
Received 3 August 2022, accepted 18 August 2022, date of publication 5 September 2022, date of current version 15 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3204038

A Compressed Data Partition and Loop
Scheduling Scheme for Neural Networks
DEJIAN LI1, RONGQIANG FANG2, JING WANG3, DONGYAN ZHAO 1,
TING CHONG1, ZENGMIN REN1, AND JUN MA1
1Beijing Smartchip Microelectronics Technology Company Ltd., Beijing 100192, China
2School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
3School of Information, Renmin University of China, Beijing 100056, China

Corresponding author: Jing Wang (jwang@ruc.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 62076168, and in part by the
Laboratory Open Fund of Beijing Smart-Chip Microelectronics Technology Company Ltd.

1

2

3

4

5

6

7

8

9

10

ABSTRACT Neural networks (NNs) have been widely adopted in various application domains. Deeper
NNs greatly enhance the output accuracy, but complex NNs with more parameters incur intensive memory
accesses, and the data usually need to be partitioned since it may exceed the on-chip storage. However, there
is no research considering the partition and scheduling co-design of the NNs. In this paper, we propose a
sparse NN data partition and loop scheduling scheme. We establish the compression efficiency model of the
matrix sparse algorithm and design a partition selection method based on sparsity characteristics analyzed
by the compression efficiency model. Further, we design a loop scheduling scheme based on the proper
partition size. The experiment results show that the average memory access of each layer can be compressed
to 68% of the original, and the throughput of the AlexNet, VGG and VGG19 is increased to an average of
1.66 times.

11 INDEX TERMS Sparse matrix, neural networks, loop scheduling, compression, partition.

I. INTRODUCTION12

With the prosperity and development of the mobile inter-13

net, artificial intelligence applications based on deep neu-14

ral networks are gradually migrating from cloud computing15

to mobile computing. With its wide application in image16

procession and speech recognition, the complexity of deep17

learning algorithms continues to increase to meet the require-18

ments of modern applications. However, the large number of19

computations and memory accesses in deep neural networks20

generates considerable energy. There is a large contradiction21

between the power consumption and the limited power supply22

capability of mobile devices. In addition, large-scale network23

model data need to be transmitted to devices with limited24

storage. When the storage capacity is smaller than the model25

parameter size, the data usually need to be partitioned, thus,26

how to achieve optimal data partitioning and transformation27

to ensure efficient data processing becomes a hot research28

topic [1].29

The associate editor coordinating the review of this manuscript and

approving it for publication was Kuo-Ching Ying .

Since the weights of even a single convolutional layer 30

can exceed the local storage capacity, researchers proposed 31

data transformation schemes: graph partitioning uses the 32

synchronous dataflow model, which splits the graph into 33

subgraphs along convolutional layers and maps each sub- 34

graph to a different bitstream, however, this scheme requires 35

FPGA (Field-Programmable Gate Arrays) reconfiguration 36

when data flows to the next subgraph. 37

Folding is also an effectivemethod to partition the data: this 38

kind of method folds input by a factor, and a convolutional 39

layer is split into multiple subgraphs that execute a fraction 40

of total convolutional. The interim results are accumulated to 41

generate the output. Thus, the storage requirement is reduced 42

by the folding factor. The folding methods are further divided 43

into coarse-grain folding and fine-grain folding. Coarse-grain 44

folding fully unrolls the major operations of every layer and 45

provides the highest throughput possible. Fine-grain folding 46

is a time-multiplexed scheme between different operations, 47

which use much smaller numbers of hardware units. 48

In addition, the parameter matrix of a neural network is 49

usually sparse, and compression can effectively reduce the 50

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 95219

https://orcid.org/0000-0002-2543-1814
https://orcid.org/0000-0002-9549-5290


D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

storage space requirements. However, there is no research51

considering the partitioning of the spare matrix, which com-52

pression algorithm is selected, and how partitioning and53

scheduling the matrix computation directly affect the perfor-54

mance. Therefore, this paper focuses on how to select the55

compression scheme and partition data based on the matrix56

sparsity of different layers in the convolutional neural net-57

works and proposes a sparsity model and partition scheme58

for the neural network. The main contributions of this paper59

are as follows:60

1. We established the compression efficiency model of61

the matrix sparse algorithm, proposed the sparse coefficients62

and sparse offsets of different algorithms, and calculated the63

compression ratio of different compression algorithms.64

2. We analyzed the sparsity characteristics of the con-65

volutional neural network parameter matrix, introduced the66

concept of average density, and predicted the amount of67

sparse matrix memory access through statistical information68

to provide guidance for partitioning strategies.69

3. We designed a partition size selection method for sparse70

neural networks. We first analyzed the relationship between71

memory access and model scale/sparsity, and then used the72

dynamic programming algorithm to solve the partition size73

selection problem.74

4. We designed a loop scheduling scheme based on the75

proper partition size, and the optimal mapping method was76

designed for the sparse neural network.77

II. RELATED WORKS78

A. SPARE MATRIX COMPRESSION79

Previous research has shown that most of the parameter80

matrices of neural networks are sparse, and compressed81

sparse matrices can effectively reduce memory overhead.82

Typical compression schemes include COO, CSR, SCNN,83

and Swallow.84

We use sparse coefficients and sparse offsets to charac-85

terize the compression effect of the compression algorithm.86

The sparse coefficient α is used to characterize the memory87

resources occupied by each nonzero value in the actual stor-88

age requirements. The coefficient is only changed according89

to the sparse algorithm rules, and dose not vary with different90

matrices, the sparse offset β describes index size or data91

location, which is related to the layout of the nonzero matrix92

values.93

COO [2] uses row number, column number, and element94

value to store nonzero elements. For nonzero elements in95

any matrix, three values need to be recorded, so its sparse96

coefficient is three, which means that when the number of97

nonzero elements is K, the storage space overhead is 3K.98

COO is a triple storage algorithm, that is effective when the99

matrix is very sparse, and it is less efficient for dense matrix100

compression.101

The CSR scheme stores data values, column index, and102

row index. The row index records the number of newlines103

between adjacent data, that is, if there is no newline between104

adjacent nonzero data, the newline index will not be added.105

The sparse coefficient of the CSR algorithm is two. Ideally, 106

only values and column numbers are stored, and the storage 107

space overhead is 2K. However, the actual situation cannot 108

guarantee that all nonzero values are in the same row, nor 109

can it guarantee that all data are evenly distributed in each 110

row. Therefore, the CSR algorithm requires 2K+c storage 111

space, where c is the total number of rows occupied by 112

data. 113

In addition to storing numerical bits, SCNN [3] also needs 114

to store the number of 0 values from each data to the previous 115

nonzero data. An additional data bit is stored to represent the 116

number of nonzero values in the matrix. Therefore, the sparse 117

coefficient of SCNN is two, and the storage requirement 118

is 2K+1. 119

The Swallow [4] scheme records the number of nonzero 120

values in the same row for each channel and uses the offset 121

bit to record the column number of the data. The sparse 122

coefficient of the Swallow scheme is two. The sparse offset 123

is R, which is the number of rows. 124

B. LOOP SCHEDULING 125

Scheduling research on CNN(Convolutional Neural Net- 126

works) accelerators has a long history. Since the 1980s, 127

a series of as early/late as possible algorithms [5], degrees of 128

freedom-based algorithms [6], and mobility-based schedul- 129

ing algorithms have been proposed [7], [8], [9], [10], [11]. 130

Then, researchers found that the scheduling problem is 131

not only how to split the operator into each multiplier- 132

accumulator, but also how to implement a multi-batch 133

pipeline for different convolutional layers [12]. Therefore, 134

optimization is carried out from two aspects: resource alloca- 135

tion and dataflow [13]: resource allocation methods mainly 136

focus on how to improve resource utilization, while data flow 137

methods solve how to transport data to achieve the highest 138

performance. 139

In terms of resource allocation optimization, the ACT lab- 140

oratory extracts the the control components hyperparameters 141

from the perspective of the Process Element(PE) configu- 142

ration for optimization, imitating the Von Neumann control 143

mode, with the help of a large number of expertly pre- 144

defined template optimization to add instructions to guide 145

dynamic scheduling in the FPGA [5]. [14] compared the 146

size of the convolution kernel matrix with the memory band- 147

width, thereby providing the basis for data partitioning and 148

solving the problem of uneven resource allocation. Loop 149

tiling and loop unrolling consider both on-chip data reuse 150

and external storage and can be used to improve mapping 151

efficiency and resource utilization [15]. [12] noted that the 152

scheme of providing convolution processing unit for each 153

stage of the convolution computation [16] is inefficient, and 154

therefore proposed multiple multiprocessing structures with 155

different computing capabilities to pipeline the processing. 156

[17] designed a scheduling algorithm based on the maximum 157

value to improve the resource utilization problem under multi 158

process element cooperative computing. A reloadable archi- 159

tecture of neural network was proposed in [18]. The above 160

95220 VOLUME 10, 2022



D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

FIGURE 1. Flow of the data partition and loop scheduling scheme.

scheme is simple and direct, but it is only effective on specific161

operators, and the generality is poor.162

The data flow optimization problem involves modifying163

the control logic or timing relationship of the hardware,164

scheduling the flow order of the data, maximizing the reuse165

rate and enhancing the parallelism of data transmission/166

processing. [15] designed three on-chip buffer structures:167

full reuse, partial reuse, and independent handling. Arthur168

Stoutchinin et al. proposed a model HWC [19] to effi-169

ciently evaluate the reusability of network mappings, and170

based on the model, a better data scheduling scheme was171

given. Li et al. proposed a layer partition scheduling strategy172

SmartShuttle based on the difference in sensitivity of input173

data, input data and weight to reusing different convolutions174

[20]. Alwani et al. proposed caching the area shared by adja-175

cent receptive fields, so that only the nonshared part needs to176

be fetched from memory in the next layer calculation [21].177

Previous works focused on how data are transferred to the178

on-chip buffer, and [22] started with the data that have been179

transferred to the chip. Distributing the convolution operation180

and the fully connected operation on a 4-level parallelism181

design enables different types of network layers to make full182

use of the same multiply-add operation unit to form a timing183

relationship that does not generate pipeline bubbles [22]. [23]184

changed the hardware storage method to two imensional data185

storage in the form of window size, so that the start time of the186

convolution operation is advanced to when the matrix stor-187

age meets the window size, thereby shortening the time for188

pipeline task completion [23]. Lu et al. proposed FlexFlow,189

a flexible dataflow accelerator architecture for convolutional190

neural networks [24], and divided the loop unrolling methods191

into three categories: unrolled convolution kernel matrix [25],192

[26], [27], unwrapped feature map matrix [16], [28], [29] and193

unwrapped matrix channels [30].194

The Imperial College of London proposed a real-time195

reconfigurable architecture. The directed graph correspond-196

ing to the convolutional network is divided into several197

subgraphs, and each subgraph corresponds to a different198

hardware architecture. Bitstream files need to be reinjected199

between network layers belonging to different subgraphs200

to reconfigure the hardware architecture [31]. Kwon et al.201

designed a NN accelerator with a built-in set of reconfig-202

urable building blocks that can easily support countless DNN203

partitions and maps by appropriately configuring the inter- 204

connect architecture [32]. Xu et al. proposed converting a 205

neural network’s hardware mapping into a dataflow graph. 206

The graph shows whether the data to be processed by this 207

layer is given by the output of the network model of the previ- 208

ous layer, so as to formulate the principle of time-sharing and 209

multiplexing for PE(Processes Element) [33]. Rhu et al. [34] 210

improved hardware performance through weight prefetching. 211

Li proposed splitting the network to dynamically release 212

memory resources [35]. Wicaksana Putra reused memory 213

storage by filling data in any location that the memory can 214

carry data, to optimize the data flow and improve the system 215

performance [36]. 216

Addressing scheduling problems can greatly optimize the 217

model mapping so that both computing and storage resources 218

can fully utilize their capacity. However the existing schedul- 219

ing optimization schemes lack generality, and most schedul- 220

ing solutions can only optimize some specific operators. 221

Therefore, it is necessary to find a general solution to solve 222

various neural networks consisting of complex operators and 223

their variants [24], [37]. 224

III. NNS’ PARTITION AND SCHEDULING SCHEME 225

The amount of data transmission in the NNs is the key to 226

optimizing performance. To determine the actual quantity of 227

data to be transported, it is necessary to obtain the matrix size, 228

density, and sparse algorithm features. Therefore, we analyze 229

the storage characteristics of the matrix according to the 230

network model and dataset and find the optimal compression 231

storage scheme by comparing the original storage capacity 232

and the sparsely compressed data storage capacity. After 233

the compression scheme is determined, the memory access 234

footprint of themodel is calculated, and the partition size with 235

the largest throughput is selected according to the footprint. 236

Finally, the enumeration method is used to select the loop 237

scheduling scheme. 238

A. MODELING OF SPARSE MATRIX STORAGE FEATURES 239

The feature analysis module calculates the storage g of 240

the compressed matrix, compares the value of Gcomp 241

with the original uncompressed storage amount Gorig, and 242

selects the strategy that occupies the smallest storage space. 243

Gcomp is a linear function of the number of nonzero 244

VOLUME 10, 2022 95221



D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

TABLE 1. Matrix parameter features.

TABLE 2. Feature of the sparse compression algorithm.

elements K, and the coefficient α and offset β are related to245

the sparse matrix compression algorithm. The number K of246

nonzero values in the matrix varies with the model and input247

data, so the average number of nonzero values k̄ is introduced.248

To describe the sparsity of the matrix, the average density D̄249

is introduced, which is the normalization of the number of250

nonzero values. To calculate k̄ and D̄, the feature parameters251

of the matrix are extracted, as shown in Table 1. Note that the252

number of nonzero values in the input/weight/output matrix253

is kIFM , kKER, kOFM , and the original storage requirements254

areGIFM ,GKER,GOFM . Then the average density of different255

matrices can be calculated using Formulation (1)-(3).256

GIFM = RI × CI , D̄IFM =
kIFM

N × GIFM
(1-1)257

k̄IFM = N × GIFM × D̄IFM (1-2)258

GKER = K 2, D̄KER =
kKER

N ×M × GKER
(2-1)259

k̄KER = N ×M × GKER × D̄KER (2-2)260

GOFM = RO × CO, D̄OFM =
kOFM

M × GOFM
(3-1)261

k̄OFM = M × GOFM × D̄OFM (3-2)262
263

The matrix feature extraction module obtains the matrix264

size of the input/weight/output matrix, the number of nonzero265

values and the layout of nonzero values. We use the fea-266

ture information of the matrix, and the sparse coefficient267

and offset of the compression scheme to calculate the stor-268

age capacity of the compressed sparse matrix, as shown in269

Formulation (4).270

g = k̄α +
k̄∑
i=0

βi (4)271

Based on the above formula, the storage capacity of a typ-272

ical sparse matrix compression algorithm can be calculated,273

as shown in Table 2.274

The layers close to the input layer have more original infor-275

mation, and the corresponding matrix is denser. The layers276

close to the output layer are sparser because the network277

removes redundant information and retains core features.278

TABLE 3. Parameters of the data transfer calculation.

Therefore, for a denser input-side matrix, the compressed 279

storage cost is relatively high. Therefore, it is necessary to 280

judge whether the compressed storage amount will exceed 281

the original size, that is, Gcomp >Goirg. If the above situation 282

occurs, the original storage without compression is selected. 283

B. THROUGHPUT-BASED PARTITION SIZE SELECTION 284

The size of the neural network model usually exceeds the 285

on-chip storage, and the matrix partitioning technique is 286

needed to transfer data to FPGA. Ideally, the partitioned 287

input matrixT, output matrix, and weight matrix are stored 288

in the on-chip buffer until the partial sum is completely 289

superimposed and then written back to the memory. The 290

total execution latency includes memory access time and 291

computation time. The memory access time is the product 292

of the bit transmission delay and the amount of transmitted 293

data. The quantity of transmitted data is the sum of the input, 294

weight, and output matrix transmissions. The amount of each 295

matrix X transmission is the matrix transmissions λX and the 296

single transmission data amount µX , as shown in Table 3. 297

Pin is the partition size of input and Pout is the partition size 298

of output, and Our propose is finding the best partition size 299

Pin and Pout 300

The total transmission volume is calculated as shown in 301

Equation (5): 302

Total Data Transfer (TDT ) = λIµI + λKµK + λOµO (5) 303

The calculation of the memory access time MAT is shown 304

in Equation (6), where A is the transmission time of single- 305

bit data, which is only related to the system bit width and 306

bandwidth. 307

Memory Access Time (MAT ) = A× TDT (6) 308

The computing time is obtained by multiplying the total 309

computing partitions and the computing time of each par- 310

tition, where the computing time of each partition is repre- 311

sented by the data size γ divided by the frequency f, and γ is 312

obtained by dividing the total network parameter size by the 313

memory bandwidth B, as shown in Equation (7) 314

γ =

⌈
gOFM0 × gKER0

B

⌉
(7) 315

Therefore, the final computation time is expressed as 316

Equation (8): 317

Total Computation Time (TCT ) =
⌈
M
Pout

⌉
×

⌈
N
Pin

⌉
×
γ

f
318

(8) 319

95222 VOLUME 10, 2022



D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

Throughput is the total amount of transferred data divide320

the latency. The transmission and computation of data are321

often performed in parallel, so latency is the muximum of322

TCT and MAT, then throughput is shown in Equation (9).323

Throughput =
2× N ×M × gOFM0 × gKER0

Max {TCT ,MAT }
(9)324

Partition selection is a multi-objective optimization prob-325

lem that needs to maximize throughput while minimizing326

memory occupation. The constraints are that the partition327

size is smaller than the channels of the neural network328

model and the memory capacity Capacity, which is shown329

in Equation (10).330

constriction


1 ≤ Pin ≤ N (10− 1)
1 ≤ Pout ≤ M (10− 2)
µI + µK + µO ≤ Capacity (10− 3)

331

(10)332

The objective function is shown in Equation (11).333

goal
{
min(Capacity− (µI + µK + µO))
max(Throughput)

(11)334

Our propose is finding the partition size Pin and Pout , and335

we propose a throughput-based maximum partition selec-336

tion algorithm. The algorithm transforms the above dual-337

objective optimization problem into a single-objective and338

multiple constraint optimization problem. The algorithm first339

sets MAT = TCT, uses Pin to represent Pout according to340

Equation 10-3, and then the range of Our propose is finding341

the partition size Pin can be represented by formulation (12)342

Nγ

Af
(
MgOFM0 +MNgKER0 + NgIFM0

) ≤ Pin343

≤
Nγ

Af
(
gOFM0 + NgKER0 + NgIFM0

) (12)344

The lower boundary and upper boundary of Pin are V1 and345

V2, respectively. This means that when Pin ∈ [V1,V2] ∩346

[1,N ], there must be a Pout ∈ [1,M ] that satisfies MAT =347

TCT and does not exceed the upper boundary of the on-chip348

buffer. In contrast, if Pin ∈ (−∞,V1) ∩ [1,N ], then there349

is always MAT < TCT , if Pin ∈ (V2,+∞) ∩ [1,N ], then350

there is always MAT > TCT . The first step of the algorithm351

is using V1 and V2 to divide the original search space into352

three parts. According to the above analysis, we can find the353

solution that achieves the maximum throughput. The second354

step is adjusting the solution space. The algorithm calculates355

the maximum throughputs of each interval and chooses the356

maximum as the global maximum value.357

1) TCT-DOMINATED RANGE358

When Pin ∈ (−∞,V1) ∩ [1,N ], MAT < TCT , then the359

throughput of the system is decided by TCT , to find the360

maximumPin×Pout , take the equation case of the formulation361

10-3: µI +µK +µO = Capacity, and let Pin equal Pout , and362

y(Pin) = PinPout . Formulation (13) obtains the derivative of 363

y (·) about Pin, 364

y′ (Pin) 365

=
−gIFM0K

2P2in − 2gOFM0gIFM0Pin + gOFM0Capacity(
gKER0Pin + gOFM0

)2 366

(13) 367

Let y
′

(Tn)= 0, and the right pole of the unary quadratic 368

function can be solved as the maximum value point of the 369

original function Tn0 (14), as shown at the bottom of the next 370

page. 371

Whether the maximum value of Pin falls in the range 372

(−∞,V1]∩[1,N ) and ensures that there is an integer solution 373

for Pout satisfying Equation (10-3), we discuss the following: 374

If Pin0 ∈ (−∞,V1] ∩ [1,N ], then compare y (Pin) |Pin=1 375

and y (Pin) |Pin=Pin0 , and choose the largest result, 376

If Pin0 ∈ (N ,+∞), then compare y (Pin) |Pin=1 and 377

y (Pin) |Pin=min(N ,V1), and choose the largest one as the final 378

result, If Pin0 ∈ (−∞, 1), Pin = 1 is the final result because 379

when Pin > Pin0, y (Tn) decreases monotonically in the 380

interval [1,N]. 381

2) MAT DOMINANT INTERVAL 382

When Pin ∈ (V2,+∞) ∩ [1,N ] ,MAT > TCT , then the 383

throughput of the system is decided by TCT , and the formula 384

for calculating the MAT cost is shown in Equation (15). 385

MAT = A
(

1
Tm

NgIFM0 +MNgKER0 +MgOFM0

)
(15) 386

It can be found that MAT is only related to Pout . The larger 387

Pout is, the smaller MAT is. Therefore, it is only necessary to 388

keep Pout as large as possible. Therefore, let Pout =M, and 389

use Equation (10-3) to solve the value of Pout , which is the 390

proper partition to maximum throughput. 391

3) RANDOM DOMINANT INTERVAL 392

Random dominance occurs when Pin ∈ [V1,V2] ∩ [1,N ], 393

there will be a Pout that makes MAT=TCT, and the enumer- 394

ation method is used to traverse the partition value range and 395

find the partition value. 396

The above optimal solution is a theoretical result, but 397

in practical systems, due to the storage capacity limitation, 398

some theoretical values may not be reached, which requires 399

adjusting the results to meet system resource constraints. The 400

adjustment scheme of the solution is based on the fact that for 401

any convolutional layer, when Pin = Pout = 1, the storage 402

overhead cannot exceed the memory capacity. 403

Based on the above analysis, the inverse solution function 404

PxV (·) is used for the problem that the current partition space 405

has no solution. According to the input partition size, the 406

partition size of another dimension is obtainedwhen the equal 407

sign is taken according to Formula (11-3). For example, the 408

PxV (Pn) function returns the maximum value of Pout , and 409

inputting Pout returns the maximum value of Pin. 410

VOLUME 10, 2022 95223



D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

TABLE 4. Matrix reuse distance.

Taking the solution adjustment of the MAT-dominated411

interval as an example, the throughput is only related to the412

value of Pout , and Pout needs to be as large as possible.413

However, since Pin has a lower boundary and Pout cannot414

achieve the upper boundary of M, we can set Pin = 1 and use415

the inverse solution function to obtain the maximum value of416

Pout to reduce traversal trials. If the on-chip buffer is large417

enough, Pout can be set to N to ensure maximum resource418

utilization.419

C. LOOP SCHEDULING SCHEME FOR A SPARSE MATRIX420

The data partition is determined before running, and proper421

scheduling is required for dynamic execution. Eighty percent422

of the neural network computations are on the convolution423

layer and fully-connected layer, which are multilayer loops.424

Therefore, the loop execution order is the key technique for425

minimizing the data copy operation and the memory access426

overhead. We propose a memory access footprint model for427

sparse partitioning and design a traffic traversal algorithm428

based on the proposed footprint model to find the optimal429

loop scheduling order.430

FX (Li) = FX (Li−1)×
n (Li)
RX (Li)

(16)431

Without considering sparseness, the model of the impact432

of the number of iterations and reuse distance on the memory433

traffic is as follows. Let the sequence L0,L1, · · · ,LN−1 be the434

order of the loop from the inner layer to the outer layer, and435

the nonrepetitive sampling of Li ∈ {LSX ,LSY , · · · ,LOF},436

denote FX (Li) as the footprint of matrix X in cycle Li, specif-437

ically FX (L−1) = 1, n (Li) is the number of iterations in the438

loop Li, and RX (Li) is the reuse distance of the matrix X in439

the loop Li. The reuse distance is shown in Table 4, and the440

footprint calculation formula is shown in Equation (16).441

After the matrix is sparsely compressed, denote KX as the442

sparse storage footprint factor of matrix X, and the footprint443

calculation formula is shown in Equation (17)-(18).444

FX (Li) = MIN (FX (Li−1)×
n (Li)
RX (Li)

(17)445

FX (Li−1)×
n (Li)
RX (Li)

× KX ) (18)446

KX is a variable related to the matrix size and sparse447

algorithm. The sparse matrix footprint factor n(Li)
RX (Li)

and the448

Algorithm 1 Loop Scheduling Algorithm
Input: dx is matrix average density, l[K ] is the set of all
scheduling scheme for a loop, px is reuse distance, a is sparse
coefficient, b is spare offset, s is the loop order of scheduling
scheme of li, which is the i-th item in l, Re is the current
footprint recursion factor, pai is multiply recursion factor
Output: min memory consumption Tmin and the correspond-
ing loop sequence
/∗travers all the loop labels in the current order ∗/
While(li< K){
mem=0
n-loop-step = l [li][0]
While(n-loop-step < CNN-loop-threshold){
/∗Add the matrices of different labels to the data in s

according to the corresponding positions ∗/
mem+ = Re∗pai}
mem∗ = min(mem,mem∗dx∗a+ b)

}
s[li].traffic= mem

}
loop-order = 0
Tmin = s[0].traffice
While(loop-order < K ){

if(s[loop-order].traffic < Tmin)
Tmin = s[loop− order].traffic

}
Output Tmin and loop-order

loop recursion factor
∏N−1

j=i n
(
Lj
)
will change with different 449

loop execution sequences and different data partitions. When 450

the matrix loop nesting order changes, the footprint model 451

also changes accordingly. Different matrices have different 452

reuse effects under different loop scheduling. Therefore, it is 453

necessary to calculate the matrix memory footprint for dif- 454

ferent loop scheduling schemes, as shown in Equations (19) 455

and (20), where TraceX is the memory footprint of matrix X, 456

Trace is the total memory consumption of memory mapping, 457

and n
(
Lj
)
is the iteration number of loop Lj. 458

TraceX = FX (Li)×
N−1∏
j=i

n
(
Lj
)

(19) 459

Tn0 =

−2gOFM0gIFM0 +

√(
2gOFM0gIFM0

)2
+ 4gKER0gOFM0gIFM0Capacity

2gIFM0gKER0

 (14)

95224 VOLUME 10, 2022



D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

FIGURE 2. Parameter size of kernels under different compression alogrithm.

FIGURE 3. Parameter size of OFM under different compression alogrithm.

FIGURE 4. Performance of Partition Algorithms on AlexNet.

Trace = TraceIFM + TraceKER + TraceOFM (20)460

The loop scheduling scheme is based on memory con-461

sumption, as shown in Algorithm 1.462

IV. EXPERIMENTS463

We adopt typical convolution networks: AlexNet, VGG and464

VGG19, and run the ImageNet dataset. First, we evalu-465

ate the storage capacity overhead of network parameters466

FIGURE 5. Performance of partition algorithms on VGG16.

under different compression schemes, and the correctness 467

of the sparse feature analysis model is verified. Then, 468

we evaluate the system throughput and memory access 469

under different partition schemes, and the effect of the 470

partition selection algorithm is analyzed. Finally, the mem- 471

ory access of the partition and scheduling joint scheme 472

is tested, and the comprehensive effect of our method is 473

given. 474

VOLUME 10, 2022 95225



D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

FIGURE 6. Performance of partition algorithms on VGG19.

FIGURE 7. Memory traffic of VGG16.

FIGURE 8. Memory traffic of VGG19.

A. MEMORY ACCESS FEATURE ANALYSIS475

The memory access features are extracted for the convolution476

of different layers. Figures2-3 show the memory consump-477

tion of four different sparse matrix compression methods for478

AlexNet, VGG16 and VGG19 networks under the ImageNet479

dataset. The results show that the sparse matrix compression480

method can greatly improve memory efficiency.481

The improvement of COO is the smallest because each482

nonzero datapoint needs to be storedwith two additional posi-483

tion parameters, which is effective only for matrices whose484

FIGURE 9. Memory traffic of AlexNet.

FIGURE 10. Memory Traffic of AlexNet with the joint method.

FIGURE 11. Memory traffic of VGG16 with the joint method.

sparsity exceeds a certain range. SCNN is the most efficient, 485

it generates a serial number for each nonzero data to indicate 486

the number of columns and only stores the number of rows 487

of an additional matrix to indicate the specific location of the 488

data. CSR and Swallow are more balanced than the former 489

two. Although CSR and Swallow cannot achieve the com- 490

pression effect of the SCNN, there is no restoration problem. 491

B. PARTITION ALGORITHM EVALUATION 492

We compared our scheme with the average partition scheme. 493

The average partition scheme does not consider the impor- 494

tance of matrix channels but only considers the matching 495

of the number of input matrices and convolution kernels, 496

so let Tm=Tn to reduce the computational time overhead and 497

increase throughput. This section compares the throughput 498

and memory access overhead of different partition meth- 499

ods at various layers of the network. The results are shown 500

in Figures 4-6. 501

95226 VOLUME 10, 2022



D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

The following conclusions can be drawn from the experi-502

mental results. First, our maximum partition method achieves503

higher system throughput than the average partition method.504

Especially in the hidden layer of the neural network, the505

maximum partitionmethod can obtain the partition result cor-506

responding to the optimal throughput of the current network507

layer, and the memory access cost and computation cost are508

low, while the average partition method can only reduce the509

computation cost. The memory access overhead is still high.510

Second, the throughput-based maximum partition algo-511

rithm proposed in this paper is better optimized for deep512

convolutional neural networks. Since a deeper network has513

a larger scheduling space, the layers close to the output have514

a more obvious effect on the improvement of throughput and515

the reduction in memory access.516

C. DATA PARTITION AND LOOP SCHEDULING JOINT517

EVALUATION518

We compared the effectiveness of the scheduling scheme519

with HWC, and the results are shown in Figures7-9. As seen520

in the figures, the method in this paper further reduces the521

overall memory access of the convolutional neural network.522

However, because the layer close to the input side has a523

high density, the advantages of the sparse matrix compression524

algorithm cannot be exerted, so the optimization result is not525

obvious, and the layer close to the output has a low matrix526

density due to more 0 values. At this time, the optimization527

effect of the sparse compression algorithm is obvious. Exper-528

iments show that, compared with the HWC scheme, using529

the compression algorithm with a sparse coefficient of 3, the530

average memory access of each layer is compressed to 83%531

in the AlexNet, VGG16 and VGG19 networks, while using532

the compression algorithm with a sparse coefficient of two,533

memory access is compressed to 68% of the original.534

Figures 10-11 show the joint effect of the maximum535

partition scheme based on the sparse matrix and the loop536

scheduling scheme. The results show that in the AlexNet net-537

work, the throughput is increased by 1.95 times, the through-538

put of VGG is increased 1.38 times on average, the overall539

throughput is increased by 1.66x on average. The memory540

access is reduced by 14.6% on average, which verifies the541

effectiveness of our scheme.542

V. CONCLUSION543

With the development of neural networks, the complexity of544

the network model and the model parameters are increas-545

ing, which makes it difficult to save all the data on the546

limited memory of embedded or mobile devices. Although547

previous works achieved certain acceleration optimization548

effects, they ignored the impact of matrix sparsity on loop549

scheduling. How to use the matrix sparse compression algo-550

rithm has become the primary obstacle to solving the prob-551

lem. We proposed a sparse neural network data partition552

and loop scheduling scheme. We extracted the sparse feature553

of the matrix and analyze the characteristics of the sparse554

compression algorithm. Based on the sparsity feature of the555

matrix, we selected the proper partition size to maximize 556

throughput. Then, we used the loop sequential traversal algo- 557

rithm to find the proper loop scheduling scheme using the 558

chosen partition size. The experimental results show that the 559

average memory access of each layer can be compressed to 560

68% of the original, additionally, the throughput of the three 561

networks increases to an average of 1.66 times 562

REFERENCES 563

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification 564

with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro- 565

cess. Syst., vol. 25, 2012, pp. 1–9. 566

[2] N. Bell and M. Garland, ‘‘Implementing sparse matrix-vector multipli- 567

cation on throughput-oriented processors,’’ in Proc. Conf. High Perform. 568

Comput. Netw., Storage Anal., 2009, pp. 1–11. 569

[3] A. Parashar,M. Rhu, A.Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, 570

J. Emer, S. W. Keckler, and W. J. Dally, ‘‘SCNN: An accelerator for 571

compressed-sparse convolutional neural networks,’’ in Proc. 44th Annu. 572

Int. Symp. Comput. Archit., Jun. 2017, pp. 27–40. 573

[4] B. Liu, X. Chen, Y. Han, and H. Xu, ‘‘Swallow: A versatile accelerator 574

for sparse neural networks,’’ IEEE Trans. Comput.-Aided Design Integr. 575

Circuits Syst., vol. 39, no. 12, pp. 4881–4893, Dec. 2020. 576

[5] C. Y. Hitchcock and D. E. Thomas, ‘‘A method of automatic data path 577

synthesis,’’ in Proc. 20th Design Autom. Conf., 1983, pp. 484–489. 578

[6] A. C. Parker, J. Pizarro, and M. Mlinar, ‘‘MAHA: A program for datapath 579

synthesis,’’ in Proc. 23rd ACM/IEEE Design Autom. Conf., Jun. 1986, 580

pp. 461–466. 581

[7] B. M. Pangrle and D. D. Gajski, ‘‘Slicer: A state synthesizer for intelligent 582

silicon compilation,’’ in Proc. Int. Conf. Comput.-Aided Design, Oct. 1987, 583

pp. 42–45. 584

[8] Fisher, ‘‘Trace scheduling: A technique for global microcode compaction,’’ 585

IEEE Trans. Comput., vol. C-30, no. 7, pp. 478–490, Jul. 1981. 586

[9] S. Davidson, D. Landskov, B. D. Shriver, and P. W. Mallett, ‘‘Some exper- 587

iments in local microcode compaction for horizontal machines,’’ IEEE 588

Trans. Comput., vol. C-30, no. 7, pp. 460–477, Jul. 1981. 589

[10] R. Camposano, ‘‘Path-based scheduling for synthesis,’’ IEEE Trans. 590

Comput.-Aided Design Integr., vol. 10, no. 1, pp. 85–93, Jan. 1991. 591

[11] P. G. Paulin and J. P. Knight, ‘‘Force-directed scheduling for the behavioral 592

synthesis of ASICs,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits 593

Syst., vol. 8, no. 6, pp. 661–679, Jun. 1989. 594

[12] Y. Shen, M. Ferdman, and P. Milder, ‘‘Maximizing CNN accelerator 595

efficiency through resource partitioning,’’ in Proc. 44th Annu. Int. Symp. 596

Comput. Archit., Jun. 2017, pp. 535–547. 597

[13] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao, H. Ha, 598

P. Raina, C. Kozyrakis, and M. Horowitz, ‘‘Interstellar: Using Halide’s 599

scheduling language to analyze DNN accelerators,’’ in Proc. 25th Int. 600

Conf. Architectural Support Program. Lang. Operating Syst., Mar. 2020, 601

pp. 369–383. 602

[14] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, ‘‘DeepBurning: Automatic 603

generation of FPGA-based learning accelerators for the neural network 604

family,’’ in Proc. 53rd Annu. Design Autom. Conf., Jun. 2016, pp. 1–6. 605

[15] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, ‘‘Optimizing 606

FPGA-based accelerator design for deep convolutional neural networks,’’ 607

in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, Feb. 2015, 608

pp. 161–170. 609

[16] H. Li, X. Fan, L. Jiao,W. Cao, X. Zhou, and L.Wang, ‘‘A high performance 610

FPGA-based accelerator for large-scale convolutional neural networks,’’ in 611

Proc. 26th Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2016, pp. 1–9. 612

[17] R. Fang, J. Wang, Z. Yao, C. Liu, andW. Zhang, ‘‘Modeling computational 613

feature of multi-layer neural network,’’ J. Comput. Res. Developmen, 614

vol. 56, no. 6, pp. 1170–1181, 2019. 615

[18] S. I. Venieris and C.-S. Bouganis, ‘‘Latency-driven design for FPGA-based 616

convolutional neural networks,’’ in Proc. 27th Int. Conf. Field Program. 617

Log. Appl. (FPL), Sep. 2017, pp. 1–8. 618

[19] A. Stoutchinin, F. Conti, and L. Benini, ‘‘Optimally scheduling CNN 619

convolutions for efficient memory access,’’ 2019, arXiv:1902.01492. 620

[20] J. Li, G. Yan, W. Lu, S. Jiang, S. Gong, J. Wu, and X. Li, ‘‘SmartShuttle: 621

Optimizing off-chip memory accesses for deep learning accelerators,’’ 622

in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018, 623

pp. 343–348. 624

VOLUME 10, 2022 95227



D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

[21] M. Alwani, H. Chen, M. Ferdman, and P. Milder, ‘‘Fused-layer CNN625

accelerators,’’ inProc. 49th Annu. IEEE/ACM Int. Symp.Microarchitecture626

(MICRO), Oct. 2016, pp. 1–12.627

[22] Z. Liu, Y. Dou, J. Jiang, J. Xu, S. Li, Y. Zhou, and Y. Xu, ‘‘Throughput-628

optimized FPGA accelerator for deep convolutional neural networks,’’629

ACM Trans. Reconfigurable Technol. Syst., vol. 10, no. 3, pp. 1–23,630

Jul. 2017.631

[23] J. Zhang and J. Li, ‘‘Improving the performance of OpenCL-based FPGA632

accelerator for convolutional neural network,’’ in Proc. ACM/SIGDA Int.633

Symp. Field-Program. Gate Arrays, Feb. 2017, pp. 25–34.634

[24] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, ‘‘FlexFlow: A flexible635

dataflow accelerator architecture for convolutional neural networks,’’ in636

Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2017,637

pp. 553–564.638

[25] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, ‘‘A dynam-639

ically configurable coprocessor for convolutional neural networks,’’ in640

Proc. 37th Annu. Int. Symp. Comput. Archit. (ISCA), 2010, pp. 247–257.641

[26] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, ‘‘CNP: An FPGA-based642

processor for convolutional networks,’’ in Proc. Int. Conf. Field Program.643

Log. Appl., Aug. 2009, pp. 32–37.644

[27] C. Farabet, B.Martini, B. Corda, P. Akselrod, E. Culurciello, andY. LeCun,645

‘‘NeuFlow: A runtime reconfigurable dataflow processor for vision,’’ in646

Proc. CVPR Workshops, Jun. 2011, pp. 109–116.647

[28] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,648

‘‘Diannao: A small-footprint high-throughput accelerator for ubiquitous649

machine-learning,’’ SIGARCH Comput. Archit. News, vol. 42, no. 1,650

pp. 269–284, Feb. 2014.651

[29] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z.652

Xu, N. Sun, and O. Temam, ‘‘DaDianNao: A machine-learning super-653

computer,’’ in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture,654

Dec. 2014, pp. 609–622.655

[30] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and656

O. Temam, ‘‘ShiDianNao: Shifting vision processing closer to the sensor,’’657

in Proc. 42nd Annu. Int. Symp. Comput. Archit., Jun. 2015, pp. 92–104.658

[31] S. I. Venieris and C.-S. Bouganis, ‘‘FpgaConvNet: A framework for map-659

ping convolutional neural networks on FPGAs,’’ in Proc. IEEE 24th Annu.660

Int. Symp. Field-Program. Custom Comput. Mach. (FCCM), May 2016,661

pp. 40–47.662

[32] H. Kwon, A. Samajdar, and T. Krishna, ‘‘MAERI: Enabling flexible663

dataflow mapping over DNN accelerators via reconfigurable intercon-664

nects,’’ ACM Architectural Support Program. Lang. Operating Syst.665

(ASPLOS), vol. 53, pp. 461–475, Mar. 2018.666

[33] P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang, C. Li, Z. Guan,667

D. Chen, and Y. Lin, ‘‘AutoDNNchip: An automated DNN chip predictor668

and builder for both FPGAs and ASICs,’’ in Proc. ACM/SIGDA Int. Symp.669

Field-Program. Gate Arrays, Feb. 2020, pp. 40–50.670

[34] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,671

‘‘VDNN: Virtualized deep neural networks for scalable, memory-efficient672

neural network design,’’ in Proc. 49th Annu. IEEE/ACM Int. Symp.673

Microarchitecture (MICRO), Oct. 2016, pp. 1–13.674

[35] S. Li, X. Shen, Y. Dou, S. Ni, J. Xu, K. Yang, Q. Wang, and X. Niu,675

‘‘A novel memory-scheduling strategy for large convolutional neural net-676

work on memory-limited devices,’’ Comput. Intell. Neurosci., vol. 2019,677

pp. 1–12, Apr. 2019.678

[36] R. V.W. Putra, M. A. Hanif, andM. Shafique, ‘‘DRMap: A generic DRAM679

data mapping policy for energy-efficient processing of convolutional neu-680

ral networks,’’ in Proc. 57th ACM/IEEE Design Autom. Conf. (DAC),681

Jul. 2020, pp. 1–6.682

[37] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra,683

and H. Esmaeilzadeh, ‘‘From high-level deep neural models to FPGAs,’’684

in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),685

Oct. 2016, pp. 1–12.686

DEJIAN LI received the master’s degree in elec-687

tronics from Tsinghua University, in 2002. He is688

currently working at Beijing Smartchip Micro-689

electronics Technology Company Ltd. He focuses690

on very large scale ASIC design and verification,691

especially in the fields of industrial control. He has692

published ten technical papers and ten patents in693

related areas.694

RONGQIANG FANG received themaster’s degree 695

in electronics from Capital Normal University, in 696

2021. He is currently pursuing the Ph.D. degree 697

in computer application technology with Beijing 698

Jiaotong University, China. His research interests 699

include computer architecture and fault-tolerant 700

design. 701

JING WANG received the Ph.D. degree from 702

Peking University, in 2011. She is currently an 703

Associate Professor with the School of Informa- 704

tion, Renmin University of China. Her research 705

interests include computer architecture, energy- 706

efficient computing, high-performance comput- 707

ing, and hardware reliability and variability. 708

DONGYAN ZHAO received the master’s degree 709

from Shanghai Jiao Tong University, in 1998. 710

She is currently an Executive Director of Beijing 711

Smartchip Microelectronics Technology Com- 712

pany Ltd. Her research interest includes integrated 713

circuit design. She is also a National Candidate of 714

‘‘Millions of Talents Project.’’ She has published 715

54 patents, 77 papers, and six books. 716

TING CHONG received the master’s degree 717

from Tianjin University, in 2007. He is cur- 718

rently the Technical Expert of Beijing Smartchip 719

Microelectronics Technology Company Ltd. His 720

research interests include embedded CPU technol- 721

ogy, embedded software and hardware technology, 722

information security technology, and functional 723

security technology. 724

ZENGMIN REN received the master’s degree 725

from Hangzhou Dianzi University, Hangzhou, 726

China, in 2008. He is currently working at Beijing 727

Smartchip Microelectronics Technology Com- 728

pany Ltd. His research interests include embedded 729

CPU technology, information security technology, 730

and functional security technology. 731

JUN MA received the master’s degree in com- 732

puter application from Inner Mongolia Univer- 733

sity, in 2007. He is currently an Engineer at 734

Beijing Smartchip Microelectronics Technology 735

Company Ltd. His research interests include hard- 736

ware secure architecture and trusted execution 737

environment design in embedded field. 738

739

95228 VOLUME 10, 2022


