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ABSTRACT To mitigate the range anxiety problem of electric bus system, wireless power transfer is
regarded as one of the emerging technologies for long-term range extension. Previous studies have discussed
the optimization problem of the power track deployment. However, the en-route charging strategy also
significantly influences the operation cost besides the power track, which is yet to be investigated sufficiently.
To fill this gap, a new wireless charging model for optimizing the energy cost is proposed. In particular, the
cost of battery and the time-of-use electricity price are taken into account. Firstly, a microscopic power
consumption model considering passenger flows and automobile dynamics is developed to estimate the
charging cost. Then, a relaxation approach based on penalty function and grey wolf optimization (GWO)
algorithm is developed to solve the non-deterministic polynomial-hard (NP-hard) problem with complex
multidimensional variables and multiple inequality constraints. And the performance of the proposed
charging strategy is verified in a real-world bus line via numerical simulation. A sensitivity analysis is
conducted to quantify the marginal impact of the unit cost of battery capacity on the total energy cost.
Finally, the computational performance of the proposed algorithm (GWO) is validated by comparing other
outstanding methods such as genetic algorithm (GA), particle swarm optimization (PSO) and CPLEX
solvers.
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INDEX TERMS Electric bus, en-route charging strategy, power consumption model, time-of-use price,
battery capacity.

I. INTRODUCTION18

TheWorld EnergyOutlook reported that the number of global19

electric vehicle exceeded 10 million in 2020, which increased20

43% from 2019 [1], indicating that the market of electric21

vehicle will be growing rapidly in the future. However, the22

issue of range anxiety still hampers the promotion of electric23

bus (EB) system [2], [3], [4], [5]. Electric vehicles (EVs)24

with wireless power transfer (WPT) technology have been25

introduced to solve this problem [6], [7]. However, the cost of26

operating a wireless charged electric bus (WCEB) line is still27

The associate editor coordinating the review of this manuscript and

approving it for publication was Tariq Umer .

expensive. The cost mainly includes power track deployment 28

cost, battery cost and charging cost [8]. Previous studies have 29

focused on optimizing the cost of the power track deployment 30

[9], [10], [11], [12], but the optimization of the battery cost 31

and charging cost during operation is yet to be investigated 32

sufficiently. 33

The total cost of battery and charging are defined as the 34

energy cost in this study, which are mainly related to the 35

battery capacity, the electricity price and the charging strat- 36

egy. Due to the limitation of battery capacity, the range 37

anxiety problem has plagued many electric vehicle users 38

[13], [14], [15]. Several techniques have proposed to miti- 39

gate this problem, e.g., brake regeneration [16], [17], power 40
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TABLE 1. Summary of the selected literature on wirelessly charged EV modeling.

management [18], and eco-driving in mixed connected traffic41

[19], [20], [21]. However, the limited coverage of charging42

stations and the charging waiting time remain the primary43

barriers to long-distance driving. For EBs, equipping with44

large-capacity battery might be a possible solution for the45

range anxiety problem, but it is not economical and environ-46

mentally friendly [22]. The larger the capacity is, the longer47

charging time will be, which might result in higher operation48

cost [23]. Compared with the traditional plug-in charging49

technology, WPT allows EBs to be connected to the grid50

for charging en-route. Besides, it is possible to decentralize51

charging times for better adaption to the profile of the time-52

of-use (TOU) electricity price.53

TOU price is a typical price-based demand response mech-54

anism [24], [25] enabling to save energy consumption from55

the perspective of the supply-demand relationship [26], [27],56

[28]. For example, in [26], the charging/discharging schedul-57

ing for an EV parking lot was planned based on TOU price,58

which shown that the peak electricity consumption could59

reduce by about 20%. In [28], the authors modeled the60

day-ahead scheduling of the power system as a mixed integer61

linear programming problem to minimize the peak electricity62

consumption. The charging strategies based on TOU price for63

plug-in charging EVs were discussed in [29], [30], [31], and64

[32]. In [29], the authors proposed a TOU price incentive-65

based charging navigation strategy for EVs, and in [30], the66

charging station queuing factor was added based on [29].67

In [31] and [32], the optimal charging strategy for EVs was68

proposed, which minimized the charging cost considering69

the transformer power margin and parking fee with the TOU70

price.71

Compared with the plug-in pattern, the WCEB enables72

frequent and multi-period charging, potentially enabling73

to adapt to the TOU pricing mechanism [11]. Wirelessly 74

charged EVs using WPT technology has also been proven 75

to be better in reducing battery capacity specifications and 76

mitigating the range anxiety [33]. Though the cost of deploy- 77

ing WPT may be higher than that of the wired charging 78

device [34], it is acceptable to the future transit system 79

because it helps to mitigate the range anxiety, reduce the 80

weight of battery, and optimize the long-term operation cost 81

[35]. In [33], the authors developed an integrated life cycle 82

assessment model to evaluate the cost of an all-EB sys- 83

tem with plug-in or wireless charging technology. Korea 84

Advanced Institute of Science and Technology (KASIT) 85

reported that the WCEB was possible to achieve the power 86

efficiency of 83% at an output power of 60 kWh [12]. Simi- 87

larly, the PRIMOVE system for WCEB made by Bombardier 88

enabled a charging power of up to 200kWh with a conversion 89

efficiency of more than 90% [36]. They all found that the 90

WCEB system is more economically competitive than the 91

plug-in charging EB system. 92

The total cost of WCEB system is mainly contributed by 93

the power track, the vehicle battery and the charging strategy 94

[8]. Previous research has focused on the optimization of 95

the cost of power track [7], [9], [12], [37] and [38], but the 96

battery capacity and charging strategy are yet to be studied 97

sufficiently. A summary of selected works on optimizing the 98

charging cost of wirelessly charged EVs is given in Table 1. 99

In [7], the cost of battery and power tracks with the constraint 100

of energy consumption and the driving range were optimized 101

by using the continuous Meta-heuristic approach. In [38], 102

a bi-level mixed integer nonlinear programming (MINP) was 103

proposed to optimize the total cost including the battery, the 104

power tracks and the EBs. A similar approach was imple- 105

mented to minimize the cost of the transmitters and battery 106
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was proposed in [9]. In [11], the authors quantified the ben-107

efits of three charging methods, i.e., static wireless charg-108

ing, dynamic wireless charging (DWC) and quasi-dynamic109

wireless charging. The optimal charging strategy for various110

market conditions and initial investment cost was discussed111

in [12]. They concluded that the dynamic charging strategy112

is beneficial to prolong the life-span of battery. Consider-113

ing the operation cost, a comprehensive model for WPT114

location distribution was developed, which incorporated the115

operational-level information such as the number of trips for116

each line [54]. However, how the TOU electric price and the117

passenger flow influence on the charging schedule was not118

discussed.119

In summary, previous studies have shed light on the120

charging strategy for EVs and the deployment of wirelessly121

charged device. However, limited studies investigate the opti-122

mization of the en-route charging schedule for the WCEB123

system. To fill this gap, this study aims to optimize the124

en-route charging schedule for WCEB. The main contribu-125

tions of this study are listed as follows.126

(1) A model jointly optimizing the charging cost and127

battery cost for a WCEB line is proposed. Unlike previous128

studies focusing on the power track location distribution, this129

study aims to optimize the charging start time, the charging130

end time and the battery capacity from the operational per-131

spective rather than how to optimize the cost for the power132

track deployment. The proposed model also enables to adapt133

to the TOU based electricity price.134

(2) A relaxation approach based on penalty function is135

applied to transform the wireless charging problem that136

belongs to the generally complex constrained optimization137

problem into an unconstrained problem. Accordingly, the138

GWO algorithm is applied to solved the constrained opti-139

mization problem by finding the optimal solution of the140

unconstrained problem iteratively.141

The rest of this paper is organized as follows.142

Section 2 presents the methodology for constructing the143

en-route wireless charging strategy and the energy con-144

sumption model. Section 3 conducts a case study where the145

proposed framework is evaluated in both quantitative and146

sensitivity studies. Section 4 draws conclusion of this study147

and describes future extensions.148

II. METHODOLOGY149

A. NOTATION150

Notations used in this study are given in Table 2.151

The charging mode for the WCEB system is shown in152

Figure 1. Assumed that the operation route for an EB con-153

tains η power tracks and an EB runs $ cycles in one day,154

the number of passing power tracks can be regarded as155

n = η ∗ $ . Accordingly, the decision variables for the156

charging strategy can be represented by the sequence of157

charging start time (ts) and the charging end time (tf ), i.e.,158

Tn =
{(
t1s , t

1
f

)
, . . .

(
t is, t

i
f

)
. . . ,

(
tns , t

n
f

)}
, which consists159

of n starting chargingmoments and ending chargingmoments160

TABLE 2. Notation definition.

FIGURE 1. Illustration of the charging mode for the WCEB system.

for a one-day operation cycle. t is and t if are the charging 161

start time and the charging end time for the ith power track, 162
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respectively. Thus, the optimization of the total energy cost is163

mainly dependent on the selection of the battery capacity E0,164

the charging start time t is and the charging end time t if .165

B. MODEL CONSTRUCTION166

1) CHARGING STRATEGY MODELLING167

The energy cost of WCEB operation is mainly from the168

battery cost and the electricity cost. Thus, we propose a169

charging strategy considering the battery capacity and the170

TOU electricity price as shown in Eq.(1).171

MinWz = We + dWc (1)172

s.t. E
(
t is
)
= E

(
t i−1f

)
−

∫ t is

t i−1f

px (t)dt ≥ Emin, ∀i (2)173

E
(
t if
)
= E

(
t is
)
+

∫ t if

t is

(
σpc − px (t)

)
dt ≤ Eo, ∀i174

(3)175

t ia ≤ t
i
s ≤ t

i
f ≤ t

i
l , ∀i (4)176

t i−1f ≤ t i−1l < t ia, ∀i (5)177

E
(
t0
)
= E0, t0 = 0 (6)178

E
(
tnf
)
= E0 (7)179

whereWe is the battery cost,Wc is the charging cost per day,180

and d is the number of the operation days.181

We = ueE0 (8)182

where ue is the unit battery cost, referring to the cost of per183

kWh capacity [49].184

Wc =
∑n

i=1

∫ t if

t is

y (t) pcdt (9)185

where y (t) is the charging price at time t and pc is the186

charging power.187

The remaining battery power during the whole operation188

period cannot exceed the rated battery capacity Eo, nor can it189

be lower than the minimum remaining power, which can be190

presented by the following constraint.191

Emin ≤ E (t) ≤ Eo (10)192

where E (t) is the remaining battery power at each moment193

during operation, and Emin is the minimum remaining power.194

In Eq.(2) and Eq. (3), E
(
t is
)
is the remaining battery195

power at the start moment of the ith charging and E
(
t if
)
is196

the remaining battery power at the end moment of the ith197

charging. σ is the conversion factor of the charging power. px198

is the consumed power estimated by the energy consumption199

model. Eq. (2) is the battery remaining power at the beginning200

of any charging moment, which must be greater than the201

lower bound value (Emin). Eq. (3) is the battery remaining202

power at the end of any charging moment, which must be203

less than the capacity of the battery (Eo). Since the power204

consumptionmust be less than the charging power, the energy205

consumption constraints need to satisfy Eq. (2) and Eq. (3).206

As shown in Eq. (4) and Eq. (5), the charging start time 207

and the charging end time are constrained by the power track 208

distribution. The t ia and t
i
l are the time when the EB arrives at 209

and leaves the ith power track, respectively. t id is the driving 210

time from the (i− 1)th power track to the ith power track. t iε 211

is the total stopping time at bus station. 212

t ia = t i−1l + td + tε (11) 213

t il = t ia + td (12) 214

The stopping time at a bus station depends on the number 215

of passengers getting on and off the bus. Thus, the stopping 216

time (tε) can be represented by Eq.(13). 217

tε =
∑

j=q
t jε (13) 218

t jε = tavemax
{
εjon, ε

j
off

}
, j = 1, 2, . . . ϕ (14) 219

where q refers to the station number between the (i− 1)th 220

and ith power track. εjon and ε
j
off are the number of passengers 221

getting on and off at the jth bus station, ϕ is the number of bus 222

station passed. 223

Eq. (6) and Eq.(7) are the boundary conditions. Eq.(6) 224

means that the initial battery power is set to the battery 225

capacity E0. In Eq.(7), the remaining power of the WCEB 226

is set to a fully charged state at the end of the one-day cycle. 227

2) ENERGY CONSUMPTION MODEL 228

To facilitate the optimization of the TOUbased charging strat- 229

egy, a dynamic time-dependent energy consumption model is 230

necessary to estimate the power consumption [39]. Consider- 231

ing that the power consumption px (t) in Eq.(2) consists of 232

the engine power (pd (t)) and other energy consumption (pu), 233

px (t) can be presented by Eq.(15). 234

px (t) =
pd (t)
β
+ pu (15) 235

where β is the conversion factor of the engine power. 236

In Eq.(15), the effective power (pd (t)) of the generator 237

can be estimated by the sum of the rolling resistance power, 238

the slope resistance power, the air resistance power and the 239

acceleration resistance power [40]. Thus, the effective power 240

can be formulated by Eq.(16). 241

pd (t) =
(
δm · a (t)+ mgr cos (θ)+

1
2
ρairAf CDv2 (t) 242

+mg sin (θ)
)
v (t) (16) 243

wherem is the weight of the bus, g is the gravitational acceler- 244

ation, θ is the inclination of the road, a (t) is the acceleration 245

of the EB at time t, v (t) is the vehicle speed at time t, Af is the 246

area of the vehicle subject to the air resistance, ρair is the air 247

mass density, CD is the air resistance coefficient of the bus, 248

and r is the rolling resistance coefficient given by Eq.(17). 249

r =
Cr
1000

(c1 · v (t)+ c2) (17) 250
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whereCr , c1, c2 are the rolling resistance parameters depend-251

ing on the road type, the road condition and the vehicle tire,252

respectively.253

Since the number of passengers onboard is an important254

factor affecting the total weight, it is necessary to take it into255

account in the energy consumption model. The total weight256

of the bus and the passengers onboard can be represented by257

Eq.(18).258

m (t) = mb + maveε (t) (18)259

ε (t) = ε
(
t j
)
+ εjon − ε

j
off , t j < t ≤ t j+1, (19)260

0 ≤ ε (t) ≤ εmax (20)261

where ε
(
t j
)
is the number of the onboard passengers when the262

bus arrives at the jth bus station, εjon and ε
j
off are the number of263

passengers getting on and off at the jth station, respectively.264

C. MODEL SOLUTION265

Noticed that the optimization problem for the charging266

strategy (Eq.(1)-Eq.(7)) is an NP-hard problem with com-267

plex multidimensional variables and multiple inequality con-268

straints, a relaxation approach based on the penalty function is269

developed to solve the constrained optimization problem and270

then the GWO algorithm is applied to iteratively approximate271

the solution.272

1) RELAXATION OF THE CONSTRAINED PROBLEM273

When solving constrained optimization problems, it is nec-274

essary to eliminate the constraints [40]. The basic idea of275

the relaxation approach based on penalty function is to trans-276

form the complex constrained optimization problem into an277

unconstrained problem, and finally approximate the solution278

by searching for the optimal solution of the unconstrained279

problem iteratively [41].280

The relaxation approach based on penalty function can be281

divided into two categories: the outer-point approach and the282

inner-point approach. The outer point approach is suitable283

for constructing penalty terms of equality constraints, while284

the inner-point approach is suitable for constructing penalty285

terms of inequality constraints [42]. Since the optimization286

problem has both inequality constraints and equality con-287

straints, the optimization model in this study can be repre-288

sented by Eq.(21)-Eq.(23) as follows.289

min Wz (t,E0) (21)290

s.t. hx (t,E0) = 0, x = 1, 2, . . . , ∂ (22)291

qy (t,E0) ≥ 0, y = 1, 2, . . . , α (23)292

Eq.(22) corresponds to the equality constraints, i.e., Eq.(6)293

and Eq.(7). Eq.(22) corresponds to the inequality constraint,294

i.e., Eq.(2),Eq.(2),Eq.(3) and Eq.(4). Thus, the penalty term295

can be constructed by the outer-point approach for the equal-296

ity constraint as
∑r

x=1 [hx (t,E0)]
2, and it can be constructed297

by the inner-point approach for the inequality constraint as298 ∑a
y=1

1
qy(t,E0)

. After constructing the penalty function, the299

FIGURE 2. The flow chart of the GWO algorithm.

original problem can be transformed to an unconstrained 300

minimization problem by Eq.(24). 301

Min F
[
Tn, r (σ (k)),E0

]
302

= Wz (Tn,E0)+
1

√
r (σ (k) )

∑r

x=1
[hx (t,E0)]2 303

+ r (σ (k))
∑a

y=1

1
qy (t,E0)

(24) 304

where r (σ (k) ) is the penalty factor. 305

To improve the search efficiency, the penalty factor can be 306

updated iteratively by Eq.(25). 307

r (σ (k)) = 10(1−σ(k))
2k−1
k (25) 308

where σ (k) is the ratio of feasible solution to unfeasible solu- 309

tion for the unconstrained problem in the k th iteration [51]. 310

2) GREY WOLF OPTIMIZATION (GWO) ALGORITHM 311

GWO is a searching method inspired by the prey activity 312

of grey wolves [43]. It has strong convergence perfor- 313

mance on solving multi-peak and multi-dimensional NP-hard 314

problems [44]. 315

Figure 2 shows the calculation process of the GWO algo- 316

rithm. First, it divides the wolves into four levels, i.e., λ, µ, 317

δ and %, according to the size of the fitness value. λ,µ and δ 318

are the wolves in top three levels, while the % is the remaining 319

wolves. The wolf pack % realizes the optimization process 320

of the whole algorithm. The three high-level wolves λ, µ 321
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FIGURE 3. The bus line in the simulation study.

TABLE 3. The location of power track deployment.

and δ are assumed to have the potential ability to obtain the322

location of the prey and jointly command the wolf pack %.323

Then, the wolf pack % feed back the information to the three324

high-level wolves who decide whether the information needs325

to be updated. When the number of the iterations reaches to326

the threshold value, the positions of λ, µ and δ, i.e., Xλ,Xµ327

and Xδ can be obtained. Xλ,Xµ and Xδ can be regarded328

as the top three candidate solutions to the optimization329

problem [43].330

The objective function, i.e., Eq.(24), can be regarded as331

the fitness function in GWO algorithm. And the variables332

Xλ, Xµ and Xδ to be solved in GWO can be represented333

by Eq.(26).334

X = [Tn,E0] (26)335

The specific formulation of the GWO algorithm can be336

expressed by the following equations.337 
Dλ =

∣∣C1Xλ − X%
∣∣

Dµ =
∣∣C1Xµ − X%

∣∣
Dδ =

∣∣C1Xδ − X%
∣∣ (27)338


X1 = Xλ − B3Dλ
X2 = Xµ − B3Dµ
X3 = Xδ − B3Dδ

(28)339

X% (k + 1) =
X1 + X2 + X3

3
(29)340

B = 2ψ (τ1 − 1) (30)341

C = 2τ2 (31)342

ψ (k) = 2cos
(
k
M
π

)
(32)343

where Dλ,Dµ and Dδ are the direction vectors between the344

three high-level wolves λ, µ, δ and the wolf pack %. X1, X2345

TABLE 4. The local TOU charging price.

TABLE 5. Parameter setting for the energy consumption model.

and X3 are the direction vector of the wolf pack % towards 346

λ, µ, and δ, respectively. Eq.(29) defines the final position 347

of %. C and B are the swing factor, which are determined 348

by Eq.(30) and Eq.(31). τ1 and τ2 are the random numbers 349

between 0 and 1. ψ (k) is the convergence factor, which 350

decreases as the iteration increases. k is the current number 351

of iterations, andM is the maximum iteration number [44]. 352

III. NUMERICAL ANALYSIS 353

A. EXPERIMENT SETTING 354

To demonstrate the performance of the proposed wireless 355

charging strategy, a bus line in Guangzhou, China, is used 356

to test the model in VISSIM. The simulation scenario and the 357

traffic flow are generated according to the traffic data issued 358

by Guangzhou Institute for Transportation and Development 359

Policy [45]. As shown in Figure 3, the length of bus line is 360

32,960 meters and the bus service begins at 5.30 a.m. There 361

are 5 wireless power tracks and 33 bus stops along the bus 362

line. The bus runs 15 cycles in one day, thus the total number 363

of charging opportunities (n) is 75. Accordingly, the total 364

stopping times at bus stops (ϕ) is 495. Table 3 shows the 365

location of the power track. According to [46], the local TOU 366

price is given in Table 4. 367

According to the vehicle parameters provided by Yutong 368

Bus Company, road surface coefficients and resistance 369
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FIGURE 4. Illustration of the delayed charging strategy.

FIGURE 5. Delayed charging strategy vs. instant charging strategy.

FIGURE 6. Comparison of the remaining power between the delayed
charging and instant charging strategies.

constants provided by [47] and [36], the parameter setting of370

the energy consumption model is given in Table 5.371

B. RESULTS372

Model comparison and sensitivity analysis are given to373

demonstrate the model performance. The charging time and374

cost are used as the evaluation indicators. A sensitivity anal-375

ysis is performed to investigate the influence of some key376

parameters on the model.377

1) CASE STUDY378

To facilitate the discussion, the proposed charging strategy Tn379

based on TOU price guidance in this paper is referred to the380

TABLE 6. The battery charging amount of delayed and instant charging
strategies.

TABLE 7. The battery charging cost of delayed and instant charging
strategies.

delayed charging strategy, which enables to select a charging 381

chance with relatively lower electricity price. With the above 382

experiment setting, the optimized charging strategy Tn is 383

shown in Figure 4. It demonstrates that the WCEB decides 384

to charge at the current power track or defer charging until 385

arriving at the next power track. The instant charging strategy 386

is used as the benchmark for comparison, which means that 387

when the remaining power of the battery falls below a certain 388

level, the WCEB decides to charge at the current power track 389

instantly. 390

As shown in Figure 5, the battery charging amount dis- 391

tribute relatively balanced in the whole operation circles with 392

the instant charging strategy, while it is concentrated in the 393

period of lower electricity price with the delayed charging 394

strategy which is guided by the TOU electricity price.We also 395

explore the energy consumption pattern of the two charging 396

strategies. 397

According to the battery charging amount in Figure 5, 398

we compare the curves of the remaining power in Figure 6. 399

The turning points shows the time when the TOU price 400

changes. The turning points A, B, and C on the curve of 401

the delayed charging strategy indicate that when the charg- 402

ing price rises from the off-peak price to the peak price, 403

the WCEB decides to reduce charging to save the energy 404

cost unless the remaining power is lower than the thresh- 405

old. In contrast, the turning points D, E, and F show that 406

when TOU charging price switches from the peak price to 407

the off-peak price, or from off-peak price to valley price, 408

the WCEB starts to increase charging until the charging 409

amount reaches to the battery capacity. However, the instant 410

charging strategy can not guide to charge in off-peak price 411

periods. 412

Tables 6 and Table 7 illustrate the energy cost of 413

the two charging strategies. In the off-peak hours, i.e., 414

0.369 RMB/kWh, the delayed charging strategy guides to 415

charge 141.61kWh, while the instant charging strategy guides 416

to charge 118.49 kWh. It indicates that the bus can charge 417
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FIGURE 7. The impact of battery capacity on cost.

FIGURE 8. Marginal effect of charging cost at different specifications of
battery capacity.

FIGURE 9. The remaining power of WCEB with the delayed charging
strategy.

more amount of electricity with the delayed charging strat-418

egy when the TOU price is lower. In the peak hours, i.e.,419

1.322 RMB/kWh, the delayed charging strategy can guide420

to charge 205.02kWh, while the instant charging strategy421

guides to charge 257.71 kWh. It indicates that the bus422

can charge less amount of electricity with the delayed423

charging strategy when the TOU price is higher. Accord-424

ing to the statistics in Table 7, the daily charging cost is425

569.437 RMB by using the delayed charging strategy, while426

it is 605.961 RMB by using the instant charging strat-427

egy. It indicates that the delayed charge strategy enables to428

a daily savings of 36.524 RMB and a yearly savings of429

13,331.26 RMB.430

FIGURE 10. The impact of unit battery cost on the total cost.

TABLE 8. Computational performance of four solvers.

2) SENSITIVITY ANALYSIS 431

Because the unit battery cost varies widely in the market, 432

it is vital to investigate the effect of battery capacity and 433

unit battery cost on the energy cost [52]. The charging costs 434

with various battery capacity specifications are tested by the 435

delayed charge strategy as shown in Figure 7. It is found that 436

as the battery capacity increases (indicating the battery cost 437

increases), the charging cost gradually decreases. Since the 438

unit battery cost is a constant value, the growth rate of the 439

battery cost is also constant. When the battery capacity is 440

larger than 40kWh, the decreasing rate of the charging cost is 441

less than the increasing rate of the battery cost, which results 442

in the minimum total cost. 443

Figure 8 illustrates the marginal diminishing effect of the 444

daily charging cost. Though the battery with larger capacity 445

can lengthen the driving time, the unit charging cost can not 446

reduce in proportion because the high-capacity battery cost 447

more. It means that the total cost will increase by using the 448

battery with larger capacity. 449

Because the delayed charging strategy can adapt to the 450

TOU electricity price, the charging behavior is often intermit- 451

tent. That means the high-capacity batteries cannot be fully 452

utilized. To illustrate this phenomenon, the delayed charging 453

strategies with 40 kWh and 80 kWh battery tested to investi- 454

gate the energy consumption for the high-capacity battery and 455

low-capacity battery. As shown in Figure 9, when the charg- 456

ing price was rising from off-peak to peak, the high-capacity 457

battery was not fully charged. In the same condition, the 458

low-capacity battery can be fully charged. It means that the 459

delayed charging strategy using low-capacity batteries can 460

respond to TOU energy prices more efficiently, because the 461

battery capacity can be fully utilized. 462
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FIGURE 11. Convergence analysis for the three heuristic algorithms.

As shown in Figure 10, a sensitivity analysis is conducted463

to analyze the impact of unit battery cost ue on the energy464

cost. The unit battery cost in the market varies in the range465

of 800-1800 RMB [50]. It shows that the proposed charging466

strategywith a 40kWh battery is themost economic onewhen467

the unit battery cost is between 1468 to 1800 RMB/kWh.468

However, as the unit battery cost reduces, higher-capacity469

battery has a better performance on energy cost. It indicates470

that a higher capacity battery is potentially promoted as the471

unit battery cost decreases in the future.472

3) COMPARISON OF FOUR SOLVERS473

The performance of four outstanding solvers for the wireless474

charging problem are given in Table 8. Genetic algorithm475

(GA), particle swarm (PSO), and the proposed algorithm476

(GWO) are heuristic algorithms [53], while CPLEX is a477

commercial solver for combinational optimization problems.478

Compared with PSO and GA, the solution gap is smallest479

by using the GWO algorithm. The convergence analysis in480

Figure 11 also shows that GWO converges fastest. It indicates481

that the solution performance of GWO is better than that of482

PSO and GA.483

We also compare the proposed GWO algorithm with the484

CPLEX solver. It is found that the gap between the objective485

value obtained byGWOand the optimal value obtained by the486

CPLEX solver is 0.047%. Though the CPLEX solver might487

get an exact solution, it takes longer computation time than488

GWO, which is not suitable to real-time computation. Thus,489

the GWO can find the best solution within an acceptable time490

more effectively compared with other solvers.491

IV. CONCLUSION492

This study proposed an en-route wireless charging strategy493

model for the WCEB system, aiming to optimize the oper-494

ational energy cost. The battery capacity, the charging start495

time, and the charging end time were selected as the decision496

variables in the proposed model. A microscopic power con-497

sumption model considering passenger flows was proposed.498

A relaxation approach based on penalty function and the grey499

wolf algorithm is utilized to solve the NP-hard problem with500

complex multidimensional variables and multiple inequality501

constraints efficiently.502

The simulation results demonstrate the effectiveness and 503

efficiency of the proposed model in a real-world bus line. 504

Compared with the instant charging strategy, the total energy 505

cost of a single WCEB can be saved by 13331.26 RMB 506

per year under the charging strategy proposed in this paper. 507

It greatly improves the economic efficiency, which indicates 508

that it is promising to encourage governments or enterprises 509

to promote the WCEB system. Besides, the simulation result 510

shows that the optimal battery capacity is 40kWh, instead of 511

150kWh with the current unit battery cost. It indicates that it 512

is possible to reduce the operation cost by reducing the battery 513

capacity at the current market price. The solver performance 514

analysis indicates that the proposed GWO can find the best 515

solution within an acceptable timemore effectively compared 516

with other solvers. 517

A sensitive analysis is conducted to investigate the 518

marginal effect of unit battery cost or battery capacity on 519

the charging strategy. It shows that blindly increasing the 520

battery capacity is not a good choice. It is necessary to fully 521

consider the detailed parameters of the road and customize 522

the configuration. In future research, we will apply the pro- 523

posed charging strategy in a large-scale scenario and further 524

improve the capability of vehicle-to-grid. 525
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