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ABSTRACT The purpose of this study is to explore the design of a robust control strategy for regulating
the magnetic levitation system, which is affected by model uncertainty and surrounding disturbance. This
paper integrates a fixed-time extended state observer (ESO) with a fixed-time integral sliding mode control
(ISMC) design. The fixed-time ESO is employed to estimate the total disturbance within the system in a
fixed time. The estimated output is then fed to the composite control law to cancel the actual disturbance
in the system. Consequently, it avoids large gain for switching function in the ISMC law, thus suppressing
the chattering from the control input. It also avoids employing a conservative condition on the advance
information of disturbance bound. In addition, the proposed ISMC design ensures fixed time convergence
of closed-loop signals. Moreover, since the integral sliding surface has no reaching phase; therefore the
proposed composite scheme has a better invariance behavior from the initial time. The Lyapunov stability
theory proves the fixed time stability of sliding variable and relative states. Furthermore, the effectiveness of
the presented methodology is validated using numerical analysis with a comparative performance of state-
of-the-art control schemes. The numerical results of these schemes are judged based on convergence time,
residual bound, energy consumption, and total input variation.
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INDEX TERMS Extended state observer, Maglev system, integral sliding mode control, fixed time
convergence.

I. INTRODUCTION17

The concept of magnetic levitation is employed in a wide18

range of fields. From simple laboratory setups for benchmark19

problems to huge magnetic levitation (maglev) vehicles like20

high-speed train transportation. Maglev vehicles operate on21

the notion of contactless mobility, which has made them a22

popular mode of transit [1]. The maglev system has also23

been explored in the research field to study the control of the24

maglev-based wind turbines [2], high-speed maglev train [3],25

active magnetic bearings [4], etc. In the engineering sector,26

maglev technology is a burning topic of research. As the pop-27

ulation in metropolitan cities is increasing rapidly, demand28

for faster and more efficient public transportation has also29
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increased. Hence, the transportation systems need to be more 30

rapid, dependable, and safe to benefit the public while coping 31

with the new generational challenges. Moreover, these sys- 32

tems need to be user-friendly, low-maintenance, environmen- 33

tal friendly, light-weight, and convenient for transportation 34

of large masses [3]. After 40 years of research in the field 35

of maglev systems around the world, it has gained signifi- 36

cant maturity, and now its result is visible in the real-time 37

application of ultrahigh-speed train transportation [5]. For 38

the transportation need, a superconducting maglev system 39

was designed which runs at an ultrahigh speed. The maglev 40

system has successfully been tested at a top speed of around 41

550 km/hr by the Japanese maglev transportation system, 42

and the commercial service is expected by 2025 [6]. The 43

high-speed maglev Transrapid line in Shanghai and the 44

low-speed Tobu Kyuryo maglev high-speed surface transport 45
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line in Nagoya display that the maglev is still in its emerging46

phases of development [7]. Furthermore, an urban maglev47

system is being developed to run at speeds up to 110 km/hr48

between Seoul and Incheon Airport in Korea.49

Although maglev technology is heading towards a promis-50

ing transformation, still maglev system faces some serious51

challenges while designing the control scheme. First, the52

maglev dynamics has a non-linear characteristic, open-loop53

design is unstable, and there is always a threat of unknown54

and unwanted uncertainties and external disturbances that55

may destabilize the whole dynamics. So, it is difficult for tra-56

ditional control algorithms to achieve high-performance cri-57

teria, viz. higher precision, better accuracy, fast convergence,58

and invariance against multiple uncertainties and disruptions.59

Recently, several control methodologies have been uti-60

lized to regulate and track the position of maglev system,61

namely model predictive control [2], feedback linearization62

control [8], robust control [9], intelligent control [10], sliding63

mode control (SMC) [3], adaptive control [11], etc. These64

modern schemes enhance the control system response while65

fulfilling various controller design standards. The key fea-66

tures of an ideal control system are fast response, ease of con-67

trol design structure, and it should be invariant to disturbance68

and system uncertainties. The SMC method is an effective69

robust method for controller design of maglev system since it70

is widely explored for nonlinear systems with matched uncer-71

tainty, provides excellent robust behavior, and has a faster72

system dynamics response [12], [13], [14], [15], [16].73

The SMC control scheme operates in two phases: the74

reachingmode phase and the slidingmode phase [13]. During75

the reaching mode, the system solution moves from the initial76

state to the sliding surface.While the system is in the reaching77

phase, it is susceptible to system uncertainties, which may78

result in under-performance of control response [17]. When79

the system enters the sliding phase, then the output of the80

system becomes invariant to model uncertainties and distur-81

bances [18]. The concept of integral sliding surface design is82

proposed to ensure robustness from the initial time t = 0.83

In the integral SMC (ISMC) method, the system enters the84

sliding phase from t = 0 and thus eliminates the reaching85

phase. The system output slides on the sliding surface from86

the beginning, or s = 0 is achieved from the initial time [19].87

Despite having desirable features of the SMC technique,88

the input chattering phenomenon is its major drawback. Due89

to the high gain switching function (signum function), the90

high-frequency component in the discontinuous control law91

exists. The signum function is employed to suppress the92

unknown disturbances within the system dynamics and help93

the solutions to slew over the sliding surface. Although, high-94

frequency chattering has drastic repercussions if not tack-95

led properly. It could potentially harm the actuator or even96

destroy it, deteriorate the system performance or eventually97

destabilize the whole system [20], [21], [22].98

Several techniques have been suggested in the litera-99

ture to overcome chattering, including the boundary layer100

technique [20], [21] the high-order sliding mode control101

(HOSMC) technique [23], [24], [25], composite disturbance102

observer-based technique [26], [27], and integrated extended 103

state observer-based technique [28], [29], to name a few. 104

In the boundary layer method, the effect of chattering is 105

eliminated at the cost of the robust property by employing 106

a continuous estimation of the discontinuous signum func- 107

tion. As a result, the robustness behavior inside the bound- 108

ary gets compromised. This method is also susceptible to 109

the faster unmodeled dynamics, which might lead to subpar 110

results [30], [31]. On the other hand, the HOSMC strategy 111

solves the chattering issue more efficiently without com- 112

promising the robust nature of SMC [32], [33]. However, 113

it is mathematically intensive to design and implement for 114

the real-time application. Further, it requires a differential 115

observer to estimate the higher-order derivatives of state vari- 116

ables [34], [35]. Lastly, the disturbance compensation strat- 117

egy rejects the disturbance directly without sacrificing SMC 118

performance. In this approach, the gain of switching function 119

is selected to be small to avoid chattering. Consequently, 120

a composite control methodology is developed by integrating 121

the disturbance estimator output with an SMC design [36]. 122

The disturbance compensation technique is primarily based 123

on designing a disturbance observer or estimator. That esti- 124

mated disturbance is then applied as a feedforward com- 125

pensation. The extended state observer (ESO), disturbance 126

observer, and the equivalent input disturbance are examples 127

of disturbance estimators [27], [37], [38], [39]. 128

Lately, many integrated SMC techniques for the uncer- 129

tain maglev system have been reported [40], [41], [42], [43], 130

[44], [45]. A cascaded SMC approach for the maglev system 131

is introduced in [40], and in [41], a terminal sliding mode 132

control (TSMC) method is proposed to enhance convergence 133

rate of the system with finite-time stability. A comprehensive 134

literature review on the recent advancement in the field of 135

sliding mode control strategies has been reported in [46]. 136

A twin-reaching algorithm with the ISMC method is pro- 137

posed [42] to mitigate chattering from the input at the cost 138

of disturbance attenuation characteristic. In [43], the control 139

for the maglev system employs an adaptive learning method 140

to enhance the system robustness by real-time estimation 141

of unknown disturbances through feed-forward compensa- 142

tion. The implementation of a disturbance and state based 143

SMC control scheme [44] also enhances system robustness. 144

A recent study has integrated an adaptive terminal SMC with 145

an ESO design to obtain an improved reduction in input 146

chattering along with globally uniformly ultimate bounded 147

results [45]. A super-twisting like fractional controller is 148

proposed in [47] for enhancing the performance of surface 149

mounted PMSM system. To reduce the response time for the 150

PMSM drive, a composite control is designed in [48] using 151

the improved non-singular fast terminal sliding mode con- 152

trol. A finite time disturbance observer based backstepping 153

NTSMC control is proposed in [49] with the objective of 154

robustly regulating the speed of PMSM drive. In [50], distur- 155

bance observer based adaptive ISMC is discussed to regulate 156

the speed of PMSM system having matched and mismatched 157

disturbance. Only a few results of closed-loop finite-time 158

stability are reported for the maglev system. Although the 159
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finite-time theory ensures a predefined settling time of the160

state trajectories, its convergence time depends on the initial161

condition of state variables. Consequently, the convergence162

time is different for different initial states within the region163

of attraction [51]. As a result, there is no fixed or general-164

ized predefined convergence time under finite-time stability165

criteria. The solution to this problem is addressed in [52] by166

proposing a fixed time convergence theory.167

Recently, the fixed-time stability theory has gained signif-168

icant attention from control researchers due to the general-169

ized fixed-time convergence bound, stronger stability, faster170

convergence rate, and it is independent of the initial condition171

within a compact set. One can look into these useful literature172

review papers for a thorough overview of finite and fixed173

time stability results [51], [53]. Therefore, fixed/finite time174

super-twisting high-order sliding mode observers are pro-175

posed [54], [55], [56] where the settling time has upper bound176

values, and it is independent of the initial condition. A fixed-177

time observer with a dual-limit homogeneous approach is178

developed in [57]. The application of fixed-time concept to179

the ESO design has only been studied very recently [58],180

[59], and there is still a wide area of research for further181

exploration. Inspired from the above literature, this work182

investigates the application of a fixed-time ESO merged183

with a fixed-time integral SMC for the uncertain maglev184

system.185

The major contributions of this paper include:186

• The proposed composite control scheme stabilizes the187

position of levitating ball in the maglev system under188

model ambiguity and exogenous disturbance.189

• The structure of the proposed control algorithm is con-190

stituted by integrating the output of fixed-time ESOwith191

the fixed-time integral SMC technique. The ESO design192

helps estimate and directly cancel the lumped distur-193

bance within a fixed time. As a result, a small gain for194

discontinuous switching control is enough to ensure the195

fixed-time stability of the closed-loop states.196

• The problem of chattering in the SMC is significantly197

alleviated from the proposed control input response,198

thanks to the application of ESO. In addition, the ESO199

also helps in avoiding the conservative assumption on200

the upper bound knowledge of total disturbance.201

• Moreover, the integral sliding surface for the proposed202

control design also improves robustness by guaranteeing203

invariance behavior from the initial time.204

• Lastly, detailed theoretical and numerical analysis is pre-205

sented to prove and validate the stability and effective-206

ness of the designed methodology.207

The organization of remaining paper is as follows.208

Section II presents the dynamics of the maglev system and209

the problem statement with few useful Assumptions and210

Lemmas. Section III demonstrates the proposed composite211

control design using fixed-time ESO and fixed-time ISMC212

techniques. The stability analysis using Lyapunov theory213

for the closed-loop system is established in Section IV.214

A detailed discussion of the numerical results has been illus-215

trated in Section V and Section VI concludes the paper.216

II. DYNAMICS OF MAGLEV SYSTEM 217

Newton’s law of motion can be used to obtain the dynamics 218

of the maglev system, which is expressed as [60] 219

Mÿ = F − Fg, (1) 220

where M > 0 ∈ R represents the levitating ball’s mass, 221

y ∈ R denotes the displacement in vertical axis, F ∈ R 222

stands for electromagnetic levitation force, and Fg ∈ R is 223

the gravitational force. Equation (1) can also be written as 224

Mÿ = Hu−Mg, (2) 225

where H > 0 ∈ R is the current amplifier gain that dictates 226

the magnitude of F , u ∈ R is the control input, and g is the 227

acceleration due to gravity. 228

The exact knowledge of system parameters like M and 229

H is not always accessible. Therefore, model uncertainties, 230

i.e., 1M and 1H, must be considered in (2). Further, the 231

maglev system experiences external disturbances that should 232

also include in the system dynamics. In light of these uncer- 233

tainties and disturbances, the maglev system equation (2) can 234

be redefined as 235

(M+1M)ÿ = (H+1H)u− (M+1M)g+ d0, (3) 236

where 1M and 1H are the parametric uncertainties of M 237

and H, respectively, and d0 ∈ R is the surrounding distur- 238

bances. All the uncertainties and disturbances can be lumped 239

together as a single variable d , and termed as total disturbance 240

or lumped disturbance. Therefore, Equation (3) can now be 241

written as 242

ÿ = au−g+ d, (4) 243

where a = H/M > 0, and 244

d =
1
M

(d0 +1Hu−1Mg−1Mÿ). (5) 245

The dynamics equation in double derivative (4) can be sim- 246

plified into single derivative equations using the state trans- 247

formation of y by selecting the new variables as 248

x1 = y, (6a) 249

x2 = ẏ. (6b) 250

Now, substituting (6) into the dynamics (4), which yields 251

ẋ1 = x2, (7a) 252

ẋ2 = au−g+ d . (7b) 253

Now, for tracking or regulation problem, let us define the 254

relative states as 255

x̃1 = x1 − xr , 256

x̃2 = ẋ1 − ẋr , (8) 257

where xr is the reference signal. Therefore, the relative error 258

dynamics can be expressed as 259

˙̃x1 = x̃2, (9a) 260

˙̃x2 = au− g− ẍr + d . (9b) 261
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A. PROBLEM STATEMENT262

This paper investigates the application of fixed time ESOwith263

the ISMC technique to achieve a fixed time stabilization of264

the maglev system under total disturbance. To put it another265

way, the relative state trajectories x̃1 and x̃2 must converge to266

zero within a fixed time tf under the action of the proposed267

control algorithm, i.e.,268

lim
t→tf

x̃1(t) = 0, (10)269

lim
t→tf

x̃2(t) = 0. (11)270

The following paragraph introduces system assumptions271

and some useful lemmas that will later be used for stability272

analysis.273

Assumption 1: Themeasurement of variables x1 and x2 are274

accessible while executing the control law.275

Assumption 2: The upper bound of d is finite, i.e., ||ḋ || ≤276

d̄ , where d̄ ∈ (0,+∞) is unknown.277

Remark 1: The reason for considering the lumped distur-278

bance d in (5) to be bounded is because of the physical design279

restriction of the maglev system. The position and velocity of280

levitating ball are finite due to the structural design of maglev281

system. Further, the electromagnetic control input is derived282

from a saturated electric power converter, which can only283

supply a finite output current.284

Lemma 1: [52] Consider a continuous system285

ẋ(t) = f (x), x(0) = 0, f (0) = 0. (12)286

Suppose ∃ a Lyapunov function V(x) : Rn
→ R+∪{0}. If the287

inequality (13) is satisfied with η > 0, µ > 0, γ ∈ (0, 1), and288

ζ > 1289

V̇ ≤ −ηVγ (x)− µVζ (x). (13)290

Then, origin is a globally fixed time stable point and the291

bound of settling time Tb for the state x(t) is given as292

Tb < Tmax :=
1

η(1− γ )
+

1
µ(ζ − 1)

. (14)293

Lemma 2: [61] Considering a chain of integrator system294

ż1 = z2,295

ż2 = z3,296

· · ·297

żn = v(t). (15)298

Here, the input variable v(t) is given as299

v(t) = v11(t)+ v12(t), (16)300

where301

v11(t) = q1(t)+ q2(t)+ · · · + qn(t),302

v12(t) = w1(t)+ w2(t)+ · · · + wn(t),303

qi(t) = −ki|zi(t)|bisign(zi(t)) for i = 1, . . . , n,304

wi(t) = −li|zi(t)|cisign(zi(t)) for i = 1, . . . , n. (17)305

The parameter bi satisfies bi ∈ (0, 1) and holds the relation306

bi−1 = bibi+1/(2bi+1 − bi) for i = 2, . . . , n. bn+1 = 1 and307

bn = b where b ∈ (1 − ε, 1) for significantly small value of 308

ε > 0. Similarly, ci > 1 for i = 1, . . . , n satisfies the relation 309

ci−1 = cici+1/(2ci+1 − ci), i = 2, . . . , n, cn+1 = 1 and 310

cn = c where c ∈ (1, 1+ ε1) for a small value of ε1 > 0. The 311

controller gains ki and li are selected according to Hurwitz 312

polynomials. Matrices that complies the Hurwitz conditions 313

are given below. 314

The above system design will achieve a fixed time conver- 315

gence of state variable [z1, z2, . . . , zn]T to zero. The time of 316

convergence Tc satisfies the following inequality 317

Tc ≤
λ
ρ
max(P1)
r0ρ

+
1

r1ωrω
, (18) 318

where ρ = (1 − b)/b, ω = (c − 1)/c, r0 =
λmin(Q1)
λmax(P1)

, r1 = 319

λmin(Q2)
λmax(P2)

, r ≤ λmin(P2) > 0, and λmin(·) and λmax(·) represents 320

the minimum and maximum eigenvalues of the correspond- 321

ing matrices. The parameter Q1, Q2, P1, and P2 are sym- 322

metric positive definite matrices that satisfies the following 323

equations 324

P1A1 + AT1 P1 = −Q1, 325

P2A2 + AT2 P2 = −Q2, (19) 326

where 327

A1 =


0 1 0 · · · 0
0 0 1 · · · 0
· · ·

0 0 0 · · · 1
−k1 − k2 − k3 · · · − kn

 , (20) 328

A2 =


0 1 0 · · · 0
0 0 1 · · · 0
· · ·

0 0 0 · · · 1
−l1 − l2 − l3 · · · − ln

 . (21) 329

III. PROPOSED CONTROL DESIGN 330

This section proposes a composite control scheme by inte- 331

grating a new fixed-time ESO with a fixed-time integral 332

SMC design. Figure 1 presents the schematic diagram of the 333

proposed control algorithm. The proposed approach has the 334

following benefits. The ESO estimates the total disturbance 335

within a fixed time, and the output of ESO, i.e., the distur- 336

bance estimation variable, is fed to the composite control law. 337

Consequently, the ESO output attenuates the majority of sys- 338

tem disturbances in fixed time without depending on the large 339

switching gain of discontinuous SMC component. As a result, 340

the input chattering gets alleviated significantly. At the same 341

time, the proposed ISMC achieves a fixed time convergence 342

of sliding surface and relative state. Moreover, it offers the 343

resilience property against unknown disturbances from the 344

very initial time t = 0 since there is no reaching phase. 345

A. FIXED-TIME EXTENDED STATE OBSERVER 346

This subsection talks about the modeling of fixed-time ESO 347

that estimates the total disturbance in the maglev system 348

within a fixed time. Moreover, the convergence analysis of 349

the given ESO is also illustrated. 350
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FIGURE 1. Block diagram of the composite ESO-ISMC design.

Suppose x̂2 is the estimate of x2, which is obtained from351

the fixed-time ESO. Further, estimation error in x2 is given as352

ẽ2 = x̂2 − x2. (22)353

Then, the equations of fixed-time ESO is defined as [59]354

˙̂x2 = au− g− µ1|ẽ2|α1sign(ẽ2)− µ2|ẽ2|β1sign(ẽ2)+ d̂,355

(23a)356

˙̂d = −µ3|ẽ2|α2sign(ẽ2)− µ4|ẽ2|β2sign(ẽ2)− χsign(ẽ2),357

(23b)358

where d̂ is the estimate of disturbance d , ẽ2 denotes the esti-359

mation error, the parameterα1 ∈ (0, 1),β1 > 1,α2 = 2α1−1,360

β2 = 2β1 − 1, χ > ‖ḋ‖, and µ1 > 0, µ2 > 0, µ3 > 0, and361

µ4 > 0 are the observer gains to be designed.362

The following theorem establishes the fixed time conver-363

gence of disturbance estimation error to zero.364

Theorem 1: Considering the maglev dynamics (7) with365

Assumption 2. The given fixed-time ESO (23) will estimate366

the total disturbance d within a fixed time. Further, the esti-367

mation error will converge to the origin within the following368

convergence time bound Tc369

Tc ≤
λmax(A1)(1−α1)

λ1(1− α1)
+

1
λ2(β1 − 1)w̄(β1−1)

, (24)370

where λ1 =
λmin(Q1)
λmax(A1)

, λ2 =
λmin(Q2)
λmax(A2)

, λmin ≥ w̄ > 0, and Q1,371

Q2, A1, and A2 are positive definite matrices that satisfies372

A1P1 + PT1 A1 = −Q1,373

A2P2 + PT2 A2 = −Q2, (25)374

where375

P1 =
[
−µ1 1
−µ3 0

]
, P2 =

[
−µ2 1
−µ4 0

]
. (26)376

Proof: Defining the error variables as377

ẽ2 = x̂2 − x2, (27a)378

d̃ = d̂−d . (27b)379

Error dynamics of x2 can be defined using (23) and (27) as380

˙̃e2 = ˙̂x2 − ẋ2,381

= au− g− µ1|ẽ2|α1sign(ẽ2)− µ2|ẽ2|β1sign(ẽ2)382

+d̂ − au+ g− d,383

= (d̂ − d)− µ1|ẽ2|α1sign(ẽ2)− µ2|ẽ2|β1sign(ẽ2), 384

= d̃ − µ1|ẽ2|α1sign(ẽ2)− µ2|ẽ2|β1sign(ẽ2). (28) 385

Similarly, the disturbance estimation error dynamics is 386

˙̃d = ˙̂d − ḋ, 387

= −µ3|ẽ2|α2sign(ẽ2)− µ4|ẽ2|β2sign(ẽ2)− ḋ . (29) 388

Therefore, the relative dynamics of ESO is given as 389

˙̃e2 = d̃ − µ1|ẽ2|α1sign(ẽ2)− µ2|ẽ2|β1sign(ẽ2), 390

˙̃d = −µ3|ẽ2|α2sign(ẽ2)− µ4|ẽ2|β2sign(ẽ2)− ḋ . (30) 391

Now, according to the fixed-time convergence analysis 392

of non-recursive observer given in [54], the error dynamics 393

ẽ2 and d̃ is guaranteed to converge to zero in a fixed time. 394

As a result, the lumped disturbance can be estimated within a 395

fixed time bound Tc, which is defined in (24). Thus, the proof 396

of Theorem 1 is completed. � 397

In the next part, the output of fixed-time ESO, i.e., the 398

variable d̂ , is combined with the fixed-time ISMC structure to 399

formulate the proposed composite control law for the maglev 400

system. 401

B. COMPOSITE CONTROL STRUCTURE USING FIXED-TIME 402

ESO AND ISMC 403

First, an integral sliding surface is constructed using the 404

system error variables. Then, the fixed-time integral sliding 405

mode control is designed using the inverse dynamics tech- 406

nique by taking the derivative of the sliding surface. Later, the 407

output of fixed-time ESO is combined with the given integral 408

sliding mode control law to obtain the proposed composite 409

control scheme. 410

Inspired from [62], the structure of the integral sliding 411

surface σ ∈ R is given as 412

σ = x̃2+
∫ (

k1|x̃1|a1sign(x̃1)+ k2|x̃2|a2sign(x̃2)
+l1|x̃1|b1sign(x̃1)+ l2|x̃2|b2sign(x̃2)

)
dt (31) 413

where a1 ∈ (0, 1), a2 ∈ (0, 1), b1 > 1, and b2 > 1 are 414

exponents, and they are designed as per the condition of 415

Lemma 2. Further, gain parameters k1 > 0, k2 > 0, l1 > 0, 416

and l2 > 0 need to be designed. 417

The time derivative of σ yields 418

σ̇ = ˙̃x2 + k1|x̃1|a1sign(x̃1)+ k2|x̃2|a2sign(x̃2) 419

+l1|x̃1|b1sign(x̃1)+ l2|x̃2|b2sign(x̃2). (32) 420
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Substituting ˙̃x2 from (9b) into (32) gives421

σ̇ = au−g− ẍr + k1|x̃1|a1sign(x̃1)+ k2|x̃2|a2sign(x̃2)422

+l1|x̃1|b1sign(x̃1)+ l2|x̃2|b2sign(x̃2)+ d . (33)423

The proposed composite control law u comprises two parts:424

nominal component unom and discontinuous component udisc.425

The objective of nominal control is to cancel all the unwanted426

parts of the closed-loop dynamics and drive the system trajec-427

tories to the intended position and velocity. Meanwhile, the428

discontinuous control achieves the fixed time convergence429

result and attenuates the impact of remaining uncertainties430

and disturbances from the ESO approach.431

The proposed fixed-time ESO-ISMC law u is designed432

using generalized dynamic inversion method as433

u =
1
a
(unom + udisc), (34)434

where435

unom = g− ẍr − k1|x̃1|a1sign(x̃1)− k2|x̃2|a2sign(x̃2)436

−l1|x̃1|b1sign(x̃1)− l2|x̃2|b2sign(x̃2)− d̂, (35)437

udisc = −c1|σ |γ1sign(σ )− c2|σ |γ2sign(σ ), (36)438

where c1 > 0 and c2 > 0 are small gains, which handle439

the residual errors and determine the rate of convergence.440

Further, parameters γ1 and γ2 are the exponents that satisfy441

0 < γ1 < 1 and γ2 > 1.442

Remark 2: Since the proposed scheme is a combination of443

fixed-time ESO and fixed-time ISMC, it enjoys the benefits444

of both approaches. Therefore, the ESO helps in estimating445

the system disturbance within a fixed time and the observed446

disturbance attenuates the actual disturbance using the feed-447

forward compensation. Thus, it avoids the application of a448

large value of switching gain in the ISMC approach, which449

in turn reduces the input chattering. In addition, the proposed450

sliding surface structure ensures the fixed time convergence451

of relative state trajectories. Moreover, the integral surface452

design enables the closed-loop system to start from the sliding453

phase from the initial time. As a result, the robustness of the454

proposed methodology is reinforced from the starting time,455

which is also beneficial since ESO initially takes a short time456

to estimate the disturbance.457

Remark 3: The parameters c1 and c2 are positive constants458

that dictate the convergence time of system trajectories. How-459

ever, large values of c1 and c2 can create input chattering.460

Therefore, one needs to make a trade-off between the desired461

rate of convergence and the allowable limit of chattering.462

IV. CLOSED-LOOP STABILITY ANALYSIS463

Theorem 2: Consider the sliding dynamics (33) under464

Assumption 2 and the composite control law (34). The pro-465

posed methodology will attain the sliding phase (sigma = 0)466

within a fixed time. Likewise, the error states will also force467

to the origin in a fixed time.468

Proof:The proof of the above theorem is given in two parts.469

In the first part, sliding surface convergence is established,470

and the second part proves the fixed time convergence of the471

relative states.472

Part I: Defining a Lyapunov function V1 as 473

V1 =
1
2
σ 2. (37) 474

The derivative of V1 with respect to time is 475

V̇1 = σ σ̇ . (38) 476

Putting σ̇ from (33) to (38) yields 477

V̇1= σ
(
au−g+ k1|x̃1|a1sign(x̃1)+ k2|x̃2|a2sign(x̃2) 478

+l1|x̃1|b1sign(x̃1)+ l2|x̃2|b2sign(x̃2)− ẍr+ d
)
. (39) 479

Substituting the expression of u from (35) and (36) into (39) 480

V̇1 = σ (d − d̂︸ ︷︷ ︸
d̃

−c1|σ |γ1sign(σ )− c2|σ |γ2sign(σ )). (40) 481

It has already been established in Theorem 1 that when time 482

t > Tc the disturbance estimation error goes to zero, i.e., 483

d̃ = 0. Therefore, Equation (40) can be written as 484

V̇1 = σ (−c1|σ |γ1sign(σ )− c2|σ |γ2sign(σ )), 485

= −c1|σ |γ1+1 − c2|σ |γ2+1, 486

= −c12
γ1+1
2

(
σ 2

2

) γ1+1
2

− c22
γ2+1
2

(
σ 2

2

) γ2+1
2

, 487

V̇1 ≤ −η1V
ξ1
1 − η2V

ξ2
1 , (41) 488

where ηi = 2
γi+1
2 ci > 0, for i = 1, 2, ξ1 =

γ1+1
2 ∈ (0, 1), and 489

ξ2 =
γ2+1
2 > 1. 490

In view of inequality given in Lemma 1, the above equa- 491

tion (41) holds the same condition as (13). Therefore, it can be 492

claimed that the sliding surface will converge to zero within 493

a fixed time. In other words, the sliding phase will achieve in 494

a fixed time. 495

Part II: Since both σ and σ̇ become zero when the sliding 496

phase is achieved. Therefore, σ̇ from (32) can be written as 497

σ̇ = ˙̃x2 + k1|x̃1|a1sign(x̃1)+ k2|x̃2|a2sign(x̃2) 498

+l1|x̃1|b1sign(x̃1)+ l2|x̃2|b2sign(x̃2) = 0. (42) 499

Equation (42) can also be written as 500

˙̃x2 = −k1|x̃1|a1sign(x̃1)− k2|x̃2|a2sign(x̃2) 501

−l1|x̃1|b1sign(x̃1)− l2|x̃2|b2sign(x̃2). (43) 502

The reduced order system after achieving the sliding phase 503

can be written as 504

˙̃x1 = x̃2, 505

˙̃x2 = −k1|x̃1|a1sign(x̃1)− k2|x̃2|a2sign(x̃2)︸ ︷︷ ︸
v1

506

−l1|x̃1|b1sign(x̃1)− l2|x̃2|b2sign(x̃2)︸ ︷︷ ︸
v2

. (44) 507

Therefore, Equation (44) can be expressed as 508

˙̃x1 = x̃2, 509

˙̃x2 = v1 + v2, (45) 510
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where511

v1 = −k1|x̃1|a1sign(x̃1)− k2|x̃2|a2sign(x̃2). (46)512

v2 = −l1|x̃1|b1sign(x̃1)− l2|x̃2|b2sign(x̃2). (47)513

Equation (45) holds the condition of Lemma 2. Thus, the rel-514

ative states x̃1 and x̃2 will go to zero in a fixed time, as assured515

in Lemma 2. Hence, the proof of Theorem 2 is completed. �516

Remark 4: While implementing the proposed controller,517

the following points need to be considered:518

i) The initial condition of integral sliding surface in (31)519

should be selected such that σ (0) = 0. Therefore, the520

initial value of integral is selected as −x̃2(0).521

ii) The switching gain of discontinuous control, i.e., c1 and522

c2, should be skillfully selected to avoid the chattering523

phenomenon and also achieve the desired convergence524

rate.525

iii) Similarly, the gains of fixed-time ESO also need to be526

appropriately chosen in order to quickly estimate and527

compensate the disturbance.528

V. NUMERICAL ANALYSIS529

In order to verify the effectiveness of the proposed composite530

control methodology, the numerical simulation is carried out531

for the maglev system in MATLABr. The maglev system532

is comprised of electrical and mechanical units, including533

an electromagnet, levitating ball, laser sensor, and a power534

converter. The position of the levitating ball is regulated by535

controlling the electric current through the power converter.536

Meanwhile, the laser sensor feeds the relative position mea-537

surement of the ball from the coil to the control processing538

unit. The open-loop maglev system is unstable and highly539

susceptible to external perturbations and uncertainties. There-540

fore, the task of the proposed investigation is to regulate the541

position of a levitating ball in the maglev system under the542

influence of uncertainties and disturbances. The performance543

of the proposed scheme, i.e., fixed time ESO based fixed544

time ISMC (ESO-ISMC), is also compared with an ISMC545

technique [63] and nonsingular fast terminal SMC (NTSMC)546

approach [64].547

In this paper, the parameters of the maglev system are548

taken as: mass of levitating ball M = 450g, the current549

amplifier gainH = 1000, and the acceleration due to gravity550

g = 9.81 m/sec2. Besides, for the purpose of simulation,551

the model uncertainty is considered as 1M = 0.1M and552

1H = 0.1H. The surrounding time varying disturbance is553

considered as554

d0 = 0.3 cos(0.2t)+ 0.2 sin(0.5t).555

The initial and reference values of the state trajectories are556

chosen as557

x1(0) = 0 cm and x2(0) = 0.5,558

xr = 1.5 cm and ẋr = 0.559

Parameter values of the composite control design are given in560

Table 1.561

TABLE 1. Composite control design parameters.

The responses of state variables and the error state trajec- 562

tories are respectively illustrated in Fig. 2 and Fig. 3. It is evi- 563

dent fromFig. 2 that the position of levitating ball (x1) reaches 564

the desired set value, i.e., 1.5 cm under all the schemes. How- 565

ever, the proposed fixed-time ESO-ISMC algorithm achieves 566

faster convergence than the other two approaches. The con- 567

vergence time of state trajectory is evaluatedwhen the relative 568

state settles down to the bound of ‖x̃‖ ≤ 1 × 10−2 and 569

stays within this set. Therefore, the proposed controller (34) 570

takes 2.72 s for convergence, whereas scheme of [63] and [64] 571

accomplish the same bound in 7.87 s and 3.57 s, respectively. 572

Similarly, the velocity of the levitating ball (x2) converges to 573

the origin faster under the composite fixed time ESO-ISMC 574

scheme than in the other two methods (see in bottom plot 575

of Fig. 2). The settling time of relative velocity under these 576

schemes are also given in Table 2. 577

Moreover, the regulation performance is further illustrated 578

using relative state responses of x̃1 and x̃2 in Fig. 3. The errors 579

are approaching zero faster under the proposed composite 580

control than in the ISMC andNTSMC schemes, as seen in this 581

figure. The zoomed-in plots of steady-state response are also 582

shown in Fig. 3, which depicts that the proposed algorithm 583

has a better error convergence bound. The residual bound 584

of error trajectories under different schemes is tabulated in 585

Table 2. The composite fixed time ESO-ISMC scheme effec- 586

tively converges the ‖x̃‖ to a narrower bound, i.e., 3.3×10−5, 587

which is least among the other two approaches. One more 588

thing to notice that the chattering effect is also not present 589

in the relative velocity response under the proposed scheme 590

(visible in zoomed plot of Fig. 3) thanks to the application 591

of fixed-time ESO. On the other hand, under NTSMC [64] 592

and ISMC [63] responses, the effect of chattering is visible 593

in the steady-state response of x̃2. The elaborated discussion 594

on input chattering and its analysis under these schemes are 595

presented in the later paragraph. 596

Figure 4 shows the sliding surface response under the pro- 597

posed composite control technique, the NTSMC scheme [64], 598

and the ISMC [63] design. Note that due to the application 599

of an integral sliding surface, the reaching phase is almost 600

negligible in the composite and the ISMC [63] schemes and 601

the surface starts from zero. Although the convergence of 602

sliding trajectories under NTSMC scheme seems to be fast, 603

the proposed composite scheme has a better transient and 604

steady-state behavior with no fluctuations in its response, 605

as seen in the zoomed-in plot in Fig. 4. On the other 606

hand, the ISMC and NTSMC schemes experience a chatter- 607

ing effect throughout the sliding phase response due to the 608
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FIGURE 2. State trajectory response under different control schemes.

FIGURE 3. Relative state response under different control schemes.

FIGURE 4. Sliding surface response under different control schemes.

application of high gain switching in the discontinuous609

control component.610

The time history of control input response for these three611

schemes is shown in Fig. 5. Simply by looking at these612

responses, it is evident that the proposed scheme has sig-613

nificantly eliminated the input chattering from its control614

response, thanks to the use of ESO. On the contrary, the615

NTSMC has the highest magnitude of chattering. The reason616

TABLE 2. Performance measures under different control schemes.

FIGURE 5. Control input response under different control schemes.

FIGURE 6. Time history of total input variation for three control schemes.

for the presence of chattering in [63] and [64] is the direct 617

dependence on the large gain switching control to attenuate 618

the effect of total disturbance. Moreover, two performance 619

measure functions are evaluated for these control schemes to 620

validate the effective performance of the proposed algorithm 621

quantitatively. Therefore, first, the energy consumed by these 622

control laws is calculated using the energy index (EI) func- 623

tion, defined as 624

EI =
∫ 20

0
|u(t)|2 dt. (48) 625

The calculated EI values are given in Table 2, which illustrates 626

that the proposed method (34) utilizes the least amount of 627

control effort than the algorithms of [63] and [64]. 628

Secondly, the quantitative analysis for the reduction in 629

input chattering is measured using the total variation (TV) 630
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of input function, which is expressed as631

TV =
n∑
i=0

|u(i+ 1)− u(i)| , (49)632

where n represents the total number of control input samples633

for the complete simulation time. The TV values of these con-634

trol strategies are also tabulated in Table 2, which shows that635

the proposed ESO-ISMC scheme has the least TV value. This636

implies that the proposed composite law has minimal input637

variation or, in other words, the chattering effect has been sig-638

nificantly suppressed. In contrast, the other two approaches639

have considerable chattering; therefore, the TV values are640

high in these two comparative methods. The above observa-641

tion can also be visualize through the time history response642

of TV, which is shown in Fig. 6. It is obvious from the TV643

plot that the proposed control has a minimum amplitude of644

variation throughout the simulation than the NTSMC and the645

ISMC methods.646

VI. CONCLUSION647

This paper develops a composite robust control law using648

fixed-time ESO and ISMC for regulating the position of levi-649

tating ball in a maglev system under model uncertainties and650

disturbances. The fixed-time ESO provides three benefits,651

i.e., (i) estimates total disturbance within a fixed time without652

knowing the upper limit of disturbance, (ii) compensates total653

disturbance as feed-forward compensation, and (iii) signifi-654

cantly reduces chattering from ISMC design. Meanwhile, the655

proposed ISMC ensures fixed-time convergence of closed-656

loop signals, better transient response, and equips with bet-657

ter invariance property because of no reaching phase. The658

Lyapunov theory establishes the theoretical results, which659

affirms the fixed time convergence of both sliding and error660

states. Lastly, a comparative simulation analysis illustrates661

the efficacy of the proposed algorithm with respect to the662

state-of-the-art methods. In the future extension, the proposed663

methodology will be realized in the hardware setup to further664

support its real-time implementation.665
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