o|" sign(o) — ca2|o|V2sign(o)). (40)
——

d

It has already been established in Theorem 1 that when time
t > T, the disturbance estimation error goes to zero, i.e.,

d = 0. Therefore, Equation (40) can be written as

Vi = o(—cilo|”'sign(o) — ca|o|sign(a)),

1 1
= —cilo " = eafo |2,
ntl

2 2 2 2
2 () —en® ()
2 2

Vi< —mVi —mve, (41)

vitl . +1
where n; =272 ¢; > 0,fori = 1,2,& = Y5= € (0, 1), and
%‘2 = )/ZT—H > 1.

In view of inequality given in Lemma 1, the above equa-
tion (41) holds the same condition as (13). Therefore, it can be
claimed that the sliding surface will converge to zero within
a fixed time. In other words, the sliding phase will achieve in
a fixed time.

Part II: Since both o and ¢ become zero when the sliding
phase is achieved. Therefore, ¢ from (32) can be written as

& = X + ki %" sign(E)) + ka|%2| 2 sign(F2)
0 1% sign(F1) + L% sign(F) = 0. (42)

Equation (42) can also be written as

X = —ki|%1|“sign(31) — kol2|“2sign(F2)
—11 131" sign(Fr) — bl%|Psign(R).  (43)

The reduced order system after achieving the sliding phase
can be written as

X1 = X,

Xy = —ki|x1|“'sign(X1) — k2|X2|*sign(x2)

Vi

—1y|%1|P1sign(F1) — bl%|P2sign() . (44)

V2

Therefore, Equation (44) can be expressed as

X = o,
Xy = vy + v, (45)
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where

vi = —ki|%1|“sign(F)) — kol%2|2sign(X).  (46)
vy = 0|51 sign(F1) — b|%2|sign(R).  (47)

Equation (45) holds the condition of Lemma 2. Thus, the rel-
ative states x; and x will go to zero in a fixed time, as assured
in Lemma 2. Hence, the proof of Theorem 2 is completed. [

Remark 4: While implementing the proposed controller,
the following points need to be considered:

i) The initial condition of integral sliding surface in (31)
should be selected such that 6(0) = 0. Therefore, the
initial value of integral is selected as —x3(0).

ii) The switching gain of discontinuous control, i.e., ¢ and
c2, should be skillfully selected to avoid the chattering
phenomenon and also achieve the desired convergence
rate.

iii) Similarly, the gains of fixed-time ESO also need to be
appropriately chosen in order to quickly estimate and
compensate the disturbance.

V. NUMERICAL ANALYSIS

In order to verify the effectiveness of the proposed composite
control methodology, the numerical simulation is carried out
for the maglev system in MATLAB®. The maglev system
is comprised of electrical and mechanical units, including
an electromagnet, levitating ball, laser sensor, and a power
converter. The position of the levitating ball is regulated by
controlling the electric current through the power converter.
Meanwhile, the laser sensor feeds the relative position mea-
surement of the ball from the coil to the control processing
unit. The open-loop maglev system is unstable and highly
susceptible to external perturbations and uncertainties. There-
fore, the task of the proposed investigation is to regulate the
position of a levitating ball in the maglev system under the
influence of uncertainties and disturbances. The performance
of the proposed scheme, i.e., fixed time ESO based fixed
time ISMC (ESO-ISMC), is also compared with an ISMC
technique [63] and nonsingular fast terminal SMC (NTSMC)
approach [64].

In this paper, the parameters of the maglev system are
taken as: mass of levitating ball M = 450g, the current
amplifier gain H = 1000, and the acceleration due to gravity
g = 9.81 m/sec?. Besides, for the purpose of simulation,
the model uncertainty is considered as AM = 0.1M and
AH = 0.1H. The surrounding time varying disturbance is
considered as

dy = 0.3 cos(0.2¢) + 0.2 sin(0.5¢).

The initial and reference values of the state trajectories are
chosen as

x1(0) = 0cm and xp(0) =0.5,

x, =1.5cm and x, =0.

Parameter values of the composite control design are given in
Table 1.
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TABLE 1. Composite control design parameters.

Parameter ~ Value  Parameter  Value  Parameter  Value

w1 10 a1 0.9 k1 4
o 50 [P 0.8 ko 4
n3 50 51 1.1 I 4
4 100 52 1.2 lg 4
al 0.8 az 1.1 b1 0.8
bo 1.1 X 0.6 Y1 0.8
Y2 1.2 c1 1.8 [} 2

The responses of state variables and the error state trajec-
tories are respectively illustrated in Fig. 2 and Fig. 3. It is evi-
dent from Fig. 2 that the position of levitating ball (x; ) reaches
the desired set value, i.e., 1.5 cm under all the schemes. How-
ever, the proposed fixed-time ESO-ISMC algorithm achieves
faster convergence than the other two approaches. The con-
vergence time of state trajectory is evaluated when the relative
state settles down to the bound of ||| < 1 x 1072 and
stays within this set. Therefore, the proposed controller (34)
takes 2.72 s for convergence, whereas scheme of [63] and [64]
accomplish the same bound in 7.87 s and 3.57 s, respectively.
Similarly, the velocity of the levitating ball (x2) converges to
the origin faster under the composite fixed time ESO-ISMC
scheme than in the other two methods (see in bottom plot
of Fig. 2). The settling time of relative velocity under these
schemes are also given in Table 2.

Moreover, the regulation performance is further illustrated
using relative state responses of x| and X, in Fig. 3. The errors
are approaching zero faster under the proposed composite
control than in the ISMC and NTSMC schemes, as seen in this
figure. The zoomed-in plots of steady-state response are also
shown in Fig. 3, which depicts that the proposed algorithm
has a better error convergence bound. The residual bound
of error trajectories under different schemes is tabulated in
Table 2. The composite fixed time ESO-ISMC scheme effec-
tively converges the ||X|| to a narrower bound, i.e., 3.3 x 1073,
which is least among the other two approaches. One more
thing to notice that the chattering effect is also not present
in the relative velocity response under the proposed scheme
(visible in zoomed plot of Fig. 3) thanks to the application
of fixed-time ESO. On the other hand, under NTSMC [64]
and ISMC [63] responses, the effect of chattering is visible
in the steady-state response of x». The elaborated discussion
on input chattering and its analysis under these schemes are
presented in the later paragraph.

Figure 4 shows the sliding surface response under the pro-
posed composite control technique, the NTSMC scheme [64],
and the ISMC [63] design. Note that due to the application
of an integral sliding surface, the reaching phase is almost
negligible in the composite and the ISMC [63] schemes and
the surface starts from zero. Although the convergence of
sliding trajectories under NTSMC scheme seems to be fast,
the proposed composite scheme has a better transient and
steady-state behavior with no fluctuations in its response,
as seen in the zoomed-in plot in Fig. 4. On the other
hand, the ISMC and NTSMC schemes experience a chatter-
ing effect throughout the sliding phase response due to the
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FIGURE 4. Sliding surface response under different control schemes.

application of high gain switching in the discontinuous
control component.

The time history of control input response for these three
schemes is shown in Fig. 5. Simply by looking at these
responses, it is evident that the proposed scheme has sig-
nificantly eliminated the input chattering from its control
response, thanks to the use of ESO. On the contrary, the
NTSMC has the highest magnitude of chattering. The reason
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TABLE 2. Performance measures under different control schemes.

Measures Proposed ISMC [63] NTSMC [64]
Toeuling Of Z1 (3) 272 7.87 3.57
Toeuting Of Z2 () 3.07 8.07 3.89

Settling bound ||&|| 3.3x107%  1.9x1073 47x1073
EI (A2) 390.106 392.486 415.618
TV (A) 9.9792 1.41 x 102 1.31 x 103
8 T T T T T
- = =-NTSMC --—-—- ISMC Proposed Scheme

Control Input

0 2 4 6 8 10 12 14 16 18 20
Time (s)

FIGURE 5. Control input response under different control schemes.
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FIGURE 6. Time history of total input variation for three control schemes.

for the presence of chattering in [63] and [64] is the direct
dependence on the large gain switching control to attenuate
the effect of total disturbance. Moreover, two performance
measure functions are evaluated for these control schemes to
validate the effective performance of the proposed algorithm
quantitatively. Therefore, first, the energy consumed by these
control laws is calculated using the energy index (EI) func-
tion, defined as

20
El = / lu(t)|? dt. (48)
0

The calculated EI values are given in Table 2, which illustrates
that the proposed method (34) utilizes the least amount of
control effort than the algorithms of [63] and [64].

Secondly, the quantitative analysis for the reduction in
input chattering is measured using the total variation (TV)
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of input function, which is expressed as

n
TV =" Jui+ 1) — (i,
i=0

where n represents the total number of control input samples
for the complete simulation time. The TV values of these con-
trol strategies are also tabulated in Table 2, which shows that
the proposed ESO-ISMC scheme has the least TV value. This
implies that the proposed composite law has minimal input
variation or, in other words, the chattering effect has been sig-
nificantly suppressed. In contrast, the other two approaches
have considerable chattering; therefore, the TV values are
high in these two comparative methods. The above observa-
tion can also be visualize through the time history response
of TV, which is shown in Fig. 6. It is obvious from the TV
plot that the proposed control has a minimum amplitude of
variation throughout the simulation than the NTSMC and the
ISMC methods.

(49)

VI. CONCLUSION

This paper develops a composite robust control law using
fixed-time ESO and ISMC for regulating the position of levi-
tating ball in a maglev system under model uncertainties and
disturbances. The fixed-time ESO provides three benefits,
i.e., (i) estimates total disturbance within a fixed time without
knowing the upper limit of disturbance, (ii) compensates total
disturbance as feed-forward compensation, and (iii) signifi-
cantly reduces chattering from ISMC design. Meanwhile, the
proposed ISMC ensures fixed-time convergence of closed-
loop signals, better transient response, and equips with bet-
ter invariance property because of no reaching phase. The
Lyapunov theory establishes the theoretical results, which
affirms the fixed time convergence of both sliding and error
states. Lastly, a comparative simulation analysis illustrates
the efficacy of the proposed algorithm with respect to the
state-of-the-art methods. In the future extension, the proposed
methodology will be realized in the hardware setup to further
support its real-time implementation.
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