IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 3 August 2022, accepted 18 August 2022, date of publication 5 September 2022, date of current version 15 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3204038

== RESEARCH ARTICLE

A Compressed Data Partition and Loop
Scheduling Scheme for Neural Networks

DEJIAN LI', RONGQIANG FANG?, JING WANG3>, DONGYAN ZHAO"!,

TING CHONG', ZENGMIN REN', AND JUN MA!

IBeijing Smartchip Microelectronics Technology Company Ltd., Beijing 100192, China

2School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

3School of Information, Renmin University of China, Beijing 100056, China

Corresponding author: Jing Wang (jwang @ruc.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 62076168, and in part by the
Laboratory Open Fund of Beijing Smart-Chip Microelectronics Technology Company Ltd.

ABSTRACT Neural networks (NNs) have been widely adopted in various application domains. Deeper
NNs greatly enhance the output accuracy, but complex NNs with more parameters incur intensive memory
accesses, and the data usually need to be partitioned since it may exceed the on-chip storage. However, there
is no research considering the partition and scheduling co-design of the NNs. In this paper, we propose a
sparse NN data partition and loop scheduling scheme. We establish the compression efficiency model of the
matrix sparse algorithm and design a partition selection method based on sparsity characteristics analyzed
by the compression efficiency model. Further, we design a loop scheduling scheme based on the proper
partition size. The experiment results show that the average memory access of each layer can be compressed
to 68% of the original, and the throughput of the AlexNet, VGG and VGG19 is increased to an average of

1.66 times.

INDEX TERMS Sparse matrix, neural networks, loop scheduling, compression, partition.

I. INTRODUCTION

With the prosperity and development of the mobile inter-
net, artificial intelligence applications based on deep neu-
ral networks are gradually migrating from cloud computing
to mobile computing. With its wide application in image
procession and speech recognition, the complexity of deep
learning algorithms continues to increase to meet the require-
ments of modern applications. However, the large number of
computations and memory accesses in deep neural networks
generates considerable energy. There is a large contradiction
between the power consumption and the limited power supply
capability of mobile devices. In addition, large-scale network
model data need to be transmitted to devices with limited
storage. When the storage capacity is smaller than the model
parameter size, the data usually need to be partitioned, thus,
how to achieve optimal data partitioning and transformation
to ensure efficient data processing becomes a hot research
topic [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Kuo-Ching Ying

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Since the weights of even a single convolutional layer
can exceed the local storage capacity, researchers proposed
data transformation schemes: graph partitioning uses the
synchronous dataflow model, which splits the graph into
subgraphs along convolutional layers and maps each sub-
graph to a different bitstream, however, this scheme requires
FPGA (Field-Programmable Gate Arrays) reconfiguration
when data flows to the next subgraph.

Folding is also an effective method to partition the data: this
kind of method folds input by a factor, and a convolutional
layer is split into multiple subgraphs that execute a fraction
of total convolutional. The interim results are accumulated to
generate the output. Thus, the storage requirement is reduced
by the folding factor. The folding methods are further divided
into coarse-grain folding and fine-grain folding. Coarse-grain
folding fully unrolls the major operations of every layer and
provides the highest throughput possible. Fine-grain folding
is a time-multiplexed scheme between different operations,
which use much smaller numbers of hardware units.

In addition, the parameter matrix of a neural network is
usually sparse, and compression can effectively reduce the

95219

https://orcid.org/0000-0002-2543-1814
https://orcid.org/0000-0002-9549-5290

IEEE Access

D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

storage space requirements. However, there is no research
considering the partitioning of the spare matrix, which com-
pression algorithm is selected, and how partitioning and
scheduling the matrix computation directly affect the perfor-
mance. Therefore, this paper focuses on how to select the
compression scheme and partition data based on the matrix
sparsity of different layers in the convolutional neural net-
works and proposes a sparsity model and partition scheme
for the neural network. The main contributions of this paper
are as follows:

1. We established the compression efficiency model of
the matrix sparse algorithm, proposed the sparse coefficients
and sparse offsets of different algorithms, and calculated the
compression ratio of different compression algorithms.

2. We analyzed the sparsity characteristics of the con-
volutional neural network parameter matrix, introduced the
concept of average density, and predicted the amount of
sparse matrix memory access through statistical information
to provide guidance for partitioning strategies.

3. We designed a partition size selection method for sparse
neural networks. We first analyzed the relationship between
memory access and model scale/sparsity, and then used the
dynamic programming algorithm to solve the partition size
selection problem.

4. We designed a loop scheduling scheme based on the
proper partition size, and the optimal mapping method was
designed for the sparse neural network.

Il. RELATED WORKS
A. SPARE MATRIX COMPRESSION

Previous research has shown that most of the parameter
matrices of neural networks are sparse, and compressed
sparse matrices can effectively reduce memory overhead.
Typical compression schemes include COO, CSR, SCNN,
and Swallow.

We use sparse coefficients and sparse offsets to charac-
terize the compression effect of the compression algorithm.
The sparse coefficient « is used to characterize the memory
resources occupied by each nonzero value in the actual stor-
age requirements. The coefficient is only changed according
to the sparse algorithm rules, and dose not vary with different
matrices, the sparse offset 8 describes index size or data
location, which is related to the layout of the nonzero matrix
values.

COO [2] uses row number, column number, and element
value to store nonzero elements. For nonzero elements in
any matrix, three values need to be recorded, so its sparse
coefficient is three, which means that when the number of
nonzero elements is K, the storage space overhead is 3K.
COO is a triple storage algorithm, that is effective when the
matrix is very sparse, and it is less efficient for dense matrix
compression.

The CSR scheme stores data values, column index, and
row index. The row index records the number of newlines
between adjacent data, that is, if there is no newline between
adjacent nonzero data, the newline index will not be added.

95220

The sparse coefficient of the CSR algorithm is two. Ideally,
only values and column numbers are stored, and the storage
space overhead is 2K. However, the actual situation cannot
guarantee that all nonzero values are in the same row, nor
can it guarantee that all data are evenly distributed in each
row. Therefore, the CSR algorithm requires 2K+-c storage
space, where c is the total number of rows occupied by
data.

In addition to storing numerical bits, SCNN [3] also needs
to store the number of 0 values from each data to the previous
nonzero data. An additional data bit is stored to represent the
number of nonzero values in the matrix. Therefore, the sparse
coefficient of SCNN is two, and the storage requirement
is 2K+1.

The Swallow [4] scheme records the number of nonzero
values in the same row for each channel and uses the offset
bit to record the column number of the data. The sparse
coefficient of the Swallow scheme is two. The sparse offset
is R, which is the number of rows.

B. LOOP SCHEDULING

Scheduling research on CNN(Convolutional Neural Net-
works) accelerators has a long history. Since the 1980s,
a series of as early/late as possible algorithms [5], degrees of
freedom-based algorithms [6], and mobility-based schedul-
ing algorithms have been proposed [7], [8], [9], [10], [11].
Then, researchers found that the scheduling problem is
not only how to split the operator into each multiplier-
accumulator, but also how to implement a multi-batch
pipeline for different convolutional layers [12]. Therefore,
optimization is carried out from two aspects: resource alloca-
tion and dataflow [13]: resource allocation methods mainly
focus on how to improve resource utilization, while data flow
methods solve how to transport data to achieve the highest
performance.

In terms of resource allocation optimization, the ACT lab-
oratory extracts the the control components hyperparameters
from the perspective of the Process Element(PE) configu-
ration for optimization, imitating the Von Neumann control
mode, with the help of a large number of expertly pre-
defined template optimization to add instructions to guide
dynamic scheduling in the FPGA [5]. [14] compared the
size of the convolution kernel matrix with the memory band-
width, thereby providing the basis for data partitioning and
solving the problem of uneven resource allocation. Loop
tiling and loop unrolling consider both on-chip data reuse
and external storage and can be used to improve mapping
efficiency and resource utilization [15]. [12] noted that the
scheme of providing convolution processing unit for each
stage of the convolution computation [16] is inefficient, and
therefore proposed multiple multiprocessing structures with
different computing capabilities to pipeline the processing.
[17] designed a scheduling algorithm based on the maximum
value to improve the resource utilization problem under multi
process element cooperative computing. A reloadable archi-
tecture of neural network was proposed in [18]. The above

VOLUME 10, 2022

D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

IEEE Access

D ata Partition M odel
N ety ok ata Partition M ode
M odel ¥
Watk | 1\ awixScak
Feature
Dataset 'T
Spare
Com pression . . Non-Zero
X |—b | coefficientand | ——5
Algorithm offset Value layout

Scheduling M odel

recursive
traversal
algorithm
Scheduling
Data M em ory
Partition Access Analysis

FIGURE 1. Flow of the data partition and loop scheduling scheme.

scheme is simple and direct, but it is only effective on specific
operators, and the generality is poor.

The data flow optimization problem involves modifying
the control logic or timing relationship of the hardware,
scheduling the flow order of the data, maximizing the reuse
rate and enhancing the parallelism of data transmission/
processing. [15] designed three on-chip buffer structures:
full reuse, partial reuse, and independent handling. Arthur
Stoutchinin et al. proposed a model HWC [19] to effi-
ciently evaluate the reusability of network mappings, and
based on the model, a better data scheduling scheme was
given. Li et al. proposed a layer partition scheduling strategy
SmartShuttle based on the difference in sensitivity of input
data, input data and weight to reusing different convolutions
[20]. Alwani et al. proposed caching the area shared by adja-
cent receptive fields, so that only the nonshared part needs to
be fetched from memory in the next layer calculation [21].

Previous works focused on how data are transferred to the
on-chip buffer, and [22] started with the data that have been
transferred to the chip. Distributing the convolution operation
and the fully connected operation on a 4-level parallelism
design enables different types of network layers to make full
use of the same multiply-add operation unit to form a timing
relationship that does not generate pipeline bubbles [22]. [23]
changed the hardware storage method to two imensional data
storage in the form of window size, so that the start time of the
convolution operation is advanced to when the matrix stor-
age meets the window size, thereby shortening the time for
pipeline task completion [23]. Lu et al. proposed FlexFlow,
a flexible dataflow accelerator architecture for convolutional
neural networks [24], and divided the loop unrolling methods
into three categories: unrolled convolution kernel matrix [25],
[26], [27], unwrapped feature map matrix [16], [28], [29] and
unwrapped matrix channels [30].

The Imperial College of London proposed a real-time
reconfigurable architecture. The directed graph correspond-
ing to the convolutional network is divided into several
subgraphs, and each subgraph corresponds to a different
hardware architecture. Bitstream files need to be reinjected
between network layers belonging to different subgraphs
to reconfigure the hardware architecture [31]. Kwon et al.
designed a NN accelerator with a built-in set of reconfig-
urable building blocks that can easily support countless DNN

VOLUME 10, 2022

partitions and maps by appropriately configuring the inter-
connect architecture [32]. Xu et al. proposed converting a
neural network’s hardware mapping into a dataflow graph.
The graph shows whether the data to be processed by this
layer is given by the output of the network model of the previ-
ous layer, so as to formulate the principle of time-sharing and
multiplexing for PE(Processes Element) [33]. Rhu ef al. [34]
improved hardware performance through weight prefetching.
Li proposed splitting the network to dynamically release
memory resources [35]. Wicaksana Putra reused memory
storage by filling data in any location that the memory can
carry data, to optimize the data flow and improve the system
performance [36].

Addressing scheduling problems can greatly optimize the
model mapping so that both computing and storage resources
can fully utilize their capacity. However the existing schedul-
ing optimization schemes lack generality, and most schedul-
ing solutions can only optimize some specific operators.
Therefore, it is necessary to find a general solution to solve
various neural networks consisting of complex operators and
their variants [24], [37].

IIl. NNS’ PARTITION AND SCHEDULING SCHEME

The amount of data transmission in the NNs is the key to
optimizing performance. To determine the actual quantity of
data to be transported, it is necessary to obtain the matrix size,
density, and sparse algorithm features. Therefore, we analyze
the storage characteristics of the matrix according to the
network model and dataset and find the optimal compression
storage scheme by comparing the original storage capacity
and the sparsely compressed data storage capacity. After
the compression scheme is determined, the memory access
footprint of the model is calculated, and the partition size with
the largest throughput is selected according to the footprint.
Finally, the enumeration method is used to select the loop
scheduling scheme.

A. MODELING OF SPARSE MATRIX STORAGE FEATURES

The feature analysis module calculates the storage g of
the compressed matrix, compares the value of Geomp
with the original uncompressed storage amount Ggyig, and
selects the strategy that occupies the smallest storage space.
Geomp is a linear function of the number of nonzero

95221

IEEE Access

D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

TABLE 1. Matrix parameter features.

parameters
N/M The number of input/output channel
R,/C, The number of row/column of input
K Size of the CNN kernel
Ry /Co The number of row/column of output
S The strip of the network

TABLE 2. Feature of the sparse compression algorithm.

algorithm COO | CSR SCNN | Swallow
coefficient (@) 3 2 2 2
offset(;) 0 c 1 R
capacity(g) 3k 2k +c | 2k +NM | 2X+R

elements K, and the coefficient @ and offset 8 are related to
the sparse matrix compression algorithm. The number K of
nonzero values in the matrix varies with the model and input
data, so the average number of nonzero values k isintroduced.
To describe the sparsity of the matrix, the average density D
is introduced, which is the normalization of the number of
nonzero values. To calculate k and D, the feature parameters
of the matrix are extracted, as shown in Table 1. Note that the
number of nonzero values in the input/weight/output matrix
is kirvm, kkER, koFMm, and the original storage requirements
are Gyry, Gker, Gorm - Then the average density of different
matrices can be calculated using Formulation (1)-(3).

_ kirm
G =R; x C;, D = — 1-1
IFM i 1Dy = 5= Gormn (1-1)
ki = N X Gipm < Dipy (1-2)
- kkER

G = Kz, D = — 2-1
KER KER = N730M x Gren (2-1)
kxkgr = N x M x Gggr X Dger (2-2)

_ korm
G = Rp x Co, D = — 3-1
OFM o 0, Dorm = 37— Gorn (3-1)
korm =M x Gorm X Dory (3-2)

The matrix feature extraction module obtains the matrix
size of the input/weight/output matrix, the number of nonzero
values and the layout of nonzero values. We use the fea-
ture information of the matrix, and the sparse coefficient
and offset of the compression scheme to calculate the stor-
age capacity of the compressed sparse matrix, as shown in
Formulation (4).

g=ka+) B)

Based on the above formula, the storage capacity of a typ-
ical sparse matrix compression algorithm can be calculated,
as shown in Table 2.

The layers close to the input layer have more original infor-
mation, and the corresponding matrix is denser. The layers
close to the output layer are sparser because the network
removes redundant information and retains core features.

95222

TABLE 3. Parameters of the data transfer calculation.

1 ©
I t [M] N P, X
X — .
npu P %P in X girm,
M N
Kernel [— X — | Pout X Pin X gker,
Pin Pin
Output b Pout X Gorm,
out

Therefore, for a denser input-side matrix, the compressed
storage cost is relatively high. Therefore, it is necessary to
judge whether the compressed storage amount will exceed
the original size, that is, Geomp > Goirg. If the above situation
occurs, the original storage without compression is selected.

B. THROUGHPUT-BASED PARTITION SIZE SELECTION
The size of the neural network model usually exceeds the
on-chip storage, and the matrix partitioning technique is
needed to transfer data to FPGA. Ideally, the partitioned
input matrixT, output matrix, and weight matrix are stored
in the on-chip buffer until the partial sum is completely
superimposed and then written back to the memory. The
total execution latency includes memory access time and
computation time. The memory access time is the product
of the bit transmission delay and the amount of transmitted
data. The quantity of transmitted data is the sum of the input,
weight, and output matrix transmissions. The amount of each
matrix X transmission is the matrix transmissions Ax and the
single transmission data amount wy, as shown in Table 3.
Py, is the partition size of input and Pout is the partition size
of output, and Our propose is finding the best partition size
Py and Py,

The total transmission volume is calculated as shown in
Equation (5):

Total Data Transfer (TDT) = Ay + Ax g + Aopo (5)

The calculation of the memory access time MAT is shown
in Equation (6), where A is the transmission time of single-
bit data, which is only related to the system bit width and
bandwidth.

Memory Access Time (MAT) = A x TDT (6)

The computing time is obtained by multiplying the total
computing partitions and the computing time of each par-
tition, where the computing time of each partition is repre-
sented by the data size y divided by the frequency f, and y is
obtained by dividing the total network parameter size by the
memory bandwidth B, as shown in Equation (7)

8O0FMy X 8KERy
Y= 5

Therefore, the final computation time is expressed as
Equation (8):

N

. . M N y
Total Computation Time (TCT) = X | —|x=
Pout Pin f(g)

VOLUME 10, 2022

D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

IEEE Access

Throughput is the total amount of transferred data divide
the latency. The transmission and computation of data are
often performed in parallel, so latency is the muximum of
TCT and MAT, then throughput is shown in Equation (9).

2X N XM X gorm, X 8KER,
Max {TCT, MAT}

Throughput = C)

Partition selection is a multi-objective optimization prob-
lem that needs to maximize throughput while minimizing
memory occupation. The constraints are that the partition
size is smaller than the channels of the neural network
model and the memory capacity Capacity, which is shown
in Equation (10).

<Py <N (10-1
constriction {1 < Py <M (10 —2)
wi + pk + o < Capacity (10 — 3)
(10)
The objective function is shown in Equation (11).
| [min(Capacity = (uy + px + o)y
g max(Throughput)

Our propose is finding the partition size P;, and Py, and
we propose a throughput-based maximum partition selec-
tion algorithm. The algorithm transforms the above dual-
objective optimization problem into a single-objective and
multiple constraint optimization problem. The algorithm first
sets MAT = TCT, uses Pj, to represent P,,; according to
Equation 10-3, and then the range of Our propose is finding
the partition size Pj, can be represented by formulation (12)

Ny

<P
Af (Mgorm, + MNgkER, + Ngirm,)
Ny

<
= Af (gorm, + NgkER, + NgikM,)

12)

The lower boundary and upper boundary of P;, are V| and
V>, respectively. This means that when P;,, € [V, Vo] N
[1, N], there must be a P,,; € [1, M] that satisfies MAT =
TCT and does not exceed the upper boundary of the on-chip
buffer. In contrast, if P;,, € (—oo, V1) N [1, N], then there
is always MAT < TCT, if P;;, € (V,,4+00) N [1, N], then
there is always MAT > TCT. The first step of the algorithm
is using Vq and V5 to divide the original search space into
three parts. According to the above analysis, we can find the
solution that achieves the maximum throughput. The second
step is adjusting the solution space. The algorithm calculates
the maximum throughputs of each interval and chooses the
maximum as the global maximum value.

1) TCT-DOMINATED RANGE

When P;,, € (—oo, V) N[1,N], MAT < TCT, then the
throughput of the system is decided by TCT, to find the
maximum Pj, X Py, take the equation case of the formulation
10-3: u; + wx + o = Capacity, and let P;, equal P,,;, and

VOLUME 10, 2022

Y(Pin) = PinPoy:. Formulation (13) obtains the derivative of
y (+) about Py,

y/ (Pin)
_ —8irm K 2P2 — 280rMo&1FMyPin + 0FM, Capacity

2
(gKEROPin + gOFMO)
(13)

Let y/ (T,) = 0, and the right pole of the unary quadratic
function can be solved as the maximum value point of the
original function 7T}, (14), as shown at the bottom of the next
page.

Whether the maximum value of P;, falls in the range
(—o00, V1]N[1, N) and ensures that there is an integer solution
for P, satisfying Equation (10-3), we discuss the following:

If Pingp € (—o00, Vi] N [1, N], then compare y (Pin) |p, -1
and y(Pin) |p, =p,,> and choose the largest result,
If Piyo € (N,+o00), then compare y(Pj,)| Pi=1 and
Y (Pin) | p,,=min(v v,)> @nd choose the largest one as the final
result, If P;,0 € (—o0, 1), Pi, = 1 is the final result because
when P, > P, ¥ (T,) decreases monotonically in the
interval [1,N].

2) MAT DOMINANT INTERVAL

When P;,, € (Va,4+00) N[1,N],MAT > TCT, then the
throughput of the system is decided by TCT, and the formula
for calculating the MAT cost is shown in Equation (15).

1
MAT = A (T—Nguw0 + MNgkEeRr, + MgOFMO) (15)
m

It can be found that MAT is only related to P,,;. The larger
Py 1s, the smaller MAT is. Therefore, it is only necessary to
keep P,y as large as possible. Therefore, let P,,; =M, and
use Equation (10-3) to solve the value of P,,;, which is the
proper partition to maximum throughput.

3) RANDOM DOMINANT INTERVAL

Random dominance occurs when P;, € [V, Vo] N [1,N],
there will be a P,,; that makes MAT=TCT, and the enumer-
ation method is used to traverse the partition value range and
find the partition value.

The above optimal solution is a theoretical result, but
in practical systems, due to the storage capacity limitation,
some theoretical values may not be reached, which requires
adjusting the results to meet system resource constraints. The
adjustment scheme of the solution is based on the fact that for
any convolutional layer, when P;, = P,,, = 1, the storage
overhead cannot exceed the memory capacity.

Based on the above analysis, the inverse solution function
P,V (-)is used for the problem that the current partition space
has no solution. According to the input partition size, the
partition size of another dimension is obtained when the equal
sign is taken according to Formula (11-3). For example, the
P,V (P,) function returns the maximum value of P,,,, and
inputting P,,; returns the maximum value of Pj,.

95223

IEEE Access

D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

TABLE 4. Matrix reuse distance.

LFX LFY LSX LSY LIF LOF
IFM 1/K K/1 1/K K/1 1 M
KER 1 1 C R 1 1
OFM K K 1 1 N 1

Taking the solution adjustment of the MAT-dominated
interval as an example, the throughput is only related to the
value of P,,;, and P,y needs to be as large as possible.
However, since P;, has a lower boundary and P,,; cannot
achieve the upper boundary of M, we can set P;, = 1 and use
the inverse solution function to obtain the maximum value of
Poyr to reduce traversal trials. If the on-chip buffer is large
enough, P,,; can be set to N to ensure maximum resource
utilization.

C. LOOP SCHEDULING SCHEME FOR A SPARSE MATRIX
The data partition is determined before running, and proper
scheduling is required for dynamic execution. Eighty percent
of the neural network computations are on the convolution
layer and fully-connected layer, which are multilayer loops.
Therefore, the loop execution order is the key technique for
minimizing the data copy operation and the memory access
overhead. We propose a memory access footprint model for
sparse partitioning and design a traffic traversal algorithm
based on the proposed footprint model to find the optimal
loop scheduling order.
n(L;)
Rx (Li)
Without considering sparseness, the model of the impact
of the number of iterations and reuse distance on the memory
traffic is as follows. Let the sequence Lo, L1, - - - , Ly—_1 be the
order of the loop from the inner layer to the outer layer, and
the nonrepetitive sampling of L; € {LSX, LSY,---,LOF},
denote Fx (L;) as the footprint of matrix X in cycle L;, specif-
ically Fx (L—1) = 1, n(L;) is the number of iterations in the
loop L;, and Ry (L;) is the reuse distance of the matrix X in
the loop L;. The reuse distance is shown in Table 4, and the
footprint calculation formula is shown in Equation (16).
After the matrix is sparsely compressed, denote Ky as the
sparse storage footprint factor of matrix X, and the footprint
calculation formula is shown in Equation (17)-(18).

Fx (Lj) = Fx (Li—1) X (16)

Algorithm 1 Loop Scheduling Algorithm

Input: dx is matrix average density, /[K] is the set of all
scheduling scheme for a loop, px is reuse distance, a is sparse
coefficient, b is spare offset, s is the loop order of scheduling
scheme of /i, which is the i-th item in 1, Re is the current
footprint recursion factor, pai is multiply recursion factor
Output: min memory consumption 7min and the correspond-
ing loop sequence

/xtravers all the loop labels in the current order */
While(li< K){
mem=0
n-loop-step = [[/i][0]
While(n-loop-step < CNN-loop-threshold){
/*Add the matrices of different labels to the data in s
according to the corresponding positions */
mem+ = Re*pai}
mem* = min(mem, mem*dx*a + b)
}
s[li].traffic= mem
}
loop-order =0
Tmin = s[0].traffice
While(loop-order < K){
if(s[loop-order].traffic < Tmin)
Tmin = s[loop — order].traffic
}

Output Tmin and loop-order

loop recursion factor [n (L;) will change with different
loop execution sequences and different data partitions. When
the matrix loop nesting order changes, the footprint model
also changes accordingly. Different matrices have different
reuse effects under different loop scheduling. Therefore, it is
necessary to calculate the matrix memory footprint for dif-
ferent loop scheduling schemes, as shown in Equations (19)

Fy (L) = MIN (Fx(Li_1) % n(Ly) (17) and (29), where Tracey is the memqry footprint of matrl)? X,
Rx (Ly) Trace is the total memory consumption of memory mapping,
L N . . .
Fy(Lioy) x n(L;) « Ky) (18) and n (L,) is the iteration number of loop L;.
Ry (L) N-1
Kx is a variable related to the matrix size and sparse Tracex = Fx (L;) X H n (Lj) (19)
algorithm. The sparse matrix footprint factor R’;((LE_) and the j=i
2)
T —280FMo8IFM, + \/ (280FMo81FM,)~ + 48KER 8OFMo8IFM, Capacity (14)
n0 =

281FM o 8KERy

95224

VOLUME 10, 2022

D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

IEEE Access

g
g

£

g

§

§

§

@
8

ParameterNumber (1X103)
ParameterNumber (1X 10%)

& S
& & &

1000
00
600
00
200 2
o
o

Convi Cconvz Conv3 Conva

Convolutional Layer

Alexnet

&

&
‘j‘b <4°€F (,és (4°° (4°$0

Convolutional Layer

VGG16

FIGURE 2. Parameter size of kernels under different compression alogrithm.

ParameterNumber (1 X 103)

ParameterNumber (1X 103)

400
. 3500
4 3000
20 2500
150 2000
1500
w 1000
50 500,
0

) > & &

Convi Conv2 Conva

Convolutional Layer

Conv3 Convs

Alexnet

FIGURE 3. Parameter size of OFM under different compression alogrithm.

40
35
5 _
[
2%
a0 O ,
p J)
O 515
= O ~
£ =
-
5
0
Convl Conv2 Conv3 Conv4 Convs
m AvgTiling s MaxTiling === SparseAvgTiling SparseMaxTiling
Throughput Throughput Throughput Throughput
35
Q 31
3{:“ 25
—
~a
o ./
> -
= X
1.5 A
Q
£ — i
[
E 0.5
0 +4
Convl Conv2 Conv3 Conv4 Convs
= NoneSparse-NonTiling |] AvgTiling m None$; MaxTiling

FIGURE 4. Performance of Partition Algorithms on AlexNet.

Trace = Tracerpy + Tracegxgr + Traceory (20)

The loop scheduling scheme is based on memory con-
sumption, as shown in Algorithm 1.

IV. EXPERIMENTS

We adopt typical convolution networks: AlexNet, VGG and
VGG19, and run the ImageNet dataset. First, we evalu-
ate the storage capacity overhead of network parameters

VOLUME 10, 2022

S
& & &
& c>“ & <.°° ¢ ¢ 9°°

Convolutional Layer

VGGl6

3500
TD 3000
X
— 2500
E —Weight
2000 "
"é ~—NonZeroWeight
‘{O: 1500 ——C00
T 1000 CSR
g —SCNN
el
Pt ~—Swallow
0
L@s‘f‘fé‘fé T s “ﬁ@‘ev f’bo ‘f‘ ‘h
Convolutional Layer
The OFM ParameterNumber and Compress Methods in VGG19
4500
& a0
=)
=
% 3500
R —Activation
Y
8 =™ ~—NonZeroActivation
Z 2 —C00
o A CsR
2
a we —SCNN
{“ S0, ~——Swallow
0
&S FEFL LS LS LSS SIS
Convolutional Layer
60
- 50
27 [
c o 40
0 Q 3 | J
>S5
o
S O 20
£ =
= 10
0
I T S T R W SN - SR S G AR
F F P > J S O D
& & & & & & & SS S QI
[S S S N ¢ ¢ R (‘o‘\ & &
mm AvgTiling mmmm MaxTiling === SparseAvgTiling SparseMaxTiling
Throughput Throughput Throughput Throughput
25
2
b = 20
O =
= o 15
>
=X
o 10
o
g 5

R R N I R R R O T]
&S & & & & & & & Q' S Q'
(S A A A R (9° & &

¥ None!

NonTiling ™ Nc AvgTiling ~ ® NoneSparse-MaxTiling

FIGURE 5. Performance of partition algorithms on VGG16.

under different compression schemes, and the correctness
of the sparse feature analysis model is verified. Then,
we evaluate the system throughput and memory access
under different partition schemes, and the effect of the
partition selection algorithm is analyzed. Finally, the mem-
ory access of the partition and scheduling joint scheme
is tested, and the comprehensive effect of our method is
given.

95225

IEEE Access

D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

Throughput
(GFLOPs)
/.

—
———

> & ©
SIS o P PRLPIPLFPS

N

S
ST S S S c,° o & S S S

— AvgTiling
Throughput

s MaxTiling === SparseAvgTiling
Throughput Throughput

SparseMaxTiling
Throughput

25

20

15

10

5

Memory Traffic
(1x109)

0

PSP PP
(‘ (\ (‘ (‘ (‘ (‘ (‘ (‘ <\ D & J QT Q
CCECCCCCECECEE S (,o(\ & (,°° & & &

[] NonTiling = AvgTiling = MaxTiling

FIGURE 6. Performance of partition algorithms on VGG19.

The Memory Traffic and partial Compress Methods in AlexNet

////\\/«\

Convi Conv2 Cond Convd Coms

=—=NonSparse+HWC
~—C0O0+Global Schedule
~—SCNN+Global Schedule
CO0+0ur Schedule
~==SCNN+Our Schedule

Memory Traffic(1X10%)

Convolutional Layer

FIGURE 7. Memory traffic of VGG16.

The Memory Traffic and partial Compress Methods in VGG16

16
14
12
8
6
4
2

&
I
¢ <,°° (P“ ('o«\ Qé‘

——NonSparse+tHWC

——COO0+Global Schedule

~—SCNN+Global Schedule
COO+O0ur Schedule

Memory Traffic (1X109)

——SCNN+Our Schedule

&

>
(,°°t,° <,° < &

(PQ (,°° <,°° <

Convolutional Layer

FIGURE 8. Memory traffic of VGG19.

A. MEMORY ACCESS FEATURE ANALYSIS
The memory access features are extracted for the convolution
of different layers. Figures2-3 show the memory consump-
tion of four different sparse matrix compression methods for
AlexNet, VGG16 and VGG19 networks under the ImageNet
dataset. The results show that the sparse matrix compression
method can greatly improve memory efficiency.

The improvement of COO is the smallest because each
nonzero datapoint needs to be stored with two additional posi-
tion parameters, which is effective only for matrices whose

95226

The Memory Traffic and partial Compress Methods in VGG19

——NonSparse+HWC
——CO00+Global Schedule
~——SCNN+Global Schedule
COO0+0ur Schedule
=—=SCNN+Our Schedule

Memory Traffic(1X109)

PP e

PO PQ PO >

3§ S & S &
& S S S S S S S S

¢ ¢ ¢ @ <,°<,°(,°c°c°(‘o“ e“@“@“@“@“@“

Convolutional Layer

FIGURE 9. Memory traffic of AlexNet.

AlexNet Sparse Tiling Methods

25

Memory Traffic
(1x10°)

Convl Conv2 Conv3 Conv4 Convs

m NoneSparse-NonTiling ~ m GlobalSparse-AvgTiling m SelectiveSparse-MaxTiling

FIGURE 10. Memory Traffic of AlexNet with the joint method.

20
18 4
16 4
14 4
12 4
10 4
8 4
6 4

Memory Traffic
(1x10°)

[SRINIFN
N

&> P EQ POy
& & & S S N & S & Q Q Q)
(S G S I A R S O

= NoneSparse-NonTiling ™ GlobalSparse-AvgTiling ® SelectiveSparse-MaxTiling

FIGURE 11. Memory traffic of VGG16 with the joint method.

sparsity exceeds a certain range. SCNN is the most efficient,
it generates a serial number for each nonzero data to indicate
the number of columns and only stores the number of rows
of an additional matrix to indicate the specific location of the
data. CSR and Swallow are more balanced than the former
two. Although CSR and Swallow cannot achieve the com-
pression effect of the SCNN, there is no restoration problem.

B. PARTITION ALGORITHM EVALUATION

We compared our scheme with the average partition scheme.
The average partition scheme does not consider the impor-
tance of matrix channels but only considers the matching
of the number of input matrices and convolution kernels,
so let Tm=Tn to reduce the computational time overhead and
increase throughput. This section compares the throughput
and memory access overhead of different partition meth-
ods at various layers of the network. The results are shown
in Figures 4-6.

VOLUME 10, 2022

D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

IEEE Access

The following conclusions can be drawn from the experi-
mental results. First, our maximum partition method achieves
higher system throughput than the average partition method.
Especially in the hidden layer of the neural network, the
maximum partition method can obtain the partition result cor-
responding to the optimal throughput of the current network
layer, and the memory access cost and computation cost are
low, while the average partition method can only reduce the
computation cost. The memory access overhead is still high.

Second, the throughput-based maximum partition algo-
rithm proposed in this paper is better optimized for deep
convolutional neural networks. Since a deeper network has
a larger scheduling space, the layers close to the output have
a more obvious effect on the improvement of throughput and
the reduction in memory access.

C. DATA PARTITION AND LOOP SCHEDULING JOINT
EVALUATION
We compared the effectiveness of the scheduling scheme
with HWC, and the results are shown in Figures7-9. As seen
in the figures, the method in this paper further reduces the
overall memory access of the convolutional neural network.
However, because the layer close to the input side has a
high density, the advantages of the sparse matrix compression
algorithm cannot be exerted, so the optimization result is not
obvious, and the layer close to the output has a low matrix
density due to more O values. At this time, the optimization
effect of the sparse compression algorithm is obvious. Exper-
iments show that, compared with the HWC scheme, using
the compression algorithm with a sparse coefficient of 3, the
average memory access of each layer is compressed to 83%
in the AlexNet, VGG16 and VGG19 networks, while using
the compression algorithm with a sparse coefficient of two,
memory access is compressed to 68% of the original.
Figures 10-11 show the joint effect of the maximum
partition scheme based on the sparse matrix and the loop
scheduling scheme. The results show that in the AlexNet net-
work, the throughput is increased by 1.95 times, the through-
put of VGG is increased 1.38 times on average, the overall
throughput is increased by 1.66x on average. The memory
access is reduced by 14.6% on average, which verifies the
effectiveness of our scheme.

V. CONCLUSION

With the development of neural networks, the complexity of
the network model and the model parameters are increas-
ing, which makes it difficult to save all the data on the
limited memory of embedded or mobile devices. Although
previous works achieved certain acceleration optimization
effects, they ignored the impact of matrix sparsity on loop
scheduling. How to use the matrix sparse compression algo-
rithm has become the primary obstacle to solving the prob-
lem. We proposed a sparse neural network data partition
and loop scheduling scheme. We extracted the sparse feature
of the matrix and analyze the characteristics of the sparse
compression algorithm. Based on the sparsity feature of the

VOLUME 10, 2022

matrix, we selected the proper partition size to maximize
throughput. Then, we used the loop sequential traversal algo-
rithm to find the proper loop scheduling scheme using the
chosen partition size. The experimental results show that the
average memory access of each layer can be compressed to
68% of the original, additionally, the throughput of the three
networks increases to an average of 1.66 times

REFERENCES

[11 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., vol. 25, 2012, pp. 1-9.

[2] N. Bell and M. Garland, “Implementing sparse matrix-vector multipli-
cation on throughput-oriented processors,” in Proc. Conf. High Perform.
Comput. Netw., Storage Anal., 2009, pp. 1-11.

[3] A.Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An accelerator for
compressed-sparse convolutional neural networks,” in Proc. 44th Annu.
Int. Symp. Comput. Archit., Jun. 2017, pp. 27-40.

[4] B. Liu, X. Chen, Y. Han, and H. Xu, “Swallow: A versatile accelerator
for sparse neural networks,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 39, no. 12, pp. 4881-4893, Dec. 2020.

[5] C. Y. Hitchcock and D. E. Thomas, “A method of automatic data path
synthesis,” in Proc. 20th Design Autom. Conf., 1983, pp. 484—489.

[6] A.C. Parker, J. Pizarro, and M. Mlinar, “MAHA: A program for datapath
synthesis,” in Proc. 23rd ACM/IEEE Design Autom. Conf., Jun. 1986,
pp. 461-466.

[7]1 B.M. Pangrle and D. D. Gajski, ““Slicer: A state synthesizer for intelligent
silicon compilation,” in Proc. Int. Conf. Comput.-Aided Design, Oct. 1987,
pp. 42-45.

[8] Fisher, “Trace scheduling: A technique for global microcode compaction,”
IEEE Trans. Comput., vol. C-30, no. 7, pp. 478-490, Jul. 1981.

[9] S.Davidson, D. Landskov, B. D. Shriver, and P. W. Mallett, “Some exper-
iments in local microcode compaction for horizontal machines,” IEEE
Trans. Comput., vol. C-30, no. 7, pp. 460-477, Jul. 1981.

[10] R. Camposano, “Path-based scheduling for synthesis,” IEEE Trans.
Comput.-Aided Design Integr., vol. 10, no. 1, pp. 85-93, Jan. 1991.

[11] P.G.Paulin and J. P. Knight, “‘Force-directed scheduling for the behavioral
synthesis of ASICs,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 8, no. 6, pp. 661-679, Jun. 1989.

[12] Y. Shen, M. Ferdman, and P. Milder, ‘“Maximizing CNN accelerator
efficiency through resource partitioning,” in Proc. 44th Annu. Int. Symp.
Comput. Archit., Jun. 2017, pp. 535-547.

[13] X.Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao, H. Ha,
P. Raina, C. Kozyrakis, and M. Horowitz, “Interstellar: Using Halide’s
scheduling language to analyze DNN accelerators,” in Proc. 25th Int.
Conf. Architectural Support Program. Lang. Operating Syst., Mar. 2020,
pp. 369-383.

[14] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “DeepBurning: Automatic
generation of FPGA-based learning accelerators for the neural network
family,” in Proc. 53rd Annu. Design Autom. Conf., Jun. 2016, pp. 1-6.

[15] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, Feb. 2015,
pp. 161-170.

[16] H.Li, X.Fan,L.Jiao, W. Cao, X. Zhou, and L. Wang, ‘A high performance
FPGA-based accelerator for large-scale convolutional neural networks,” in
Proc. 26th Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2016, pp. 1-9.

[17] R.Fang,J. Wang, Z. Yao, C. Liu, and W. Zhang, “Modeling computational
feature of multi-layer neural network,” J. Comput. Res. Developmen,
vol. 56, no. 6, pp. 1170-1181, 2019.

[18] S.I. Venieris and C.-S. Bouganis, “Latency-driven design for FPGA-based
convolutional neural networks,” in Proc. 27th Int. Conf. Field Program.
Log. Appl. (FPL), Sep. 2017, pp. 1-8.

[19] A. Stoutchinin, F. Conti, and L. Benini, “Optimally scheduling CNN
convolutions for efficient memory access,” 2019, arXiv:1902.01492.

[20] J.Li, G. Yan, W. Lu, S. Jiang, S. Gong, J. Wu, and X. Li, “SmartShuttle:
Optimizing off-chip memory accesses for deep learning accelerators,”
in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018,
pp. 343-348.

95227

IEEE Access

D. Li et al.: Compressed Data Partition and Loop Scheduling Scheme for Neural Networks

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

M. Alwani, H. Chen, M. Ferdman, and P. Milder, “‘Fused-layer CNN
accelerators,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2016, pp. 1-12.

Z. Liu, Y. Dou, J. Jiang, J. Xu, S. Li, Y. Zhou, and Y. Xu, “Throughput-
optimized FPGA accelerator for deep convolutional neural networks,”
ACM Trans. Reconfigurable Technol. Syst., vol. 10, no. 3, pp. 1-23,
Jul. 2017.

J. Zhang and J. Li, “Improving the performance of OpenCL-based FPGA
accelerator for convolutional neural network,” in Proc. ACM/SIGDA Int.
Symp. Field-Program. Gate Arrays, Feb. 2017, pp. 25-34.

W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “FlexFlow: A flexible
dataflow accelerator architecture for convolutional neural networks,” in
Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Feb. 2017,
pp. 553-564.

S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynam-
ically configurable coprocessor for convolutional neural networks,” in
Proc. 37th Annu. Int. Symp. Comput. Archit. (ISCA), 2010, pp. 247-257.
C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “CNP: An FPGA-based
processor for convolutional networks,” in Proc. Int. Conf. Field Program.
Log. Appl., Aug. 2009, pp. 32-37.

C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun,
“NeuFlow: A runtime reconfigurable dataflow processor for vision,” in
Proc. CVPR Workshops, Jun. 2011, pp. 109-116.

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” SIGARCH Comput. Archit. News, vol. 42, no. 1,
pp. 269-284, Feb. 2014.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z.
Xu, N. Sun, and O. Temam, “DaDianNao: A machine-learning super-
computer,” in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2014, pp. 609-622.

Z.Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and
O. Temam, “ShiDianNao: Shifting vision processing closer to the sensor,”
in Proc. 42nd Annu. Int. Symp. Comput. Archit., Jun. 2015, pp. 92-104.
S. I. Venieris and C.-S. Bouganis, “FpgaConvNet: A framework for map-
ping convolutional neural networks on FPGAs,” in Proc. IEEE 24th Annu.
Int. Symp. Field-Program. Custom Comput. Mach. (FCCM), May 2016,
pp. 40-47.

H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling flexible
dataflow mapping over DNN accelerators via reconfigurable intercon-
nects,” ACM Architectural Support Program. Lang. Operating Syst.
(ASPLOS), vol. 53, pp. 461-475, Mar. 2018.

P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang, C. Li, Z. Guan,
D. Chen, and Y. Lin, “AutoDNNchip: An automated DNN chip predictor
and builder for both FPGAs and ASICs,” in Proc. ACM/SIGDA Int. Symp.
Field-Program. Gate Arrays, Feb. 2020, pp. 40-50.

M. Rhu, N. Gimelshein, J. Clemons, A. Zulfigar, and S. W. Keckler,
“VDNN: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” in Proc. 49th Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), Oct. 2016, pp. 1-13.

S. Li, X. Shen, Y. Dou, S. Ni, J. Xu, K. Yang, Q. Wang, and X. Niu,
“A novel memory-scheduling strategy for large convolutional neural net-
work on memory-limited devices,” Comput. Intell. Neurosci., vol. 2019,
pp. 1-12, Apr. 2019.

R. V. W. Putra, M. A. Hanif, and M. Shafique, “DRMap: A generic DRAM
data mapping policy for energy-efficient processing of convolutional neu-
ral networks,” in Proc. 57th ACM/IEEE Design Autom. Conf. (DAC),
Jul. 2020, pp. 1-6.

H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra,
and H. Esmaeilzadeh, “From high-level deep neural models to FPGAs,”
in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Oct. 2016, pp. 1-12.

DEJIAN LI received the master’s degree in elec-
tronics from Tsinghua University, in 2002. He is
currently working at Beijing Smartchip Micro-
electronics Technology Company Ltd. He focuses
on very large scale ASIC design and verification,
especially in the fields of industrial control. He has
published ten technical papers and ten patents in
related areas.

95228

RONGQIANG FANG received the master’s degree
in electronics from Capital Normal University, in
2021. He is currently pursuing the Ph.D. degree
in computer application technology with Beijing
Jiaotong University, China. His research interests
include computer architecture and fault-tolerant
design.

JING WANG received the Ph.D. degree from
Peking University, in 2011. She is currently an
Associate Professor with the School of Informa-
tion, Renmin University of China. Her research
interests include computer architecture, energy-
efficient computing, high-performance comput-
ing, and hardware reliability and variability.

DONGYAN ZHAO received the master’s degree
from Shanghai Jiao Tong University, in 1998.
She is currently an Executive Director of Beijing
Smartchip Microelectronics Technology Com-
pany Ltd. Her research interest includes integrated
circuit design. She is also a National Candidate of
“Millions of Talents Project.” She has published
54 patents, 77 papers, and six books.

TING CHONG received the master’s degree
from Tianjin University, in 2007. He is cur-
rently the Technical Expert of Beijing Smartchip
Microelectronics Technology Company Ltd. His
research interests include embedded CPU technol-
ogy, embedded software and hardware technology,
information security technology, and functional
security technology.

ZENGMIN REN received the master’s degree
from Hangzhou Dianzi University, Hangzhou,
China, in 2008. He is currently working at Beijing
Smartchip Microelectronics Technology Com-
pany Ltd. His research interests include embedded
CPU technology, information security technology,
and functional security technology.

JUN MA received the master’s degree in com-
puter application from Inner Mongolia Univer-
sity, in 2007. He is currently an Engineer at
Beijing Smartchip Microelectronics Technology
Company Ltd. His research interests include hard-
ware secure architecture and trusted execution
environment design in embedded field.

VOLUME 10, 2022

