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ABSTRACT To mitigate the range anxiety problem of electric bus system, wireless power transfer is
regarded as one of the emerging technologies for long-term range extension. Previous studies have discussed
the optimization problem of the power track deployment. However, the en-route charging strategy also
significantly influences the operation cost besides the power track, which is yet to be investigated sufficiently.
To fill this gap, a new wireless charging model for optimizing the energy cost is proposed. In particular, the
cost of battery and the time-of-use electricity price are taken into account. Firstly, a microscopic power
consumption model considering passenger flows and automobile dynamics is developed to estimate the
charging cost. Then, a relaxation approach based on penalty function and grey wolf optimization (GWO)
algorithm is developed to solve the non-deterministic polynomial-hard (NP-hard) problem with complex
multidimensional variables and multiple inequality constraints. And the performance of the proposed
charging strategy is verified in a real-world bus line via numerical simulation. A sensitivity analysis is
conducted to quantify the marginal impact of the unit cost of battery capacity on the total energy cost.
Finally, the computational performance of the proposed algorithm (GWO) is validated by comparing other
outstanding methods such as genetic algorithm (GA), particle swarm optimization (PSO) and CPLEX
solvers.

INDEX TERMS Electric bus, en-route charging strategy, power consumption model, time-of-use price,
battery capacity.

I. INTRODUCTION

The World Energy Outlook reported that the number of global
electric vehicle exceeded 10 million in 2020, which increased
43% from 2019 [1], indicating that the market of electric
vehicle will be growing rapidly in the future. However, the
issue of range anxiety still hampers the promotion of electric
bus (EB) system [2], [3], [4], [5]. Electric vehicles (EVs)
with wireless power transfer (WPT) technology have been
introduced to solve this problem [6], [7]. However, the cost of
operating a wireless charged electric bus (WCEB) line is still
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expensive. The cost mainly includes power track deployment
cost, battery cost and charging cost [8]. Previous studies have
focused on optimizing the cost of the power track deployment
[9], [10], [11], [12], but the optimization of the battery cost
and charging cost during operation is yet to be investigated
sufficiently.

The total cost of battery and charging are defined as the
energy cost in this study, which are mainly related to the
battery capacity, the electricity price and the charging strat-
egy. Due to the limitation of battery capacity, the range
anxiety problem has plagued many electric vehicle users
[13], [14], [15]. Several techniques have proposed to miti-
gate this problem, e.g., brake regeneration [16], [17], power
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TABLE 1. Summary of the selected literature on wirelessly charged EV modeling.

Literature Object Objective function Constraints Methodology
[38] Bus The cost of the battery, the power tracks and the DWC facility and energy Bi-level mixed integer nonlinear
total number of EB. consumption programming (MINP)
[7] Bus The cost of battery and power tracks Energy consumption and Continuous Meta-heuristic
range
[12] Bus The cost of battery, inverter and power tracks Energy consumption and Segmentized mixed integer
range programming (MIP) Meta-
heuristic
[8] Bus The logistics cost Energy consumption and Segmentized MIP
range
[11] Bus The total fixed cost and the variable cost of the Energy consumption and Continuous Meta-heuristic
power tracks and battery range
[9] Bus The cost of the transmitters and battery. Energy consumption and Continuous MINP Meta-
range heuristic
[48] General The total social cost Range and budget Bi-level MIP
vehicles
[37] General The system travel time and energy consumption Range and budget Bi-level MINP
vehicles
[54] Bus The cost of power tracks Range and budget Bi-level MIP

management [18], and eco-driving in mixed connected traffic
[19], [20], [21]. However, the limited coverage of charging
stations and the charging waiting time remain the primary
barriers to long-distance driving. For EBs, equipping with
large-capacity battery might be a possible solution for the
range anxiety problem, but it is not economical and environ-
mentally friendly [22]. The larger the capacity is, the longer
charging time will be, which might result in higher operation
cost [23]. Compared with the traditional plug-in charging
technology, WPT allows EBs to be connected to the grid
for charging en-route. Besides, it is possible to decentralize
charging times for better adaption to the profile of the time-
of-use (TOU) electricity price.

TOU price is a typical price-based demand response mech-
anism [24], [25] enabling to save energy consumption from
the perspective of the supply-demand relationship [26], [27],
[28]. For example, in [26], the charging/discharging schedul-
ing for an EV parking lot was planned based on TOU price,
which shown that the peak electricity consumption could
reduce by about 20%. In [28], the authors modeled the
day-ahead scheduling of the power system as a mixed integer
linear programming problem to minimize the peak electricity
consumption. The charging strategies based on TOU price for
plug-in charging EVs were discussed in [29], [30], [31], and
[32]. In [29], the authors proposed a TOU price incentive-
based charging navigation strategy for EVs, and in [30], the
charging station queuing factor was added based on [29].
In [31] and [32], the optimal charging strategy for EVs was
proposed, which minimized the charging cost considering
the transformer power margin and parking fee with the TOU
price.

Compared with the plug-in pattern, the WCEB enables
frequent and multi-period charging, potentially enabling
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to adapt to the TOU pricing mechanism [11]. Wirelessly
charged EVs using WPT technology has also been proven
to be better in reducing battery capacity specifications and
mitigating the range anxiety [33]. Though the cost of deploy-
ing WPT may be higher than that of the wired charging
device [34], it is acceptable to the future transit system
because it helps to mitigate the range anxiety, reduce the
weight of battery, and optimize the long-term operation cost
[35]. In [33], the authors developed an integrated life cycle
assessment model to evaluate the cost of an all-EB sys-
tem with plug-in or wireless charging technology. Korea
Advanced Institute of Science and Technology (KASIT)
reported that the WCEB was possible to achieve the power
efficiency of 83% at an output power of 60 kWh [12]. Simi-
larly, the PRIMOVE system for WCEB made by Bombardier
enabled a charging power of up to 200kWh with a conversion
efficiency of more than 90% [36]. They all found that the
WCEB system is more economically competitive than the
plug-in charging EB system.

The total cost of WCEB system is mainly contributed by
the power track, the vehicle battery and the charging strategy
[8]. Previous research has focused on the optimization of
the cost of power track [7], [9], [12], [37] and [38], but the
battery capacity and charging strategy are yet to be studied
sufficiently. A summary of selected works on optimizing the
charging cost of wirelessly charged EVs is given in Table 1.
In [7], the cost of battery and power tracks with the constraint
of energy consumption and the driving range were optimized
by using the continuous Meta-heuristic approach. In [38],
a bi-level mixed integer nonlinear programming (MINP) was
proposed to optimize the total cost including the battery, the
power tracks and the EBs. A similar approach was imple-
mented to minimize the cost of the transmitters and battery
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was proposed in [9]. In [11], the authors quantified the ben-
efits of three charging methods, i.e., static wireless charg-
ing, dynamic wireless charging (DWC) and quasi-dynamic
wireless charging. The optimal charging strategy for various
market conditions and initial investment cost was discussed
in [12]. They concluded that the dynamic charging strategy
is beneficial to prolong the life-span of battery. Consider-
ing the operation cost, a comprehensive model for WPT
location distribution was developed, which incorporated the
operational-level information such as the number of trips for
each line [54]. However, how the TOU electric price and the
passenger flow influence on the charging schedule was not
discussed.

In summary, previous studies have shed light on the
charging strategy for EVs and the deployment of wirelessly
charged device. However, limited studies investigate the opti-
mization of the en-route charging schedule for the WCEB
system. To fill this gap, this study aims to optimize the
en-route charging schedule for WCEB. The main contribu-
tions of this study are listed as follows.

(1) A model jointly optimizing the charging cost and
battery cost for a WCEB line is proposed. Unlike previous
studies focusing on the power track location distribution, this
study aims to optimize the charging start time, the charging
end time and the battery capacity from the operational per-
spective rather than how to optimize the cost for the power
track deployment. The proposed model also enables to adapt
to the TOU based electricity price.

(2) A relaxation approach based on penalty function is
applied to transform the wireless charging problem that
belongs to the generally complex constrained optimization
problem into an unconstrained problem. Accordingly, the
GWO algorithm is applied to solved the constrained opti-
mization problem by finding the optimal solution of the
unconstrained problem iteratively.

The rest of this paper is organized as follows.
Section 2 presents the methodology for constructing the
en-route wireless charging strategy and the energy con-
sumption model. Section 3 conducts a case study where the
proposed framework is evaluated in both quantitative and
sensitivity studies. Section 4 draws conclusion of this study
and describes future extensions.

Il. METHODOLOGY
A. NOTATION
Notations used in this study are given in Table 2.

The charging mode for the WCEB system is shown in
Figure 1. Assumed that the operation route for an EB con-
tains 7 power tracks and an EB runs @ cycles in one day,
the number of passing power tracks can be regarded as
n = n % @. Accordingly, the decision variables for the
charging strategy can be represented by the sequence of
charging start time (#,) and the charging end time (tf), ie.,

T, = {(tsl tfl) ... (tsl t}) e, (tf t}l)}, which consists
of n starting charging moments and ending charging moments
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TABLE 2. Notation definition.

Notation Definition
w, The total energy cost
w, The battery cost
w, The charging cost per day
d The number of days
y(t) The charging price at time t
E(t) The remaining battery power at time t
Emin The minimum remaining power
th The time to start charging in the i*® power track
tfi The time to end charging in the i** power track
E, The battery capacity
o The conversion factor of the charging power
P (8) The power consumption at time t
De The charging power
U, The unit battery cost
tl The time of arriving at the i*® power track
t} The time of leaving the i*" power track
tq The driving time
te The stopping time
tave The average boarding time
ki n The number of passengers getting on at the j&*
station
kcf; fr The number of passengers getting off at the j th
station
pa(t) The effective power of the generator at time t
B The conversion factor of the engine power
Du The additional energy consumption
m(t) The total weight
m, The weight of the bus

The average weight per passenger
The number of passengers on the bus
The maximum passenger capacity
The gravitational acceleration
The road inclination
The acceleration at time t
The vehicle speed at time t
The cross-sectional area of the bus
The air mass density
The air resistance coefficient
The rolling resistance parameters

mave
e(t)
Emax

)

0
a(t)
v(t)

Ar
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tL: the charging start time at the i" power track

t}: the charging end time at the i*" power track
FIGURE 1. lllustration of the charging mode for the WCEB system.
for a one-day operation cycle. tsi and tf’ are the charging
start time and the charging end time for the i power track,
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respectively. Thus, the optimization of the total energy cost is
mainly dependent on the selection of the battery capacity E,,
the charging start time ¢} and the charging end time tf’

B. MODEL CONSTRUCTION

1) CHARGING STRATEGY MODELLING

The energy cost of WCEB operation is mainly from the
battery cost and the electricity cost. Thus, we propose a
charging strategy considering the battery capacity and the
TOU electricity price as shown in Eq.(1).

Min W, = W, + dW, )
. 4
st. E (r;) —E (z;‘l) - / PO 2 Epin, Vi ()
1
S

E (t;) —F (z;') + /ttf (0pe —px (1)) dt <E,. Vi

fy <ty <tp <1, Vi “
<<l Wi 6)
E (1) =Eo, 1, =0 (©6)
E(1) =E ™

where W, is the battery cost, W, is the charging cost per day,
and d is the number of the operation days.

W, = u.Ey (8)

where u, is the unit battery cost, referring to the cost of per
kWh capacity [49].

w4
W=, [y pa ©)

i
s

where y () is the charging price at time ¢ and p. is the
charging power.

The remaining battery power during the whole operation
period cannot exceed the rated battery capacity E,, nor can it
be lower than the minimum remaining power, which can be
presented by the following constraint.

Emin =< E (t) =< Eo (10)

where E (t) is the remaining battery power at each moment
during operation, and Eyj, is the minimum remaining power.

In Eq.2) and Eq. (3), E () is the remaining battery
power at the start moment of the i charging and E (t}) is

the remaining battery power at the end moment of the i
charging. o is the conversion factor of the charging power. p,
is the consumed power estimated by the energy consumption
model. Eq. (2) is the battery remaining power at the beginning
of any charging moment, which must be greater than the
lower bound value (Ej;;). Eq. (3) is the battery remaining
power at the end of any charging moment, which must be
less than the capacity of the battery (E,). Since the power
consumption must be less than the charging power, the energy
consumption constraints need to satisfy Eq. (2) and Eq. (3).
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As shown in Eq. (4) and Eq. (5), the charging start time
and the charging end time are constrained by the power track
distribution. The | and tli are the time when the EB arrives at
and leaves the i power track, respectively. t(iz is the driving
time from the (i — 1)™ power track to the i’ power track. tl
is the total stopping time at bus station.

=ttt +1 (1)
=1t 41y (12)

The stopping time at a bus station depends on the number
of passengers getting on and off the bus. Thus, the stopping
time (f;) can be represented by Eq.(13).

fe = i 13
e=2 1 (13)
tjztavemax{&‘i ¢ } i=1.2,...0 (14

& on> “off
where g refers to the station number between the (i — 1)
and i"* power track. &/, and gf} 7 are the number of passengers
getting on and off at the j* bus station, ¢ is the number of bus
station passed.

Eq. (6) and Eq.(7) are the boundary conditions. Eq.(6)
means that the initial battery power is set to the battery
capacity Ey. In Eq.(7), the remaining power of the WCEB
is set to a fully charged state at the end of the one-day cycle.

2) ENERGY CONSUMPTION MODEL

To facilitate the optimization of the TOU based charging strat-
egy, a dynamic time-dependent energy consumption model is
necessary to estimate the power consumption [39]. Consider-
ing that the power consumption py (¢) in Eq.(2) consists of
the engine power (p4 (¢)) and other energy consumption (p,,),
px (1) can be presented by Eq.(15).

pa (1)
B

where S is the conversion factor of the engine power.

In Eq.(15), the effective power (pg (¢)) of the generator
can be estimated by the sum of the rolling resistance power,
the slope resistance power, the air resistance power and the
acceleration resistance power [40]. Thus, the effective power
can be formulated by Eq.(16).

px (1) = + Pu (15)

1
pa () = <8m -a(t) + mgrcos (0) + E,OairAfCsz (1)

+ mg sin (9)) v() (16)

where m is the weight of the bus, g is the gravitational acceler-
ation, 6 is the inclination of the road, a (¢) is the acceleration
of the EB at time t, v (¢) is the vehicle speed at time t, Ay is the
area of the vehicle subject to the air resistance, pg ;- is the air
mass density, Cp is the air resistance coefficient of the bus,
and r is the rolling resistance coefficient given by Eq.(17).

C,

r =
1000

(c1-v(@)+c2) a7
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where C,, c1, ¢; are the rolling resistance parameters depend-
ing on the road type, the road condition and the vehicle tire,
respectively.

Since the number of passengers onboard is an important
factor affecting the total weight, it is necessary to take it into
account in the energy consumption model. The total weight
of the bus and the passengers onboard can be represented by
Eq.(18).

m(t) = mp + Mgyee (1) (18)
f(f) =¢ (ﬂ') tel,—eg d<t<dt(19)
0<e(®) =< emax (20

where ¢ (tf ) is the number of the onboard passengers when the
bus arrives at the j’h bus station, &},, and gﬁ) 4 are the number of
passengers getting on and off at the j” station, respectively.

C. MODEL SOLUTION

Noticed that the optimization problem for the charging
strategy (Eq.(1)-Eq.(7)) is an NP-hard problem with com-
plex multidimensional variables and multiple inequality con-
straints, a relaxation approach based on the penalty function is
developed to solve the constrained optimization problem and
then the GWO algorithm is applied to iteratively approximate
the solution.

1) RELAXATION OF THE CONSTRAINED PROBLEM

When solving constrained optimization problems, it is nec-
essary to eliminate the constraints [40]. The basic idea of
the relaxation approach based on penalty function is to trans-
form the complex constrained optimization problem into an
unconstrained problem, and finally approximate the solution
by searching for the optimal solution of the unconstrained
problem iteratively [41].

The relaxation approach based on penalty function can be
divided into two categories: the outer-point approach and the
inner-point approach. The outer point approach is suitable
for constructing penalty terms of equality constraints, while
the inner-point approach is suitable for constructing penalty
terms of inequality constraints [42]. Since the optimization
problem has both inequality constraints and equality con-
straints, the optimization model in this study can be repre-
sented by Eq.(21)-Eq.(23) as follows.

min W, (¢, Eg) (21)
st. he(t,Ep) =0, x=1,2,...,9 (22)
qy(t,E0) >0, y=12,...,a (23)

Eq.(22) corresponds to the equality constraints, i.e., Eq.(6)
and Eq.(7). Eq.(22) corresponds to the inequality constraint,
i.e., Eq.(2),Eq.(2),Eq.(3) and Eq.(4). Thus, the penalty term
can be constructed by the outer-point approach for the equal-
ity constraintas ) _; [h (¢, E)]?, and it can be constructed
by the inner-point approach for the inequality constraint as
Z;’zl q)(t—lEo) After constructing the penalty function, the
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Initialization of the gray wolf
population

Calculation of the penalty factor ) and the
fitness value of each individual according to
Eq.(24) and Eq.(25).

Selection of the best three individuals
according to the fitness value

i

Update the current position of the gray wolf
population X = [T;,, Ey] according to Eq.(26-
32)

Termination
condition met? Tterative
No process

Output the charging strategy T,, and battery
capacity E,

FIGURE 2. The flow chart of the GWO algorithm.

original problem can be transformed to an unconstrained
minimization problem by Eq.(24).

Min F [T, r*®), o]

1 r
= W, (T, Eo) + W ZXZ] [y (1, Eo)T*

(k) § !
I Zy:l o (24)

where r(©®)) is the penalty factor.
To improve the search efficiency, the penalty factor can be
updated iteratively by Eq.(25).

FE®) — qol—o k) HFt (25)

where o (k) is the ratio of feasible solution to unfeasible solu-
tion for the unconstrained problem in the k™ jteration [51].

2) GREY WOLF OPTIMIZATION (GWO) ALGORITHM

GWO is a searching method inspired by the prey activity
of grey wolves [43]. It has strong convergence perfor-
mance on solving multi-peak and multi-dimensional NP-hard
problems [44].

Figure 2 shows the calculation process of the GWO algo-
rithm. First, it divides the wolves into four levels, i.e., A, u,
8 and g, according to the size of the fitness value. A, i and &
are the wolves in top three levels, while the g is the remaining
wolves. The wolf pack o realizes the optimization process
of the whole algorithm. The three high-level wolves A, u
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W Bus station
Driving direction &8
== Power track ,

FIGURE 3. The bus line in the simulation study.

TABLE 3. The location of power track deployment.

POWER TRACK
Power track 1
Power track 2
Power track 3
Power track 4
Power track 5

Deployment location
6721-6889m
12330-12485m
19902-20120m
27603-27801m
32770-32891m

and § are assumed to have the potential ability to obtain the
location of the prey and jointly command the wolf pack o.
Then, the wolf pack o feed back the information to the three
high-level wolves who decide whether the information needs
to be updated. When the number of the iterations reaches to
the threshold value, the positions of A, i and 4, i.e., Xj, X,
and X5 can be obtained. X;, X, and Xs can be regarded
as the top three candidate solutions to the optimization
problem [43].

The objective function, i.e., Eq.(24), can be regarded as
the fitness function in GWO algorithm. And the variables
X,, X, and X; to be solved in GWO can be represented
by Eq.(26).

X = [Ty, Eol (26)

The specific formulation of the GWO algorithm can be
expressed by the following equations.
D;. = |C1X, — X,|
Dy = |C1X, — X,| 27
Ds = |C1 X5 — X, |
X1 =X, —B3D;

X = X, — BsD, (28)
X3 = X5 — B3Ds
X X X
X, (k—i—l):% (29)
B=2y (11 — 1) (30)
C=2n 3D
¥ (k) = 2cos (%n) (32)

where D;, D, and Ds are the direction vectors between the
three high-level wolves A, u, 6 and the wolf pack o. X, X>
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TABLE 4. The local TOU charging price.

Time period division Tariff Time period
(RMB/(kWh))
10:00-15:00,18:00-21:00 1.322 Peak
7:00-10:00,15:00-18:00,
21:00-23:00 0832 Flat
23:00-7:00 0.369 Valley

TABLE 5. Parameter setting for the energy consumption model.

Parameters Definition Data source
o 0.9 [37]
De 200kW [37]
C, 1.75 [48]
c 0.03 [48]
c, 4.5 [48]
Pair (kg/m*) 1.2256 (48]
Cp 0.9 [48]
Ap(m?) 2.55 X 3.63 [48]
B 0.85 [48]
my(kg) 13500 Yutong Bus Company
Emax 50 Yutong Bus Company
Mape(kg) 50 Yutong Bus Company
tave 2s Yutong Bus Company
Emin 6kWh Yutong Bus Company
pu(kW) 3 Yutong Bus Company
U 1500 RMB/kWh [51]
g(m/s?) 9.8 /

and X3 are the direction vector of the wolf pack o towards
A, u, and 8, respectively. Eq.(29) defines the final position
of 0. C and B are the swing factor, which are determined
by Eq.(30) and Eq.(31). 71 and 77 are the random numbers
between 0 and 1. i (k) is the convergence factor, which
decreases as the iteration increases. k is the current number
of iterations, and M is the maximum iteration number [44].

Ill. NUMERICAL ANALYSIS
A. EXPERIMENT SETTING
To demonstrate the performance of the proposed wireless
charging strategy, a bus line in Guangzhou, China, is used
to test the model in VISSIM. The simulation scenario and the
traffic flow are generated according to the traffic data issued
by Guangzhou Institute for Transportation and Development
Policy [45]. As shown in Figure 3, the length of bus line is
32,960 meters and the bus service begins at 5.30 a.m. There
are 5 wireless power tracks and 33 bus stops along the bus
line. The bus runs 15 cycles in one day, thus the total number
of charging opportunities (n) is 75. Accordingly, the total
stopping times at bus stops (¢) is 495. Table 3 shows the
location of the power track. According to [46], the local TOU
price is given in Table 4.

According to the vehicle parameters provided by Yutong
Bus Company, road surface coefficients and resistance
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FIGURE 6. Comparison of the remaining power between the delayed
charging and instant charging strategies.

constants provided by [47] and [36], the parameter setting of
the energy consumption model is given in Table 5.

B. RESULTS

Model comparison and sensitivity analysis are given to
demonstrate the model performance. The charging time and
cost are used as the evaluation indicators. A sensitivity anal-
ysis is performed to investigate the influence of some key
parameters on the model.

1) CASE STUDY
To facilitate the discussion, the proposed charging strategy 7},
based on TOU price guidance in this paper is referred to the
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TABLE 6. The battery charging amount of delayed and instant charging
strategies.

TOU Price Delayed charging  Instant charging  Difference
(RMB/kWh) strategy strategy
0.369 141.61 118.49 +23.12
0.832 295.85 266.28 +29.57
1.322 205.02 257.71 -52.69
TOTAL 642.48 642.48 0

TABLE 7. The battery charging cost of delayed and instant charging
strategies.

TOU Price Delayed charging  Instant charging  Difference
(RMB/kWh) strategy strategy
0.369 52.254 43.723 +8.531
0.832 246.147 221.545 +24.602
1.322 271.036 340.693 -69.657
Total 569.437 605.961 -36.524

delayed charging strategy, which enables to select a charging
chance with relatively lower electricity price. With the above
experiment setting, the optimized charging strategy 7, is
shown in Figure 4. It demonstrates that the WCEB decides
to charge at the current power track or defer charging until
arriving at the next power track. The instant charging strategy
is used as the benchmark for comparison, which means that
when the remaining power of the battery falls below a certain
level, the WCEB decides to charge at the current power track
instantly.

As shown in Figure 5, the battery charging amount dis-
tribute relatively balanced in the whole operation circles with
the instant charging strategy, while it is concentrated in the
period of lower electricity price with the delayed charging
strategy which is guided by the TOU electricity price. We also
explore the energy consumption pattern of the two charging
strategies.

According to the battery charging amount in Figure 5,
we compare the curves of the remaining power in Figure 6.
The turning points shows the time when the TOU price
changes. The turning points A, B, and C on the curve of
the delayed charging strategy indicate that when the charg-
ing price rises from the off-peak price to the peak price,
the WCEB decides to reduce charging to save the energy
cost unless the remaining power is lower than the thresh-
old. In contrast, the turning points D, E, and F show that
when TOU charging price switches from the peak price to
the off-peak price, or from off-peak price to valley price,
the WCEB starts to increase charging until the charging
amount reaches to the battery capacity. However, the instant
charging strategy can not guide to charge in off-peak price
periods.

Tables 6 and Table 7 illustrate the energy cost of
the two charging strategies. In the off-peak hours, i.e.,
0.369 RMB/kWh, the delayed charging strategy guides to
charge 141.61kWh, while the instant charging strategy guides
to charge 118.49 kWh. It indicates that the bus can charge
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more amount of electricity with the delayed charging strat-
egy when the TOU price is lower. In the peak hours, i.e.,
1.322 RMB/kWh, the delayed charging strategy can guide
to charge 205.02kWh, while the instant charging strategy
guides to charge 257.71 kWh. It indicates that the bus
can charge less amount of electricity with the delayed
charging strategy when the TOU price is higher. Accord-
ing to the statistics in Table 7, the daily charging cost is
569.437 RMB by using the delayed charging strategy, while
it is 605.961 RMB by using the instant charging strat-
egy. It indicates that the delayed charge strategy enables to
a daily savings of 36.524 RMB and a yearly savings of
13,331.26 RMB.
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TABLE 8. Computational performance of four solvers.

Solution  Objective Value ~ Computation Time(s)  Solution Gap(%)
GWO 569.437 3.237 0.047
GA 570.954 8.243 0.313
PSO 600.254 4.854 5.46
CPLEX 569.168 113.23 0

2) SENSITIVITY ANALYSIS

Because the unit battery cost varies widely in the market,
it is vital to investigate the effect of battery capacity and
unit battery cost on the energy cost [52]. The charging costs
with various battery capacity specifications are tested by the
delayed charge strategy as shown in Figure 7. It is found that
as the battery capacity increases (indicating the battery cost
increases), the charging cost gradually decreases. Since the
unit battery cost is a constant value, the growth rate of the
battery cost is also constant. When the battery capacity is
larger than 40kWh, the decreasing rate of the charging cost is
less than the increasing rate of the battery cost, which results
in the minimum total cost.

Figure 8 illustrates the marginal diminishing effect of the
daily charging cost. Though the battery with larger capacity
can lengthen the driving time, the unit charging cost can not
reduce in proportion because the high-capacity battery cost
more. It means that the total cost will increase by using the
battery with larger capacity.

Because the delayed charging strategy can adapt to the
TOU electricity price, the charging behavior is often intermit-
tent. That means the high-capacity batteries cannot be fully
utilized. To illustrate this phenomenon, the delayed charging
strategies with 40 kWh and 80 kWh battery tested to investi-
gate the energy consumption for the high-capacity battery and
low-capacity battery. As shown in Figure 9, when the charg-
ing price was rising from off-peak to peak, the high-capacity
battery was not fully charged. In the same condition, the
low-capacity battery can be fully charged. It means that the
delayed charging strategy using low-capacity batteries can
respond to TOU energy prices more efficiently, because the
battery capacity can be fully utilized.
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As shown in Figure 10, a sensitivity analysis is conducted
to analyze the impact of unit battery cost u, on the energy
cost. The unit battery cost in the market varies in the range
of 800-1800 RMB [50]. It shows that the proposed charging
strategy with a 40kWh battery is the most economic one when
the unit battery cost is between 1468 to 1800 RMB/kWh.
However, as the unit battery cost reduces, higher-capacity
battery has a better performance on energy cost. It indicates
that a higher capacity battery is potentially promoted as the
unit battery cost decreases in the future.

3) COMPARISON OF FOUR SOLVERS

The performance of four outstanding solvers for the wireless
charging problem are given in Table 8. Genetic algorithm
(GA), particle swarm (PSO), and the proposed algorithm
(GWO) are heuristic algorithms [53], while CPLEX is a
commercial solver for combinational optimization problems.

Compared with PSO and GA, the solution gap is smallest
by using the GWO algorithm. The convergence analysis in
Figure 11 also shows that GWO converges fastest. It indicates
that the solution performance of GWO is better than that of
PSO and GA.

We also compare the proposed GWO algorithm with the
CPLEX solver. It is found that the gap between the objective
value obtained by GWO and the optimal value obtained by the
CPLEX solver is 0.047%. Though the CPLEX solver might
get an exact solution, it takes longer computation time than
GWO, which is not suitable to real-time computation. Thus,
the GWO can find the best solution within an acceptable time
more effectively compared with other solvers.

IV. CONCLUSION

This study proposed an en-route wireless charging strategy
model for the WCEB system, aiming to optimize the oper-
ational energy cost. The battery capacity, the charging start
time, and the charging end time were selected as the decision
variables in the proposed model. A microscopic power con-
sumption model considering passenger flows was proposed.
A relaxation approach based on penalty function and the grey
wolf algorithm is utilized to solve the NP-hard problem with
complex multidimensional variables and multiple inequality
constraints efficiently.
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The simulation results demonstrate the effectiveness and
efficiency of the proposed model in a real-world bus line.
Compared with the instant charging strategy, the total energy
cost of a single WCEB can be saved by 13331.26 RMB
per year under the charging strategy proposed in this paper.
It greatly improves the economic efficiency, which indicates
that it is promising to encourage governments or enterprises
to promote the WCEB system. Besides, the simulation result
shows that the optimal battery capacity is 40kWh, instead of
150kWh with the current unit battery cost. It indicates that it
is possible to reduce the operation cost by reducing the battery
capacity at the current market price. The solver performance
analysis indicates that the proposed GWO can find the best
solution within an acceptable time more effectively compared
with other solvers.

A sensitive analysis is conducted to investigate the
marginal effect of unit battery cost or battery capacity on
the charging strategy. It shows that blindly increasing the
battery capacity is not a good choice. It is necessary to fully
consider the detailed parameters of the road and customize
the configuration. In future research, we will apply the pro-
posed charging strategy in a large-scale scenario and further
improve the capability of vehicle-to-grid.
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