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ABSTRACT Land subsidence prediction in mining areas is one of the most important applications of land
deformation monitoring, which is significance for safe production. We used interferometric point target
analysis (IPTA) timing series interferometry synthetic aperture radar (InSAR) processing technology to
analyze the land subsidence results for the Xinfa mining area from 2017 to 2020; and compared them to
global positioning system (GPS) static monitoring data. We proposed a residual correction theory based on
deviation coefficient using the grey prediction and Markov models, and an optimized Grey-Markov model
(RGM-M model) was established to predict the land subsidence of the mining area. Our results show that:
(1) The maximum difference between InSAR timing processing results and GPS monitoring data in the
same period is 10.91mm; they have roughly the same subsidence trend, indicating that IPTA timing series
InSAR technology are strongly reliable in mining deformation. (2) Compared to the traditional Grey-Markov
model, the improved residual correction and dynamic assignment of the Grey-Markov model improves the
prediction accuracy. The optimized residual correction and dynamic empowerment of the Grey-Markov
model prediction results are more suitable for the actual fluctuation of land subsidence value in the mining
area. The maximum root mean square error of the prediction results is 0.751mm, and the maximum average
absolute percentage error is 7.46%, which has a certain guiding significance for the work of monitoring,
prediction and safety management of land deformation in the mining area.

17

18

INDEX TERMS Dynamic empowerment, Grey-Markov model, mining subsidence, prediction, residual
correction, timing series InSAR.

I. INTRODUCTION19

Since modern times, coal has been one of the main energy20

sources of human society. Therefore, the safety production of21

mining areas has widely concerned all walks of life. Research22

onmonitoring and predicting land subsidence in mining areas23

has always been a prominent issue [1]. In the field of land24

subsidence monitoring in mining areas, there are many tra-25

ditional monitoring methods and means, such as theodolite26

triangle elevation measurement; and high-grade precision27

leveling to full station measurement; and global position-28

ing navigation system (GPS) positioning measurement, etc.29

The need to establish monitoring stations along with the30

mining deformation; through repeated field observation; is31

The associate editor coordinating the review of this manuscript and

approving it for publication was John Xun Yang .

time-consuming; with input cost, especially since the labor 32

cost is also higher; furthermore, it is too complex for some 33

terrain, has inaccessible areas, and it is too difficult to estab- 34

lish observation stations and measurement work. 35

In the past few decades, InSAR has become unanimously 36

recognized as important monitoring means in this field [2]. 37

InSAR technology is one of the most popular research fields. 38

With the development of commercial satellites in recent 39

years, more and more commercial SAR satellite data have 40

been applied to land subsidence monitoring, achieving the 41

expected results. The main advantage of using InSAR tech- 42

nology for imaging is continuous no interval observation, 43

high accuracy and resolution, wide coverage, and low cost. 44

It has been used in various fields of national economic devel- 45

opment; for example, InSAR technology is used for building 46

ground DEM models, land subsidence monitoring, volcano, 47
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earthquake, landslide, and other natural disasters [3], [4],48

[5], [6].49

In recent years, there have been increasingly scientific50

studies and case applications of land subsidence monitor-51

ing in mining areas, and the technology is becoming more52

mature [7]. In addition to InSAR technology, many new53

technologies such as continuous operation reference station54

system (CORS) satellite positioning service, laser 3D scan-55

ning technology, and mining ground subsidence monitoring56

systems based on geographic information system (GIS) tech-57

nology are also used in mining deformation. By contrast, the58

use of InSAR technology to monitor the land deformation59

of the mining area obtains a range of high-precision mon-60

itoring data; and effectively reduces manpower and mate-61

rial resources, reducing the great cost and investment, and62

completing the continuous real-time monitoring of the whole63

mining area [6], [9]. With the continuous break-through and64

improved timing of InSAR technology in recent years, highly65

accurate deformation information can be obtained theoret-66

ically, and the accuracy of its data processing results can67

reach the centimeter-level [7], [10], [11]. Therefore, we can68

research and work on land subsidence prediction through69

InSAR technology.70

The IPTA timing series InSAR data processing method71

is a coherent target point timing analysis method based on72

GAMMA software. Combining two persistent scatterer (PS)73

InSAR and small baseline subset (SBAS) InSAR technolo-74

gies; and adopting the PS-InSAR process, helps to realize75

the independent selection of the SBAS-InSAR technology76

for the baseline set. Meanwhile, during the entire InSAR77

timing process, the InSAR time sequence processes the whole78

process; with free and controllable parameters, providing79

high degrees of freedom and processing space for InSAR data80

processing [8], [9]. Therefore, the processing personnel can81

really handle the process freely according to the situation and82

actual image data. The practical accuracy and application reli-83

ability of InSAR data processing improves on the restrictions84

ofmodular integrated processing in other processing software85

and methods [15].86

Grey model is a new prediction method that can use less87

data to predict an uncertain system [16]. GM (1,1) model88

is the simplest and most important prediction model with89

only one variable and first-order differential. It is one of90

the most basic and important prediction models in the Grey91

theory system. [17]. However, in practice, emergent and92

uncontrollable factors can affect land subsidence data, and93

raw data sequences have inevitable volatility. Residual cor-94

rection models optimized according to residual weight can95

theoretically be improved with the original data sequence96

based on different original data sequence conditions, thereby97

improving the prediction accuracy of the Grey model. The98

prediction process of the Markov model has strong random-99

ness, which evolved from the Markov stochastic prediction100

chain, first pro-posed by the Russian mathematician Markov101

in 1907 [18], [19]. In known states, the future evolution of102

the Markov model is completely unrelated to what occurred103

previously, namely that the evolutionary direction is not based 104

on past changes. This paper uses dynamic empowerment; 105

and data values after each Grey-Markov model prediction 106

was added to the calculated sample of the next evaluation 107

weight matrix. A dynamic Markov evaluation weight matrix 108

is established, more scientific in theory. Four typical subsi- 109

dence points in the subsidence data of the new and spring 110

exploration areas were replaced with the traditional GM (1,1) 111

model, Grey-Markov combination prediction model with 112

optimized residual correction, and dynamic empowerment 113

of the Grey-Markov combination model. We compared and 114

analyzed the prediction results. The results showed the opti- 115

mized Grey-Markov model predicts the trend and subsidence 116

value of land subsidence more accurately than the traditional 117

Grey–Markov combination model. These results have good 118

application prospects for mine land subsidence monitoring, 119

prediction, and safety management. 120

II. METHODS 121

A. STUDY AREA 122

The main research area of this paper is the new exploration 123

area in the Wuzhong City, Ningxia Province, China. It is 124

located at 70km southeast of Wuzhong City. The exploration 125

area is about 4.17KM long from north to south and 2.22km 126

wide from east to west. The specific scope is shown in 127

Figure 1. The landform is mainly mountainous, with dry 128

climate and four distinct seasons. 129

FIGURE 1. The map of study area.

B. DATA 130

The data used in this paper include SAR images captured 131

by the Sentinel-1A satellite. The Sentinel-1 satellite is a 132

C-band Earth observation satellite launched by ESA in the 133

Copernican Program. It consists of two satellites, A and B 134

satellite. Each satellite has a separate return period of 12 days 135

and a binary return period of 6 days. It’s main working mode 136

is the interference wide amplitude (IW) scanning imaging 137
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mode; the SAR image data width reaches 250km. The orbital138

data parameters are shown in Table 1.139

TABLE 1. Track data parameters.

In this study, we collected 114 SLC data from Sentinel-1140

A satellite ascending orbit images covering the study141

area. The image time distribution was from 14 January142

2017 to 24 December 2020. The DEM data used was SRTM143

data with an accuracy of 30m.144

III. IPTA TIMING SERIES INSAR PROCESSING145

Interferometric Persistent Target Analysis (IPTA) is a fusion146

of PS-InSAR technology and SBAS-InSAR technology dur-147

ing data processing. Since the traditional InSAR analysis148

technology is in view of the land; and prone to the loss149

correlation effect, the point target, as a reference for the tim-150

ing analysis, does not involve analyzing interference stripes.151

Therefore, errors caused by incoherence are avoidable. The152

basic principle is to perform sequential InSAR processing153

of several acquired SAR images analyze the phase and154

amplitude specific information of the obtained points, iden-155

tify some relatively stable target points, such as buildings,156

rocks, road lands, and even previously installed artificial157

angle reflectors. Since these point targets are relatively stable,158

the high echo signal intensity can maintain its relatively159

stable ground reflection properties for a considerable time160

[11]. IPTA timing analysis technology calculates the value161

change in elevation information and the positive value of162

the deformation rate. It removes the atmospheric phase; and163

obtains the sequential land deformation information based164

on these stable coherence points. In addition, during IPTA165

timing processing, combined with the baseline selection of166

SBAS-InSAR technology, the length of image data pairs167

can be freely selected. Similar to SBAS-InSAR processing168

technology, the small baseline set can also be selected; for169

subsequent processing. During processing (using the Gamma170

software, for example), the IPTA module; is integrated into171

the software. From the SAR image data registration to solving172

the land deformation information, hundreds of parameters are173

involved in IPTA timing processing technology. For example,174

the detailed parameters of multi-view processing, the length175

range of spatial and temporal baseline selection, the specific176

parameters of difference processing, thewindow size of filter-177

ing processing, the coherence coefficient of point selection,178

and other specific point selection criteria. These parameters179

are free and controllable. By entering the control mode of the180

script commands, traditional InSAR data processing (such181

as SARScape, etc.); relies solely on manually clicking the182

operation page. The dilemma of immobilizing many process-183

ing parameters; through the flexible regulation of various184

parameters; accomplishesmore accurate data processing. The185

solution parameters must be adjusted according to the actual 186

situation. Thus, the solution accuracy improves. At the same 187

time, IPTA timing processing technology also depends on 188

certain requirements related to the experience level of the data 189

processors. 190

During timing processing, the interference phase in the 191

interference stripe diagram generated by any two images 192

mainly includes five parts, namely, the topographic phase, 193

land deformation phase, flat land phase, atmospheric delay 194

phase and noise phase. During IPTA processing: 195

ϕ = ϕtop + ϕf + ϕdef + ϕatm + ϕn (1) 196

In the formula, ϕ is the interference phase of the target 197

point; ϕtop is the interference phase due to topographic ele- 198

vation; ϕf is the flat phase, which can be calculated from the 199

geometric relationship of image imaging; ϕdef is the line of 200

sight to radar ( LOS ); ϕatm represents the noise phase caused 201

by the atmospheric delay; and ϕn represents the system ther- 202

mal noise phase. 203

ϕtop and ϕf can be removed after the differential interfer- 204

ence treatment, to obtain the differential phase ϕdiff : 205

ϕdiff = ϕdef + ϕtope + δϕatm + δϕn (2) 206

ϕtope is the elevation error phase. The required land defor- 207

mation information can finally be extracted from the sepa- 208

rated ϕdef: 209

ϕtope = −
4πB⊥
λR sin θ

1h (3) 210

v represents the linear deformation rate of coherence points 211

relative to the reference point;t represents the time baseline; 212

and ϕdef_n is the nonlinear deformation phase. 213

The IPTA method uses the two-dimensional linear phase 214

solution model, that is, through continuous regression iter- 215

ative calculation; to complete the separation and removal of 216

various errors, obtaining the deformation rate. In this iteration 217

process, the Delaunay triangle network and Minimum cost 218

flow (MCF) algorithm can solve the phase disentanglement 219

of the target. 220

IV. THE IMPROVED GREY-MARKOV MODEL 221

A. THEORY OF GREY MODEL 222

The Grey system prediction refers to predicting the eigen- 223

value changes of system behavior. It includes system predic- 224

tions known and uncertain information. In other words, the 225

Grey process changes within a certain threshold range related 226

to the time series [20], [21]. The phenomena shown in the ash 227

process are random and fluctuating; however, they are also 228

orderly and bounded, so the data set has an underlying law. 229

The Grey system prediction model uses this potential law to 230

establish the Grey model, fulfilling the prediction of the Grey 231

system [17], [22], [23]. 232

The Grey model was established as follows: 233

(1) The original data sequence that corresponds to time 234

is x(0): 235

x(0) =
{
x(0) (1) , x(0) (2) , · · · , x(0) (n)

}
(4) 236
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(2) To reduce the dynamic randomness of the data, the raw237

data sequence is accumulated:238

x(1) =
k∑
i=1

x(0) (i), k = 1, 2, · · · n (5)239

x(1) =
{
x(1) (1) , x(1) (2) , · · · x(1) (n)

}
(6)240

(3) Build the adjacent mean sequence:241

y(1) (k) =
1
2

{
x(1) (k)+ x(1) (k − 1)} , k ≥ 2 (7)242

Adjacent to the mean is the whitening background value243

y(1) (k).244

(4) Construction of the white-chemical differential245

equation:246

dx(1)

dt
+ ax(1) = u (8)247

By least squares, the following calculation is available:248

â =
(
BTB

)−1
BTY (9)249

B =


−y(1) (2) 1
−y(1) (3) 1

...
...

−y(1) (n)

, Y =


x(0) (2)
x(0) (3)
...

x(0) (n)

 (10)250

(5) Solve the response equation:251

x̂(1) (k + 1) =
(
x(0) (1)−

u
a

)
e−ak ,252

k = 1, 2, · · · , n− 1 (11)253

(6) From the reduction of reduction:254

x(0) (k) = x(1) (k)− x(1) (k − 1) (12)255

when k = 1,256

x̂(0) (0) = x̂(1) (1) = x̂(0) (1) (13)257

when 2 ≤ k ≤ n,258

x(0) (k) =
(
1− ea

) (
x(0) (1)−

u
a

)
e−u(k−1) (14)259

(7) Model accuracy test:260

For GM (1,1) model, the mean variance ratio (C) and small261

probability error (1), are used to determine the quality of the262

model [24]. The inspection criteria are shown in Table 2.263

Test of mean variance ratio: the variance of the original264

data, and variance of the residual columns are:265

S21 =
1

n− 1

n∑
k=1

(
x(0) (k)− x̄(0)

)2
(15)266

S22 =
1

n− 1

n∑
k=2

(
ε(0) (k)− ε̄(0)

)2
(16)267

where, x0 (k) is the original data sequence; x̄(0) represents the268

original data sequencemean; ε(0) (k) is the residual sequence;269

and ε̄(0) is the residual sequence mean.270

The Model is considered qualified if it meets these two271

requirements.272

TABLE 2. Test standard of model accuracy.

B. THEORY OF MARKOV MODEL 273

The Markov model was proposed by the Russian mathe- 274

matician Markov. It includes a dynamic change process with 275

randomness; called the Markov chain. The Markov transfer 276

process only relates directly to the previously connected data; 277

and not to other past data, known as ‘‘post-invalid’’ [25]. The 278

expression is: 279

x(k+1) = x(k) · P (17) 280

The Markov model divides the data into several different 281

state intervals (for both prediction accuracy and data com- 282

plexity, generally divided into 3-4 data), and finds the optimal 283

state step by step using the state transfer matrix; to estimate 284

future changes. 285

1) STATUS DIVISION 286

Using the ratio of the fitted predicted value of the GM (1,1) 287

model to the actual land subsidence monitoring data as a 288

reference, the fitted data of the GM (1,1) model is divided 289

into three state intervals according to this ratio, expressed by 290

Si ∈ [ai, bi] , i = 1, 2, · · · n. The lower and upper limits of 291

the interval are ai, bi. The transfer probability from state Si to 292

state Sj by k steps is expressed as: 293

Pkij =
nkij
ni

(18) 294

where k represents the steps from Si to Sj; Pkij indicates the 295

probability from state Si to Sj after k steps; ni represents the 296

number of samples in Si; and nkij represents the number of 297

samples from state Si to Sj after k steps. 298

2) CONSTRUCT THE STATE TRANSITION MATRIX 299

The state transition matrix consisting of state transition prob- 300

ability is: 301

P(k) =


Pk11 Pk12 · · · Pk1n
Pk21 Pk22 · · · Pk2n
...

...
. . .

...

Pkn1 Pkn2 · · · Pknn

 (19) 302

3) DETERMINE THE OPTIMAL VALUE 303

The matrix P(k) is the state corresponding to the maximum 304

value of the column vector sum in the state list of row vec- 305

tors [26]. In other words, Markov’s ideal state. The optimized 306
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forecast value is:307

y(0) (i+ 1) =
1
2
(ai + bi) x̂(0) (i+ 1) (20)308

where the final optimized prediction value is y(0) (i+ 1), ai309

is the lower limit value; bi is the upper limit value; and310

x̂(0) (i+ 1) is the forecast of the Grey model.311

C. THEORY OF OPTIMIZED GREY-MARKOV MODEL312

Based on the drawbacks and shortcomings of the tra-313

ditional Grey-Markov model, we propose an optimized,314

equally spaced Grey-Markov model based on problem-315

oriented thinking [27]. The optimized Grey-Markov model,316

the RGM-M combination model, is constructed as follows:317

After the sixth step of the traditional Grey model pro-318

cessing (reduced by subtraction and reduction), five steps of319

mathematical calculation are added to improve the prediction320

accuracy of the model.321

(1) Calculate residual sequences ε(0) (k). The difference322

between the preliminary fit values of the Grey model and the323

original data sequence is the residual sequence:324

ε(0) (k) = x̂(0) (k)− x(0) (k) (21)325

(2) Establish and obtain the deviation coefficient λ:326

λ (k) =

[
ε(0) (k)

]2
n∑

k=1

[
ε(0) (k)

]2327

k = 1, 2, · · · , n (22)328

(3) Calculate the residual correction value µ(0) (k):329

µ(0) (k) = −λ
ε(0) (k)∣∣ε(0) (k)∣∣ ·

n∑
k=1

∣∣∣ε(0) (k)∣∣∣330

k = 1, 2, · · · , n (23)331

(4) The initial fitting data was optimized by the residual332

correction value to obtain the optimization results x̂(1) (k):333

x̂(1) (k) = x̂(0) (k)+ µ(0) (k) (24)334

The residual-corrected Grey model prediction results were335

used as the initial data of the Markov model [28]. Then,336

we obtained the optimized Grey-Markov combination model337

prediction results.338

V. RESULTS339

A. IPTA TIMING SERIES INSAR RESULTS340

To ensure the coherence of the SAR data, IPTA timing series341

InSAR data were processed in the study area for a one-year342

period. Our results are shown in Figures 2.343

The IPTA timing series InSAR land subsidence results344

from January 2017 to December 2020 are shown in Figure 3.345

After obtaining the timing series InSAR data processing346

results for the new exploration area in the Weizhou min-347

ing area, four typical subsidence points were selected, and348

each point’s land subsidence value sequence was extracted349

according to a three-month interval. The positions of the350

FIGURE 2. Baseline selection diagram of image data.

FIGURE 3. IPTA timing series InSAR processing results in the Xinfa
exploration area of the Weizhou mining area.

typical subsidence points (P1-P4) and GPSmonitoring points 351

(G1-G4) are shown in Figure 4. 352

The subsidence values of the four typical subsidence points 353

in the new exploration area were compared to the monitoring 354

values of the adjacent GPS monitoring points in the same 355

period, and the temporal subsidence sequence comparison 356

results were obtained, as shown in Figures 5-8. 357

From these figures, it can be seen that the settlement is 358

large from April 2017 to July 2017, and with the passage of 359

time, the settlement of each phase gradually tends to be stable. 360

This is because there is residual subsidence after mining in 361

the mining area. After mining, there will be subsidence on 362

the surface. At first, the subsidence is large, and then it tends 363

to be stable. 364

The subsidence values of the four typical subsidence points 365

in the new exploration area were also compared to the mon- 366

itoring values of the adjacent GPS monitoring points in the 367

same period. The GPS data was used as the ratio to obtain 368

InSAR monitoring accuracy, as shown in Table 3. 369
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FIGURE 4. Selection locations of typical subsidence points and GPS
monitoring points.

FIGURE 5. Comparison of timing subsidence data of typical point P1 and
GPS monitoring point G1.

FIGURE 6. Comparison of timing subsidence data of typical point P2 and
GPS monitoring point G2.

B. ANALYSIS OF GREY MODEL PREDICTION RESULTS370

According to the time series subsidence data for the four typ-371

ical subsidence points selected in the study area, the original372

data sequence processed by IPTA timing series InSAR data373

FIGURE 7. Comparison of timing subsidence data of typical point P3 and
GPS monitoring point G3.

FIGURE 8. Comparison of timing subsidence data of typical point P4 and
GPS monitoring point G4.

TABLE 3. InSAR monitoring for data analysis.

was first fitted into the traditional GM (1,1) model. The fitting 374

results are shown in Figures 9-12. 375

FIGURE 9. Results ofGrey model fitting of subsidence data at the P1 point.

The original data sequence on timing had a roughly 376

exponential distribution of subsidence value prediction 377
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FIGURE 10. Results of Grey model fitting of subsidence data at the P2
point.

FIGURE 11. Results of Grey model fitting of subsidence data at the P3
point.

FIGURE 12. Results of Grey model fitting of subsidence data at the P4
point.

(P1 and P2). The traditional Grey model’s fitting prediction378

accuracy was relatively high, and the fluctuation trend was379

minor. For the subsidence points (P3 and P4) with high380

data volatility, the deviation between the predicted value and381

actual subsidence value was more apparent when the data382

fluctuated greatly or when the subsidence mutation occurred.383

Therefore, the single traditional GM (1,1) model only applies384

to the data series in more apparent exponential distribution385

trends; and cannot accurately predict the subsidence data386

sequence with strong volatility.387

C. GREY-MARKOV MODEL PREDICTION RESULTS 388

The data sequence of four typical subsidence points opti- 389

mized by the GM (1,1) model was used as the initial data 390

sequence of the Markov model, which was replaced with the 391

Markov model. The prediction results of the Grey-Markov 392

combination model were then obtained. The fitted prediction 393

results are shown in Figures 13-16. 394

FIGURE 13. Grey-Markov model prediction result of the P1 point
subsidence data.

FIGURE 14. Grey-Markov model prediction result of the P2 point
subsidence data.

FIGURE 15. Grey-Markov model prediction result of the P3 point
subsidence dat.

According to the above prediction results, the traditional 395

GM (1,1) model can effectively predict the development 396
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FIGURE 16. Grey-Markov model prediction result of the P4 point
subsidence data.

trend of the subsidence data sequence. However, when strong397

data fluctuations were encountered, the prediction accu-398

racy decreased significantly. The Grey-Markov combination399

model can analyze the subsidence data while retaining the400

prediction trend of the Grey model, effectively capturing the401

fluctuation and subsidence value obtained by IPTA timing402

series InSAR (raw data used for prediction). Regarding strong403

fluctuations, the prediction value of the traditional Grey-404

Markov combination model still has insufficient prediction405

accuracy.406

D. OPTIMIZED GREY-MARKOV MODEL407

PREDICTION ANALYSIS408

The subsidence data sequence obtained through IPTA timing409

series InSAR data processing was inserted into the optimized410

residue correction and dynamically assigned Grey-Markov411

model to fit the RGM-M model. The prediction value com-412

parison results with the traditional Grey–Markov model are413

shown in Figures 17-20.414

FIGURE 17. Fitting and comparison results of the P1 point subsidence
data.

According to the model fitting curve comparison diagram415

of each typical subsidence point, GM (1,1) model can effec-416

tively predict the change trend of data series development,417

but for some volatile data sequences, its prediction accuracy418

FIGURE 18. Fitting and comparison results of the P2 point subsidence
data.

FIGURE 19. Fitting and comparison results of the P3 point subsidence
data.

FIGURE 20. Fitting and comparison results of the P4 point subsidence
data.

is obviously insufficient. TheGrey-Markov combined predic- 419

tion model predicted the fluctuation changes more accurately 420

based on the Grey model; however, its prediction accuracy 421

must be improved. Compared with the traditional Grey- 422

Markov model, the improved RGM-M model with resid- 423

ual residue correction and dynamic assignment significantly 424

improved the prediction accuracy of the data sequence, which 425

is closest to the measured data sequence in the mining area. 426

According to the phase 14 data for points P1, P2, P3, 427

and P4 in the new exploration area of the Weizhou mining 428
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area, the subsidence value of the following two periods was429

predicted, and its accuracy compared to the measured value.430

The prediction results are shown in Tables 4-7.431

TABLE 4. Subsidence data prediction of P1 point.

TABLE 5. Subsidence data prediction of P2 point.

TABLE 6. Subsidence data prediction of P3 point.

TABLE 7. Subsidence data prediction of P4 point.

After developing the prediction of the timing subsidence432

data for four typical subsidence points in the new exploration433

and Koizumi exploration areas, we compared the predicted434

value with the measured value. The prediction accuracy435

exceeded 90%of the RGM-Mmodel in the study area, and the436

maximum absolute value of the prediction error was 0.89mm,437

showing that the RGM-M model had a higher prediction438

accuracy and good application prospects in the mining area’s439

land subsidence prediction.440

VI. DISCUSSION441

According to the shortcomings of the traditional Grey-442

Markov model, we theoretically improved the mathematical443

optimization; and prediction accuracy of the Grey model444

and the Grey-Markov combination model. The optimized445

RGM-M model constructed here has the following 446

advantages compared with the traditional Grey–Markov 447

model: 448

(1) The RGM-Mmodel proposes a new residual correction 449

method for the Grey model, which optimizes and improves 450

the residual weight. The data prediction accuracy is greatly 451

improved compared with the traditional Grey model. Previ- 452

ous residual-corrected grey models; were mostly optimized 453

for residual sequence or used other model optimized resid- 454

ual correction methods. However, in practice, its raw data 455

sequence may not satisfy the ideal exponential distribution 456

since some emergent, and uncontrollable factors can affect 457

land subsidence data. There is inevitable volatility in the raw 458

data of the time series. Therefore, its residual sequence is 459

not necessarily the ideal application situation for the Grey 460

model. Therefore, the grey model fit was optimized again. 461

In theory, there is a certain limit to its applicability. The resid- 462

ual correction model was optimized according to the residual 463

weight and can theoretically be improved by the original 464

data sequence according to different original data sequence 465

conditions, improving the prediction accuracy of the Grey 466

model. 467

(2) A weighted Markov model with dynamic empower- 468

ment was developed for themine land subsidence data volatil- 469

ity. Compared to the traditional Markov model, its evaluation 470

weight matrix is determined from the initial sequence; and 471

remains fixed in the subsequent predictions; therefore, its 472

prediction inevitably deviates. Dynamic empowerment; and 473

data values after each Grey-Markov model prediction were 474

added to the calculated sample of the next evaluation weight 475

matrix; and a dynamic Markov evaluation weight matrix was 476

established; that was more scientific in theory. In previous 477

weighted Markov models, the prediction data was used in the 478

initial state; and predicted the row vector of the next proba- 479

bility transition matrix based on the last transition probability 480

matrix. The first predication data produces an accumulation 481

of errors that negatively impact the subsequent prediction. 482

We propose a new dynamic empowerment method; to replace 483

the Markov optimization of the first data value in the data 484

sequence with the Markov initial data sequence and recal- 485

culate the new Markov sequence, establishing a dynamic 486

Markov prediction model. Using this method, we would con- 487

sistently update the evaluation weight matrix and transfer 488

the probability matrix, improving the scientific nature of the 489

model prediction. 490

(3) The four typical subsidence points in the subsidence 491

data of the new exploration and spring exploration areas were 492

replaced with the traditional GM (1,1) model, Grey-Markov 493

combination prediction model with optimized residual cor- 494

rection, and dynamic empowerment of Grey-Markov com- 495

bination model. We compared and analyzed the prediction 496

results. Our results show that the Grey-Markov model can 497

more accurately predict the trend and subsidence value of 498

land subsidence than the traditional Grey–Markov combi- 499

nation model, with higher accuracy and a wider application 500

range. 501
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However, there are still some shortcomings:502

(1) The research area selected in this paper is a mining503

area, but the subsidence value is small compared with the504

general mining area. In particular, the average land subsi-505

dence rate and value are lower, which may not fully ver-506

ify the improved dynamic assignment and residual modified507

Grey-Markov RGM-M model in broadening the applicable508

scope of the model and prediction accuracy of the data509

series.510

(2) The data sample of the original data sequence is lim-511

ited; to some extent, limiting the prediction accuracy of the512

dynamically empowered Grey-Markov model. If the original513

monitoring data of the longer time series is used for long-term514

land subsidence monitoring, a more accurate land subsidence515

prediction value can be obtained.516

VII. CONCLUSION517

IPTA timing series InSAR processing technology is used518

in the new exploration area of the Weizhou mining area.519

We selected four subsidence points in the mining area,520

and extracted the temporal land vertical deformation results.521

We inserted the IPTA timing series InSAR land vertical522

deformation data of each typical subsidence point into the523

improved RGM-M Grey-Markov model, completed the sub-524

sidence prediction of the typical mining area, compared525

the prediction data with the traditional Grey model and526

Grey-Markov combination model, and drew the following527

conclusions:528

(1) By processing and predicting the InSAR data and529

comparing the vertical deformation data to the adjacent GPS530

data, the reliability of IPTA timing series InSAR data process-531

ing results was verified, demonstrating InSAR technology’s532

strong application in the land deformation monitoring of533

mining areas.534

(2) Aiming at the shortcomings of the traditional grey535

model and Markov model, we proposed a modified RGM-M536

Grey-Markov model, which improves its prediction accuracy537

and expands its applicability. The improved RGM-M model538

was used to simulate and predict the subsidence data of539

typical subsidence points from 2017 to 2020. The prediction540

results were better than the traditional single grey model and541

Grey-Markov combination model. Therefore, the improved542

RGM-Mmodel has important guiding significance and appli-543

cation prospects for land subsidence monitoring, prediction,544

and safety management in mining areas.545

REFERENCES546

[1] D. Yuan, C. Geng, L. Zhang, and Z. Zhang, ‘‘Application of gray-547

Markov model to land subsidence monitoring of a mining area,’’ IEEE548

Access, vol. 9, pp. 118716–118725, 2021, doi: 10.1109/ACCESS.2021.549

3106144.550

[2] F. Cigna and D. Tapete, ‘‘Sentinel-1 big data processing with P-SBAS551

InSAR in the geohazards exploitation platform: An experiment on coastal552

land subsidence and landslides in Italy,’’ Remote Sens., vol. 13, no. 5,553

p. 885, Feb. 2021.554

[3] A. Ferretti, C. Prati, and F. Rocca, ‘‘Permanent scatterers in SAR inter-555

ferometry,’’ IEEE Trans. Geosci. Remote Sens., vol. 39, no. 1, pp. 8–20,556

Jan. 2001.557

[4] D. Zhou, A. Simic-Milas, J. Yu, L. Zhu, B. Chen, and N. Muhetaer, 558

‘‘Integrating RELAX with PS-InSAR technique to improve identification 559

of persistent scatterers for land subsidence monitoring,’’ Remote Sens., 560

vol. 12, no. 17, p. 2730, Aug. 2020. 561

[5] W. Ge, Y. Li, Z. Wang, C. Zhang, and H. Yang, ‘‘Spatial-temporal ground 562

deformation study of Baotou based on the PS-InSAR method,’’ Acta 563

Geologica Sinica English Ed., vol. 95, no. 2, pp. 674–683, Apr. 2021. 564

[6] O. Beladam, T. Balz, B. Mohamadi, and M. Abdalhak, ‘‘Using PS-InSAR 565

with Sentinel-1 images for deformation monitoring in Northeast Algeria,’’ 566

Geosciences, vol. 9, no. 7, p. 315, Jul. 2019. 567

[7] Y. Liu, C. Zhao, Q. Zhang, and C. Yang, ‘‘Complex surface deforma- 568

tion monitoring and mechanism inversion over Qingxu-Jiaocheng, China 569

with multi-sensor SAR images,’’ J. Geodynamics, vol. 114, pp. 41–52, 570

Feb. 2018. 571

[8] A. Abdel-Hamid, O. Dubovyk, and K. Greve, ‘‘The potential of 572

sentinel-1 InSAR coherence for grasslands monitoring in Eastern Cape, 573

South Africa,’’ Int. J. Appl. Earth Observ. Geoinf., vol. 98, Jun. 2021, 574

Art. no. 102306. 575

[9] G. Giardina, P. Milillo, M. J. DeJong, D. Perissin, and G. Milillo, ‘‘Eval- 576

uation of InSAR monitoring data for post-tunnelling settlement damage 577

assessment,’’ Struct. Control Health Monitor., vol. 26, no. 2, p. e2285, 578

Feb. 2019. 579

[10] L. Zhang et al., ‘‘Detection of minor differential transformation of active 580

break in Tangshan City based on multi-source SAR data,’’ Remote Sens. 581

Land Resour., vol. 32, no. 3, pp. 114–120, 2020. 582

[11] A. Galdelli, A. Mancini, C. Ferrà, and A. N. Tassetti, ‘‘A synergic inte- 583

gration of AIS data and SAR imagery to monitor fisheries and detect 584

suspicious activities,’’ Sensors, vol. 21, no. 8, p. 2756, Apr. 2021. 585

[12] Y. You, R. Wang, and W. Zhou, ‘‘A phase filter for multi-pass InSAR 586

stack data by hybrid tensor rank representation,’’ IEEE Access, vol. 7, 587

pp. 135176–135191, 2019, doi: 10.1109/ACCESS.2019.2942008. 588

[13] W. Zhou et al., ‘‘A combined model prediction method for surface sub- 589

sidence monitoring in mining areas,’’ Geodey Geodyn., vol. 41, no. 3, 590

pp. 308–312, 2021. 591

[14] O. Orhan, ‘‘Monitoring of land subsidence due to excessive groundwater 592

extraction using small baseline subset technique in Konya, Turkey,’’ Envi- 593

ron. Monitor. Assessment, vol. 193, no. 4, pp. 1–17, Apr. 2021. 594

[15] H. Jiang, T. Balz, F. Cigna, and D. Tapete, ‘‘Land subsidence in Wuhan 595

revealed using a non-linear PSInSAR approach with long time series 596

of COSMO-SkyMed SAR data,’’ Remote Sens., vol. 13, no. 7, p. 1256, 597

Mar. 2021. 598

[16] Z. Zhenchao et al., ‘‘Application of the time-varying parameter GM (1,1) 599

in railway settlement,’’ Surv. Mapping Sci., vol. 45, no. 3, pp. 39–45, 2020, 600

doi: 10.16251/j.cnki.1009-2307.2020.03.007. 601

[17] H.-P. Zhang and Q.-H. Chen, ‘‘Research on the prediction of network 602

public opinion based on Grey-Markov model,’’ Inf. Sci., vol. 36, no. 1, 603

pp. 75–79, 2018. 604

[18] R. Wang, W. Song, L. Liu, C. Du, and X. Zhao, ‘‘Prediction of fire smoke 605

concentration based on Grey-Markov model,’’ in Proc. IEEE 9th Int. Conf. 606

Electron. Inf. Emergency Commun. (ICEIEC), Jul. 2019, pp. 1–5. 607

[19] W. Zhang, ‘‘Analysis of sports training injury measurement with 608

Grey-Markov model (GMM),’’ in Proc. 10th Int. Conf. Measuring Tech- 609

nol. Mechatronics Autom. (ICMTMA), Feb. 2018, pp. 194–197, doi: 610

10.1109/ICMTMA.2018.00054. 611

[20] K. J. Reinders, R. F. Hanssen, F. J. van Leijen, and M. Korff, ‘‘Augmented 612

satellite InSAR for assessing short-term and long-term surface deforma- 613

tion due to shield tunnelling,’’ Tunnelling Underground Space Technol., 614

vol. 110, Apr. 2021, Art. no. 103745. 615

[21] G. Zhao, H. Zhang, and X. Qin, ‘‘Prediction of grain humidity 616

based on improved Grey-Markov model,’’ in Proc. IEEE Symp. 617

Ser. Comput. Intell. (SSCI), Dec. 2019, pp. 2933–2939, doi: 618

10.1109/SSCI44817.2019.9003000. 619

[22] E. Schindler and M. O. Karlsson, ‘‘A minimal continuous-time Markov 620

pharmacometric model,’’ AAPS J., vol. 19, no. 5, pp. 1424–1435, 621

Sep. 2017. 622

[23] Z. Zhou, B. Lan, Z. Huang, P. Chen, X. Deng, W. Mao, and 623

L. Yuan, ‘‘The application of Grey-Markov forecasting model based on 624

entropy method,’’ in Proc. 37th Chin. Control Conf. (CCC), Jul. 2018, 625

pp. 1533–1538. 626

[24] S. Wang, Q. Zhai, and L.-N. Xu, ‘‘Prediction on Chinese female middle- 627

long-distance results based on Grey-Markov model,’’ Tech. Rep., 2016, 628

pp. 61–162. 629

VOLUME 10, 2022 96729

http://dx.doi.org/10.1109/ACCESS.2021.3106144
http://dx.doi.org/10.1109/ACCESS.2021.3106144
http://dx.doi.org/10.1109/ACCESS.2021.3106144
http://dx.doi.org/10.1109/ACCESS.2019.2942008
http://dx.doi.org/10.16251/j.cnki.1009-2307.2020.03.007
http://dx.doi.org/10.1109/ICMTMA.2018.00054
http://dx.doi.org/10.1109/SSCI44817.2019.9003000


D. Yuan et al.: Application of Optimized Grey-Markov Model to Land Subsidence Monitoring With InSAR

[25] R. Wang, W. Song, L. Liu, C. Du, and X. Zhao, ‘‘Prediction of fire smoke630

concentration based on Grey-Markov model,’’ in Proc. IEEE 9th Int. Conf.631

Electron. Inf. Emergency Commun. (ICEIEC), Jul. 2019, pp. 1–5.632

[26] J. P. S. Gonçalves, F. Fruett, J. G. Dalfré Filho, and M. Giesbrecht, ‘‘Faults633

detection and classification in a centrifugal pump from vibration data using634

Markov parameters,’’ Mech. Syst. Signal Process., vol. 158, Sep. 2021,635

Art. no. 107694.636

[27] F. Yuan and Y. Mingda, ‘‘A Grey-Markov chain prediction model with637

value correction for state intervals,’’ Surv. Geographic Inf., vol. 46, no. 4,638

pp. 65–68, 2021, doi: 10.14188/j.2095-6045.2019107.639

[28] L. Feilong, ‘‘Study of the Markov-transformed integer-valued time-640

series models,’’ Jilin Univ., Changchun, China, Tech. Rep., 2021, doi:641

10.27162/d.cnki.gjlin.2021.003314.642

DEBAO YUAN was born in April 1976.643

He received the Ph.D. degree in geodesy and644

surveying engineering from the China University645

of Mining and Technology (Beijing), in 2009.646

He has been an Associate Professor with the China647

University of Mining and Technology (Beijing),648

a Master’s Supervisor, and the Director of Survey-649

ing and Mapping. He is the author of two books,650

more than 40 articles, and two inventions. He has651

participated in the completion of two National652

Natural Science Fund projects and one of 1973 sub-projects. His research653

interests include GPS positioning and navigation, deformation disaster654

monitoring and data processing, 3S integration and application, 3-D laser655

measurement technology and its application, UAV disaster monitoring, and656

data processing. His awards include the second prize of Beijing Higher657

Education and Teaching Achievement Award, the second prize of Geo-658

graphic Information Technology Progress Award, and the second prize of659

Coal Industry Education and Teaching Achievement Award.660

LIBIAO ZHANG was born in Pingyao, Shanxi,661

China, in December 1997. He received the bach-662

elor’s degree from the China University of Mining663

and Technology, in 2020. He is currently pursuing664

the degree with the School of Earth Science and665

Surveying and Mapping Engineering, China Uni-666

versity of Mining and Technology (Beijing).667

His research interests include deformation mon-668

itoring data processing and InSAR landslide defor-669

mation monitoring.670

RUOPENG YAN was born in Jinzhong, Shanxi, 671

China, in 1996. He received the bachelor’s degree 672

majoring in geographic informatics from Taiyuan 673

Normal University. He is currently pursuing the 674

degree with the School of Earth Science and Sur- 675

veying and Mapping Engineering, China Univer- 676

sity of Mining and Technology (Beijing). 677

His research direction during the postgraduate 678

period is InSAR data processing. 679

LING WU was born in December 1998. She is 680

currently pursuing the degree in surveying and 681

mapping science and technology with the China 682

University of Mining and Technology (Beijing). 683

YANYAN FENG was born in Zhumadian, Henan. 684

She is currently pursuing the degree majoring 685

in surveying and mapping engineering with the 686

School of Earth Science and Surveying and 687

Mapping Engineering, ChinaUniversity ofMining 688

and Technology (Beijing). 689

LUYI FENG is currently pursuing the degree 690

with the School of Earth Science and Survey- 691

ing and Mapping Engineering, China University 692

of Mining and Technology (Beijing). He is a 693

20th-level Remote Sensing Student. 694

695

96730 VOLUME 10, 2022

http://dx.doi.org/10.14188/j.2095-6045.2019107
http://dx.doi.org/10.27162/d.cnki.gjlin.2021.003314

