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ABSTRACT Time-frequency analysis is of necessity for wrist pulse signal due to its complexity, among
which, empirical mode decomposition (EMD) algorithm and its improved noise-assisted versions (such as
ensemble EMD, noise-assisted multivariate EMD (NA-MEMD) and very recently median EMD) are deemed
to be the most representative ones. In this study, we provide an in-depth evaluation of these well-established
noise-assisted EMD algorithms in computational pulse analysis for the first time. In particular, we compare
the performance of the different algorithms systematically and quantitatively based on objective quantitative
criteria: number and central frequency of intrinsic mode function (IMF) components, total orthogonality
index and mode mixing. Rather than using synthetic signals with visual inspection in most existing literature,
the wrist pulse signals used in the evaluation are real recorded samples acquired from both healthy and patient
subjects. Through extensive experiments, we found that: 1) Advanced EMD algorithm that has the best
performance in other areas may not be the most suitable method for pulse signal analysis, which indicates
its high dependence on the type of analyzed signal; 2) Adding noise can improve algorithm performance
significantly, but tends to produce physiologically irrelevant components, which however are usually
neglected throughout the intelligent pulse diagnosis literature. Therefore, excluding redundant components
before extracting features is expected to improve performance further. Together, currently NA-MEMD
achieves a better performance consistently, potential to become a powerful tool for computational pulse
analysis, but itself have not been applied in wrist pulse analysis before. We believe our works can bring
up a new perspective to application of EMD-like algorithms in computational pulse analysis/diagnosis with
effective information and guidance. Additionally, considering the similarity between physiological signals,
especially such as photoplethysmogram/electrocardiogram, our research can be extended to wearable health
monitoring technologies, including smart watches and fitness trackers, and their potential future applications,
such as in heart rate estimation and evaluate various cardiovascular-related diseases. The present study
underscored the necessity of evaluation noise-assisted EMDs or other adaptive decomposition algorithms
based on real recorded signals with more objective measures. Especially, caution the possible redundant
components that are introduced.
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I. INTRODUCTION 28

For several thousands of years, pulse diagnosis has been one 29

of the most popular diagnostic methods in traditional chinese 30

medicine (TCM) community because of non-invasiveness 31
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and convenience in health status analysis [1]. However, long-32

term training and high reliance on the practitioner’s subjec-33

tive experience limit its effectiveness in practice [2]. Over34

the past decade, instead of relying on subjective perception,35

increasing interests have been focused on developing pat-36

tern recognition techniques to perform health diagnosis in37

terms of measured pulse signals with advanced sensors [3],38

[4], [5], [6], which is referred as computational pulse39

analysis [7].40

Basically, physiological systems are non-linear in nature41

and exhibit complex behaviour [8]. Controlled by the sym-42

pathetic nervous system, pulse signal exhibits variations43

in its characteristics, which represents non-stationary and44

complex properties associated with the signal, especially in45

abnormal health conditions [9].The classical analysis meth-46

ods in signal processing (such as fast Fourier transform47

[10], [11] and cepstral analysis technique [12]), maybe ineffi-48

cient, necessitating amore advanced time-frequency analysis.49

For decades, many efforts have been devoted to develop50

time-frequency analysis methodologies (mainly short-time51

fourier transform [13], [14], [15] and wavelet (packet) trans-52

form [16], [17], [18], etc.) to standardize and quantify wrist53

pulse analysis. Despite their success, each of these-mentioned54

methods still suffers from some inherent deficiencies. For55

example, wavelet (packet) transform is signal non-adaptive56

that usually require well-chosen prior kernels or basis func-57

tions [19], whereas all these methods cannot achieve arbitrary58

fine resolutions in both time domain and frequency domains59

simultaneously, restricted by the Heisenberg uncertainty60

principle [20].61

Concurrently, on the other hand, an adaptive decomposi-62

tion technique called empirical mode decomposition (EMD)63

algorithms [21], which overcome the limitations of the64

traditional time-frequency methods, has attracted consid-65

erable attention in the past decade. Since its inception,66

EMD has demonstrated its capabilities in many application67

areas, including biomedical fields related to our research,68

such as electroencephalogram (EEG) [22], electrocardiogram69

(ECG) [23]. However, unlike ECG, application of EMD algo-70

rithms to wrist pulse signals are relatively lagged behind.71

To our best knowledge, the earliest research can be traced72

back to 2006, when Sun et al. [24] made the first attempt to73

use the vanilla EMD algorithm to analyze the marginal spec-74

trum of pulse signals of normal people and patients with coro-75

nary heart disease, demonstating potential broad prospects76

in pulse signal processing. Subsequently, studies have been77

further advanced to employ the vanilla EMD for feature78

extraction to better distinguish healthy subjects from patients79

with certain diseases, such as hypertension [25], nephritis and80

cholecystitis [17] and coronary heart disease [26], [27], [28].81

However, the vanilla EMD method still have to face some82

problems, such as interpolation choice and noise sensitivity,83

especially prone to mode mixing, which isn’t uncommon in84

practical recorded signals. To address these issues, a fam-85

ily of noise-assisted EMD methods including the ensemble86

EMD (EEMD) [29], the noise-assisted multivariate EMD87

(NA-MEMD) [30], [31] and the very recently median EMD 88

(MEMD) [32], have shown appealing results in various fields. 89

For computational pulse analysis/diagnosis, one natural ques- 90

tion arise: which of these well-established noise-assisted 91

EMD algorithms is the most suitable, especially considering 92

that aforementioned noise-assisted methods have not been 93

fully explored in the TCM community. 94

Based on this motivation, a comprehensive and systematic 95

understanding of vanilla EMD and three improved versions 96

named EEMD, MEMD and NA-MEMD, for wrist pulse 97

signal analysis, is presented in this paper. To be specific, 98

rather than using artificial signals with visual inspection in 99

most existing literature, we evaluate the performance of EMD 100

algorithms on large numbers of real pulse signals, which 101

are acquired from patient and health individuals. Moreover, 102

multiple quantitative measures such as number and central 103

frequency of intrinsic mode function (IMF) components, 104

total orthogonality index and mode mixing are employed to 105

obtain some reliable findings, guiding objectively to select 106

the appropriate EMD algorithm for computational pulse anal- 107

ysis/diagnosis in TCM community. 108

The main contributions of this paper are summarized as 109

follows: 110

1) The performance of widely-used EMD algorithms are 111

compared systematically and quantitatively with various 112

measures on real pulse signals. For algorithm selection 113

in practical pulse analysis, some valuable conclusions 114

drawn from the results are available. 115

2) Currently, NA-MEMD shows a remarkable performance 116

improvement and is preferred over the others, which are 117

suitable otherwise but not for pulse signals. However, 118

there is still a gap with the ideal condition expected by 119

IMF, indicating these deficiencys of vanilla EMD algo- 120

rithm can be reduced but not be avoided, at least for now. 121

3) Redundant components introduced in noise-assisted 122

EMD algorithms to improve performance should be 123

devoted more attention, rather than being frequently 124

unnoticed. This issue will likely result in serious per- 125

formance degradation in classification diagnosis when 126

some IMF features involving no real signal information 127

but noise are used as features. 128

The remainder of this paper is structured as follows. Sig- 129

nal acquisition experiment as well as signal pre-processing 130

are presented In Section II. Section III briefly review math- 131

ematical theory of evaluated EMD algorithms, followed 132

by introducing four quantitative performance indicators in 133

Section IV. Section V evaluates the performance of pulse 134

decomposition with EMD algorithms and in terms of indi- 135

cators. Results are discussed in Section VI and conclusions 136

are drawn in Section VII. 137

TABLE 1. Physical characteristics of healthy and CVD groups.
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II. MATERIALS AND PRELIMINARIES138

A. SUBJECTS139

For a more complete comparison, a total of 340 subjects140

studied in this study were divided into two groups: one is the141

healthy college students group without any known disease,142

the other is the patient group where subjects suffer from143

known cardiovascular disease (CVD). The protocol of the144

experiment was designed according to the Declaration of145

Helsinki and approved by the Ethic Committee (University146

of Zhengzhou). Participants provided their written informed147

consent to participate in the study. Physical characteristics of148

healthy and CVD groups are listed in Table 1. It should be149

noted, rather than distinguishing between healthy or patients,150

our study aims to investigate the decomposition performance151

of the noise-assisted EMD-based algorithms in computa-152

tional pulse analysis under different conditions, unlike most153

existing studies of pulse diagnosis, healthy and CVD groups154

are not within the same age range,155

B. EXPERIMENTS156

As illustrated in Fig. 1, a pressure snesor–ZM-III pulse appra-157

tus made by Shanghai University of TCM are used to acquire158

wrist pulse signals. This apparatus consists of a wearable159

wrist band, a force sensor, an cuff and air tubes. According160

to TCM theory, CVD is related to the Chun position of the161

left hand. Therefore, wrist pulse signals are captured at the162

Chun position of the left hand. During collection, each subject163

is asked to sit in the most comfortable posture and relax for164

more than 10 minutes. Then, professional technicians palm165

the Chun position and attach the pulse sensor to subject’s arm166

in order to maintain a constant posture and contact force on167

the radial artery. The pressure of the pulse sensor on the radial168

artery is progressively gradually increaseds until finding the169

appropriate pulse pressure. Finally, each subject is collected170

for 10 seconds at a sampling rate of 200 Hz, resulting in a171

pulse signal with 2000 samples.172

FIGURE 1. Wrist pulse signal acquisition.

C. DATA PREP-PROCESS173

As a weak physiological signal, wrist pulse can be easily con-174

taminated by various kinds of interference, including power175

frequency disturbances, amplitude oscillation caused breath- 176

ing, muscle contraction and limb vibration [6], [33]. Previous 177

studies have shown that the wrist pulse signal is usually 178

located at low frequencies. 99% of the spectrum energy of 179

the normal signal is concentrated in 0–20 Hz whereas the 180

frequency range of pulse signal under abnormal condition is 181

higher but still not over 40 Hz [7]. Moreover, information 182

below 1 Hz can also be discarded, due to some uncontrol- 183

lable movements of the subject’s arm. For the preprocessing, 184

we follow the denoising and baseline drift correctionmethods 185

in [33]. Specifically, we first filter out the baseline drift and 186

the 50 Hz-frequency interference through a zero-phase shift 187

bandpass filter with a bandwidth of 1 Hz to 40 Hz, and then 188

remove the baseline wander by wavelet-based cascaded adap- 189

tive filter [34]. After pre-processing, some pulse signals could 190

be further excluded by visual inspection due to technical 191

artifact. 192

Two raw samples and their preprocessed waveforms of 193

a typical healthy and patient subject are shown in Fig (2). 194

As illustrated, the wrist pulse signals in healthy conditions are 195

observed to have regular and smooth morphologies, whereas 196

in abnormal health conditions the pulse signals become irreg- 197

ular, especially in the falling segment of the pulse. In practice, 198

the quantification of these irregularities can be helpful in 199

correlating with abnormal health conditions. 200

III. METHODS 201

In this part, we will briefly review the EMD algorithm as 202

well as the improved noise-assisted versions of EMD used in 203

the study: EEMD, NA-MEMD and MEMD. We recommend 204

readers to see corresponding literatures and references for the 205

details. 206

Algorithm 1 Algorithm of EMD
1: Indentify all the locations of local extrema (both maxima

and minima) of the input signal x(t).
2: Interpolate between all the minima (cf. maxima) to con-

struct the lower (cf. upper) envelope emin(t) (cf. emax (t)).

3: Compute the local mean of the envelopes c(t) =
(emin(t) + emax(t))/2 and subtract it from the signal to
get the ‘‘modulated oscillation’’ d(t) = x(t)− c(t).

4: If d(t) satisfies the stopping criterion condition, let
IMFm = d(t) else set x(t) = d(t) and go to Step 1.

5: Subtract the derived IMF from the variable x(t) so that
x(t) := x(t) − IMFm and repeat the above described
process.

6: Stop the sifting process when the residual are
monotonic–the trend r(t) and no longer IMF can
be extracted.

A. EMD 207

Acore innovative in vanilla EMDalgorithm is introducing the 208

concept of so-called IMF function, which lend themselves to 209

conveying physically meaningful information with classical 210
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FIGURE 2. Pulse waveform and its filtered results after pre-processing from the left wrist of two typical healthy (a) and
patient (b) acquired through the pressure sensor. The top of each subgraph shows the original model and the bottom
shows the processed waveform. Note that the wrist pulse signals in healthy conditions are observed to be more regular
than that of abnormal health conditions.

Hilbert transform. Specifically, the procedure used to extract211

an IMF from a signal can be described in Algorithms (1).212

B. EEMD AND MEMD213

EEMD is the first noise-assisted method to enhance sift-214

ing [29], which is based on investigations of the statistical215

properties of EMD-based decomposition of white gaussian216

noise (WGN) [35]. Briefly, the EEMD defines the true IMF217

components as the mean of an ensemble of trials, each is218

consist of the signal with added white noise of finite ampli-219

tude. As a latest variation of EEMD, Median EMD method220

was proposed by Lang et al. [32], in which the mean opera-221

tor is replaced by the median operator during the ensemble222

process. With toy numerical signal and industrial case study,223

it demonstrated that the performance ofmedian EMD is better224

than ensemble EMD. Together, the specific process steps of225

EEMD (MEMD) are formulated as follows in Algorithms (2).226

Algorithm 2 Algorithm of EEMD and MEMD
1: Generate the ensemble of noise-added original signals:
sm(t) = x(t)+wm(t) for m = 1, · · · ,M , where wm(t) ∼
N (0, σ 2).

2: Decompose each item of the ensemble sm(t) into Mm
IMFs using standard EMD, yielding the set {cmk (t)}

Mm
k=1.

3: For EEMD, computing the mean under the same-index
IMFs cmk (t) across the ensemble, that is cm(t) =
(1/M )

∑M
k=1 c

m
k (t). For MEMD, using the median oper-

ato, that is cm(t) = median{c1m(t), c
2
m(t), · · · , c

M
m (t)}.

C. NA-MEMD 227

The key idea of NA-MEMD is to create an ‘‘composite’’ 228

space instead of directly adding noise to n-channel multivari- 229

ate data. This space is a (n+l) -dimensional and consist of two 230

parts, one is n-dimensional signal subspace, the other is an 231

adjacent subspace of l-independent WGN realizations. With 232

the advantage of the filterbank property of multivariate EMD 233

for WGN, the subsequent decomposition produces (n + l) - 234

variate coherent IMFs By discarding the l channels pertaining 235

to the noise subspace, the n-variate IMFs can be extracted 236

from the (n + l)-variate IMFs, which are corresponding to 237

the original signal.1 Because of disjoint nature of the signal 238

and noise subspaces, residual noise andmodemixing can also 239

be reduced in the NA-MEMD. The corresponding specific 240

process of NA-MEMD is as follows in Algorithms (3). 241

IV. EVALUATION METRICS 242

Due to the empirical definition of the EMD, there is still a 243

lack of general or strict objective metrics for decomposed set 244

evaluation. Several quantitative metrics are available based 245

on ideal conditions IMFs are expected to possess. With 246

a consideration of similar studies on objective assessment 247

[36], [37], evaluation metrics used in this study are tabulated 248

in Table (2). 249

1In our case for univariate signal, only those IMFs from the first channel
are retrieved.
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Algorithm 3 Algorithm of NA-MEMD
1: Creates l(≥ 1)-channel white Gaussian noise time series

with the same length as that of n-channel input x(t) and
add the generated noise to produce a new p (= l + n)-
dimensional signal y(t).

2: Create a suitable set of direction vector {X θk }Kk=1 on the
(p−1) sphere with the aid of a sampling scheme based on
the Hammersley sequence and Calculate the projections
{qθv (t) }

V
v=1 of the new signal y(t) along these direction

vectors.
3: Find the time instant {t iθv}

V
v=1 corresponding to the max-

imum value of the projected signal set {qθv (t) }
V
v=1 and

interpolate [t iθv , y(t
i
θv
)] to get the multivariate envelope

curves {eθv (t) }
V
v=1.

4: Calculate mean of the envelopes by c(t) =
1
V

∑V
v=1 eθv (t).

5: Extract the ‘‘detail’’ d(t) = y(t) − c(t). If d(t) satisfies
the stop criteria, apply the above procedure to y(t)−c(t),
else repeat for d(t).

6: Choose only the extracted IMFs corresponding to the
input signal x(t) from the resulting (n+ l)-variate IMFs,
and discard the IMFs associated with the noise channels.

TABLE 2. Evaluation metrics of EMD-based decomposition.

A. NUMBER AND CENTRAL FREQUENCY OF IMFs250

The first primary goal of EMD analysis is to identify physi-251

cally meaningful intrinsic oscillatory modes within the raw252

signal and extract them as IMFs [36]. As discussed in253

Pegram et al. [38], the smaller number of decomposed IMFs254

it has, the more likely any meaningful signal it can identify.255

Moreover, the frequency of the pulse signal is mostly within256

1 − 20Hz, no more than 40Hz. To find those out-of-range257

components (< 1Hz or > 40Hz), the central frequency of258

IMF components can be calculated from the power spectral259

density. Therefore, number and central frequency of IMFs are260

the most intuitive metrics for decomposition quality.261

B. ORTHOGONALITY262

Total index of orthogonality characterizes the overall orthog-263

onality among IMFs. Original definition to examine orthog-264

onality [21] is not strictly reversible. To avoid any ambiguity,265

we employe modified total index of orthogonality, proposed266

in [36]267

OI =

M∑
m=1

j<i∑
j=1

∣∣∣∣ N∑
t=1

(IMFi(t)× IMFj(t))

∣∣∣∣
N∑
t=1

(x(t)− r(t))2
(1)268

where N is the record length of the original signal x(t), M 269

is the number of IMFs, t is the time step, and i, j the index 270

of IMFs. Note that the EMD residual r(t) is intentionally 271

removed from the original signal to prevent any trend in it. 272

The advantage of the OI indicator is that destructive impact 273

of opposite vector is absolutely suppressed by taking the 274

absolute value of IMF vector product. OI approximating 0 275

indicates a well decomposition orthogonality. 276

C. MODE MIXING 277

The mode mixing effect describes the frequency overlap 278

among the decomposed IMFs within one pulse signal, 279

which would reflect whether a single IMF contains multiple 280

scales and/or a single scale resides in multiple IMFs [37]. 281

Mode-mixing MMi,jbetween ith IMF (IMFi(t)) and jth IMF 282

(IMFj(t)) can be expressed by the following frequency for- 283

mulation [37] 284

1f = max([fc2i, fc8i] ∩ [fc2j, fc8j]) 285

− min([fc2i, fc8i] ∩ [fc2j, fc8j]) (2) 286

MMi,j =
1f

min{|fc2i − fc8i|, |fc2j − fc8j|}
× 100% (3) 287

where fc2i and fc8i are central frequencies where 20% and 80% 288

of the energy of ith IMF (IMFi(t)) are reached, respectively. 289

V. EXPERIMENTAL RESULTS 290

In this section, the performance of EMD algorithms men- 291

tioned in Section III are evaluated by using real pulse signals 292

and metrics described in Section IV. Followed by parameter 293

settings, the performance of the vanilla EMD is first evaluated 294

as a baseline for contrast purpose. Thereafter, for each noise- 295

assisted EMD, five runs with pre-defined noise characteris- 296

tics are performed to get statistically reliable performance 297

results. Since the degree of non-linearity is reported to be dif- 298

ferent among heart disease group and healthy group in [9], for 299

better comparison, the results of healthy and patient groups 300

are shown individually. 301

A. PARAMETER SETTINGS 302

Although there is no general principles for selecting EMD 303

parameters, some common instructions and rule of thumb can 304

be followed as described in [29], [37]. All possible combina- 305

tions of the following parameters are listed as follows. 306

• EEMD/MEMD: number of iterations: 50, 100, 250, 307

500, 1000. 308

• NA-MEMD: number of extra channels: 2, 3, 4; number 309

of direction vectors: 8, 16, 32, 64. 310

For all noise-assisted EMDs, the sigma of noise is set to 311

{0.1, 0.15, 0.2, 0.25, 0.3}. Other parameters such as sifting 312

stopping criteria, interpolation functions and boundary con- 313

ditions use default values. All the programs are conducted in 314

MATLAB. EMD and EEMD are from commonly-used online 315

available code [39], while the code provided in [40] is used for 316

NA-MEMED. We program MEMD based on EEMD since it 317

differs fromEEMDonly by using themedian operator instead 318

of mean opeartor. 319
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FIGURE 3. Evaluation metrics with the vanilla EMD.

B. EVALUATION BENCHMARK320

Evaluation metrics of the vanilla EMD are served as perfor-321

mance baseline, which are shown separately with NI and OI322

and fc and MM in Figure 3 for better presentation.323

Figure 3(a) shows that EMD decomposes pulse signals into324

slightly more components in healthy groups (6 ∼ 7) than that325

in CVD groups (7 ∼ 8). The reason for this is that as shown326

in Fig. 2, there are more glitches in pulse signals of CVD327

groups, which behave more disordered than that of healthy328

groups. As demonstrated in Figure 3(b), vanilla EMD can329

not guarantee the orthogonality of each component in reality,330

with an average index of 0.25 for healthy groups and 0.28 for331

CVD groups.332

As can be seen in Figure 3(c), the overall fc of healthy333

groups is below 10Hzwith the highest value of 6 Hz, whereas334

it is up to 20 Hz for CVD groups. fc starts below 1 Hz335

from the 5th component in both groups, indicating that first336

4 IMF components are most physiologically relevant. As a337

result, there is a high chance that the rest of components338

contain no relevant information of human body, which can be339

attributed to remaining artifacts due to respiratory movement340

or vasomotion. In terms of number of IMFs, EMD typically341

produces 1 ∼ 2 components outside the frequency range342

of interset, which should be avoided in subsequent signal 343

analysis. 344

Figure 3(d) shows that for all groups, MM is almost more 345

than 30%with a very large variance. It is observed thatMMof 346

individuals is unpredictable and can be 0 or quite large. This 347

phenomenon demonstrates the instability of vanilla EMD. 348

From evaluation results in Figure 3, the issue of vanilla 349

EMD can be found, that is it can not guarante orthogonality, 350

which leads to a large mode confusion and some redundancy. 351

This is exactly the deficiency that following noise-assist ed 352

EMDs are intended to improve. 353

C. PERFORMANCE COMPARISION 354

1) NUMBER OF IMFs 355

Number of IMFs decomposed with noise-assisted EMDs 356

is summarized in Figure 4. It is clear that regardless of 357

noise-assisted EMDs used, more IMF componens are decom- 358

posed than that using vanilla EMD. 359

More specifically, EEMD produces the most IMFs 360

(9 ∼ 10) while NA-MEMD provides the fewest IMFs 361

(7 ∼ 8), and MEMD is in the middle (8 ∼ 9). Although 362

number of IMFs difference among the three EMDs (about 363

2 ∼ 3) is not significant, NA-MEMD outperforms the 364
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FIGURE 4. Number of IMFs with EEMD, MEMD and NA-MEMD for health and cvd groups. The NI values of NA-MEMD are
averaged on extra channels.

FIGURE 5. Central frequency of IMFs with EEMD, MEMD and NA-MEMD for health and cvd groups. The fc values are
averaged on iterations for EEMD and MEMD, and on extra channels and directions for NA-MEMD.

others and is most competitive to vanilla EMD. For differ-365

ent noise and iterations, NI of MEMD remains basically366

unchanged, which is more stable than EEMD, especially367

when the sigma of noise is less than 0.15 and number of368

iterations is lower than 100. Similarly, NA-MEMD produces369

almost the same IMF components irrespective of directions.370

Besides, each noise-assisted EMDhas a lower variance for NI371

than vanilla EMD, indicating that the noise-assisted method372

indeed reduce the instability to a certain extent.373

2) CENTRAL FREQUENCY OF IMFs 374

For clarity, only the first 6 central frequency of IMF compo- 375

nents is depicted in Figure 5. It is surprised that for EEMD 376

and MEMD, fc of the first IMF component is quite large and 377

beyond the effective frequency range. However, it can be seen 378

that the variance is also relatively large. It implies that the 379

first component is not always redundant, which should be 380

carefully considered in practice. Therefore, the effective pulse 381

signal is mainly concentrated in IMFs 2 ∼ 5. Considering NI 382
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FIGURE 6. Orthogonality index with EEMD, MEMD and NA-MEMD for health and cvd groups. The OI values of NA-MEMD
are averaged on extra channels.

FIGURE 7. Mode mixing with EEMD, MEMD and NA-MEMD for health and cvd groups. The MM values are averaged on
iterations for EEMD and MEMD, and on extra channels and directions for NA-MEMD.

in vanilla EMD shown in the Figure 3(a), EEMD produces383

5 ∼ 6 redundancies and MEMD produces 4 ∼ 5 redundan-384

cies. For noise-assisted EMDs, fc of IMFs 2 ∼ 5 is larger385

than the counterpart in vanilla EMD and increases with the386

added noise amplitude increases. When the assisted noise387

has the smallest amplitude (0.1), EEMD is closest to vanilla388

EMD among the three with respect to fc of valid IMFs. This389

phenomenon demonstrates that introducing noise can bring 390

unnecessary information, especially as the central frequency 391

of different numbers of components fluctuates greatly as the 392

noise increases. 393

It appeares that fc of the first 5 IMFs using NA-MEMD 394

are all within the valid frequency range (see Figure 5(c) 395

and Figure 5(f)). Although fc of IMF 1 is much lower than 396
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that of EEMD and MEMD, it is actually considered to be397

redundant compared with vanilla EMD, resulting in only398

2 ∼ 3 redundancies introduced. In this aspect, NA-MEMD399

algorithm may be a better choice for pulse signal processing,400

which has not been applied in the existing literature. Since401

the center frequency of each component has little fluctuation402

and the variance is small under different noise conditions,403

NA-MEMD algorithm has better stability than EEMD and404

MEMD.405

3) ORTHOGONALITY INDEX406

The total orthogonality indexes of the decomposed IMF407

components is shown Figure 6. It can be observed that the408

orthogonality of EEMD does not differ significantly from409

vanilla EMD, where CVD groups is slightly better than410

healthy groups. It can be argued that there is no benefit411

in orthogonality from assisted noise when using EEMD.412

However, it is improved dramatically by MEMD with the413

index dropping below 0.2, which confirms the fact that the414

median operator is superior to the mean operator. The best415

orthogonality achieved is NA-MEMD, whose index is lower416

than 0.15. In addition, the noise amplitude has little effect on417

the orthogonality index.418

4) MODE MIXING419

The mode mixing along all pulse signals for these420

noise-assited EMD methods was calculated and illustrated in421

Figure 7. It should be emphasized here that only the first six422

components are taken into consideration.423

As expected, themodemixing can be considerably reduced424

by introducing noise for both healthy and CVD groups. Com-425

pared with the mode mixing with vanilla EMD, which is426

generally higher than 30% (Figure 3(d)), it is less than 20%427

with noise-assisted EMDs and the variance is also smaller428

(Figure 7(c) and Figure 7(f)). Again, it also can be seen that429

NA-MEMD performs the best mode mixing reduction among430

three EMDs.431

VI. DISCUSSION432

In the present study, three representative noise-assisted EMD433

candidates (EEMD, MEMD and NA-MEMD) have been434

thoroughly investigated with real wrist pulse signals from435

health and patient groups. Before our works, seldom have436

appliedMEMD and NA-MEMD to wrist pulse signals. Based437

on evaluation results with four objective metrics, some valu-438

able observations should deserve more attention in practice.439

Firstly, performance of three noise-assisted EMDs is bet-440

ter than vanilla EMD in terms of those objective indexes441

except for number of IMFs. Overall, comparative results442

manifest that NA-MEMD should be more suitable for pulse443

signals rather than the recently proposed MEMD. EEMD444

and MEMD require the noise well chosen while NA-MEMD445

is more relatively robust to noise. Moreover, EEMD and446

MEMD are more likely to be influenced by the chosen noise,447

while NA-MEMD is robust to this. Although results shows448

effectiveness of NA-MEMD, which is still far from the ideal449

condition for complete orthogonality, there still has much 450

room to improve the performance further. On the other hand, 451

the performance of different proposed algorithms is usually 452

only demonstrated by synthesis signals or with visual inspec- 453

tion for signals in other fields. Our experimental results on 454

wrist pulse signals suggests that it will bemore convincing for 455

other physiological signal analysis by using more real-world 456

signals and objective indicators in practice. 457

Secondly, introducing noise into EMD can indeed improve 458

performance on many metrics, but one of serious side effects 459

is introducing additional redundant components. To the best 460

of our knowledge, in TCM community, a lot of effort have 461

been made to the improve the performance by assisted 462

noise, but seldom mentioned the redundancy caused by those 463

assisted noise. Physiologically irrelevant redundancy mainly 464

comes from intrinsic activities such as residual respiration 465

or vasomotion components after removing interference for 466

vanilla EMD, and from residual noise for noise-assisted 467

EMDs. In terms of redundancy, vanilla EMD produces at 468

most 2 redundancies but it is up to 6 for noise-assisted EMDs. 469

In this aspect, the closest to vanilla EMD is NA-MEMD 470

with a redundancy of 3, because the noise and the signal 471

are combined in a channel way rather than being directly 472

aggregated. Actually proponents of NA-MEMD has pointed 473

out the fact that adding noise directly to the data could cause 474

residual noise to remain in IMFs [31]. Nowadays, EMD 475

algorithms are mostly used as signal decomposition methods 476

for feature extraction, and thus careful exclusion of redundant 477

components before extraction is expected to further improve 478

classification accuracy. 479

Finally, although this present study has elaborately pre- 480

sented the comparative study of typical EMDs for pulse 481

signals, there are still some issues to make clear or worthy 482

of further in-depth research. 483

• In addition to the parameters specified in Section V-A, 484

several factors of the EMD algorithm itself, such as 485

interpolation and end effects, also contribute to the final 486

signal decomposition. Specialized fine-tuning of associ- 487

ated parameters could be very useful. However, it should 488

be noted that our main goal of this paper is to evaluate 489

and compare the performance under the same conditions 490

as fairly as possible. Unless there is a mathematical 491

foundation of the EMD, it is impossible to construct 492

some definitive metrics that capture all the key features. 493

Evaluation measures proposed in our paper could be 494

considered as an assistance for researchers in TCM com- 495

munity when choosing EMD algorithms. 496

• Since the EMD algorithms study in this paper are rep- 497

resentative, evaluating on some enhanced versions of 498

EEMD (complementary EMD [41], complete EMD [42] 499

and improved complete EMD [43]) with their own 500

advantages is deserved to be a future research direc- 501

tion. In addition, objective metrics can also be further 502

extended by considering different modal decomposition 503

algorithms [44], such as variational mode decomposi- 504

tion [45], [46] and nonlinear mode decomposition [47]. 505
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VII. CONCLUSION506

EMD and its improved noise-assisted versions have been507

proved to be more suitable than traditional methods for the508

analysis of non-linear and non-stationary signals, but is less509

explored in pulse signal analysis. With real recorded pulse510

signals from healthy and patient groups, a systematically511

comparative study on three noise-assisted EMD algorithms in512

terms of multiple objective quantitative metrics are examined513

in this paper. Experimental results show that NA-MEMD514

rather very recently MEMD, is consistently superior to the515

others and potentially most efficient for computational pulse516

analysis/diagnosis.517

However, it needs to be noted that performance benefits518

gained by assisted noise is at the expense of introducing519

additional redundancy. We argue that this is of great practical520

sense and supposed to attract more attention, since redun-521

dancy elimination is expected to further enhance the perfor-522

mance of intelligent pulse diagnosis. We believe the study of523

this paper could provide new insights and best practices for524

the successful use in computational analysis or diagnosis for525

wrist pulse signals as well as other physiological signals that526

are methodologically similar.527
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