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ABSTRACT The concept of scaling in the Internet of things (IoT) refers to the capacity of expanding the
number of Internet-connected devices. From the perspective of exponentially increasing IoT devices, scaling
is an important research topic. According to a future flexibility point of view, a smart campus holds significant
importance and requires an in-depth study. This study presents a new scalability categorization, comprising
the device layer, gateway layer, communication layer, and server/cloud layer. Furthermore, the transport
system of the smart campus is assessed and analyzed at the server layer using a custom-based simulator
created in Visual Studio. According to the outcomes, raising the workload causes the server’s response time
to increase. Response time is reduced as a result of scaling up. When scaling up to a specific point and raising
the workload, response time further increases resulting in demanding horizontal scaling in the future. This
study is expected to aid in determining the capabilities of current and upcoming smart transport systems in
the context of smart campuses.

INDEX TERMS Internet of Things, scaling taxonomy, vertical scaling, horizontal scaling, smart campus.

I. INTRODUCTION

The Internet of things (IoT) implements the concept of any-
thing to anybody from anywhere at any time and connects
them using the network service to frame objects as more
smart, efficient, and productive communicators [1]. The IoT
is the most potent technology available today for integrating
numerous heterogeneous devices into a central network for
information access and sharing. The device has sensors and is
networked with computers and mobile devices to share data.
In the last few years, the number of IoT devices are increased
exponentially. With the aid of IoT, the whole world is getting
digital and intelligent enhancement. The cloud provides a
platform to remotely access, retrieve and store data while IoT
devices transmit data over a network resource. In addition,
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cloud computing is envisioned as the leading player in the
fourth industrial revolution to enhance IoT [2]. Devices are
connected to the Web via communication channels such as
Wi-Fi and mobile data connections such as 3G, 4G, long term
evolution (LTE), 5G, and so on. The wide use of IoT devices
for health, transportation, etc. has increased their applications
in different fields of life. Figure 1 depicts the breadth of varied
applications of 10T devices in the real world.

IoT is a superset of the most recent generation of wireless
sensors and actuators networks. The basic concept is that
everything (devices, items, gadgets, objects, or nodes) may
be connected to the Internet at any moment and job. It can
link up to any device over any network by employing some
services for making lives smarter and easier. Some examples
are IoT in home automation, all smart home devices are con-
nected to the internet in the smart home environment to save
energy. While in industries IoT provides a platform to build
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FIGURE 1. Diverse applications of the internet of things [1].

automated industrial systems and applications like assembly
line management. Whereas in the medical field, IoT devices
are being utilized in the smart health care systems for the
assessment and monitoring of patients [1]. It was predicted in
2010 that as the rate of expansion accelerates, the number of
connected gadgets will outnumber the number of possessors.
In 2030, it is expected that the number of linked devices
will reach approximately 90 billion [3], [4], [5]. Table 1
shows the rapid expansion of IoT devices from 2010 to 2030.
Smart transportation, road condition monitoring, traffic man-
agement, smart logistics, smart city, unintentional measures,
urban management, smart sports, smart tourism, smart atmo-
sphere, mobile-Learning, smart manufacturing, smart grids,
smart health care, municipal administration, smart homes,
and home entertainment, are all areas where IoT devices are
used in smart societies [6], [7], [8]. IoT infrastructure also
includes wireless sensor networks, in fact, they are consid-
ered the pivotal element of this infrastructure. IoT objects are
linked to IoT gateways, switches, or hubs, which send data
to IoT cloud servers over a communicating network. IoT idea
functions as a link between the physical and digital worlds,
allowing objects to interact with one another in ways such as
machine/human to human/machine with maximum possible
alternatives [9].

TABLE 1. Estimated annual increase in loT devices.

Year | Globe populace
2010 | 6.8 billion
2015 | 7.2 billion
2020 | 7.6 billion
2025 | 8.1 billion
2030 | 8.5 billion

ToT gadgets | IoT gadgets per human
12.5 billion | 1.84
25 billion 3.47
50 billion 6.58
75 billion 9.27
90 billion 20.5

IoT is a system of networked objects such as sensors
(smartphones, vehicles, buildings, etc.) and actuators that
generate a significant amount of data, which results in big
Data. The sensing devices continually gather and transfer
data to the IoT server. Big data is termed as 4Vs: volume,
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value, velocity, and variety. In the decade 2010-2020, the
data capacity rose forty-four times and reached 35 ZB from
0.8 ZB. As a result, future IoT applications may face scal-
ing difficulties due to the massive influx of data from IoT
objects [10]. Scaling, in the IoT, refers to the future expan-
sion of linked objects with the Internet which are used for
detecting, updating, monitoring, and sending data in order to
create information and gain understanding to accommodate
more data processes over the normal case.

The discussed research works are analogous to such
research highlights in terms of framework, a number of gad-
gets, gateways/routers, transmission technologies, and server
types; however, the layout of the selective campus, the num-
ber of gateways, devices, transmission technologies, and the
kind of server machines are all dissimilar. The created sys-
tem uses instantaneous methods and transmits available data
to make decisions, which is the research’s main innovation.
Keeping these points in view, this study participates toward
scalability solutions and makes the following key contribu-
tions

o« A new scaling classification approach is presented
which is divided into four layers: device layer, gateway
layer, communication layer, and server layer. The clas-
sification is based on IoT infrastructure. Gateways are
used at the edge to provide wired or wireless connectiv-
ity to IoT objects. Devices are employed so that verti-
cal and horizontal scaling may be implemented, much
like at gateways. The cloud/server is connected to the
gateways via wired or wireless connection. As a result,
scalability may be used at both the communication and
server levels.

o The vertical scaling is performed and assessed of the
transport system for the smart campus at the server layer.
A custom-built simulator is utilized, as a case study, for
accessing the vertical scaling of a smart transport system
at the server layer.

o Performance is analyzed regarding different parameters
like the number of buses, response time, etc. Perfor-
mance with existing studies is also carried out to analyze
the efficiency of the proposed approach.

The remainder of the article is explained as follows.
Related work is presented in Section II, Scaling is explored
in-depth in Section III. Section IV discusses scaling testing.
Results and discussion are presented in Section V, and the
conclusion is ultimately finalized in Section VI.

Il. RELATED WORK

The number of research studies has boomed for [oT during
recent years and several important aspects of IoT technol-
ogy have been investigated. For example, a container tech-
nology is suggested by Aruna and Pradeep in [11] to link
many [oT objects at gateways for IoT applications. The tech-
nology is utilized to store and process data, allowing the
network to grow while improving network proficiency. The
container technique is utilized in clusters in a distributed fash-
ion. In [12], the authors suggested a decentralized method for
scalability in which a hybrid cloud computing environment
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(private for delicate and public for large data) is used for the
management of data to exchange data among many partners.
Gharbieh et al. [13] presented a tempo-spatial mathematical
framework stochastic geometry and queuing theory to get
over the restricted uplink bandwidth of mobile networks,
which is a scaling challenge at the communication layer.
To entertain vertical scaling in communication channels, the
framework enforced three communication techniques: back
off, communication consistency, and energy ramping. IoT
devices are connected gateways to upload collected data using
uplink bandwidth. The uplink bandwidth should be scalable
to accommodate varying requirements of more captured data.
So, this technique impacts IoT technology to enhance scala-
bility. In [14], Lenka et al. developed a method for making
the IoT network scalable by separating clusters as sensing
regions, accumulating the gathered data, and communicating
to decrease power consumption.

Diyan et al. [15] presented a Data Loading and Storing
Module (DLSM)-based scalable multitasking Internet of
Things Gateway (IoTGW) for the contemporary IoT era
(DLSM). A highly dynamic distributed framework is made
possible by the combination of the offered DLSM mod-
ule with the Gateway module’s services, which include an
orchestrator, versatility in the sensing domain, and appli-
cation domain. Additionally, a hybrid Adaboost-Multilayer
Perceptron data classifier module was added to the pro-
posed work to improve the service delivery of IoT gate-
ways to numerous [oT application facilities and protocols and
to support IoT requirements for multitasking, classification,
interoperability, and quick data distribution between multiple
modules.

Raj and Srinivasulu [16] created a working prototype for a
Raspberry Pi VPN gateway that connects the local network
to the ISP network. Through this network employing the sug-
gested prototype assured security and scalability.

People’s lives are changing as a result of intelligent things
and applications that are used in every aspect of life. One
of the crucial technical supports among them is the loca-
tion service. Location prediction is a crucial component of
location-based services and is essential to both the recom-
mender system and the design of urban resources. Currently,
position prediction tasks make extensive use of GPS-based
trajectory data. The category of spatiotemporal series data,
which also includes time and location information, includes
GPS trajectory data. The intelligent optimization algorithm
significantly improves optimization technology and offers a
workable solution for those combinatorial optimization issues
that conventional optimization technology finds challenging.
GPS trajectory data offers the benefits of extensive coverage,
rapid updating, simple collecting, and low cost, and it also
denotes a variety of road network data. In turn, this has led
to the steady emergence of GPS user trajectory data as a
fresh source of information for the automatically generated
urban road network and as a popular area of study for many
researchers [17]. In order to address the drawbacks of cur-
rent GPS tracking and positioning, the scholars also intro-
duced the notion of a swarm intelligence algorithm. A Swarm
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intelligence algorithm is used to create and implement a data
analysis and behavior prediction system for computing GPS
user trajectory.

After identifying the required criteria of a smart uni-
versity/campus, Ferndndez-Caramés and Fraga-Lamas [18]
explored state-of-the-art transmission techniques and
blockchain-type architecture. In [19], Marques et al. dis-
cussed the scaling, mobility, and availability of IoT improve-
ments in health care, as well as portability and privacy issues
of IoT. In [20], the authors looked into the security trade-offs
of the smart home.

Nie [21] introduced the use of cloud computing and the
IoT in education. The discussion of the current state of smart
campuses was followed by an explanation of how digital
campuses differ from smart campuses in terms of both old
and new technologies. By developing a model and application
structure for a smart campus based on cloud computing and
the IoT, examining how to use it, and lastly talking about how
to implement it extensively.

Cloud computing and associated technologies were pre-
sented by Li [22], who then examined the requirements for a
smart campus service platform and, in light of those findings,
created a smart campus service platform based on cloud com-
puting technology to support the growth of smart campuses.

Innovative tracking methods in automobile or transporta-
tion systems, among other IoT-based applications, demand
the movement of the IoT device across various IoT technolo-
gies. Ayoub et al. [23] analyzed two multi-attribute decision-
making procedures, TOPSIS and SAW, and examined four
LPWAN strategies to determine the best IoT solution based
on factors like bit rate, coverage, energy consumption, etc.
In terms of selecting and organizing the technologies, the
TOPSIS technique outperforms SAW. SAW has a shorter run-
ning time, though.

IIl. SCALING IN loT
Scalability is separated into two kinds, are further subdivided
into several sorts and layers.

A. SCALABILITY IN CASE OF IoT FUTURE FLEXIBILITY

In an IoT system, scaling also discusses the upcoming flexi-
bility. In case the setup does not fulfill varying needs, it is nec-
essary to restructure it, which is budget and time-intensive.
Vertical and horizontal scaling are the two forms of scaling
that may be distinguished with respect to flexibility [24]. The
next sections go through the specifications of each kind.

1) VERTICAL SCALING

Vertical scaling is also termed scaling up. Vertical scalability
implies the capacity of an IoT server, transmission media
bandwidth, gateways, and devices to facilitate additional data
than typical function [25]. It belongs to the capability and effi-
cacy of assets such as executing capability, communication
bandwidth, and storage ability of linked devices in fulfilling
varying desires. The advantages of this form of scaling are
that it involves less energy than many nodes, it is simpler
to control owing to a single machine unit, and cost, soft-
ware implementation, arrangement, installation, and all are
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manageable. There are also particular problems, such as
the probability of machine malfunction, a greater working
expense, and so on.

2) HORIZONTAL SCALING

Horizontal scaling also called scaling out, implies a setup that
can control huge expansion in the number of IoT servers,
devices, gateways, and hardware-software nodes and tackle
greater info process whilst running as a unified node [26].
The notion is that with the increasing number of IoT cloud
servers, routers/gateways, and devices, the setup should adapt
to accommodate varying upcoming needs. The cluster of
nodes in a workload balancing system that spreads data uni-
formly across numerous nodes is an illustration of horizontal
scaling. Horizontal scalability is advantageous with a bigger
collective performance than an individual typical system and
the reality that if one machine crashes, the whole scheme does
not get worse.

Types of
Scalabilities

IoT
Infrastructur

¥ ¥ ]
Device Comm. Gateway Server Vertical Horizontal
Layer Layer Layer Layer Scalability Scalability

FIGURE 2. Classification of various scaling layers utilized in loT.

B. SCALABILITY IN CASE OF IoT INFRASTRUCTURE

The suggested taxonomy is divided into four categories based
on the usage of scaling at dissimilar layers in the case of IoT
infrastructure: device layer, communication layer, gateway
layer, and server layer scaling. The proposed classification
of scaling layers utilized in IoT is also shown in Figure 2.
Figure 3 explains the application of vertical or horizontal
scaling at device, gateway, communication, or server layers.

1) DEVICE LAYER

Vertical scaling is utilized at the device layer as the sens-
ing devices’ ability is enhanced. Sensor capacity is often
enhanced by substituting earlier sensing devices with the
latest, greater-ability equivalents. Horizontal scalability is
applied as the number of sensing devices is expanded. This
is applied when the surrounding area of installed sensors
inflates. Because of the system’s scalability, it is simple
to add or detach sensing nodes from an existing system
and customize each sensing node’s purpose (what data to
produce) [27].

2) GATEWAY LAYER

Vertical scaling is also applied at the gateway layer when
processing ability, volatile storing space, memory, and other
components are raised. When the number of gateways
expands, horizontal scaling is applied. Scalability is guaran-
teed at gateway in [16].

VOLUME 10, 2022

3) COMMUNICATION LAYER

Normally, the communication channel’s uplink capacity is
relatively lower [13]. IoT sensors collect data from the envi-
ronments and transmit it to the IoT server/cloud through an
uplink bandwidth. Vertical scaling is applied as the transmis-
sion capability of a communication link is raised. Horizon-
tal scaling is applied as the number of transmission links is
expanded.

4) SERVER/CLOUD LAYER

Vertical scaling is applied as the processing capability, stor-
age capability, and hard disk space of a server at the
server/cloud layer are raised, while horizontal scalability is
used when the number of servers is increased.

Server Layer Comm. Layer Gateway Layer

.l i il B

Horizontal Scaling

Device Layer

Vertical Scaling

=

FIGURE 3. Distribution of scaling layers.

IV. TESTING OF SCALING FOR SMART CAMPUS
TRANSPORT SYSTEM

The transport system of a smart varsity campus is nominated
as a research study in the modern age of IoT when every field
of life is attempting to be smart by utilizing IoT technologies.
A bespoke virtual data source/sender and server/sink (Emu-
lator) is created to evaluate the scaling ability. Utilizing the
Microsoft Transport datasets [28], [29], [30], a smart trans-
port system for a varsity campus is simulated in this study.
The dataset is in a comma-separated values (CSV) format
and comprises 17621 records. Each record contains paths and
contains geographical information including latitude, longi-
tude, and altitude. Moreover, it has global positioning sys-
tem (GPS) information, as well as, the date and time stamp
collected at different time spans over four years. Using this
information, Microsoft Visual Studio using C# (C-Sharp) is
used to develop a customized simulating software with virtual
data senders and a server.

Before designing the simulator, different classifiers are
applied to the dataset to evaluate the performance of these
classifiers. For this purpose, k nearest neighbor, Naive Bayes,
logistic regression, decision tree, and support vector machine
is utilized. Table 2 presents the accuracy, precision, and recall
of the above-mentioned classifiers. The statistics show that
the decision tree outperforms the selected classifiers.
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TABLE 2. Evaluation metrics of classifiers.

Classifier Accuracy | Precision | Recall
Naive Bayes 0.79 0.80 0.79
Logistic Regression 0.87 0.88 0.86
k Nearest Neighbor 0.84 0.83 0.84
Support Vector Machine | 0.86 0.85 0.86
Decision Tree 0.93 0.94 0.93
Random Forest 0.92 0.92 0.92

The comparison of classifiers is also depicted in Figure 4.
Here accuracy, precision, and recall of different classifiers
are illustrated as bars. The accuracy, precision, and recall
bars of the decision tree has more heights than others so its
performance is the best. So decision tree is implemented in a
custom-built simulator.

Comparison of Classifiers

0.85
0.8

0.75 I I
7

® Accuracy
u Precision

Recall

o

Naive Bayes  Logistic k Nearest Support  Decision Tree  Random
Regression  Neighbor Vector Forest
Machine

FIGURE 4. Comparison of classifiers.

The simulator’s major role is to deliver GPS data to the
virtual IoT server in the form of virtual packets. These GPS
data packets are created with the help of a dataset [28], [29],
[30] and common-purpose GPS attributes accumulating in a
CSV file. Latitude, longitude, and altitude, along with the
time stamp are the most essential data items logged. The
server administers the internal queue buffer to accommodate
the incoming data. The IoT cloud server requires a bit of
time to process all of the virtual GPS data packets, which
implies that one executing cycle might consume ¢ ms, where
ms indicates milliseconds. The factor of delaying is simulated
by computing the length L of the arrived virtual GPS data
packet and utilizing that number L is the top limit of the
delaying factor, with 10 ms as the lower limit. The delaying
factor can now be written as

Ipacket = rand(10, L) (1

where fpacker 18 the packet executing time, rand() is the ran-
dom function, L is the length of the packet, and the capacity
limit of the virtual server’s buffer queue is 100 packets by
default.

Virtual bus data are located in the source/sender buffer
to mimic server workload handling, which delivers data at
the pace indicated by the bus occurrence feature. The virtual
IoT server/receiver continues to receive data in the arriving
queue and executes packets based on the delaying factor for
every queue GPS data packet. Consequently, the delay in one
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executing cycle can be expressed as under

n
Teycle = Z Ipacket (2)
i

where n is the number of GPS data packets executed in a
particular executing cycle.

The cycle delay uplift with the expansion of b buses as a
result of greater data executing costs; the complete execution
workload is expressed as under

Toverall = Icycle X b (3)

where b is the counting of buses whose GPS data is delivered
to the IoT receiver/server virtually.

The server’s average latency is now computed and written
as follows

Toverall
4
N 4)

The aggregate GPS data packets in the queuing buffer at
the last of the execution cycle are represented by N.

On normal load circumstances, Figure 5 represents a graph
of data execution time in ms at several time spans. It is found
that execution time varies with time and peaks after a specific
duration. When the load on the virtual IoT server is raised
by adding additional buses, the time it takes to complete the
task increases, resulting in a rising curve in Figure 6. Simi-
larly, scaling up the IoT server diminishes processing time by
reducing the least element of single GPS data packet delay,
for instance, from 10 to 2 with five steps by decreasing 2
each time. In the random function, the decreasing fixed value
widens the lowest and largest range for individual GPS data
packet delay, effectively increasing the chance of minimal
number choice. Figure 7 shows a falling curve.

Additionally, packet loss is another significant issue that
degrades server efficiency. It happens when the IoT server
is overloaded with packet processing and gains more time
than the virtual IoT sender delivering GPS location packets.
For instance, the queue will begin to enlarge, and its size
will continue to rise till it extends to the highest capacity of
100 data packets. On this occasion, the IoT server will discard
the virtual senders’ received packets, causing them to drop the
packets.

tavemge =

A. PROPOSED ALGORITHM

The following four phases make up the primary algorithm
for assessing vertical scalability. The algorithm’s flowchart
is presented in Figure 8.

o Step 1: The virtualized transmitters send the busses’
position data (latitude, longitude, altitude) with date and
time to the virtualized IoT receiver/server.

o Step 2: The virtualized IoT server executes all awaiting
data packets from the virtualized IoT sources/senders
while queued data packets reach the server’s highest
ability.

o Step 3: Step 2 is iterated by rising the number of auto-
mobiles from the virtualized IoT senders to raise the
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FIGURE 7. After scaling up, the performance of a virtual loT server is shown.

receiver’s workload until the server has become extra
loaded and starts discarding arriving packets.

« Step 4: Vertical scalability is utilized to effectively man-
age more traffic / adjust extra buses by enlarging the exe-
cution power of the virtualized IoT server. It is done in
this simulation by lessening the execution latency until
it achieves a minimum definite level.

« Step 5: Then, we intend to apply horizontal scalability to
the virtual server in the future, e.g. we will increase the
number of worker threads that are emulating the server
so that the performance will now increase again.

V. RESULTS AND DISCUSSIONS

The future flexibility or scaling ability is assessed utiliz-
ing three distinct sorts of workloads: light, average, and
big. When a light workload is imposed, the simulation
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effortlessly executes the GPS packets. Figure 5 represents a
graph presenting standard operation, with the x-axis showing
system time and y-axis representing processing time. When
an average workload is introduced by expanding the number
of buses, the simulation performs normally and gives a rea-
sonable behavior of how the setup works. As soon as there
is surging in packets caused by an increase in the number
of busses in certain rush conditions, for example, admission
process days or exam days, or just by an increase in the
number of enrolled students, the simulator displayed a graph
overburdening, as illustrated in Figure 6.

As seen in Figure 7, when scaling up or vertically scaling
is utilized, the average execution time reduces again. As the
number of enrolled students is rising, and smart varsity costs
are also rising, as a result, the smart campus will expand
admitting more students so the number of busses will also
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FIGURE 8. The scalability testing flowchart.

TABLE 3. Number of buses vs execution time statistics.

Buss count | Average execution time
6 34 ms

12 108 ms

21 785 ms

26 790 ms

33 827 ms

increase for picking up and dropping off admitted students
for facilitating them for meeting high costs. As the number of
buses grows, the average execution time rises as well, requir-
ing horizontally scaling out in the future. Table 3 demon-
strates the number of busses and the average packet process-
ing response time in ms.

Figure 9 depicts the link between the average packet exe-
cution time and the number of buses. The average execution
time is 34 ms with a load of 6 buses. The average execution
time is increased for 33 buses to 827 ms. When the number
of buses is extremely high to evaluate vertical scalability, the
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results are not comparable, showing bottlenecks. Horizontal
scalability can now be used in the future as mentioned in the
flowchart.

Table 4 compares the assessment of smart campus trans-
portation to prior studies. The load balancing of smart trans-
portation utilizing vertical scaling assessment is explored,
which is a completely new feature of the smart campus. Prior
to this study, only the smart campus or smart transportation
were studied separately, and in some cases, just architecture
was offered, as in [22]. The algorithms are proposed along
with statistical analyses, such as accuracy, precision, and
recall, due to the more technical dive into the scenario.

Normally, in previous work, the debate was theoretical
rather than technical. Because algorithms are provided with
statistics, the work is completely new and unique in this
regard. Table 4 displays entries marked as ND indicating that
these parameters are not discussed. Several aspects are not
covered by the existing literature, as shown in Table 4, like
selected method, datasets, the context of the study, etc.
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TABLE 4. Comparison of vertical scaling assessment with previous studies.

Citation Method Dataset Evaluation parameters Context
(Instances/Features)
[21] Decision Support ND ND ND ND Smart Campus
[22] SAAS, PAAS & IAAS | ND ND ND ND Smart Campus
[23] LPWAN technologies ND ND ND ND Smart Campus
[31] PNN ND 0.80 | ND ND Intelligent Transport
[32] GP & Regression MAP DB 091 | 094 | ND Smart Campus
Proposed Method | Decision Tree 17621/4 093 | 094 | 093 Smart Campus
VI. CONCLUSION
Bus Count Vs Response Time The unique taxonomy explains scalability types in the case
35 33 900 of vertical and horizontal scaling (IoT future flexibility) and
- 7 800 device layer, communication layer, gateway layer, and server
26 700 layer (IoT infrastructure). A custom-built simulator is uti-
# 21 600 lized to test vertical scaling at the server layer. There are
20 500 three sorts of loads: regular, medium, and large. The average
i 40 execution time of the IoT server raises when the workload
& st is high. After that vertical scalability is used until a specific
1 . 200 point is reached, at which point the average execution time
5 o8 i is reduced. When the workload on the virtual server is raised,
i . the average execution time of the virtual IoT server also rises.

1 2 3 4 5
mmmm Buss Count  =====Average Execution Time

FIGURE 9. Plot showing response time vs the number of buses.

The GPS devices are installed in every bus, and the GPS
devices periodically send GPS coordinates at random time
intervals via mobile operator network to the smart campus
IoT server. If the GPS data from buses increases due to the
increase in the number of buses, then the IoT server will
be overburdened. To overcome overburdening vertical scal-
ing is applied to IoT servers by enhancing their processing
power, storage capacity, etc. However, GPS coordinates have
an issue of not exact positioning, so it opens new dimensions
for researchers.

Almost every research work has some limitations. The lim-
itations of conducted research work on smart transportation
systems are presented here.

o The simulation is limited to the assessment of vertical
scalability only.

o The buffer of the vertical server is limited to 100 packets,
so more packets is being dropped.

o The scaling steps of the vertical server are limited to five
steps.

o The open nature of smart transportation systems as wire-
less communication technology leads to many security
and privacy challenges.

Smart applications such as smart transportation as well as
smart parking, smart surveillance, smart lighting, etc. can also
be accommodated by the IoT server because the IoT server is
vertically scalable in this particular scenario in which addi-
tional requests can be handled by scaling up the IoT server.
It will benefit the smart campus community and solve the
issues of smart campus.
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The findings demonstrate that when the workload on the IoT
server is high, the execution time of the IoT cloud server
increases and becomes a bottleneck, necessitating horizon-
tal scaling with many IoT cloud servers in the future. This
study opens possibilities of how to use scaling while creat-
ing IoT systems at various layers, with appropriate vertical
or horizontal types, to make the system adaptable for the
future.
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