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ABSTRACT The arrival of IoT has brought constant innovation. This innovation has allowed many “‘things”
(sensors, wearable devices, smart appliances, among others) to be connected to the Internet to deliver the
information they collect. This need for connection has set the tone for the development of new protocols that
adapt to the IoT environment, taking into consideration low energy consumption and low computational
cost. These protocols are known as Low Power Wide Area Network (LPWAN). In this context, one of
the most used is LoORaWAN. As many other IoT protocols, it is exposed to security threats. These threats
aim to compromise security principles like confidentiality, integrity and availability (CIA Triad) of the
information. This paper aims to analyze weaknesses related to gateways within LoORaWAN infrastructure
to propose a lightweight security protocol to address gateway authentication vulnerabilities. This protocol
uses lightweight cryptographic functions to achieve this goal as it is intended to be deployed over IoT devices
which are very limited in terms of hardware and power resources. Likewise, this protocol has gone through
a formal security analysis with the use of BAN-Logic and a tool called Scyther, to validate the security of

the proposed protocol.

INDEX TERMS LoRaWAN, gateway authentication, lightweight protocol, Scyther-tool, BANLogic.

I. INTRODUCTION

The world of Internet of Things (IoT) is growing expo-
nentially. By 2025, there will be nearly 77 billion devices
connected to the Internet [1], [2], [3], [4], [5]. This growth
has leveraged the emerge of certain smart initiatives (i.e.
Smart Cities, Smart Campus, Smart Metering, Smart Fac-
tory, among others). Most of IoT solutions do not require
high-speed connectivity, but they demand long life batteries.
The amount of information transmitted by an [oT device is
normally very small [6]. For instance, a temperature sensing
device, would only use 7 bytes at most to inform about the
temperature of a particular place.

With the aforementioned constraints (transmission and
power), it is required to use lightweight secure wireless
communication protocols to interconnect and exchange data
among end-nodes/sensors [7], [8], [9]. These protocols or
technologies are called Low Power Wide Area Network
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(LPWAN).LPWAN protocols support long range commu-
nications (kilometers); they are optimized for power con-
sumption and they are not expensive to be implemented [9].
LPWAN is able to reach up to 10-40 km in rural areas whilst
1-5 km in urban areas, providing long-range communication.
Moreover, a battery used in IoT devices with LPWAN has
an estimate lifetime of around 10 years. Finally, IoT devices
based on LPWAN are very affordable as their cost is no more
than $5 dollars in some cases [8].

In terms of LPWAN protocols, there are multiple options
such as LTE-M, SigFox, NB-IoT, Long Range Wide Area
Network (LoRaWAN), Weightless-N, and EC-GSM. Among
them, the most used are Long Range Wide Area Network
(LoRaWAN), SigFox and Narrow Band — Internet of Things
(NB-IoT) [7], [8], [9], [10]. These protocols have similarities
in terms of architecture but differ in other parameters such
as frequency of operation, security, connection fees, among
others.

In comparison with other LPWAN protocols, LoORaWAN
possess some benefits. First of all, its level of openness allows
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researchers to perform changes and customizations in all of
its components. Moreover, there is no interconnection fee to
be paid for the use of the spectrum. Finally, LoORaWAN does
not require a third-party infrastructure (back-end servers) for
its deployment. Anyone is free to deploy a private network
by using open source tools. For these reasons LoORaWAN has
been selected as the subject of study in this work.

This work reviewed papers that have identified potential
vulnerabilities issues in the current version of LoRaWAN
v1.1. Based on such review, this work focused on addressing
vulnerabilities that have not been mitigated yet. The proposed
solutions use lightweight cryptographic functions to design
new protocols to mitigate potential vulnerabilities that affect
the communication between end-node and gateway. Com-
pared to other works, this approach tries to solve security
problems that are not described in the specification regarding
the gateway. The main contribution of this work is to propose
a protocol design that could be easily implemented over any
IoT LoRaWAN End-Node.

This paper is structured as follows: Section 2 provides a
technical overview of LoRaWAN 1.1. and describes potential
security issues. Section 3 describes improvements to be made
to address some of the vulnerabilities. Section 4 analyzes the
protocol from the security perspective in a formal way and
performance perspective from the number of cryptographic
operations. Section 5 discusses potential strengths of the
current solution. Finally, Section 6 concludes the work and
analyzes future improvements.

Il. LoRaWAN 1.1

A. TECHNICAL OVERVIEW

Long Range Wide Area Network (LoRaWAN) is an IoT
protocol that uses CSS and FSK modulation. The cover-
age range of this protocol oscillates between Skm within
urban areas and 20 km for rural areas. It operates over
unlicensed ISM bands (868 MHz in Europe, 915 MHz in
North America, and 433 MHz in Asia). It has an unlim-
ited number of messages to be sent per day. In terms of
bandwidth it supports 125Khz and 250Khz. A payload can
handle up to 243 bytes. It implements mutual authenti-
cation with the use of two symmetric keys. For encryp-
tion it uses AES-128 in CTR mode and for integrity it
uses Message Authentication Codes (MAC). Its infrastruc-
ture is completely open and allows private implementations
given the chance that anyone could implement his own
infrastructure by using open source tools like ChirpStack
(https://www.chirpstack.io/) [3], [7], [8], [9], [11].

LoRaWAN operates at the MAC layer and it is based on
LoRa (physical layer protocol). LoRa is the physical layer
protocol. It is based con Chirp Spread Spectrum which is
similar to FSK modulation, but it provides a longer commu-
nication range [12].

LoRaWAN has gone through several improvements so that
its specification has changed several times. The specification
which will be considered for this work will be [13] which has
major changes in terms of session keys.
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FIGURE 1. LoRaWAN classes.

LoRaWAN operates over unlicensed Regional Industrial
Scientific Medical (ISM) bands. ISM bands are 868 MHz in
Europe, 915 MHz in North America, and 433 MHz in Asia.
LoRaWAN has three classes known as Class A, B and C as
shown in Figure 1. Class A is not optional and has to be imple-
mented by all end-nodes. Devices that implement more than
the mandatory class are considered High-End devices [13].

There are three classes of devices according to LoORaWAN
specification. First, class A devices are bi-directional end
nodes which are more energy efficient and have two short
defined reception windows after every uplink message. Class
B devices open additional receive windows on scheduled
times with the use of beacons sent by the gateway. On the
other hand, Class C devices are continuously listening and
they are the least energy efficient but offer the lowest latency
level [13].

1) ARCHITECTURE

LoRaWAN is composed of three elements: end-nodes, gate-
ways and back-end servers. On the other hand, back-end
servers are composed of: Network Server (NS), Join Server
(JS) and Application Server (AS). Any end-node that wants
to communicate with the back-end server infrastructure must
go through a gateway (Gw). The communication between
end-node (EN) and gateway is performed through LoRa pro-
tocol which is based on Chirp Spread Spectrum [12]. Gw
to back-end servers communication is handled over TCP/IP
protocols [9], [10], [12]. The following Figure 2 shows the
architecture of LoRaWAN with all its actors.

2) LoRaWAN BACKEND INFRAESTRUCTURE

As described in LoRaWAN Backend Interfaces Specifi-
cation [14], besides radio gateway, there are three types
of servers that are part of the backend architecture of
LoRaWAN. Those servers are: Network Server, Applica-
tion Server (AS), and Join Server; each of them perform
specific tasks within the whole architecture. The Network
Server (NS) is in charge of handling LoORAWAN MAC layer
for end-nodes, forwarding messages to AS, forwarding Join
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messages to JS, frame authentication, end-node verification
among others. For Roaming scenario, LoORaWAN Backend
Interfaces Specification [14] describes three roles for the NS
which are home (ANS), serving(sNS) and forwarding(fNS).
hNS is responsible for persisting information related to Ser-
vice, Device and Routing profile, and Device EUI. These roles
depends on JS for joining purposes and is connected to AS.
In roaming scenario sNS and ANS are separated and uplink
or downlink messages are passed from sNS to hNS. ANS is in
charge of forwarding uplink messages to the proper AS based
on DevEUI parameter. In addition, sNS role handles only
MAC layer for the End-Node. Last, fNS handles gateways
and there may exist more than one fNS serving a single End-
Node. According to [14] JS manages End-Device activation
process through Over the Air Activation (OTAA). A single
JS could be connected to multiple NSs. This server contains
information concerning Join-Request frames (uplink) and
Join-Accept frames (downlink). It shares derived sessions
keys with AS and NS. A JS could be connected to several AS,
also a single AS could be connected to multiple JS. The AS is
in charge of handling payloads (uplink and downlink frames)
sent by the End-Devices. AS may be connected to multiple
NSs and JSs, and several AS may be connected to a single
NS. According to [14], there are several interfaces in place to
support several procedures within LoRaWAN network from
the perspective of the End-Device (home or roaming). These

interfaces are:
o sNS - JS: Used during Roaming Activation Procedure,

it helps to obtain NetID from hNS of a particular EN.

o hNS - JS: Supports Join Procedure between NS and JS.

e hNS - sNS: Supports signaling whilst in roaming as well
as payload delivery between ANS and sNS.

o SNS - fNS: Supports signaling whilst in roaming as well
as payload delivery between sNS and fNS.

e AS - hNS: Supports payload delivery between AS and
hNS.

o AS - JS: Supports delivery of Application Session Key
(AppSKey).

e EN - NS: Used to support LoORaWAN MAC-layer sig-
nalink and payload delivery between EN and NS.

The procedure for activating and End-Node (EN) within the
LoRaWAN infraestructure is known as Join Procedure or
Over The Air Activation (OTAA). This procedure is described
in detail in the next section.
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3) JOIN-PROCEDURE AT HOME SCENARIO

LoRaWAN supports two activation processes (join proce-
dures) for enabling end-nodes over a LoORaWAN network.
Those processes are: Activation By Personalization (ABP)
and Over the Air Activation (OTAA).

The OTAA procedure is started by the end-node. For this
purpose, each end-node has the following security parameters
DeviceEUIEy;, JoinEUIEgy;, NwkKeygn, and AppKeygy, . The
last two parameters are 128-bit keys used to derive session
keys. These parameters are factory stored settings. This pro-
cedure is considered more secure than ABP since other keys
are derived from known parameters stored in the device.
In ABP mode, it is required that all sessions keys have to be
preloaded in the end-node, application server, network server
and join server for executing the join procedure and then
sending uplink messages.

The Join-Procedure is a process for authenticating End-
Nodes over a LoORaWAN network. This process is mandatory
before sending any uplink message. In order to proceed the
End-Node must first build a Join-Request message com-
posed as follows by the JoinEUI, DevEUI and the DevNonce.
JoinEUI is an identifier of the JS, DevEUI is a unique iden-
tifier of the Device and DevNonce is a sequential 2-byte
number generated by the EN. This message is sent in plain-
text. These parameters are evaluated by the JS and NS as
follows. JS verifies that DevEUI is in the authorized list
whilst NS validates and keeps a track of every DevNonce
generated. If the procedure is successful, the Network Server
will respond with a Join-Accept message to the EN so that
it could derive session keys (Application Session, Network
Session and Join Session keys) [10], [13].

The Join-Accept message contains the following parame-
ters JoinNonce, Home_NetID, DevAddr DLSettings, RxDelay
and CFList [13]. The following table describes the parame-
ters that are part of the Join-Accept message see Table 1.

Once the EN receives the Join-Accept message, the fol-
lowing session keys are derived according to the specifica-
tion [13]. Every session key is used for a particular purpose.
FNwkSIntKey and SNwkSIntKey are used to calculate MIC
fields for preserving message integrity. NwkSEncKey is used
to cypher messages for NS.AppSKey is used to cypher Frm-
Payload for AS [13]. The session keys are derived as follow
according to the specification:

FNwkSIntKey=SEnc(NwkKey,0x01 ||JoinNonce||JoinEUI
|| DevNonce||padi6)

SNwkSIntKey=SEnc(NwkKey,0x03||JoinNonce||JoinEUI
|| DevNonce||padl6)

NwkSEncKey=SEnc(NwkKey,0x04||JoinNonce||JoinEUI
|| DevNonce||padi6)

AppSKey=SEnc(AppKeygy. ,0x02||JoinNonce||JoinEUI||
DevNonce||padl6)

JSIntKey=SEnc(NwkKeygy, ,0x06||DevEUIEy;||padi6)

After the Join-Accept, JS must record and keeps a track of
every JoinNonce generated every time a Join or a Rejoin is
performed.
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TABLE 1. Join-accept parameter summary.

TABLE 2. LoRaWAN research summary in terms of vulnerabilities.

Parameter Size Generator  Purpose Reference Research Focus LoRaWAN
(bytes) Version
JoinNonce 3 JS Counter value incremented [10] Gateway Attacks 1.1
with every Join-Accept [19] Gateway Attacks 1.0 and 1.1
NetID 3 NS Network Identifier [17] Security Analysis 1.1
DevAddr 4 NS Device Address [16], [20], [21] Gateway Attacks 1.0
DLSettings 1 NS Downlink Configuration [22] Security analysis 1.0
RxDelay 1 NS Delay between reception [23]-[27] Key management improvements 1.0
and transmission [28] Key management distribution im- 1.1
CFList 16 NS Optional list of network provements with blockchains
parameters [29] Root key protection in JS 1.1
[30] Formal security verification 1.0and 1.1
On the other hand, ABP procedure requires the manual Bl g,?llir:yprocedure backward compati- 1.0
input of session keys listed before. This procedure does use (32] Replay attacks L0
: 1At : [33] Replay attacks 1.0
Fhe same session keys for all' thelr.h'fetlme. It is then, more 34] Join Procedure with blockehains 0
insecure than OTAA. There is no join-procedure or session [35] Jamming attacks 1.0

key derivation and if keys are required to be renewed, they
need to be manually configured.

Although there are some security considerations and acti-
vation processes described in the specification, there are still
some issues that need to be addressed as they may compro-
mise integrity and confidentiality of data and actors. These
issues are described next.

B. SECURITY ISSUES IN LoRaWAN

LoRaWAN like any other LPWAN protocol, takes into con-
sideration the typical limitations of constrained IoT devices.
These constraints limit the ability to provide higher lev-
els of integrity, confidentiality, and availability. However,
LoRaWAN itself is not computationally constrained as pay-
loads might reach 242 bytes over US915 frequency consider-
ing a Spread Factor (SF) of 7 a bandwidth of 125kHz [15].

This protocol has gone under some improvements, partic-
ularly in the security field with the specification released in
2017. This specification is currently under version 1.1 and
is maintained by LoRa alliance [13]. This version corrects
several vulnerabilities identified previously [16], and adds
important features like the inclusion of a second key and
separation of duties. Nevertheless, the improvements made
to the specification have not addressed several issues like
bit-flipping attacks, channel eavesdropping, rogue gateway
attacks among others as described in [10], [17], and [18].
These attacks represent a threat for applications developed
under this technology. LoRaWAN is a popular protocol and
it is being deployed in several applications in different areas
such as health care, smart city, smart farming, environmen-
tal monitoring, geolocation among others. However, it still
presents vulnerabilities that can affect the deployment of
solutions as well as end-users.

In terms of research, several works have been published
to increase the level of security in LoORaWAN. Most of the
reviewed papers are oriented to correct weaknesses over
LoRaWAN v1.0. Published works are more oriented to deal
with secure key distritbution and generation in order to secure
keys that are the root component to guarantee confindential-
ity and privacy of the payloads generated. Very few papers
analyze security vulnerabilities in LoORaWAN 1.1 version and
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only a few propose some improvements. Table 2 shows some
of the reviewed works, their research focus and the version of
LoRaWAN used for the research [10].

As can be seen in the previous table, there is very few
research being carried out in terms of vulnerabilities associ-
ated to gateways. In spite of recommendations that have been
made, there are no formal requirements in the specification
that focus on mitigating gateway vulnerabilities. In this situ-
ation, this research will be oriented on securing the commu-
nication between the Gw and the backend infrastructure.

For its part, the work presented by [20] discusses about
impersonating gateways. Although the author performs this
analysis over LoORaWAN 1.0, they are still aplicable as the
current specification does not address any security require-
ments or improvements to the gateway. The author describes
that registering a gateway is not a mandatory requirement.
The proof of concept that he perfomed used the platform
The Things Network (TTN). This platform is able to accept
traffic from unregistered gateways and they mark traffic as
unstrusted to differentiate from traffic generated by regis-
tered gateways. This attack takes place in four stages as
described by the author. First, a malicious user has to acquire
the gateway unique id. Then, the gateway gets disabled by
the attacker. Once the id has been obtained, the malicious
gateway is configured with the original id to communicate
with the valid Network Server. Finally, a malicious user is
able to perform an ACK spoofing. This attack is discussed and
tested by [16] where they showed that a gatewway can selec-
tively decide which packets not being transmitted. Under the
described scenario, the attacker would have physical access to
the device or perform a jamming attack to completely disable
it. As the used platform does not perform any further vali-
dations, once the malicious gateway ‘““‘assumes’ the identity
of the compromise gateway it will be able to push messages
through a malicious device. Finally, the author propose some
countermesaures to prevent this attack from happening. The
author suggests using IDS devices to detect a change of
the IP address, and putting gateways in a safe and secure
place. Moreover, the authors indicate that having gateway
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redundancy is an alternative. Securing the channel between
gateway and the backend infrastructure is also a suggested
countermeasure. Last but no least, dereasing spread factor
would notably reduce the possibility of a jamming attack.

On the other side, the authors in [19] perform a review on
vulnerabilities over gateways and propose possible solutions.
That work reviews problems like: Radio Jamming Attack,
Beacon Attacks, Eavesdropping, Replay Attack, Wormhole
attack and Rogue Gateway Attacks. i) Radio Jaming Attacks
target the physical layer of LoORaWAN because end-nodes
use radio signals to communicate with gateways. These sig-
nals can be interrupted through malicious hardware. Authors
describe triggered and selective attacks. Triggered ones are
easier to detect as they target all devices whilst selective
affect a specific device only. ii) Beacon Attacks according to
authors may affect class B devices since those beacons are
not secured, a fake gateway might cause packet collisions
leading to a Denial of Service (DoS). iii) Eavesdropping
mainly affects packets that may be encrypted with the same
key. iv) Replay attacks as mentioned by authors is an efficient
attack against gateways as an attacker is able to send packets
as if it were authorized. An attacker uses the highest value of
the counter to repeat messages. v) Wormhole attacks consist
on capturing packets and retransmitting it to another location
in the network. This attack might cause downling messages to
be routed to an invalid location. Although there are integrity
checks within the packet sent, the receiver server does not
validate the packet or its place of origin. vi) Rogue Gateway
Attacks are possible since gateways are not authenticated in
any way within the protocol.

The authors in [10] defines the GW as the weakest link
of the communication between EN and the backend infras-
tructure. They emphasize that at this level, it is posible to
perform any kind of capture or physical attack. In addition,
authors state that gateways has been catalogued as “reliable”
from the very beginning of LoRaWAN. In their work, they
describe that there are two potential attacks that can take
place. First, Beacon synchronization DoS attacks produced
by attackers using untrusted GWs to send fake packets to
affect synchronization of Class B devices. Moreover, GWs
can be impersonated to sniff traffic generated by an autho-
rized EN and therfore determine their network address. Also,
the physical location of a EN can be determined by using a
triangulation method. Finally, authors suggest that a mech-
anism to address this issue would be to implement mutual
authentication between EN-GW and GW-NS.

A brief overview of vulnerabilities over some IoT protocols
is reviewed in [21]. The authors in their work aim to brute-
force the MIC of a LoRaWAN packet. In their test they aim to
build forged packets by calculating the MIC of future packets
based on captured data. Although the are not fully able to
forge packets, they made the server to accepted a packet
with incorrect data. The authors highlight that this scenario
is possible due to an insecure communication between Gw
and NS leading to a Man-In-The-Middle-Attack (MiTM).
Also, the authors highlight that this scenario is feasible to
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TABLE 3. Scyther results claims with Gw.

Role Claim Status Attack
patterns
End-Node Alive Fail 1 attack
Weakagree Fail 1 attack
Niagree Fail 1 attack
Nisynch Fail 1 attack

Gateway Alive OK No attacks
Weakagree Fail 1 attack
Niagree Fail 1 attack
Nisynch Fail 1 attack
Server Alive Fail 1 attack
Weakagree Fail 1 attack
Niagree Fail 1 attack
Nisynch Fail 1 attack

exploit as the Semtech Packet Forwarder does not guarante
an authenticated connection between Gw and NS.

C. GATEWAY ATTACKS

1) FORMAL SECURITY VERIFICATION OF LoRaWAN 1.1 WITH
THE INCLUSION OF THE GATEWAY ROLE

The authors in [30] performed a formal security verification
by using a tool known as Scyther to analyze the state of
security of the Join-Procedure in the LoRaWAN protocol for
both versions 1.0.3 and 1.1. In such work, they demonstrated
that LoORaWAN v1.1 is more secure. The authors considered
only the end-node and the Join Server, but they did not include
the gateway as it acts as packet translator to deliver uplink
messages to the back-end infrastructure; however, Gw plays
a crucial role as if it fails packets could not be delivered.

In our approach, we will use the same tool but considering
the role of the Gateway in the protocol and taking the same
assumptions as described in [30]. The following results were
obtained after running the Scyther tool (see Table 3).

The results show that the inclusion of this role produces
an affectation in the protocol. This inclusion has affected
the Weakagree principle, meaning that the partners might be
communicating with an intruder. The other claim affected is
Niagree, which means that the parties are not able to agree
on the value of variables after execution. Besides, the claim
Nisynch is also affected. It means that the protocol is not exe-
cuted in order and that contents cannot be preserved during
communication. Failing the the claim of synchronicity Nys-
inch implies that there is no mutual authentication between
gateway and server (Network Server). Therefore, the gateway
must be authenticated within the LoORaWAN infraestructure
as this claim fails also between End-Node and Gateway. The
table 3 shows that either the End-Node (Dev), Gateway (Gw),
or Join Server (JS) could be attacked. This attack can be
replicated not only during the Join-Procedure but also during
uplink and downlink messages.

Uplink messages contains information payloads generated
by the end-nodes that are intended to be delivered to an
application server for further data processing and analysis.
This process could be executed once an end-node has been
activated either through OTAA or ABP join-procedures. The
uplink message delivery protocol is shown in Figure 3.
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2) THREAT MODEL

For defining the threat model, the uplink message protocol
will be considered. The following assumptions are in place.
The device has already approved successfully the OTAA Join-
Procedure. The communication between the End-Node and
the Gw flows over an insecure open channel. The Gw is not
an authenticated device over the infrastructure. The adversary
could be either internal or external. According to the specifi-
cation this issue is not specified and assumes that the gateway
is a “trusted” device. This lack of authentication allows
malicious users to produce the following attack scenarios:

1) A malicious (not authenticated) gateway deployed for
injecting captured or fake packets to a network server of
areal LoORaWAN network as shown in Figure 4, might
affect network server availability due to processing an
excesive number of unauthorized packets.

2) A malicious attacker deploying a rogue-gateway to
sniff the traffic and perform cryptoanalysis over the
packets that are delivered to a valid back-end infras-
tructure affecting confidentiality and integrity of infor-
mation as shown in Figure 5.

From the scenarios described before, a malicious user is
able to compromise the communication channel between the
End-Node and the Gateway as it is not protected. Although
the frame payloads are encrypted, a malicious user is able
to decode PHYPayload. According to LoRaWAN specifica-
tion [13] a PHYsical PAYLOAD of an uplink message is
composed as shown in Figure 6.

Any user is able to decode information sent from a
PHYPayload of LoORaWAN as only some parameters of it are
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encrypted. The information that can be obtained by applying
a simple Base64 or Hex decoding is listed in the following
Table 4.

Although a malicious user would have a hard time trying to
decrypt FRMPaylod, it is important to denote that LoORaWAN
session keys live for a long a time and they are just renewed
with rejoin procedure or by sending a Rekeylnd command that
is triggered by the device and shall be processed by the NS
to produce a new pair of keys [13]. With the aforementioned
before, a cryptoanalysis procedure is valid to infer the content
of the FRMPaylod considering that the minimum length is
7 bytes protected with an AES-128 bit key. In addition,
as a malicious user is able to capture packets he is also
able to resend this packets or craft malicious packets based
on previous informaiton and send them to the LoRaWAN
infrastructure since the gateway is assumed to be “‘trusted”.
The exposed vulnerabilities require a mechanism that prevent
malicious users to easily sniff, divert or inject unathorized
traffic.

Within LoRaWAN infrastructure, gateways are a key ele-
ment since they convert LoRa frames into IP packets; there-
fore, they could be considered as a point of failure, which
may affect packet delivery to the backend infrastructure
or downlink messages to the End-nodes. Because of their
importance, these elements must be recognized within the
network to guarantee their authenticity when forwarding or
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TABLE 4. LoRaWAN parameters obtained through decoding.

Parameter Obtained by decoding
MHDR Yes
MACPayload Yes
MIC Yes
FHDR Yes
FPort Yes
FRMPayload No
DevAddr Yes
FCtrl Yes
FCnt Yes
FOpts No

delivering messages. If gateways are not authenticated within
LoRaWAN infrastructure, they are exposed to rogue gate-
way attacks which may affect their availability and may
affect the normal flow of packets. An authenticated gateway
will enhance the security level of messages, it would pro-
tect/cypher certain data from FHDR to prevent cryptoanal-
ysis or using a known key to forward messages to authen-
ticated network servers only. Likewise, this authenticated
gateway would be the only authorized to send class B bea-
cons to End-Nodes, these beacons might contain additional
validation fields to prevent Class B nodes being flooded
by such type of messages. The proposed approach aims to
provide an enhancement over the End Node-Gw and Gw-
NS relationships to use only registered gateways within
LoRaWAN infrastructure by using lightweight cryptography
protocols without requiring third-parties like Certification
Authorities (CA).

IIl. SECURING END-NODE TO GATEWAY
COMMUNICATION IN LoRaWAN

To achieve the proposed goal, the following solutions are pro-
posed. First of all, register the gateway through the Network
Server (fNS if in roaming scenario) by generating a new key
to authenticate it over the LoRaWAN infrastructure. Also,
produce a new session key that will be used between the EN
and the Gw. This key will be known as GwSKey and will be
generated during the Join Procedure. It will be shared to the
NS and later to the Gw or group of Gw tied to a particular NS.
Table 5 shows the notation used in the following protocols.

A. GATEWAY REGISTRATION PROTOCOL
This protocol registers a gateway within a LoORaWAN net-
work. During this registration, the Gateway (Gw) will share
its symmetric key with the Network Server (NS). In this
scenario, it is assumed that the gateway symmetric key will
reside in secure place that cannot be tampered.

In the proposed scenario each NS is in charge of one or
a group of gateways. According to the LoORaWAN backend
specificaction V1.0 [14], NS is in charge of managing Gate-
ways. A Gateway points to a particular fNS. There might
be several Gws deployed within the network and connected
to a network server. The number of gateways depend on
the number of nodes that can be handled and the scope of
the deployed network. This protocol aims to mitigate the
vulnerability described as Rogue Gateway attacks. This is a
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formal protocol that must take place before any Gw wants to
be part of a LoORaWAN network. The process for registering
a gateway into the LoORaWAN network is executed as follows
(see Figure 7). For this scenario, it is assumed that the network
administrator has to configure the Gw; to connect to a fNS or
a set of them.

First, the user in charge of performing the configura-
tion is a network administrator which provides his/her cre-
dentials IDy;, PWy; into the gateway. Then, the gateway
Gw; generates a randmon nonce RN/, a random symmetric
key RSK, computes GwSKa=h(RSK || GwKeycyi), where
GwKeygyi is a symmetric key that comes from factory and
is stored in a secure place in the gateway, and calculates
GwInf=SEnc(GwSka, RNI||GwEUIg,,;) where GWEUI,,; is
a 64-bit Unique Identifier of the gateway, and SEnc(x,y) is
a symmetric encryption function y using the key x, || is a
concatenation operation, and /(.) is a one-way hash function.
Then, it calculates the following:

e MReq = h(IDU,'”h(PWU,')) ® GwSka
o MI = (MReq||IDUi||GwlInf)

The gateway (Gw;) communicates with the fNS and
asks for gateway registration by sending M1. After receiv-
ing the request, fNS Obtains IDy; from MI and calcu-
lates h(IDUi||h(PWUi)). 1t obtains GwSKa by executing
MReq ® WIDUi||lh(PWUi)) . 1t extracts RNI1||GWEUIGy;
by performing SDec(GwSKa, Gwlinf) where SDec(x,y)
is a symmetric decryption function of message y using
key x. It generates two random nonces RN2 and RN3
and then computes the symmetric groupkey key for all
gateways associated to fNS by executing GrpKeygpra =
h(GwKeyGy,| GwKeyGy; I |GWKe)’Gw]-+1 IlGWKeyijm |IRN3),
where GwKeyg,,, is a symmetric key that belongs to a partic-
ular registered gateway n. This key is the group symmetrickey
that will be used by the fNS to share multicast messages
with its registered gateways. Then, it generates a sequential
integer Grpld to identify the group of gateways connected
to it. It stores (GWEUI Gy, h( GWEUIGyy; ), GrpKeycpia, Grpld)
in its LocalDB. For this scenario, every time a gateway is
registered, the GrpKeygpiq will be calculated and shared
(multicast) to all the gateways tied to a fNS. Finally, it calcu-
lates M2=SEnc(GwSka,GrpKeygpia||RN1’||RN2) and sends
it back to Gw;.

Once Gw; receives M2, it obtains GrpKeygpiall RNI’Il
RN2’ by decrypting SDec(GwSKa,M2). Then, it validates
if the received random nonce RNI’ matches the pre-
viously generated one RNI, to guarantee the freshness
of the message. If previous validation was ok, it calcu-
lates MICGw = aes_cmac(GrpKeygpia, RN2’||GWEUIGyi),
where aes_cmac(x,y) is an AES Message Authentication
Code function that uses a key x to produce a code of a message
y. Then, it computes MA=SEnc(GrpKeyGpia, RN2’||MICGw)
Finally, it calculates M3 = MA||h(GwEUl,,) and sends M3
to fNS.

Finally, upon reception of M3, fNS obtains hi(GwEUIg,,)
and compares against its LocalDB to obtain the GrpKeyGrpid
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FIGURE 7. Gateway registration protocol.

of the gateway that is requesting the registration process
used for further decrytption operations. It decrypts MA to
obtain RN2’ and MICGw by executing SDec(GrpKeygpia,
MA) using the key retrieved from its LocalDB. Then, fNS
calculates MICGw’ by executing aes_cmac(GrpKeyGrpid,
RN2IIGWEUIGwi) where RN2 is the previous random nonce
generated by fNS. It compares MICGw’ against the received
MICGw to validate that the message has been generated
by the gateway requesting registration. Also, it validates
RN2 against RN2’ to validate the freshness of the mes-
sage. If both comparisons are valid, fNS stores the tuple
(h(GWEUIGyi||GrpKeyGpia), AUTHORIZED_TRUE) in its
database to authorize messages coming from the just regis-
tered gateway. Otherwise, it prohibits the gateway by regis-
tering the tuple (h(GwEUIgyi), AUTHORIZED_FALSE). For
future use, the NS will first validate the authorization status
of a gateway before accepting/forwarding packets to other
network servers.

The proposed scenario applies for home or roaming sce-
narios. In case of home deployment, NS acts as fNS, sNS and
hNS according to the LoRaWAN backend interfaces specifi-
cation [14]. In our proposal the fNS plays the role of NS.

It is important to consider that if a gateway Gw; leaves
or enters the group, then a recalculation procedure should
be conducted by fNS and the resulting key must be shared
among the group through multicast. For the leaving sce-
nario, the multicast operation will not consider the leaving
gateway, it will unauthorize Gw; in the fNS database by
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I
|
- Validates i(GwEUlI,,) againstits LocalDB
- RN2' || MICGw= SDec(GrpKeycrprs, M3)
= Validres and calculates MICGw' = aes_cmac(GrpKey ¢ipry RN2" | GWE Ul,;)
if ((RN2"==RN2) and (MICGw == MICGw’))
- Stores (i(GwEUI,,||GrpKeyg, ), AUTHORIZED TRUE}
else
- Storesfi(GwEUI,,), AUTHORIZED FALSE}
|

registering the tuple (h(GwEUIg,,;), AUTHORIZED_FALSE)
and calcuating the new group key as follows GrpKeygrpra =
h(GWKeyij | | GWKeyGWj” | |GWK6’yGw,+,1)-

B. GATEWAY SESSION KEY DERIVATION PROTOCOL

1) HOME SCENARIO

The process for deriving the Gateway Session Key
(GwSKeygy;) in a LoORaWAN Home Scenario is executed as
follows (see Figure 8). The steps highlighted in green are part
of our contribution.

This procedure is executed during the Join-Procedure
OTAA described in the LoRaWAN 1.1 specification. Once
the EN has passed all validation procedures by NS and JS,
it starts the Session Key Derivation Process. According to the
specification, there are five keys that are derived and shared
with the Network Server and the Application Server. In this
scenario, a new symmetric key based on previous Network
Key and Application Key is calculated by using an XOR
function and then using it to calculate a sixth session key
known as GwSKeygy;. The following steps are executed:

. NAKeyENi ZNWkKeyENi ® AppKeyEN,-
o GwSKeygn;=aes_cmac(NAKeygn,,h(DevEUIEy; I
DevNoncegy;||JoinNoncegyi||JoinEUIgy;))

Once obtained, JS generates M/ and asymmetrically
encrypts it with the public key of the Netowrk Server (NS)
NSpubkey. JS is able to determine GwEUIg,,; as it comes in
the payload of the Join-Procedure. JS computes:
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TABLE 5. Notations used in designed protocols.

Notation Description

Gwj Gw;s’ device

U; it yser

RNI1, RN2, ..., RNn  Random nonces

EN; End-node;

AppSKeygn, Session key used to cypher data to AS from End-
node

NwkSEncKeygy; Session key used to cypher data to NS from End-
node

JSIntKeygn, Network Session key derived during OTAA

GwSKeygn; Session key used to cypher data to Gw from End-
node

SNwkSIntKeygn; Session key used to calculate partial MIC over
uplink messages, full MIC on downlink messages
and rejoin request.

FNwkSIntKeygy; Session key used to calculate partial MIC over
uplink messages.

GwKeyg,, Gateway Symmetric key

GwKeygw, , Symmetric keys of other gateways

AppKeyeni Pre-shared root application key

NwkKeyEgni Pre-shared root network key

NAKeygn; Calculated key between AppKeyeni XOR
NwkKeygy; to derive GwSKeygn;

GwEUlg,, Gateway Extended Unique Identifier

DevEUIEy; Device Extended Unique Identifier

GwDevldEy; End-node anonymous identity

GrpKeyGpia Symmetric Group Key for multicast messages

Grpld Group Identifier of a set of gateways connected
to a fNS

MICGw MIC used to validate integrity between fNS and
Gw;

Pubkeyins, fNS’s asymmetric key pair

Privkeyth

Pubkeyns, NS’s asymmetric key pair

Privkeyns

Pubkeyjs, Privkeyys ~ JS’s asymmetric key pair

IDy; Identification of U;

PWy; Password of U;

I String concatenation

h. One way hash function

® Exclusive OR operation

mic. Message Integrity Code function

aes_cmac AES Message Authentication Code function

SEnc(x,y) Symmetric encryption of message y using the
key x

SDec(x,y) Symmetric decryption of message y using the
key x

MICPy Additional MIC to protect Payload Integrity

MIC_Pg; MIC to validate message Integrity between EN;
and Gw;

JS Join Server

NS Network Server

AS Application Server

DevAddrey;; Device Address assgined by the network server

MHDR MAC Header

FHDR Frame Header

Mtype Message Type

EJP Extended For Join Protocol (RFU unused bits)

FPort Optional Port Field

FCtrl Frame Control

FCnt Frame Counter

FOpts Frame Options

Payload Unencrypted Message Payload

FRMPayload Encrypted Frame Payload

BO Uplink BO MIC computation block format

BI Uplink BO MIC computation block format

msg Whole message that is composed of MHDR,

FHDR, FPort, FRMPayload

o MI=AEnc(NSpupkey, GWEUIGyi||DevEUIEN,
||GwSKeygn,)
. GwDevIdENi =h(GwSKeyEN,. | IDeVEUIENl.)
JS stores {GwDevldgy,, DevEUIEgy,} for further processing,
M1 is sent back to the network server by using the sharing
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process of session keys and JoinAccept is forwarded to End
Node.

The network server (NS) receives M1 and decrypts it
by executing ADec(NSpypkey,M1) to obtain GwEUIG||
DevEUIEy;,||GwSKeygn,, where ADec(x,y) is an asym-
metric decryption function that uses a public key x
to decrypt a message y. Then, it calculates M2 by
executing M2=SEnc(GrpKey®?!d GwEUI g, ||DevEUIg;l
GwSKeygy;) and sends it to the gateway.

The Gateway receives M2 and decrypts it by executing
SDec(GrpKeyGpra,M2) to obtain GWEUIGy;ll DevEUIgy; I
GwSKeygn;.Then, it calculates h(GwSKeygnill DevEUIEN;)
to generate a unique anonymous identifier for the end-node.
Gwj, also stores a maximum idle time (defined by the net-
work administrator) Max Idle Time (MITgy;) for such EN;
to prevent storing data of devices that are not using that
gateway or that devices that have not transmitted data in a
period of time greater than (MITgn;). Finally, the gateway
stores { GwDevldgy;, GwSKeygy;, MITEy;} in its database for
decrypting further messages sent by a particular end-node.

According to the specification, once the Join-Accept mes-
sage was received, the end-node must derive session keys.
At this point the End-Node calculates:

o NAKeygn,=NwkKeypn; ® AppKeyeni
o GwSKeygni=aes_cmac(NAKeygn,, h(DevEUIEy;]|
DevNoncegyi||JoinNoncegyi||JoinEUIgy;))

to obtain the session key used to send messages to a particular
Gateway. The GwSKeygy; is a 128-bit key. This key will
be renewed on every Re-Join procedure according to the
protocol described before. The key is assumed to be stored
in a secure place with tamper proof mechanisms.

2) ROAMING SCENARIO

In case the LoRaWAN infrastructure is working on Roaming
Scenario, the following considerations are in place, and the
protocol for such scenario is shown in Figure 9.

According to the LoRaWAN backend specification [14]
when an End-Node EN; works over roaming the following
additional steps are required once a Join Request has been
dispatched. First, the Join Request arrives to NS2 and it has
to determine if it is acting as the (ANS) for the ENi. It also has
to determine if it has been identified to work with JS which
is identified by JoinEUI, if such is not the case, the process
must terminate at this point. Otherwise, it has to perform a
DNS lookup to identify the IP address of JS. In case NS2 is
not able to identify the (ANS), it has to send a request that
contains DevEUI to JS to retrieve such information. JS has
to respond to such request either with a succesfull response
containing the NetID of NSI if NS2 belongs to authorized
networks or with a No Roaming Agreement Response. Then,
NS2 performs a DNS lookup to obtain the IP Address of
NSI (hNS) by using the previously obtained Net/D and also
it sends a request (ProfileReq) containing the DevEUI to
retrieve profile information of the device. Later, if the device
is allowed for roaming NSI should inform to NS2 through
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FIGURE 8. Gateway session key registration protocol home sceneraio.

a successfull notification (ProfileAns). If the device has not
been authorized a failure notification is forwarded. Once NS2
received a successfull confirmation with handover roaming
type, it has to start a new message request (HRStartReq) to
NS|1 that contains the JoinRequest, MACVersion, ULMeta-
Data, DevAddr, DLSettings, RxDelay, CFList and Device
Profile Timestamp. NSI forwards the Join-Request to JS
to start the JS Session Key Derivation process. During this
process, the derivation of the new key GwSKeygy, is the same
as described in previous section. JS send an answer message
(HRStartAns) to NS2 containing the roaming activation status
as well as Join-Accept response. The differences here com-
pared to previos home scenario are that M1 will be encrypted
with the public key of M2 and M2 is message encrypted with
the public key of NSI, as described below:

« M1 AEnc(NS1pupkey, GWEUIGy,||DevEUIEy, |

GwSkeygn;)

o M2 = AEnc(NS2pypkey,ADec(NSI pypkey,M1))

Upon reception of M2, NS2 calculates M3 by execut-
ing ADec(NS2pypkey,M2) and then builds M4 by executing
SEnc(GrpKeycpia).M3, M4 is then forwarded to the gateway.

Once Gw; receives M4, it executes SDec(GrpKeygGpia),M4)
to obtain GWEUIGy,||DevEUIgn,||GwSkeygy,. Then, it calcu-
lates GwDevldgy, = h(GwSkeygy;,||DevEUIEy,) and stores {
GwDevldgy,, GwSkeygy,} in tis LocalDB.

Finally, EN; derives GwSkeygy; in the same way as stated
in the previous section (Home Scenario).
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C. UPLINK MESSAGES THROUGH AUTHENTICATED
GATEWAYS

The process for sending uplink messages through a reg-
istered gateway is described as follows. This procedure is
executed after the OTAA Join-Procedure has been success-
fully acknowledge with a Join-Accept message. It applies
for Unconfirmed Data Up Messages and is divided in two
scenarios.

The first one applies when a end-node EN; has joined
(OTAA Activation) through a registered gateway Gw; which
has already been registered through the fNS. The second
scenario applies when an end-node EN; wants to send a mes-
sage over a registered gateway but EN; is not registered over
that Gw;. In our proposal a Gw; must be registered over the
LoRaWAN infraestructure before forwarding any message.

First of all, EN; calculates all the following as part of the
construction of the uplink message according to LoRaWAN
1.1 specification [13]:

« MHDR=Mtype||EJP||Major

o FHDR=DevAddr||FCtrl||FCnt||FOpts

o msg=MHDR||FHDR||FPort||FRMPayload

o cmacS=aes_cmac(FNwkSIntKeygy;,B1||msg)

o cmacF=aes_cmac(FNwkSIntKeygy;, BO||msg)

e MIC=cmacS[0..1]||cmacF[0..1]

o FRMPayload = SEnc(AppSKeygni, Payload)

« PHYPayload=MHDR||FHDR||FPort|| FRMPayload
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FIGURE 9. Gateway session key registration protocol roaming scenario.

Then, EN; calculates GwDevldgni=h(GwSKeygn;ll
DevEUlgy;) which is a temporary anonymous identifier that
depends on a session key previously established with a
Join-Accept and changes with every message, it is 9 bytes
long distributed as follows. The hashed parameter has been
divided in 4 parts, the protocol will randomly take one of
the parts (8 bytes) and will add a ninth byte to mark the
corresponding portion sent.

For the FHDR, we propose to use dynamic Device
Address to make sniffing harder. The new device Address
(DevAddr) will be calculated as follow DevAddrgy; =
SEnc(GwDevldgy;, DevAddr). This parameter will use the
full key GwDevldgn; generated and will be increased with
every time an uplink message is sent.

Also, According to LoORaWAN 1.1 Specification [13] there
are two unused (4..2) bits in MAC Header that are reserved
for future use (RFU). This proposal uses thise bits so that
EN; defines the type of message to be built by creating
EJP which will take the value EJP = 0x01 to identify a
secured type of message to be delivered through a registered
gateway (Gw;).
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In addition, our proposal considers adding an integrity
MIC for FRMPayload. EN; calculates a new MIC after
FRMPayload has been symmetrically ciphered. This new
MIC is 4 bytes length as is calculated as follows
MIC_Py=aes_cmac(AppSKeygyi, FRMPayload)[0..3] and
will be used to validate, accept or decline a message if
FRMPayload was tampered by malicious users.

Moreover, our proposal considers adding a 4-byte
MIC for validating messages sent from EN; to Gwi.
This MIC is calculated as follows by EN; MIC_Pgyi=
aes_cmac(GwSKeygn;,msg||GwDevIdgy;||FCntUp)[0..3].

Finally, once all previous components have been cal-
culated, EN; calculates MI = MHDR||FHDR||FPortl
FRMPayload||MIC||MICPy||MIC_Pgy; and sends it to Gw;.

1) PROTOCOL FOR SENDING UPLINK MESSAGES OVER
AUTHENTICATED END-NODES AND GATEWAYS (UMOAEG)
The purpose of this protocol is to deliver messages over
a Gw; that has already been registered within LoRaWAN
infrastructure by using an authenticated Eni.
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Once Gw; receives M1, it verifies if GwDevIdgy; is in the
LocalDB GwDevldgy;, GwSKeygy;. If such validation is true,
it calculates DevAddr = SDec(GwDevldgy;, DevAddrgy;),
extracts GwSKeygy; and calculates MIC_Pgyi’=aes_
cmac(GwSKeygyi,msg||GwDevldgy;||FCntUp)[0..3]  and
compares against MIC_Pgy; from M1, if it matches, Gw;
builds M2 = MHDR||FHDR||FPort||FRMPayload||MIC||
MICPy and calculates M3=SEnc(GrpKeygGpia,M2) which is
then forwarded to the Network Server (NS).

Then, NS calculates SDec(GrpKeygpia,M3) to obtain M2.
It then calculates cmacS and cmacF to validate MIC accord-
ing to [13], if such validation is true M2 is then forwarded to
the Application Server (AS).

Finally, after AS receives M2, it calculates MIC_Py’=
aes_cmac(AppSKeygni, FRMPayload)[0..3] and validates
against MIC_Py from M2 to verify that FRMpayload has not
been altered whilst in transit. If that validation was succesfull
it then executes SDec(AppSKeygni, FRMPayload) to obtain
Payload in plain text and then decodes it; otherwise, AS aborts
the process. The designed protocol is shown in Figure 10.

2) PROTOCOL FOR SENDING UPLINK MESSAGES OVER
uUnAUTHENTICATED END-NODES AND GATEWAYS
(UMOUEG)

The protocol designed can be seen in Figure 11 In this
scenario, the purpose is to deliver an uplink message
over an authenticated EN; a registered Gw; but the ses-
sion key has not been delivered yet to Gw;. First of
all, once Gw; receives M1, it verifies if GwDevIdgy;
is not in the LocalDB GwDevldgy;, GwSKeygyi. If so,
it temporally stores M1,GwDevIdgy;,GwSKeygni in a
TempDB. Then, it extracts DevEUIg, from LocalDB,
calculates M2=SEnc(GrpKeyGpia, GwDevIdeni| | GWEUIGyi|
DevEUIEy;) and forwards it to NS.

Upon reception of M2, NS executes SDec(GrpKeygpra,M2)
to obtain GwDevldpnilGWEUIg,,il|DevEUIgy; and then
calculates M3=AEnc(Pubkey;s, GwDevldgn;|| GWEUIG,||
DevEUIEgy;) using asymmetric encryption with the public key
of JS and forwards it.

Once JS receives M3 it asymmetrically decrypts it
by executing ADec(Pubkey;js,M3) to obtain GwDevIdgp;ll
GwEUIgill DevEUIEgy; and then it validates if GwDevIdgy;
is in LocalDB and DevEUIEy; is in the Supported Device List
of JS, if so it calculates the following:

o NAKeypn,=NwkKeypn; ® AppKeygni

o GwSKeygn;=aes_cmac(NAKeygn,, h(DevEUIEy;
|| DevNoncegy;||JoinNoncegy;||JoinEUIEy;))

o M4=AEnc(Pubkeyys, GWEUIGyi||DevEUIEgn;, ||
GwSKeyen.||GRANTED)

On the other hand if there is no match JS calculates
M4=AEnc(Pubkeyns, GWEUIGyi||DevEUIEgn;, ||
UNAUTHORIZED). Then M4 is sent back to NS.

NS receives M4 and then asymmetrically decrypts it by
executing ADec(Pubkeyys, M4) to obtain M5 to calculate
M6=SEnc(GrpKeycpia,M5) and then sents it back to Gw;.
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TABLE 6. Notations used in BAN logic.

Notation Description

X |=Y X believes a statement Y

#(Y) X is updated and fresh

XY X sees that ¥

X |~Y X once said the statement Y

X=Y X controls that ¥

X <% Y  Kis a secret shared key between X and Y
2 x X has K as a public key

{Y}x Y is encrypted with K

(V) g Y is combined with K

Gw; receives M6 and symetrically dercrypts by execut-
ing SDec(GrpKeyGpia,M6) to obtain MR = GwEUIg,,’||
DevEUIgy,’||GwSkeyen,’||STATUS. Then, Gw; validates
if MR contains GRANTED response, if so, it then
retrieves M1,GwDevldgy, ,GwSkeygy, from TempDB by
using GwSkeygy,and calculates MIC_Pgy;" = aes_cmac
(GwSKeygyi, msg||GwDevldgy;||FCntUp)[0..3]. Tt com-
pares if MIC_Pgp;’ is equal to MIC_Pgp; obtained from
M1, stores (GwDevldgn, , GwSkeygn;, DevEUIEy;), calcu-
lates DevAddr = SDec(GwDevldgy;, DevAddrgy;), builds
MPI1=MHDR||FHDR||FPort||FRMPayload||MIC||MICPy,
calculates MP2=SEnc(GrpKeyGprs, MP1) and forwards it
to NS.

Then, NS calculates SDec(GrpKeygpis,MP2) to obtain
M2. 1t then calculates cmacS and cmacF to validate MIC
according to [13], if such validation is true M2 is then for-
warded to the Application Server (AS).

Finally, after AS receives M2, it calculates MIC_Py’=
aes_cmac(AppSKeygni, FRMPayload)[0..3] and validates
against MIC _Py from M2 to verify that FRMpayload has not
been altered whilst in transit. If that validation was succesfull
it then executes SDec(AppSKeygni, FRMPayload) to obtain
Payload in plain text and then decodes it; otherwise, AS aborts
the process.

IV. SECURITY ANALYSIS

A. FORMAL ANALYSIS

In this section we demonstrate the security of the Gateway
Registration Protocol by using BAN logic.

1) BAN LOGIC NOTATIONS
The following Table 6 presents the notations used for BAN
logic.

2) BAN LOGIC RULES
The following are the rules of BAN logic:
X=X <5 7 x4(v),

=Z|~Y
X|=#Y),X|=Z|~Y
X|=Z|=Y
X|=Z=Y . X|=Z|=Y
X|=Y

4) Freshness rule: %

5) Belief rule: %

1) Message meaning rule:
2) Nonce verification rule:

3) Jurisdiction rule:

96683



IEEE Access

J. ). Barriga, S. G. Yoo: Securing End-Node to Gateway Communication in LoRaWAN

EN;

‘ Gateway
[T

Nevwork Server
NS

Join Server
JS
T

Application Server

]
GwDeviden;=h(GwSKeyey| |[DevEUIEn) [0..3]
exi=SEnc(GwDevIdey;, DevAddr)
MIC Pry=aes cmac(GwSKeyr;, msg| GwDevIdey||[FCutUp) f0..3]

T
1

I

I

I

I

|

; I

MICPy = aes_cmac(AppSKey gy;, FRMPayload) [0..3] }
I

I

|

I

T

|

M I=MHDR| EHDR||FPord| FRMPayload| MIC||MICPy || MIC P ||GyDevldzy

M1

A

Validates if (GwDevldgy; is in Lammﬁj‘
extracts GwSKe
calculates Dev.
calcrdates MIC Pr
if (MIC Pzy'==MIC Pgy)

Abort process
]

FIGURE 10. Uplink messages over authenticated end-node and gateway.

3) SECURITY GOALS

The following are the goals defined for the Gateway registra-

tion protocol:
GrpKeyGrpld
Goal 1: Gw; |= (Gw; «— fNS)
Gere)’GrpId
Goal 2: NS |= (Gwj «— fNS)
GrpKeyGrpld
Goal 3: Gw; |=fNS |= (Gwj «— fNS)
GrpKeyrpld
Goal 4: NS |= Gwj |= (Gwj «—— fNS)

4) IDEALIZED FORMS OF MESSAGES

The idealized form of the messages of our protocol are shown

below:
Msgl :
Gwi — NS : {GwSKa}yqpy, | inpwyy)» IP vis (RN 1,
GWEUIGwi)GwSKa
Msg2 :
GrpKeyGrpld

NS — Gw; : {RN1, RN2, Gwi <———> fNS}Gska
Msg3 :Gw; — fNS :
{RN2, MICGw, h(GWEUIGw,)}

GerEyGrpId
Gwij «— fNS
5) ASSUMPTIONS

The assumptions are listed below:
h(IDy)| |h(PWui)
Aq: fNS |= (Gwj «—— fN.
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r=SDec(GwDevIdzy;, DevAddrey;)
aes_cmac(GwSKeyzy;, msg|| GwDevIde||[FCntUp) [0..3]

—M3

M2 = MHDR||FHDR||FPord|FRMPayload| MIC||MIC Py
Forwards M3 = SEnc (GrpKey crpra, M2)

M2 = SDec(GrpKey crpra, M3)
Validates MIC
Forwards M2

T
|
|
|
I
I
|
I
I
|
1
I
|
I
|
|
I
|
I
I
|
I
I
|
I
I
|
I
I
|
I
|
!
I
!
|
|
|
|
|
|
|
|
|
1

ol

L]

M2

I
I
I
I
|
I
I
|
I
I
|
I
|
|
I
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
I
|
I
I
|
I

! —

1 Calculates MICPy = aes_cmac(AppSKeyey;, FRMPayload) [0..3]

: if (MICPy" == MICPFy)

I Payload=SDec(AppSKey gx, FRM Payload)

Decode Payload
Else

Abortprocess

i -

Az: NS |=#(RN1)
h(IDy;)||[h(PWyi)
A3z: Gwj |= (Gwj «———— [NS)

Agq: Gwj |= #(RN2)

6) PROOF USING BAN LOGIC

1) According to Msgl, the following is obtained:

(81) : fNS <« GwSKanapy; I hpwy;)» IDUi»
(RN 1, GWEUIGw; )GwSKa

2) By using S; and A; with the message meaning rule,
we obtain:

(52) : /NS |= GWi |~
{(h(IDyi[|h(PWui)), RN 1, GWEUIGw;} Gyvska

3) Using S; and A,, with the freshness rule, the following
is obtained:

(S3) : /NS |= #(GWSKam(py; I heWys)» IDUi.
{RN1, GWEUIGw;} G\ska

4) By using S; and A; with the message meaning rule,
we obtain:

(S4) : INS |= GW; |~ GWSKa

5) By using Nonce Verification Rules, S3; and Sy,
we obtain:

(Ss) : fNS |= GW; |= GWSKa

VOLUME 10, 2022



J. ). Barriga, S. G. Yoo: Securing End-Node to Gateway Communication in LoRaWAN

IEEE Access

—
GwDevIdgy;= h(GwSKeygy; ||DevEUI;)[0..3]
DevAddrgy=SEnc(GwDevIdgy; DevAddr)

MIC_P;
MICPy

M1-MHDR||FHDR||FPort||FRMPayload|MIC|| MICPy ||MIC P || GwDevIdsy;
!

FIGURE 11. Uplink messages over unauthenticated end-node and gateway.

6)

7

8)

9)

10)

o Gaterr
EN, G

= aes_cmac(GwSKeyzy;, msg||GwDevIdg||F CntUp)[0..3]
nes_cmac(AppSKeyry;, FRMPayload) [0..3]

1
1
1
1
I
i
I
1
I
1
1
1
|
1
|
T

-MT-

if GwDevIdg,; notin LocalDB

Extracts DevEUIgy; from LocalDB
M2=SEnc(GrpKeycprs GwDevIdey;:
|

M2

Temporally stores (M1, GwDevIdgpy; GwSKevey}

GWEUI,: || DevEUI:y; )

Neowork Server
NS
T

‘ Join Server

Application Server
IS

P
“

i

calculates MIC _
if (MIC o
Stores {GwDevIdexi,

else
Abort process

GwDevIdgy;
M3=AEnc(Pubkey j5, GwDevIdgy; ||GWEUIG,; ||D:
!

1
GwEUIG,

DevEUINi=SDee(GrpKey Grpras M2)
evEUILy; )

G

'

MR = GWEUL, |\DevEUT gy || GwiSKey | [STATUS] = SDec(GrpKey i, M6)
if MR contains GRANTED in [STATUS]

Retrieves M1, GwDevIden; GwSKeyevy} by using GwSKeyen:

calculates DevAddr=SDec(GwDeIdgy;, DevAddrey)
aes_cmac(GwSKeyry, msg||GwD evlds

)
GwSKeye, DevEUTIex: }
MPI = MHDR||\FHDR|FPort| FRMPaylead|MIC| MICPy
Forwards MP2 = SEnc(GrpKey gy, MP1)

)
- omnfz}.s[’uu‘Dm-m[\, GWEUIGw||\DevEUIsy; =ADec(Pubkey jsM3)
if {GwDevIdgy;,DevEUIEyy in Local DB and (DevEUlgy; in Supported_Device_List)
NAKey pxi=NwhkKeygni @ AppKey pxi
GwSKey pxi—aes_cmac(NAKeypy;, h(DevNoncegyil||JoinNoncegyi||JoinE Ulgyy)
Md= AEnc(NSpuskey, GWEUI ;i |D evEUIgni||GwSKeygyi| | GRANTED)

FCntUp)[0..3]

-MP2

D
I
r
1
I
1
|
I
I
I
I
|
I
|
I
i
I
|
'
|
I
i
I
|
|
|
|
|
|
|

According to S5 and Jurisdiction rule, we obtain:
(S6) : NS |= GWSKa
According to Msg2, we obtain:

GrpKey Gprld

(S7) : Gwi <{RN1,RN2, Gw; «<— fNS}s,5k4

Using S¢ and S;7 with the message meaning rule,
we obtained:

Gere_prrld
(Sg) : Gwj |= NS |~ Gwj «— > fNS

Using Sg, Az and A4 with the nonce verification rule,
we obtained:

GrpKeyGprid
(S9) : Gwj |= NS |= Gwj «— NS (Goal3)

Using S¢ and jurisdiction rule, the next is obtained:

GrpKeyGprid

(S10) : Gw; |= Gwy «— NS (Goall)
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»r
MPI1 = SDec(Gr
Validates MIC

Forwards MP1
PP}

1
rpKey pie MP2)

]
]
1
]
1
|
]
i
'
|
'
1
'
1
'
1
'
i
'
i
i
i
i
]
]
]
1
]
i
1
I
1
]
1
]
]
]
]
1
i
i
i
i
i
i

11)
12)

13)

14)

15)

-MP1I- T >

Calculates MICPy = aes_cmac(AppSKey exy FRMPayload) [0..3]
if (MICPy' — MICPy)

Payload=SDec(AppSKeyrn:; FRMPayload)

Decode Payload
Else

Abort process

P
H
i
i

]
]
]
]
'

By using the Key Generation Algorithm of the Protocol
GrpKeyGprid
(Since Gwj «— > fNS is generated by fNS)

GrpKeyGprid

(S11) : NS |= Gwy «— NS (Goal2)

According to Msg3, the following is obtained:

(S12) : /NS
<{RN2, MICGw, h(GWEUIGy,)}

Gereprl.Id
Gw; «— fNS

By using Si1, S12, and message meaning rule,
we obtain:

(S13) : /NS |= GWi |~ (RN2, MICGw,
WGWEUIGw;))
Using S13, Ay and A4 with the nonce verification rule
(S14) : GWi |=fNS |= (RN2, MICGw, h(GWEUlGy,))
By using the validation of the returned RN2, MICGw

GrpKeyGprid
(S15) : /NS |= GWi |= Gwj «— NS

(Goal4)
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7) SCYTHER TOOL

Scyther is a tool that performs formal security analysis of pro-
tocols considering the assumption of perfect cryptography.
It means that the adversary cannot learn from an encrypted
message unless he possesses the key for decryption [36].
According to the authors, this tool helps finding problems
when building protocols. This tool uses Security Protocol
Description Language (SPDL), which has a programming
syntax similar to C or Java.

Scyther is able to evaluate security properties such as; i.
Aliveness ensures that partners are live, ii. Weakagree assures
that a partner is communicating with each other rather than an
intruder, iii. Niagree which means that the parties shall agree
on the value of variables after a protocol has been executed,
iv. Nisynch validates that everything is executed by triggers,
occurs in order and contents are preserved, v. SKR refers to
secrecy of session keys, vi. Secret refers to the secrecy of a
particular parameter as stated in [36].

Scyther is developed over python and has a Graphic User
Interface (GUI) and CLI interface, both of them can be used
to analyze protocols and show claims. The results shown
in tables 7 and 8 are taken from the GUI and are able to
show a “Failed” statement in the ““Status” column when
there is a security issue and will display all attacks found
with the help of a button that will launch a new window
containing a graphic that denotes the attack. On the other
hand, if everything goes well the ““Status” column will show
an “OK” statement combined with the “No attacks™ words
meaning that there are no attacks that affect the analyzed
claim.

In terms of data types, Scyther is flexible and any type
could be defined in order to represent a variable. It is impor-
tant to clarify that Scyther does not analyze data types,
it views the state of security of the whole protocol rather than
checking for robustness of keys or algorithms used.

From the literature review, Scyther has been used to
perform a formal analysis of the LoRaWAN protocol as
described in [30]. In that work, authors prove the security
of the OTAA Join-Procedure process by designing the pro-
tocol from scratch according to the specification. The results
obtained showed that V1.0 is susceptible to attacks as there
is a weak relation between the End-Node and the NS/AS
particular during the join process. The tests performed were
focused on Non-injective agreement and Non-injective syn-
chronization.

To perform the analysis of the proposed protocols, we took
the designs established in the previous section and translated
them to the SPDL language following all the steps designed.

8) ANALYSIS OF GATEWAY REGISTRATION PROTOCOL

First of all, this protocol was coded including all variables as
described in Figure 7. For this scenario, the Gw; is authen-
ticated against NS . Then NS , calculates a group key that
includes all previous symmetric keys received from other
gateways that have been registered already. Every time a
gateway arrives or leaves this GrpKeycpiqis recalculated.
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The Scyther analysis of this protocol is shown in Table 7. The
secrecy of GrpKeycpqremains intact by showing no attacks,
likewise all claims (Alive, Weakagree, Niagree, Nisynch) are
marked with status OK showing that no attacks are possible.
This validates that the proposed protocol is secure.

9) ANALYSIS OF GATEWAY SESSION KEY DERIVATION
PROTOCOL

The Gateway Session Key Derivation Protocol was coded
by including all variables involved during the OTAA pro-
cedure as described in the specification of LoRaWAN 1.1.
This protocol is composed of three main roles: End-Node
(Dev), Gateway, Network Server and Join Server. The results
shown that Alive, Weakagree, Niagree and Nisynch are OK
and are not susceptible to attacks. In addition, the secrecy of
all the sessions keys generated is preserved among all the
roles. The new introduced key GwSKeygy; represented by
aes_cmac(NAKeygn,,h(DevNoncegn;||JoinNoncegy;||
JoinEUIEy;)) shows no attacks, meaning that the OTAA Join
Procedure is not feasible to other attacks due to its inclusion.
It is important to mention that this new session key preservers
the same length (16 bytes) as other derived keys during Join
Procedure.

This new key is shared to the Gateway through the Network
Server, which uses a pre calculated group key (GrpKeygpia)
to multicast this session key (GwSkeygy;) to other gateways
that are connected to the same Network Server. Therefore,
only the gateway or its group of gateways that belong to
the same Network Server can decrypt messages sent by EN;
and then forward payloads to the backend infrastructure. The
results of Scyther execution are displayed in Table 7.

10) ANALYSIS OF PROTOCOL UMOAEG

According to the LoORaWAN 1.1 specification once the Join
Procedure has performed and End-Node device would be able
to send data to the Application Server. As stated before, the
design was translated to a SPDL file to reflect all interactions
between the involved roles. In this case the participants were:
End-Node (Dev), Gateway, Network Server (NS) and Appli-
cation Server (AS).

All the variables used in the protocol where declared as
String for testing purposes. String was defined as a userType
variable as it is not a common data type of Scyther.

As shown in, Table 7 there are no potential vulnerabili-
ties in the proposed protocol. It means that as long as an
End-Node uses a valid GwSkey, a message will be delivered
to the Application Server, otherwise, it will be discarded by
the Gateway before sending it to the backend infrastructure.

The secrecy of session keys is preserved according to the
results shown by Scyther as well as MIC and MIC_PEn;
validation fields to protect the FRMPayload from bit-flipping
attacks.

11) ANALYSIS OF PROTOCOL UMOUEG
In our proposed scenario, we have identified that if an EN;
has gone through a Join procedure using a different Gateway.
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TABLE 7. Scyther results for proposed protocols I.

Protocol Role Claim Status  Attack patterns
Gateway Registration Protocol Gateway Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GrpKeygpia ~ OK No attacks
Network Server  Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GrpKeygrpia  OK No attacks
Gateway Session Key Derivation Protocol ~ End-Node Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
SKR GwSkeygn; OK No attacks
Gateway Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GrpKeygpla  OK No attacks
Secret GwSkeygn, OK No attacks
Network Server  Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GrpKeygpla  OK No attacks
Secret GwSkeygn; OK No attacks
Join Server Alive OK No attacks
‘Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GwSkeygn, OK No attacks
UMOAEG Protocol End-Node Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GwSkeygn; OK No attacks
Secret AppSKey OK No attacks
Gateway Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GwSkeygn; OK No attacks
Secret AppSKey OK No attacks
NS Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GwSkeygn; OK No attacks
Secret AppSKey OK No attacks
AS Alive OK No attacks
Weakagree OK No attacks
Niagree OK No attacks
Nisynch OK No attacks
Secret GwSkeygn; OK No attacks
Secret AppSKey OK No attacks

It is possible to re-generate the GwSkeygy,and pass it to the
Gateway so that it could deliver messages to the back-end
infrastructure no matter if this is a newly authenticated Gate-
way over the platform. In case a rogue gateway aims to for-
ward a message to the AS, it will not be able to determine the
GrpKeygpiarequired to forward the payload to the NS /fNS .
For this scenario, there are five roles participating in
the communication Dev, Gateway, NS, Join Server(JS) and
Application Server (AS). Each of them is in charge of
encrypting/decrypting particular parts of the message.
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The results displayed by Scyther (see Table 8) showed
that the implementation does not have potential attacks
and it could be considered as a secure protocol. All
claims are marked with the OK word and the Ver-
ified Niagree, Nisynch, Alive, Weekagree and session
keys.

B. SECURITY ANALYSIS

This part examines the security of the proposed set of proto-
cols by reviewing possible attacks [37].
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TABLE 8. Scyther results for proposed protocols 1.

Protocol Role Claim Status  Attack patterns

UMOUAEG Protocol ~ End-Node Alive OK No attacks
Weakagree OK No attacks

Niagree OK No attacks

Nisynch OK No attacks

SKR AppSKey OK No attacks

SKR GwSkeyEn; OK No attacks

Gateway Alive OK No attacks
Weakagree OK No attacks

Niagree OK No attacks

Nisynch OK No attacks

Secret GrpKeygpla  OK No attacks

Secret GwSkeygy; OK No attacks

Network Server  Alive OK No attacks
Weakagree OK No attacks

Niagree OK No attacks

Nisynch OK No attacks

Secret GrpKeygpla  OK No attacks

Secret GwSkeygn; OK No attacks

Join Server Alive OK No attacks
Weakagree OK No attacks

Niagree OK No attacks

Nisynch OK No attacks

Secret AppSKey OK No attacks

Secret GwSkeygy; OK No attacks

1) MAN IN THE MIDDLE ATTACK

This attack is not possible as the uplink messages dis-
patched are using secure encryption functions. When EN;
sends a message to Gw;, it uses the symmetric session key
(GwSKey) derived during the Join-Procedure. And when the
Gw; wants to send a message to fNS;, it uses the symmetric
key GrpKeygypia. Likewise, when fNS; wants to communicate
with Gw;, it uses the calculated symmetric key GrpKeygpia.
Using secure encryption functions, let proposed protocols to
maintain confidentiality and integrity of messages.

2) REPLAY ATTACK

During the gateway registration protocol phase, random
nonces are used to avoid replay attacks. Even if the
attacker grabs the random nonce, he needs to have gate-
way credentials to perform a full registration procedure.
Also, the attacker will not be able to generate valid
messages to the gateway as the session key used to
cipher it is calculated during Join and Rejoin procedures
respectively.

3) PASSWORD GUESSING ATTACK

PWy; is not stored and is only known by the user in charge of
performing registration procedure. A variant of it this value
h(PWy;) is used to validate a user. It is important to consider
that h(.) is a one way has function that cannot reversed to
obtain original credentials.

4) PRIVILEGED-INSIDER ATTACK

In the proposed solution, the network administrator (U;) only
have credentials for registering gateways and could not be
able to capture other credentials because they are transmitted
with a one-way hash function h(PWy;).
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TABLE 9. LoRaWAN cryptographic operations.

LoRaWAN Op- Entity Cryptographic Operations
eration XOR  Hash CMAC SEnc  SDec  AEnc  ADec
Session key EN 5
derivation ]S 5

] EN 3 2
Uplink NS N ) i
message

AS - 1

5) BRUTE FORCE ATTACK

The attacker might try to decrypt the uplink message gener-
ated by an end-node. However, the message is protected by
symmetric key of 128-bit length that could be changed on
demand.

6) SEPARATION OF RESPONSIBILITIES

A gateway (Gw) will only handle a pre-calculated tem-
porary root key (GwSKa) and every end-node session
key (GwSKeygy;). A gateway will not be able to derive
GwSKeygy; as it does not store parameters for such purpose.

C. CRYPTOGRAPHIC OPERATIONS

In order to determine a potential performance affectation,
it is important to analyze and identify the number of addi-
tional cryptographical operations that will take place with the
current proposed solution. This cryptographical operations
comprise hashing, simple XOR, symmetric encryption, sym-
metric decryption, asymmetric encryption, and asymmetric
decryption.

First of all, the current operation of the protocol already
includes some cryptographic operations according to the
specification [13] that are listed in the table below. The
considered operations were taken from the Join-Procedure
activation and the Uplink message delivery. Table 9 contains
the operation name, the number of cryptographic operations,
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TABLE 10. Table cryptographic operations of the proposed solutions.

Cryptographic Operations

Proposed Proto-  Entity XOR Hash CMAC SEnc  SDec  AEnc  ADec
cols
Gateway Regis- _OW 1 4 1 2 1
tration NS 1 5 1 1 2 -
JS 1 2 1 - - 1 -
GwSKey Deriva-
tion NS - - - 1 - - 1
Gw - 1 1 - - - -
EN 1 1 1
EN - 1 2 ~
UMOAEG Gw _ - 1 1 .
NS - - - R 1
AS - - 1 B ,
EN - 1 2 - B
- - 1 2 1
UMOUEG oW
NS - - - 1 2 i i

JS 1 1 1 - - 1 1
AS - - 1

CRYPTOGRAPHIC OPERATIONS OF THE
PROPOSED SOLUTION
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FIGURE 12. Cryptographic operations of the proposed solution per role.

the entity that performs such operation and the phase where
that operation takes place (Join-Procedure or UplinkMSG
delivery). For the analysis it is important not to overload
the End-Node as it has limited computational and power
resources.

The following table 10 shows the total number of addi-
tional cryptographic operations to be executed by every entity
considering the new protocols proposed.

The following Figure 12 provides a summary of the addi-
tional effort to be made by all participant entities to imple-
ment the protocols of the proposed solution. According to
the results shown in table 10 and figure 12, there are more
encryption and decryption functions to be executed; how-
ever, none of them belong to the end-node. As mentioned
before, the End-Node should not be overloaded as that is
the entity with the lowest computational capacity, the other
devices provide more computational resources so that the
inclusion of new cryptographic functions would not affect
its overall performance. Devices like the gateway are able to
run over robust devices. The whole back-end infrastructure
(Join-Server, Application Server and Newtork Server) are
able to run over servers, virtual servers or containers in cloud
infrastructures.

To have a better understanding on the impact over the
End-Node the following Figures 13, 14 show a comparison
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END-NODE CRYPTOGRAPHIC OPERATIONS
SESSION KEY DERIVATION

M Proposed Solution GwSKey Derivation B LoRaWAN V1.1 Session Key Derivation

Number of operations

1 1 1
IO IO IO 0 00 00 00
XOR

Hash CMAC SEnc SDec AEnc ADec
Cryptographic operation

FIGURE 13. Cryptographic operations for end-node session key
derivation.

END-NODE CRYPTOGRAPHIC OPERATIONS
UPLINK MESSAGES

M Proposed Solution Uplink Messages ~ ® LoRaWAN V1.1 Uplink Messages

3
2 2
1
0 IO 0 00 00 00

0
XOR Hash CMAC SEnc SDec AEnc ADec

Number of operations

Cryptographic operation

FIGURE 14. Cryptographic operations for end-node on uplink message
delivery.

of the proposed solution with current LoORaWAN version in
terms of cryptographic operations during the Session Key
Derivation (Join-Procedure) and Uplink Message Delivery.
In blue are all the new cryptographic functions added by the
proposed solution whilst in orange are the current LoORaWAN
cryptography operations. As showed one new type of oper-
ation is XOR. Also, another operation that comes from our
proposal is hashing. CMAC operations refer to actions for
calculating Message Integrity codes to guarantee message
integrity. The proposed solution does not add new decryption
functions or asymmetric operations.

The proposed protocols do not aim to implement new
symmetric algorithms or to increase their encryption level
(i.e. changing to AES-256). The solution is tied to the spec-
ification and although it will perform more cryptographic
operations, their complexity will remain which means that the
current computational resources would be enough to process
the new operations.
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TABLE 11. Parameters and its sizes.

Parameter Description Size (bytes)
RN Random Nonces 8
RSK Random Symmetric Key 32
GwKeygwi Gateway Symmetric Key 32
GwSka Gateway Symmetric Key Auth 32
GwlInf Gateway Auth Information 48
MReq Message Registration Request 32
IDy; User Id 16
PWy; User password’s 16
GrpKeyGrpia Gateway Group Key 32
MICGw AES CMAC 16
MA MA 32
GwEUlIg,, Gateway EUI 8
h(x) One way Hash function SHA-256 32
MICPy MIC Payload 4
MICPgx; MIC Gateway Session Key 4
GwDevldgy, Device Id with GwSkey 9
NSpubKey Network Server Public Key 256
JSpubkey Join Server Public Key 256
MHDR MAC Header 1
DevAddr Device Address 1
FCtrl Frame Control 1
FCnt Frame Counter 2
FPort Frame Port 1
MIC Message MIC 4

V. PERFORMANCE ANALYSIS OF THE PROPOSED
PROTOCOLS

A. COMMUNICATION OVERHEAD

This section illustrates the communication overhead gen-
erated for Gateway Registration, GwSkey Derivation,
UMOAEG and UMOUAEG protocols. This is an attempt to
evaluate communication overhead over the aforementioned
protocols. To calculate communication overhead, we assume
that there are j number of EN; and k number of Gw; that might
be connected to a LoRaWAN network infraestructure. The
total number of additional bytes transmited for each protocol
are the total number of bytes generated in each message of
the previous listed protocols. The list of the parameters and
its sizes is shown in table 11. The comparative analisys for
communication overhead of the protocols is shown table 12.
For this scenario, the communication overhead of the pro-
posed protocols is computed as follows:

1) Gateway Registration Protocol
M1=MReqllIDy;/IGwInf
M1=32%k 4+ 16¥k 4 48*k
MI1=96*k
M2=SEnc(GwSKa, GrpKeyg,i4llRN1’IIRN2)
M2=SEnc(32,32+8+8)*k
M2=64*k
M3=MAIh(GwEUIGg,,)
M3=32%k + 32*k
M3=64*k
Total_Overhead = M1+M2+M3 = 224*k

2) Gw Session Key Derivation Protocol
M1= AEnc(NSpypkey,GWEUIGwillDevEUIgN;
[IGwSKeygn;)
MI1=AEnc(256, 84+-8416) * k
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FIGURE 15. Gateway registration protocol communication overhead.

M1=256%k
M2=SEnc(GrpKeycp1a,GWEUlGy;ilIDevEUIEN;
IGwWSKeyEgn;)

M2=SEnc(32,84+8+16) * k

M2=32%k

Total_Overhead = M1+M2 = 288*k

3) UMOAEG Protocol
M1 = MICPylIMIC_Pgn, IGwDevldgy;,
MI1 = 4%) 4 4%j + 9%

M1 = 17%

M2 = SEnc(GrpKeygpra, GWEUIGy;lIDevEUIEN;
IIGWSKeyENi)

M2 = SEnc(32,8+8+16)*k

M2 = 48*k

M3 = MICPY

M3 = 32*%k

Total_Overhead = M1+M2+M3 = 17#j4-80*k

4) UMOUAEG Protocol
M1=MICPyIIMIC_Pgn;,IGwDevidgn;,
M1 = 4%j 4 4%j + 9%j

MI = 17%j
M2 = 64%k
M3 = 256%k
M4 = 256%k
M6 = 64%k
MP1 = 17%k
MP2 = 32#k

Total_Overhead = M1+M2+M3+M4+M6-+MP1+
MP2 = 17%j + 689*%k
The total overhead for the Gateway Registration Protocol is
224%*k this effect is shown in Figure 15. The total overhead for
the Gateway Session Key Derivation Protocol is 288*k, this
is shown in Figure 16. For UMOAEG protocol is 40*j480*k
(see Figure 17) and for UMOUAEEF is 40*j 4+ 689*k as
described in Figure 18. Previous figures are estimates based
on the effect of adding more nodes and gateways respectively
for each of the designed protocols in this work. In all figures
there is a directly proportional effect between the overhead
generated and the number of devices added.
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TABLE 12. Communications overhead per protocol.

Proposed Protocols

Communication Overhead Per Message

GwSKey Derivation 222’3’ 31\2431( TOtglgf(gEEteS)
Gw; Registration 91\6/[*1k 61214*2k 61:/[31( TOtglz z(gli’tes)
e e

Communication Overhead
Gateway Session Key Derivation Protocol
Home / Roaming

80.000

70.000

60.000 52
50.000 *

40.000

30.000

Communication overhead
X

20,000 N
10000 %

o -

FIGURE 16. Gateway session key derivation protocol communication
overhead.

Communication Overhead
UMOAEG

Communication overhead

Number of devices

m=1 m=2 —e—m=5 —A—m=10 m=20 m=50

FIGURE 17. UMOAEG protocol communication overhead.

B. POWER CONSUMPTION ESTIMATION

In order to determine power consumption, it is important to
clarify that it depends on the platform architecture where
it will be deployed and the way the algorithm has been
implemented as stated by [38].

To provide an estimate of the solution that we are proposing
in this work, we will refer to one of the most common
board for developing IoT prototypes and solutions which is
Arduino. The authors in [39], perform a validation of the
power used to cypher payloads using AES-128 in ECB,CBC
and CTR modes, they have provided some statistics in terms
of milliWatt (mW) consumed on the experiments performed.
We are considering AES-128 in CTR mode as it is the algo-
rithm used in LoRaWAN for encryption. For CMAC opera-
tions we will be considering the power used by an AES-128
encyrption operation.
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FIGURE 18. UMOUAEG protocol communication overhead.

TABLE 13. Values used to estimate power consumption.

Cryptographic Power Consumption
operation (mW)

AES-128 Encryption 41.7 [39]

AES-128 Decryption 42.6 [39]

XOR 1.1 [41]

HASH (SHA-1) 1.2 [40]

For estimating hashing power consumption, we will use
the work described in [40]. The authors in their work use
SHA-256 to validate crytographic hardware in IoT devices.
The values obtained in their experiment will be used to
establish an approximate value of consumption for hashing
operations.

Based on the aforementioned approaches, we will con-
sider the values obtained in their works and perform an
estimation over the end-node because is the entity with
the smallest amount of computational resources and power.
The following Figure 19 shows the estimate power con-
sumption expressed in milliWatts (mW) of the current
LoRaWAN vl.1 Join procedure and uplink message proco-
tol. The values taken to perform the estimation are shown
in table 13.

According to the estimation the proposed solution would
be adding an extra power consumption of 20% approxi-
mately on the end-node during the Join Procedure where the
Gateway Session is generated. When sending uplink mes-
sages the proposed solution would add 40% extra power
consumption. These values are estimates and intend to
show the extra effort in terms of power needed by the
end-node.
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ESTIMATED POWER CONSUMPTION ON END-NODE
350,00
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Gateway Session Key Derivation

Uplink Message

M LoRaWAN V1.1 Proposed Solution

FIGURE 19. Power consumption in mW on the end-node for the proposed
protocols.
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FIGURE 20. ToA for 125kHz considering the number of EN; .

C. TIME OVER THE AIR (ToA) ESTIMATION

In order to determine the Time Over the Air for a particular
payload of data being transmitted over a LoORaWAN network,
we will use The Things Network LoRaWAN airtime calcu-
lator [42]. This calculator has four parameters to perform
calculations, those are: Input Bytes, Spreading Factor (SF),
Region, and Bandwidth. We have used this calculator to
estimate ToA for the payload being generated by EN; . The
following table (see Table 14) shows the estimate ToA for
a 19-byte payload (53-byte total packet size) generated with
uplink messages over US915 region frequency. The Tail Size
column includes MIC with 4 bytes, MICPy with 4 bytes,
MICPERi with 4 bytes and GwDevldgy, with 9 bytes. The
chosen region does not support 250kHZ bandwidth [15];
therefore, that information is not shown in the following
table.

The following Figures 20 and 21 shows the effect of ToA
when more EN; are presented within a LoRaWAN network.
There is a directly proportional in time when more nodes
send uplink messages through the network. It is important to
remark that for US915 region there is a maximum dwell time
(amount of time needed to transmit on a frequency) of 400ms
per channels 0 to 63 but for channles from 64 to 71 there
are no restrictions. Any payload above that time might not
be delivered.
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FIGURE 21. ToA for 500kHz considering the number of EN; .

VI. DISCUSSION

The results of the formal security validation probe that the
proposed protocol is secure in terms of security properties as
validated by the Scyther tool. Although the results are favor-
able it is important to consider that when implementing these
enhancements secure robust encryption algorithms must be in
place (AES-128 at least) as well as a proper hashing algorithm
(SHA-1 at least). Likewise, it is crucial to preserve the length
of keys as the encryption algorithm in place suggested by
the specification is AES-128; therefore, keys are restricted to
have no more than 16 bytes.

Most of the reviewed works are focused on proposing
new approaches for enhancing key management such as
using blockchain which are the newest proposals. However,
in terms of securing end-node to gateway communication
there are no formal proposals although these issues are dis-
cussed in [10] and [19] in depth. The authors expose the need
of mutual authentication protocols for securing communi-
cations between the aforementioned devices. To best of our
knowledge those works are the only ones that point out the
existence of this issue still in the new version of LoRaWAN.

Although other works like [20] or [16] exploit weaknesses
in gateways, they do not show designs for possible implemen-
tations or new protocols that allow the identified gaps to be
adequately mitigated.

Compared to other works our solution proposes a novel
approach for authenticating a gateway within the back-end
infrastructure as well as the interaction with the end-node by
preserving the IoT premise of designing features that demand
low energy consumption and low computational cost as well.
The proposed approach does not include third-party services
or infrastructure, on the contrary, it uses the elements defined
in the specification and combines them to build protocols
that allow ensuring the channel between the end-node and
the gateway. Our proposed approach compared to the recent
Basic Station [43] does not require the inclusion of a Cer-
tification Authority. In LoRa Basics Station, there are two
scenarios that can be deployed one without authentication and
the other which consists on using client and server authenti-
cation which involves configuring the service endpoint url,
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TABLE 14. Time over the air for a single EN; .

Header Size  Payload Size  Tail Size  Spread Factor (SF)  Bandwidth in kHz ToA in ms

13 19 21 SF7 125 102.87
SF8 125 184.8
SF9 125 328.7
SF10 125 Max Payload Size Exceeded
SF11 125 Not supported by US915 region
SF12 125 Not supported by US915 region
SF7 500 25.7
SF8 500 46.2
SF9 500 82.2
SF10 500 154.1
SF11 500 287.7
SF12 500 Max Payload Size Exceeded

a trusted certificate of the server’s certification authority,
a client token authentication or a client certificate with its
private key. Our approach requires a pair of credentials (user-
name and password) to be configured before automatically
negotiating symmetric keys. Although our solution might
be suceptible mistakes, it requires less steps than the LoRa
Basics Station implementation based on TLS. We are looking
forward to include these improvements by suggesting modi-
fications to the current LoRaWAN specification, as there are
fields that are not used like RFU which can be used to signal
new cyphered packets created by the end-node according to
the protocols proposed in this work. To the best of our knowl-
edge, there are no other works that propose modifications to
the current LoRaWAN specification.

VII. CONCLUSION, LIMITATIONS AND FUTURE WORK
The proposed solutions are secure according to the formal
security verification analysis performed by Scyther. This tool
allowed to identify potential security breaches that might
affect the implementation of the protocol. Moreover, it allows
to notice some concepts of freshness that are important when
designing security protocols. During these formal verifica-
tions, we noticed that although the gateway acts as a “‘simple
packet forwarder” it plays a crucial role in terms of security
as it could affect the normal execution of the protocol.

This approach uses lightweight cryptographic functions
that are not complex to be calculated and could be imple-
mented over IoT devices without making further changes.
It is expected that these new protocols demand more power
consumption, but it will not be that significant to degrade the
performance of the device. These functions are XOR, one-
way hash which could be represented with SHA-1, symmetric
encryption by preserving AES-128, CMAC calculation based
on AES-128. As asymmetric encryption is not going to be
implemented over the 10T, it will not degrade the performance
of the overall solution as this will be executed by entities that
have good computational resources.

One limitation of this protocols is that they have been
tested by using Scyther, given that thare are many protocols
in literature that have used this tool, some of them have been
broken later. However, we have added BAN-Logic to prove
that in terms of authentication between Gw; and NS /fNS there
are no potential issues.

VOLUME 10, 2022

For future work, we have considered to modify a
LoRaWAN library for including these new changes over IoT
devices based on Arduino hardware architecture to deploy the
following proposed protocols. Likewise, perform a penetra-
tion testing over the Gateway Registration Protocol to prove
its effectiveness. In addition, design a protocol to authenticate
Class B beacon messages.
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