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ABSTRACT Land subsidence prediction in mining areas is one of the most important applications of land
deformation monitoring, which is significance for safe production. We used interferometric point target
analysis (IPTA) timing series interferometry synthetic aperture radar (InSAR) processing technology to
analyze the land subsidence results for the Xinfa mining area from 2017 to 2020; and compared them to
global positioning system (GPS) static monitoring data. We proposed a residual correction theory based on
deviation coefficient using the grey prediction and Markov models, and an optimized Grey-Markov model
(RGM-M model) was established to predict the land subsidence of the mining area. Our results show that:
(1) The maximum difference between InSAR timing processing results and GPS monitoring data in the
same period is 10.91mm; they have roughly the same subsidence trend, indicating that IPTA timing series
InSAR technology are strongly reliable in mining deformation. (2) Compared to the traditional Grey-Markov
model, the improved residual correction and dynamic assignment of the Grey-Markov model improves the
prediction accuracy. The optimized residual correction and dynamic empowerment of the Grey-Markov
model prediction results are more suitable for the actual fluctuation of land subsidence value in the mining
area. The maximum root mean square error of the prediction results is 0.751mm, and the maximum average
absolute percentage error is 7.46%, which has a certain guiding significance for the work of monitoring,
prediction and safety management of land deformation in the mining area.

INDEX TERMS Dynamic empowerment, Grey-Markov model, mining subsidence, prediction, residual
correction, timing series InSAR.

I. INTRODUCTION time-consuming; with input cost, especially since the labor

Since modern times, coal has been one of the main energy
sources of human society. Therefore, the safety production of
mining areas has widely concerned all walks of life. Research
on monitoring and predicting land subsidence in mining areas
has always been a prominent issue [1]. In the field of land
subsidence monitoring in mining areas, there are many tra-
ditional monitoring methods and means, such as theodolite
triangle elevation measurement; and high-grade precision
leveling to full station measurement; and global position-
ing navigation system (GPS) positioning measurement, etc.
The need to establish monitoring stations along with the
mining deformation; through repeated field observation; is
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cost is also higher; furthermore, it is too complex for some
terrain, has inaccessible areas, and it is too difficult to estab-
lish observation stations and measurement work.

In the past few decades, InNSAR has become unanimously
recognized as important monitoring means in this field [2].
InSAR technology is one of the most popular research fields.
With the development of commercial satellites in recent
years, more and more commercial SAR satellite data have
been applied to land subsidence monitoring, achieving the
expected results. The main advantage of using InSAR tech-
nology for imaging is continuous no interval observation,
high accuracy and resolution, wide coverage, and low cost.
It has been used in various fields of national economic devel-
opment; for example, InSAR technology is used for building
ground DEM models, land subsidence monitoring, volcano,
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earthquake, landslide, and other natural disasters [3], [4],
(51, [6].

In recent years, there have been increasingly scientific
studies and case applications of land subsidence monitor-
ing in mining areas, and the technology is becoming more
mature [7]. In addition to InSAR technology, many new
technologies such as continuous operation reference station
system (CORS) satellite positioning service, laser 3D scan-
ning technology, and mining ground subsidence monitoring
systems based on geographic information system (GIS) tech-
nology are also used in mining deformation. By contrast, the
use of InSAR technology to monitor the land deformation
of the mining area obtains a range of high-precision mon-
itoring data; and effectively reduces manpower and mate-
rial resources, reducing the great cost and investment, and
completing the continuous real-time monitoring of the whole
mining area [6], [9]. With the continuous break-through and
improved timing of InSAR technology in recent years, highly
accurate deformation information can be obtained theoret-
ically, and the accuracy of its data processing results can
reach the centimeter-level [7], [10], [11]. Therefore, we can
research and work on land subsidence prediction through
InSAR technology.

The IPTA timing series InSAR data processing method
is a coherent target point timing analysis method based on
GAMMA software. Combining two persistent scatterer (PS)
InSAR and small baseline subset (SBAS) InSAR technolo-
gies; and adopting the PS-InSAR process, helps to realize
the independent selection of the SBAS-InSAR technology
for the baseline set. Meanwhile, during the entire InSAR
timing process, the InNSAR time sequence processes the whole
process; with free and controllable parameters, providing
high degrees of freedom and processing space for InNSAR data
processing [8], [9]. Therefore, the processing personnel can
really handle the process freely according to the situation and
actual image data. The practical accuracy and application reli-
ability of InSAR data processing improves on the restrictions
of modular integrated processing in other processing software
and methods [15].

Grey model is a new prediction method that can use less
data to predict an uncertain system [16]. GM (1,1) model
is the simplest and most important prediction model with
only one variable and first-order differential. It is one of
the most basic and important prediction models in the Grey
theory system. [17]. However, in practice, emergent and
uncontrollable factors can affect land subsidence data, and
raw data sequences have inevitable volatility. Residual cor-
rection models optimized according to residual weight can
theoretically be improved with the original data sequence
based on different original data sequence conditions, thereby
improving the prediction accuracy of the Grey model. The
prediction process of the Markov model has strong random-
ness, which evolved from the Markov stochastic prediction
chain, first pro-posed by the Russian mathematician Markov
in 1907 [18], [19]. In known states, the future evolution of
the Markov model is completely unrelated to what occurred
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previously, namely that the evolutionary direction is not based
on past changes. This paper uses dynamic empowerment;
and data values after each Grey-Markov model prediction
was added to the calculated sample of the next evaluation
weight matrix. A dynamic Markov evaluation weight matrix
is established, more scientific in theory. Four typical subsi-
dence points in the subsidence data of the new and spring
exploration areas were replaced with the traditional GM (1,1)
model, Grey-Markov combination prediction model with
optimized residual correction, and dynamic empowerment
of the Grey-Markov combination model. We compared and
analyzed the prediction results. The results showed the opti-
mized Grey-Markov model predicts the trend and subsidence
value of land subsidence more accurately than the traditional
Grey—Markov combination model. These results have good
application prospects for mine land subsidence monitoring,
prediction, and safety management.

Il. METHODS

A. STUDY AREA

The main research area of this paper is the new exploration
area in the Wuzhong City, Ningxia Province, China. It is
located at 70km southeast of Wuzhong City. The exploration
area is about 4.17KM long from north to south and 2.22km
wide from east to west. The specific scope is shown in
Figure 1. The landform is mainly mountainous, with dry
climate and four distinct seasons.

37°15'0" N 37°18'0"N

37°12'0"N

37°9'0"N

FIGURE 1. The map of study area.

B. DATA

The data used in this paper include SAR images captured
by the Sentinel-1A satellite. The Sentinel-1 satellite is a
C-band Earth observation satellite launched by ESA in the
Copernican Program. It consists of two satellites, A and B
satellite. Each satellite has a separate return period of 12 days
and a binary return period of 6 days. It’s main working mode
is the interference wide amplitude (IW) scanning imaging
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mode; the SAR image data width reaches 250km. The orbital
data parameters are shown in Table 1.

TABLE 1. Track data parameters.

Revisit .
Cycle (day Imaging Wave Wave Track
Y ) mode length band number
12 w 5.6cm C band 162

In this study, we collected 114 SLC data from Sentinel-1
A satellite ascending orbit images covering the study
area. The image time distribution was from 14 January
2017 to 24 December 2020. The DEM data used was SRTM
data with an accuracy of 30m.

IIl. IPTA TIMING SERIES INSAR PROCESSING

Interferometric Persistent Target Analysis (IPTA) is a fusion
of PS-InSAR technology and SBAS-InSAR technology dur-
ing data processing. Since the traditional InSAR analysis
technology is in view of the land; and prone to the loss
correlation effect, the point target, as a reference for the tim-
ing analysis, does not involve analyzing interference stripes.
Therefore, errors caused by incoherence are avoidable. The
basic principle is to perform sequential InSAR processing
of several acquired SAR images analyze the phase and
amplitude specific information of the obtained points, iden-
tify some relatively stable target points, such as buildings,
rocks, road lands, and even previously installed artificial
angle reflectors. Since these point targets are relatively stable,
the high echo signal intensity can maintain its relatively
stable ground reflection properties for a considerable time
[11]. IPTA timing analysis technology calculates the value
change in elevation information and the positive value of
the deformation rate. It removes the atmospheric phase; and
obtains the sequential land deformation information based
on these stable coherence points. In addition, during IPTA
timing processing, combined with the baseline selection of
SBAS-InSAR technology, the length of image data pairs
can be freely selected. Similar to SBAS-InSAR processing
technology, the small baseline set can also be selected; for
subsequent processing. During processing (using the Gamma
software, for example), the IPTA module; is integrated into
the software. From the SAR image data registration to solving
the land deformation information, hundreds of parameters are
involved in IPTA timing processing technology. For example,
the detailed parameters of multi-view processing, the length
range of spatial and temporal baseline selection, the specific
parameters of difference processing, the window size of filter-
ing processing, the coherence coefficient of point selection,
and other specific point selection criteria. These parameters
are free and controllable. By entering the control mode of the
script commands, traditional InNSAR data processing (such
as SARScape, etc.); relies solely on manually clicking the
operation page. The dilemma of immobilizing many process-
ing parameters; through the flexible regulation of various
parameters; accomplishes more accurate data processing. The
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solution parameters must be adjusted according to the actual
situation. Thus, the solution accuracy improves. At the same
time, IPTA timing processing technology also depends on
certain requirements related to the experience level of the data
Pprocessors.

During timing processing, the interference phase in the
interference stripe diagram generated by any two images
mainly includes five parts, namely, the topographic phase,
land deformation phase, flat land phase, atmospheric delay
phase and noise phase. During IPTA processing:

@ = Qrop + or + Ddef + Qatm + ©n (1)

In the formula, ¢ is the interference phase of the target
point; @y, is the interference phase due to topographic ele-
vation; ¢y is the flat phase, which can be calculated from the
geometric relationship of image imaging; @ger is the line of
sight to radar ( LOS ); gam represents the noise phase caused
by the atmospheric delay; and ¢, represents the system ther-
mal noise phase.

¢rop and @r can be removed after the differential interfer-
ence treatment, to obtain the differential phase @

@diff = @Pdef + Prope + SParm + S¢n )

@rope is the elevation error phase. The required land defor-
mation information can finally be extracted from the sepa-
rated @des:

— ﬂ 3)

AR sin 6

v represents the linear deformation rate of coherence points
relative to the reference point;t represents the time baseline;
and @ger , is the nonlinear deformation phase.

The IPTA method uses the two-dimensional linear phase
solution model, that is, through continuous regression iter-
ative calculation; to complete the separation and removal of
various errors, obtaining the deformation rate. In this iteration
process, the Delaunay triangle network and Minimum cost
flow (MCF) algorithm can solve the phase disentanglement
of the target.

Prope =

IV. THE IMPROVED GREY-MARKOV MODEL
A. THEORY OF GREY MODEL
The Grey system prediction refers to predicting the eigen-
value changes of system behavior. It includes system predic-
tions known and uncertain information. In other words, the
Grey process changes within a certain threshold range related
to the time series [20], [21]. The phenomena shown in the ash
process are random and fluctuating; however, they are also
orderly and bounded, so the data set has an underlying law.
The Grey system prediction model uses this potential law to
establish the Grey model, fulfilling the prediction of the Grey
system [17], [22], [23].

The Grey model was established as follows:

(1) The original data sequence that corresponds to time
is x©):

O =[O ) 20 @), 1O () @)
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(2) To reduce the dynamic randomness of the data, the raw
data sequence is accumulated:

k

ey ZZX(O) @, k=12,---n (%)
i=1

RO {xm 1).xD @), .xD (n)} (6)

(3) Build the adjacent mean sequence:
1
WV =3 [xO @+x k=), k22 @

Adjacent to the mean is the whitening background value
M (k
yo (k).
(4) Construction of the white-chemical differential
equation:

dx(® )
+ = 3
o ax u (8)
By least squares, the following calculation is available:
-1
a= (BTB) 1% ©)
_y(l) 2 1 x© (2)
-3 1 x 0 (3)
B = , e = . (10)
- @) 2O (m)

(5) Solve the response equation:

0 k4 1) = (x@ (1) = 2) ek,
a

k=12, ,n—1 (11)
(6) From the reduction of reduction:
@ k) =xD k) —xD k — 1) (12)
whenk =1,
00 =201 =20 (13)

when2 <k <n,
¥ ) = (1= ) (+x@ 1) = 2) <D 14y
a

(7) Model accuracy test:

For GM (1,1) model, the mean variance ratio (C) and small
probability error (A), are used to determine the quality of the
model [24]. The inspection criteria are shown in Table 2.

Test of mean variance ratio: the variance of the original
data, and variance of the residual columns are:

$? = n% XZ: (x<°> (k) — 5c<°>)2 (15)
1 n _ 2
3= — 1; (e“” (k) — 5(0)) (16)

where, x0 (k) is the original data sequence; x(?) represents the
original data sequence mean; @ (k) is the residual sequence;
and £© is the residual sequence mean.

The Model is considered qualified if it meets these two
requirements.
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TABLE 2. Test standard of model accuracy.

Prediction accuracy Mean variance ratio Small probability

(C) error(A)
C <35 A 2 95

08 < A <05

Excellent (level I)

ualified (Level 1T
Q ( ) 035<C <

Barely qualified
(Lc):/vgl 111) 05< C< 0.65 07 < A <ogs
Non-qualified (Level
) V) ( C >0.65 A <0.7

B. THEORY OF MARKOV MODEL

The Markov model was proposed by the Russian mathe-
matician Markov. It includes a dynamic change process with
randomness; called the Markov chain. The Markov transfer
process only relates directly to the previously connected data;
and not to other past data, known as “‘post-invalid” [25]. The
expression is:

X(k+1) = X(k) - P (17)

The Markov model divides the data into several different
state intervals (for both prediction accuracy and data com-
plexity, generally divided into 3-4 data), and finds the optimal
state step by step using the state transfer matrix; to estimate
future changes.

1) STATUS DIVISION

Using the ratio of the fitted predicted value of the GM (1,1)
model to the actual land subsidence monitoring data as a
reference, the fitted data of the GM (1,1) model is divided
into three state intervals according to this ratio, expressed by
Si € lai, bi]l,i = 1,2,---n. The lower and upper limits of
the interval are a;, b;. The transfer probability from state S; to
state S; by k steps is expressed as:

k
Py = %y (18)
n;
where k represents the steps from S; to Sj; Pﬁ.‘j indicates the
probability from state S; to S; after k steps; n; represents the
number of samples in §;; and ng represents the number of
samples from state S; to S; after k steps.

2) CONSTRUCT THE STATE TRANSITION MATRIX
The state transition matrix consisting of state transition prob-
ability is:

Py Pl P

ph=| 2t 2 o (19)
k k -
Pnl Pn2 o Pnn

3) DETERMINE THE OPTIMAL VALUE

The matrix P(k) is the state corresponding to the maximum
value of the column vector sum in the state list of row vec-
tors [26]. In other words, Markov’s ideal state. The optimized
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forecast value is:
1 ~(0) -
YO (41 = 5@+ b) QG+ 1) (20)

where the final optimized prediction value is y@ (i + 1), a;
is the lower limit value; b; is the upper limit value; and
@ (i 4 1) is the forecast of the Grey model.

C. THEORY OF OPTIMIZED GREY-MARKOV MODEL
Based on the drawbacks and shortcomings of the tra-
ditional Grey-Markov model, we propose an optimized,
equally spaced Grey-Markov model based on problem-
oriented thinking [27]. The optimized Grey-Markov model,
the RGM-M combination model, is constructed as follows:

After the sixth step of the traditional Grey model pro-
cessing (reduced by subtraction and reduction), five steps of
mathematical calculation are added to improve the prediction
accuracy of the model.

(1) Calculate residual sequences @ (k). The difference
between the preliminary fit values of the Grey model and the
original data sequence is the residual sequence:

e (k) =3O ) = x (k) @1
(2) Establish and obtain the deviation coefficient A:
e® 1]
g = LT
> [¢@ @]
k=1
k=1,2,---,n (22)

(3) Calculate the residual correction value ,u(o) (k):

©) n
O gy — 5 £ K ©
wo k) = )L|8(0)(k)| ];|8 (k)‘

k=1,2,---,n (23)

(4) The initial fitting data was optimized by the residual
correction value to obtain the optimization results £V (k):

W) =29 k) + 1@ (k) (24)

The residual-corrected Grey model prediction results were
used as the initial data of the Markov model [28]. Then,
we obtained the optimized Grey-Markov combination model
prediction results.

V. RESULTS
A. IPTA TIMING SERIES INSAR RESULTS
To ensure the coherence of the SAR data, IPTA timing series
InSAR data were processed in the study area for a one-year
period. Our results are shown in Figures 2.
The IPTA timing series InSAR land subsidence results
from January 2017 to December 2020 are shown in Figure 3.
After obtaining the timing series InSAR data processing
results for the new exploration area in the Weizhou min-
ing area, four typical subsidence points were selected, and
each point’s land subsidence value sequence was extracted
according to a three-month interval. The positions of the
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FIGURE 2. Baseline selection diagram of image data.
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FIGURE 3. IPTA timing series InSAR processing results in the Xinfa
exploration area of the Weizhou mining area.

typical subsidence points (P1-P4) and GPS monitoring points
(G1-G4) are shown in Figure 4.

The subsidence values of the four typical subsidence points
in the new exploration area were compared to the monitoring
values of the adjacent GPS monitoring points in the same
period, and the temporal subsidence sequence comparison
results were obtained, as shown in Figures 5-8.

From these figures, it can be seen that the settlement is
large from April 2017 to July 2017, and with the passage of
time, the settlement of each phase gradually tends to be stable.
This is because there is residual subsidence after mining in
the mining area. After mining, there will be subsidence on
the surface. At first, the subsidence is large, and then it tends
to be stable.

The subsidence values of the four typical subsidence points
in the new exploration area were also compared to the mon-
itoring values of the adjacent GPS monitoring points in the
same period. The GPS data was used as the ratio to obtain
InSAR monitoring accuracy, as shown in Table 3.
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was first fitted into the traditional GM (1,1) model. The fitting
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i [ ~ results are shown in Figures 9-12.
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B. ANALYSIS OF GREY MODEL PREDICTION RESULTS FIGURE 9. Results ofGrey model fitting of subsidence data at the P1 point.
According to the time series subsidence data for the four typ-
ical subsidence points selected in the study area, the original The original data sequence on timing had a roughly

data sequence processed by IPTA timing series InSAR data exponential distribution of subsidence value prediction
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FIGURE 12. Results of Grey model fitting of subsidence data at the P4

point.

(P1 and P2). The traditional Grey model’s fitting prediction
accuracy was relatively high, and the fluctuation trend was
minor. For the subsidence points (P3 and P4) with high .

C. GREY-MARKOV MODEL PREDICTION RESULTS

The data sequence of four typical subsidence points opti-
mized by the GM (1,1) model was used as the initial data
sequence of the Markov model, which was replaced with the
Markov model. The prediction results of the Grey-Markov
combination model were then obtained. The fitted prediction

results are shown in Figures 13-16.

-~ |—m—msAR
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E | A Grey-Markov Model g ot
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FIGURE 13. Grey-Markov model prediction result of the P1 point

subsidence data.

—®— InSAR
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Predicted Value (mm)

srey Model
A Grey Markov Model

FIGURE 14. Grey-Markov model prediction result of the P2 point

subsidence data.

InSAR

04 @ GreyModel

A

-104

Predicted Value (mm)

40

Grey-Markov Model

data volatility, the deviation between the predicted value and

actual subsidence value was more apparent when the data
fluctuated greatly or when the subsidence mutation occurred.
Therefore, the single traditional GM (1,1) model only applies
to the data series in more apparent exponential distribution
trends; and cannot accurately predict the subsidence data

sequence with strong volatility.
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subsidence dat.

FIGURE 15. Grey-Markov model prediction result of the P3 point

According to the above prediction results, the traditional
GM (1,1) model can effectively predict the development
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FIGURE 16. Grey-Markov model prediction result of the P4 point
subsidence data.

trend of the subsidence data sequence. However, when strong
data fluctuations were encountered, the prediction accu-
racy decreased significantly. The Grey-Markov combination
model can analyze the subsidence data while retaining the
prediction trend of the Grey model, effectively capturing the
fluctuation and subsidence value obtained by IPTA timing
series InNSAR (raw data used for prediction). Regarding strong
fluctuations, the prediction value of the traditional Grey-
Markov combination model still has insufficient prediction
accuracy.

D. OPTIMIZED GREY-MARKOV MODEL

PREDICTION ANALYSIS

The subsidence data sequence obtained through IPTA timing
series InSAR data processing was inserted into the optimized
residue correction and dynamically assigned Grey-Markov
model to fit the RGM-M model. The prediction value com-
parison results with the traditional Grey—Markov model are
shown in Figures 17-20.

InSAR
Grey Model
Grey-Markov Model
g 1 ad
— Optimized Grey Markov Model | ~_y_ 84—
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-
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Predicted Value (mm)

FIGURE 17. Fitting and comparison results of the P1 point subsidence
data.

According to the model fitting curve comparison diagram
of each typical subsidence point, GM (1,1) model can effec-
tively predict the change trend of data series development,
but for some volatile data sequences, its prediction accuracy
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FIGURE 18. Fitting and comparison results of the P2 point subsidence
data.
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FIGURE 19. Fitting and comparison results of the P3 point subsidence
data.
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FIGURE 20. Fitting and comparison results of the P4 point subsidence
data.

is obviously insufficient. The Grey-Markov combined predic-
tion model predicted the fluctuation changes more accurately
based on the Grey model; however, its prediction accuracy
must be improved. Compared with the traditional Grey-
Markov model, the improved RGM-M model with resid-
ual residue correction and dynamic assignment significantly
improved the prediction accuracy of the data sequence, which
is closest to the measured data sequence in the mining area.
According to the phase 14 data for points P1, P2, P3,
and P4 in the new exploration area of the Weizhou mining
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area, the subsidence value of the following two periods was
predicted, and its accuracy compared to the measured value.
The prediction results are shown in Tables 4-7.

TABLE 4. Subsidence data prediction of P1 point.

Time Initial RGM-M Prediction RMSE
Data Model Accuracy (mm)
(mm) _ (mm)
2020.07-  -1.97 -2.03 97.04%
2020.09
2020.09-  -1.75 -1.82 96.15% 0.065
2020.12
TABLE 5. Subsidence data prediction of P2 point.
Time Initial RGM-M Prediction RMSE
Data Model Accuracy (mm)
(mm) (mm)
2020.07- -3.18 -3.31 96.07%
2020.09
2020.09- -2.97 -3.09 96.11% 0.125
2020.12
TABLE 6. Subsidence data prediction of P3 point.
Time Initial RGM-M Prediction RMSE
Data Model Accuracy (mm)
(mm) _ (mm)
2020.07-  -10.37 -9.48 91.42%
2020.09
2020.09- -8.95 -8.56 95.64% 0.687
2020.12
TABLE 7. Subsidence data prediction of P4 point.
Time Initial RGM-M Prediction RMSE
Data Model Accuracy (mm)
(mm) (mm)
2020.07- -11.05 -10.27 92.94%
2020.09
2020.09-  -9.16 8.44 02.14% 073!
2020.12

After developing the prediction of the timing subsidence
data for four typical subsidence points in the new exploration
and Koizumi exploration areas, we compared the predicted
value with the measured value. The prediction accuracy
exceeded 90% of the RGM-M model in the study area, and the
maximum absolute value of the prediction error was 0.89 mm,
showing that the RGM-M model had a higher prediction
accuracy and good application prospects in the mining area’s
land subsidence prediction.

VI. DISCUSSION

According to the shortcomings of the traditional Grey-
Markov model, we theoretically improved the mathematical
optimization; and prediction accuracy of the Grey model
and the Grey-Markov combination model. The optimized
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RGM-M model constructed here has the following
advantages compared with the traditional Grey—Markov
model:

(1) The RGM-M model proposes a new residual correction
method for the Grey model, which optimizes and improves
the residual weight. The data prediction accuracy is greatly
improved compared with the traditional Grey model. Previ-
ous residual-corrected grey models; were mostly optimized
for residual sequence or used other model optimized resid-
ual correction methods. However, in practice, its raw data
sequence may not satisfy the ideal exponential distribution
since some emergent, and uncontrollable factors can affect
land subsidence data. There is inevitable volatility in the raw
data of the time series. Therefore, its residual sequence is
not necessarily the ideal application situation for the Grey
model. Therefore, the grey model fit was optimized again.
In theory, there is a certain limit to its applicability. The resid-
ual correction model was optimized according to the residual
weight and can theoretically be improved by the original
data sequence according to different original data sequence
conditions, improving the prediction accuracy of the Grey
model.

(2) A weighted Markov model with dynamic empower-
ment was developed for the mine land subsidence data volatil-
ity. Compared to the traditional Markov model, its evaluation
weight matrix is determined from the initial sequence; and
remains fixed in the subsequent predictions; therefore, its
prediction inevitably deviates. Dynamic empowerment; and
data values after each Grey-Markov model prediction were
added to the calculated sample of the next evaluation weight
matrix; and a dynamic Markov evaluation weight matrix was
established; that was more scientific in theory. In previous
weighted Markov models, the prediction data was used in the
initial state; and predicted the row vector of the next proba-
bility transition matrix based on the last transition probability
matrix. The first predication data produces an accumulation
of errors that negatively impact the subsequent prediction.
We propose a new dynamic empowerment method; to replace
the Markov optimization of the first data value in the data
sequence with the Markov initial data sequence and recal-
culate the new Markov sequence, establishing a dynamic
Markov prediction model. Using this method, we would con-
sistently update the evaluation weight matrix and transfer
the probability matrix, improving the scientific nature of the
model prediction.

(3) The four typical subsidence points in the subsidence
data of the new exploration and spring exploration areas were
replaced with the traditional GM (1,1) model, Grey-Markov
combination prediction model with optimized residual cor-
rection, and dynamic empowerment of Grey-Markov com-
bination model. We compared and analyzed the prediction
results. Our results show that the Grey-Markov model can
more accurately predict the trend and subsidence value of
land subsidence than the traditional Grey—Markov combi-
nation model, with higher accuracy and a wider application
range.
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However, there are still some shortcomings:

(1) The research area selected in this paper is a mining
area, but the subsidence value is small compared with the
general mining area. In particular, the average land subsi-
dence rate and value are lower, which may not fully ver-
ify the improved dynamic assignment and residual modified
Grey-Markov RGM-M model in broadening the applicable
scope of the model and prediction accuracy of the data
series.

(2) The data sample of the original data sequence is lim-
ited; to some extent, limiting the prediction accuracy of the
dynamically empowered Grey-Markov model. If the original
monitoring data of the longer time series is used for long-term
land subsidence monitoring, a more accurate land subsidence
prediction value can be obtained.

VII. CONCLUSION

IPTA timing series InSAR processing technology is used
in the new exploration area of the Weizhou mining area.
We selected four subsidence points in the mining area,
and extracted the temporal land vertical deformation results.
We inserted the IPTA timing series InSAR land vertical
deformation data of each typical subsidence point into the
improved RGM-M Grey-Markov model, completed the sub-
sidence prediction of the typical mining area, compared
the prediction data with the traditional Grey model and
Grey-Markov combination model, and drew the following
conclusions:

(1) By processing and predicting the InSAR data and
comparing the vertical deformation data to the adjacent GPS
data, the reliability of IPTA timing series InSAR data process-
ing results was verified, demonstrating InSAR technology’s
strong application in the land deformation monitoring of
mining areas.

(2) Aiming at the shortcomings of the traditional grey
model and Markov model, we proposed a modified RGM-M
Grey-Markov model, which improves its prediction accuracy
and expands its applicability. The improved RGM-M model
was used to simulate and predict the subsidence data of
typical subsidence points from 2017 to 2020. The prediction
results were better than the traditional single grey model and
Grey-Markov combination model. Therefore, the improved
RGM-M model has important guiding significance and appli-
cation prospects for land subsidence monitoring, prediction,
and safety management in mining areas.
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