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ABSTRACT The concept of scaling in the Internet of things (IoT) refers to the capacity of expanding the
number of Internet-connected devices. From the perspective of exponentially increasing IoT devices, scaling
is an important research topic. According to a future flexibility point of view, a smart campus holds significant
importance and requires an in-depth study. This study presents a new scalability categorization, comprising
the device layer, gateway layer, communication layer, and server/cloud layer. Furthermore, the transport
system of the smart campus is assessed and analyzed at the server layer using a custom-based simulator
created in Visual Studio. According to the outcomes, raising the workload causes the server’s response time
to increase. Response time is reduced as a result of scaling up.When scaling up to a specific point and raising
the workload, response time further increases resulting in demanding horizontal scaling in the future. This
study is expected to aid in determining the capabilities of current and upcoming smart transport systems in
the context of smart campuses.

12 INDEX TERMS Internet of Things, scaling taxonomy, vertical scaling, horizontal scaling, smart campus.

I. INTRODUCTION13

The Internet of things (IoT) implements the concept of any-14

thing to anybody from anywhere at any time and connects15

them using the network service to frame objects as more16

smart, efficient, and productive communicators [1]. The IoT17

is the most potent technology available today for integrating18

numerous heterogeneous devices into a central network for19

information access and sharing. The device has sensors and is20

networked with computers and mobile devices to share data.21

In the last few years, the number of IoT devices are increased22

exponentially. With the aid of IoT, the whole world is getting23

digital and intelligent enhancement. The cloud provides a24

platform to remotely access, retrieve and store data while IoT25

devices transmit data over a network resource. In addition,26

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

cloud computing is envisioned as the leading player in the 27

fourth industrial revolution to enhance IoT [2]. Devices are 28

connected to the Web via communication channels such as 29

Wi-Fi and mobile data connections such as 3G, 4G, long term 30

evolution (LTE), 5G, and so on. The wide use of IoT devices 31

for health, transportation, etc. has increased their applications 32

in different fields of life. Figure 1 depicts the breadth of varied 33

applications of IoT devices in the real world. 34

IoT is a superset of the most recent generation of wireless 35

sensors and actuators networks. The basic concept is that 36

everything (devices, items, gadgets, objects, or nodes) may 37

be connected to the Internet at any moment and job. It can 38

link up to any device over any network by employing some 39

services for making lives smarter and easier. Some examples 40

are IoT in home automation, all smart home devices are con- 41

nected to the internet in the smart home environment to save 42

energy. While in industries IoT provides a platform to build 43
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FIGURE 1. Diverse applications of the internet of things [1].

automated industrial systems and applications like assembly44

line management. Whereas in the medical field, IoT devices45

are being utilized in the smart health care systems for the46

assessment and monitoring of patients [1]. It was predicted in47

2010 that as the rate of expansion accelerates, the number of48

connected gadgets will outnumber the number of possessors.49

In 2030, it is expected that the number of linked devices50

will reach approximately 90 billion [3], [4], [5]. Table 151

shows the rapid expansion of IoT devices from 2010 to 2030.52

Smart transportation, road condition monitoring, traffic man-53

agement, smart logistics, smart city, unintentional measures,54

urban management, smart sports, smart tourism, smart atmo-55

sphere, mobile-Learning, smart manufacturing, smart grids,56

smart health care, municipal administration, smart homes,57

and home entertainment, are all areas where IoT devices are58

used in smart societies [6], [7], [8]. IoT infrastructure also59

includes wireless sensor networks, in fact, they are consid-60

ered the pivotal element of this infrastructure. IoT objects are61

linked to IoT gateways, switches, or hubs, which send data62

to IoT cloud servers over a communicating network. IoT idea63

functions as a link between the physical and digital worlds,64

allowing objects to interact with one another in ways such as65

machine/human to human/machine with maximum possible66

alternatives [9].67

TABLE 1. Estimated annual increase in IoT devices.

IoT is a system of networked objects such as sensors68

(smartphones, vehicles, buildings, etc.) and actuators that69

generate a significant amount of data, which results in big70

Data. The sensing devices continually gather and transfer71

data to the IoT server. Big data is termed as 4Vs: volume,72

value, velocity, and variety. In the decade 2010-2020, the 73

data capacity rose forty-four times and reached 35 ZB from 74

0.8 ZB. As a result, future IoT applications may face scal- 75

ing difficulties due to the massive influx of data from IoT 76

objects [10]. Scaling, in the IoT, refers to the future expan- 77

sion of linked objects with the Internet which are used for 78

detecting, updating, monitoring, and sending data in order to 79

create information and gain understanding to accommodate 80

more data processes over the normal case. 81

The discussed research works are analogous to such 82

research highlights in terms of framework, a number of gad- 83

gets, gateways/routers, transmission technologies, and server 84

types; however, the layout of the selective campus, the num- 85

ber of gateways, devices, transmission technologies, and the 86

kind of server machines are all dissimilar. The created sys- 87

tem uses instantaneous methods and transmits available data 88

to make decisions, which is the research’s main innovation. 89

Keeping these points in view, this study participates toward 90

scalability solutions and makes the following key contribu- 91

tions 92

• A new scaling classification approach is presented 93

which is divided into four layers: device layer, gateway 94

layer, communication layer, and server layer. The clas- 95

sification is based on IoT infrastructure. Gateways are 96

used at the edge to provide wired or wireless connectiv- 97

ity to IoT objects. Devices are employed so that verti- 98

cal and horizontal scaling may be implemented, much 99

like at gateways. The cloud/server is connected to the 100

gateways via wired or wireless connection. As a result, 101

scalability may be used at both the communication and 102

server levels. 103

• The vertical scaling is performed and assessed of the 104

transport system for the smart campus at the server layer. 105

A custom-built simulator is utilized, as a case study, for 106

accessing the vertical scaling of a smart transport system 107

at the server layer. 108

• Performance is analyzed regarding different parameters 109

like the number of buses, response time, etc. Perfor- 110

mance with existing studies is also carried out to analyze 111

the efficiency of the proposed approach. 112

The remainder of the article is explained as follows. 113

Related work is presented in Section II, Scaling is explored 114

in-depth in Section III. Section IV discusses scaling testing. 115

Results and discussion are presented in Section V, and the 116

conclusion is ultimately finalized in Section VI. 117

II. RELATED WORK 118

The number of research studies has boomed for IoT during 119

recent years and several important aspects of IoT technol- 120

ogy have been investigated. For example, a container tech- 121

nology is suggested by Aruna and Pradeep in [11] to link 122

many IoT objects at gateways for IoT applications. The tech- 123

nology is utilized to store and process data, allowing the 124

network to grow while improving network proficiency. The 125

container technique is utilized in clusters in a distributed fash- 126

ion. In [12], the authors suggested a decentralized method for 127

scalability in which a hybrid cloud computing environment 128
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(private for delicate and public for large data) is used for the129

management of data to exchange data among many partners.130

Gharbieh et al. [13] presented a tempo-spatial mathematical131

framework stochastic geometry and queuing theory to get132

over the restricted uplink bandwidth of mobile networks,133

which is a scaling challenge at the communication layer.134

To entertain vertical scaling in communication channels, the135

framework enforced three communication techniques: back136

off, communication consistency, and energy ramping. IoT137

devices are connected gateways to upload collected data using138

uplink bandwidth. The uplink bandwidth should be scalable139

to accommodate varying requirements of more captured data.140

So, this technique impacts IoT technology to enhance scala-141

bility. In [14], Lenka et al. developed a method for making142

the IoT network scalable by separating clusters as sensing143

regions, accumulating the gathered data, and communicating144

to decrease power consumption.145

Diyan et al. [15] presented a Data Loading and Storing146

Module (DLSM)-based scalable multitasking Internet of147

Things Gateway (IoTGW) for the contemporary IoT era148

(DLSM). A highly dynamic distributed framework is made149

possible by the combination of the offered DLSM mod-150

ule with the Gateway module’s services, which include an151

orchestrator, versatility in the sensing domain, and appli-152

cation domain. Additionally, a hybrid Adaboost-Multilayer153

Perceptron data classifier module was added to the pro-154

posed work to improve the service delivery of IoT gate-155

ways to numerous IoT application facilities and protocols and156

to support IoT requirements for multitasking, classification,157

interoperability, and quick data distribution between multiple158

modules.159

Raj and Srinivasulu [16] created a working prototype for a160

Raspberry Pi VPN gateway that connects the local network161

to the ISP network. Through this network employing the sug-162

gested prototype assured security and scalability.163

People’s lives are changing as a result of intelligent things164

and applications that are used in every aspect of life. One165

of the crucial technical supports among them is the loca-166

tion service. Location prediction is a crucial component of167

location-based services and is essential to both the recom-168

mender system and the design of urban resources. Currently,169

position prediction tasks make extensive use of GPS-based170

trajectory data. The category of spatiotemporal series data,171

which also includes time and location information, includes172

GPS trajectory data. The intelligent optimization algorithm173

significantly improves optimization technology and offers a174

workable solution for those combinatorial optimization issues175

that conventional optimization technology finds challenging.176

GPS trajectory data offers the benefits of extensive coverage,177

rapid updating, simple collecting, and low cost, and it also178

denotes a variety of road network data. In turn, this has led179

to the steady emergence of GPS user trajectory data as a180

fresh source of information for the automatically generated181

urban road network and as a popular area of study for many182

researchers [17]. In order to address the drawbacks of cur-183

rent GPS tracking and positioning, the scholars also intro-184

duced the notion of a swarm intelligence algorithm. A Swarm185

intelligence algorithm is used to create and implement a data 186

analysis and behavior prediction system for computing GPS 187

user trajectory. 188

After identifying the required criteria of a smart uni- 189

versity/campus, Fernández-Caramés and Fraga-Lamas [18] 190

explored state-of-the-art transmission techniques and 191

blockchain-type architecture. In [19], Marques et al. dis- 192

cussed the scaling, mobility, and availability of IoT improve- 193

ments in health care, as well as portability and privacy issues 194

of IoT. In [20], the authors looked into the security trade-offs 195

of the smart home. 196

Nie [21] introduced the use of cloud computing and the 197

IoT in education. The discussion of the current state of smart 198

campuses was followed by an explanation of how digital 199

campuses differ from smart campuses in terms of both old 200

and new technologies. By developing amodel and application 201

structure for a smart campus based on cloud computing and 202

the IoT, examining how to use it, and lastly talking about how 203

to implement it extensively. 204

Cloud computing and associated technologies were pre- 205

sented by Li [22], who then examined the requirements for a 206

smart campus service platform and, in light of those findings, 207

created a smart campus service platform based on cloud com- 208

puting technology to support the growth of smart campuses. 209

Innovative tracking methods in automobile or transporta- 210

tion systems, among other IoT-based applications, demand 211

the movement of the IoT device across various IoT technolo- 212

gies. Ayoub et al. [23] analyzed two multi-attribute decision- 213

making procedures, TOPSIS and SAW, and examined four 214

LPWAN strategies to determine the best IoT solution based 215

on factors like bit rate, coverage, energy consumption, etc. 216

In terms of selecting and organizing the technologies, the 217

TOPSIS technique outperforms SAW. SAWhas a shorter run- 218

ning time, though. 219

III. SCALING IN IoT 220

Scalability is separated into two kinds, are further subdivided 221

into several sorts and layers. 222

A. SCALABILITY IN CASE OF IoT FUTURE FLEXIBILITY 223

In an IoT system, scaling also discusses the upcoming flexi- 224

bility. In case the setup does not fulfill varying needs, it is nec- 225

essary to restructure it, which is budget and time-intensive. 226

Vertical and horizontal scaling are the two forms of scaling 227

that may be distinguished with respect to flexibility [24]. The 228

next sections go through the specifications of each kind. 229

1) VERTICAL SCALING 230

Vertical scaling is also termed scaling up. Vertical scalability 231

implies the capacity of an IoT server, transmission media 232

bandwidth, gateways, and devices to facilitate additional data 233

than typical function [25]. It belongs to the capability and effi- 234

cacy of assets such as executing capability, communication 235

bandwidth, and storage ability of linked devices in fulfilling 236

varying desires. The advantages of this form of scaling are 237

that it involves less energy than many nodes, it is simpler 238

to control owing to a single machine unit, and cost, soft- 239

ware implementation, arrangement, installation, and all are 240
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manageable. There are also particular problems, such as241

the probability of machine malfunction, a greater working242

expense, and so on.243

2) HORIZONTAL SCALING244

Horizontal scaling also called scaling out, implies a setup that245

can control huge expansion in the number of IoT servers,246

devices, gateways, and hardware-software nodes and tackle247

greater info process whilst running as a unified node [26].248

The notion is that with the increasing number of IoT cloud249

servers, routers/gateways, and devices, the setup should adapt250

to accommodate varying upcoming needs. The cluster of251

nodes in a workload balancing system that spreads data uni-252

formly across numerous nodes is an illustration of horizontal253

scaling. Horizontal scalability is advantageous with a bigger254

collective performance than an individual typical system and255

the reality that if onemachine crashes, the whole scheme does256

not get worse.257

FIGURE 2. Classification of various scaling layers utilized in IoT.

B. SCALABILITY IN CASE OF IoT INFRASTRUCTURE258

The suggested taxonomy is divided into four categories based259

on the usage of scaling at dissimilar layers in the case of IoT260

infrastructure: device layer, communication layer, gateway261

layer, and server layer scaling. The proposed classification262

of scaling layers utilized in IoT is also shown in Figure 2.263

Figure 3 explains the application of vertical or horizontal264

scaling at device, gateway, communication, or server layers.265

1) DEVICE LAYER266

Vertical scaling is utilized at the device layer as the sens-267

ing devices’ ability is enhanced. Sensor capacity is often268

enhanced by substituting earlier sensing devices with the269

latest, greater-ability equivalents. Horizontal scalability is270

applied as the number of sensing devices is expanded. This271

is applied when the surrounding area of installed sensors272

inflates. Because of the system’s scalability, it is simple273

to add or detach sensing nodes from an existing system274

and customize each sensing node’s purpose (what data to275

produce) [27].276

2) GATEWAY LAYER277

Vertical scaling is also applied at the gateway layer when278

processing ability, volatile storing space, memory, and other279

components are raised. When the number of gateways280

expands, horizontal scaling is applied. Scalability is guaran-281

teed at gateway in [16].282

3) COMMUNICATION LAYER 283

Normally, the communication channel’s uplink capacity is 284

relatively lower [13]. IoT sensors collect data from the envi- 285

ronments and transmit it to the IoT server/cloud through an 286

uplink bandwidth. Vertical scaling is applied as the transmis- 287

sion capability of a communication link is raised. Horizon- 288

tal scaling is applied as the number of transmission links is 289

expanded. 290

4) SERVER/CLOUD LAYER 291

Vertical scaling is applied as the processing capability, stor- 292

age capability, and hard disk space of a server at the 293

server/cloud layer are raised, while horizontal scalability is 294

used when the number of servers is increased. 295

FIGURE 3. Distribution of scaling layers.

IV. TESTING OF SCALING FOR SMART CAMPUS 296

TRANSPORT SYSTEM 297

The transport system of a smart varsity campus is nominated 298

as a research study in the modern age of IoT when every field 299

of life is attempting to be smart by utilizing IoT technologies. 300

A bespoke virtual data source/sender and server/sink (Emu- 301

lator) is created to evaluate the scaling ability. Utilizing the 302

Microsoft Transport datasets [28], [29], [30], a smart trans- 303

port system for a varsity campus is simulated in this study. 304

The dataset is in a comma-separated values (CSV) format 305

and comprises 17621 records. Each record contains paths and 306

contains geographical information including latitude, longi- 307

tude, and altitude. Moreover, it has global positioning sys- 308

tem (GPS) information, as well as, the date and time stamp 309

collected at different time spans over four years. Using this 310

information, Microsoft Visual Studio using C# (C-Sharp) is 311

used to develop a customized simulating software with virtual 312

data senders and a server. 313

Before designing the simulator, different classifiers are 314

applied to the dataset to evaluate the performance of these 315

classifiers. For this purpose, k nearest neighbor, Naïve Bayes, 316

logistic regression, decision tree, and support vector machine 317

is utilized. Table 2 presents the accuracy, precision, and recall 318

of the above-mentioned classifiers. The statistics show that 319

the decision tree outperforms the selected classifiers. 320
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TABLE 2. Evaluation metrics of classifiers.

The comparison of classifiers is also depicted in Figure 4.321

Here accuracy, precision, and recall of different classifiers322

are illustrated as bars. The accuracy, precision, and recall323

bars of the decision tree has more heights than others so its324

performance is the best. So decision tree is implemented in a325

custom-built simulator.326

FIGURE 4. Comparison of classifiers.

The simulator’s major role is to deliver GPS data to the327

virtual IoT server in the form of virtual packets. These GPS328

data packets are created with the help of a dataset [28], [29],329

[30] and common-purpose GPS attributes accumulating in a330

CSV file. Latitude, longitude, and altitude, along with the331

time stamp are the most essential data items logged. The332

server administers the internal queue buffer to accommodate333

the incoming data. The IoT cloud server requires a bit of334

time to process all of the virtual GPS data packets, which335

implies that one executing cycle might consume t ms, where336

ms indicates milliseconds. The factor of delaying is simulated337

by computing the length L of the arrived virtual GPS data338

packet and utilizing that number L is the top limit of the339

delaying factor, with 10 ms as the lower limit. The delaying340

factor can now be written as341

tpacket = rand(10,L) (1)342

where tpacket is the packet executing time, rand() is the ran-343

dom function, L is the length of the packet, and the capacity344

limit of the virtual server’s buffer queue is 100 packets by345

default.346

Virtual bus data are located in the source/sender buffer347

to mimic server workload handling, which delivers data at348

the pace indicated by the bus occurrence feature. The virtual349

IoT server/receiver continues to receive data in the arriving350

queue and executes packets based on the delaying factor for351

every queue GPS data packet. Consequently, the delay in one352

executing cycle can be expressed as under 353

tcycle =
n∑
i

tpacket (2) 354

where n is the number of GPS data packets executed in a 355

particular executing cycle. 356

The cycle delay uplift with the expansion of b buses as a 357

result of greater data executing costs; the complete execution 358

workload is expressed as under 359

toverall = tcycle × b (3) 360

where b is the counting of buses whose GPS data is delivered 361

to the IoT receiver/server virtually. 362

The server’s average latency is now computed and written 363

as follows 364

taverage =
toverall
N

(4) 365

The aggregate GPS data packets in the queuing buffer at 366

the last of the execution cycle are represented by N . 367

On normal load circumstances, Figure 5 represents a graph 368

of data execution time in ms at several time spans. It is found 369

that execution time varies with time and peaks after a specific 370

duration. When the load on the virtual IoT server is raised 371

by adding additional buses, the time it takes to complete the 372

task increases, resulting in a rising curve in Figure 6. Simi- 373

larly, scaling up the IoT server diminishes processing time by 374

reducing the least element of single GPS data packet delay, 375

for instance, from 10 to 2 with five steps by decreasing 2 376

each time. In the random function, the decreasing fixed value 377

widens the lowest and largest range for individual GPS data 378

packet delay, effectively increasing the chance of minimal 379

number choice. Figure 7 shows a falling curve. 380

Additionally, packet loss is another significant issue that 381

degrades server efficiency. It happens when the IoT server 382

is overloaded with packet processing and gains more time 383

than the virtual IoT sender delivering GPS location packets. 384

For instance, the queue will begin to enlarge, and its size 385

will continue to rise till it extends to the highest capacity of 386

100 data packets. On this occasion, the IoT server will discard 387

the virtual senders’ received packets, causing them to drop the 388

packets. 389

A. PROPOSED ALGORITHM 390

The following four phases make up the primary algorithm 391

for assessing vertical scalability. The algorithm’s flowchart 392

is presented in Figure 8. 393

• Step 1: The virtualized transmitters send the busses’ 394

position data (latitude, longitude, altitude) with date and 395

time to the virtualized IoT receiver/server. 396

• Step 2: The virtualized IoT server executes all awaiting 397

data packets from the virtualized IoT sources/senders 398

while queued data packets reach the server’s highest 399

ability. 400

• Step 3: Step 2 is iterated by rising the number of auto- 401

mobiles from the virtualized IoT senders to raise the 402
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FIGURE 5. Graph illustrating the performance of a virtual IoT server under normal settings.

FIGURE 6. Performance graph of a virtual IoT server under stress.

FIGURE 7. After scaling up, the performance of a virtual IoT server is shown.

receiver’s workload until the server has become extra403

loaded and starts discarding arriving packets.404

• Step 4:Vertical scalability is utilized to effectively man-405

agemore traffic / adjust extra buses by enlarging the exe-406

cution power of the virtualized IoT server. It is done in407

this simulation by lessening the execution latency until408

it achieves a minimum definite level.409

• Step 5:Then, we intend to apply horizontal scalability to410

the virtual server in the future, e.g. we will increase the411

number of worker threads that are emulating the server412

so that the performance will now increase again.413

V. RESULTS AND DISCUSSIONS414

The future flexibility or scaling ability is assessed utiliz-415

ing three distinct sorts of workloads: light, average, and416

big. When a light workload is imposed, the simulation417

effortlessly executes the GPS packets. Figure 5 represents a 418

graph presenting standard operation, with the x-axis showing 419

system time and y-axis representing processing time. When 420

an average workload is introduced by expanding the number 421

of buses, the simulation performs normally and gives a rea- 422

sonable behavior of how the setup works. As soon as there 423

is surging in packets caused by an increase in the number 424

of busses in certain rush conditions, for example, admission 425

process days or exam days, or just by an increase in the 426

number of enrolled students, the simulator displayed a graph 427

overburdening, as illustrated in Figure 6. 428

As seen in Figure 7, when scaling up or vertically scaling 429

is utilized, the average execution time reduces again. As the 430

number of enrolled students is rising, and smart varsity costs 431

are also rising, as a result, the smart campus will expand 432

admitting more students so the number of busses will also 433
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FIGURE 8. The scalability testing flowchart.

TABLE 3. Number of buses vs execution time statistics.

increase for picking up and dropping off admitted students434

for facilitating them for meeting high costs. As the number of435

buses grows, the average execution time rises as well, requir-436

ing horizontally scaling out in the future. Table 3 demon-437

strates the number of busses and the average packet process-438

ing response time in ms.439

Figure 9 depicts the link between the average packet exe-440

cution time and the number of buses. The average execution441

time is 34 ms with a load of 6 buses. The average execution442

time is increased for 33 buses to 827 ms. When the number443

of buses is extremely high to evaluate vertical scalability, the444

results are not comparable, showing bottlenecks. Horizontal 445

scalability can now be used in the future as mentioned in the 446

flowchart. 447

Table 4 compares the assessment of smart campus trans- 448

portation to prior studies. The load balancing of smart trans- 449

portation utilizing vertical scaling assessment is explored, 450

which is a completely new feature of the smart campus. Prior 451

to this study, only the smart campus or smart transportation 452

were studied separately, and in some cases, just architecture 453

was offered, as in [22]. The algorithms are proposed along 454

with statistical analyses, such as accuracy, precision, and 455

recall, due to the more technical dive into the scenario. 456

Normally, in previous work, the debate was theoretical 457

rather than technical. Because algorithms are provided with 458

statistics, the work is completely new and unique in this 459

regard. Table 4 displays entries marked as ND indicating that 460

these parameters are not discussed. Several aspects are not 461

covered by the existing literature, as shown in Table 4, like 462

selected method, datasets, the context of the study, etc. 463
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TABLE 4. Comparison of vertical scaling assessment with previous studies.

FIGURE 9. Plot showing response time vs the number of buses.

The GPS devices are installed in every bus, and the GPS464

devices periodically send GPS coordinates at random time465

intervals via mobile operator network to the smart campus466

IoT server. If the GPS data from buses increases due to the467

increase in the number of buses, then the IoT server will468

be overburdened. To overcome overburdening vertical scal-469

ing is applied to IoT servers by enhancing their processing470

power, storage capacity, etc. However, GPS coordinates have471

an issue of not exact positioning, so it opens new dimensions472

for researchers.473

Almost every research work has some limitations. The lim-474

itations of conducted research work on smart transportation475

systems are presented here.476

• The simulation is limited to the assessment of vertical477

scalability only.478

• The buffer of the vertical server is limited to 100 packets,479

so more packets is being dropped.480

• The scaling steps of the vertical server are limited to five481

steps.482

• The open nature of smart transportation systems as wire-483

less communication technology leads to many security484

and privacy challenges.485

Smart applications such as smart transportation as well as486

smart parking, smart surveillance, smart lighting, etc. can also487

be accommodated by the IoT server because the IoT server is488

vertically scalable in this particular scenario in which addi-489

tional requests can be handled by scaling up the IoT server.490

It will benefit the smart campus community and solve the491

issues of smart campus.492

VI. CONCLUSION 493

The unique taxonomy explains scalability types in the case 494

of vertical and horizontal scaling (IoT future flexibility) and 495

device layer, communication layer, gateway layer, and server 496

layer (IoT infrastructure). A custom-built simulator is uti- 497

lized to test vertical scaling at the server layer. There are 498

three sorts of loads: regular, medium, and large. The average 499

execution time of the IoT server raises when the workload 500

is high. After that vertical scalability is used until a specific 501

point is reached, at which point the average execution time 502

is reduced. When the workload on the virtual server is raised, 503

the average execution time of the virtual IoT server also rises. 504

The findings demonstrate that when the workload on the IoT 505

server is high, the execution time of the IoT cloud server 506

increases and becomes a bottleneck, necessitating horizon- 507

tal scaling with many IoT cloud servers in the future. This 508

study opens possibilities of how to use scaling while creat- 509

ing IoT systems at various layers, with appropriate vertical 510

or horizontal types, to make the system adaptable for the 511

future. 512
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