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ABSTRACT Recently, with the advancement of technology, ad-hoc meetings or impromptu gatherings are
becoming more and more common. The meetings/gatherings which involve at least two people will require
a specific physical point location that is useful or interesting to them, called point of interest (Pol). These
people might be residing at different locations; each with their own preferences which most likely to be
different. Undoubtedly, given n people in a group, there will be n users’ preferences. Finding a suitable Pol
that meets these n users’ preferences is not a straightforward task. Existing solutions that utilise skyline
processing in discovering the best, most preferred objects in satisfying the preferences of a group of users
within a predetermined area have shown acceptable results. However, these solutions have to be executed
repeatedly for each query of a group of users since they do not exploit the possibilities that an area that
has been visited by a group of users might be the area of interest of another group of users in the future.
Inherently, they require rescanning the objects and recomputing the skylines of a previously visited region
which is undoubtedly unwise and costly. This paper proposes the Region-based Skyline for a Group of Users
(RSGU) and Extended Region-based Skyline for a Group of Users (ERSGU) frameworks which attempt to
resolve the limitations of existing solutions. In this work, skylines objects are Pols that are recommended to a
group of users that are derived by analysing both the locations of the users, i.e. spatial attributes, as well as the
spatial and non-spatial attributes of objects that are within a predetermined region of the group of users. Here,
each region is partitioned into smaller units called fragments in such a way that overlapping areas between
the currently and previously visited regions can be easily determined; while the results of computing the
skylines of each fragment, known as fragment skylines, are saved to be utilised by the subsequent requests.
Meanwhile, ERSGU has an additional feature in which the skylines derived for a group of users are not only
based on the evaluation of the spatial and non-spatial attributes of the objects, but also the closeness of the
objects to the desirable facilities or other interesting objects in the region. Undeniably, a Pol that is nearby
to other attractions is appealing and worth the journey. Several experiments have been conducted and the
results show that our proposed frameworks outperform the previous work with respect to CPU time.

INDEX TERMS Multi-criteria decision making, skyline queries, group of users, spatial and non-spatial
attributes.

I. INTRODUCTION

Query processing is defined as the process of answering
a query (request) to a database or an information system,
which usually involves the following three main activities:

The associate editor coordinating the review of this manuscript and
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(i) analysing and interpreting the query, (ii) searching through
the space of stored data, and (iii) retrieving the results sat-
isfying the query. The traditional query processing operates
either by retrieving objects' from a collection of objects

I'Without loss of generality, the term object is used throughout this paper
to be in line with other research works in similar area. The terms data, data
item, record, and tuple can also be used in this context.
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that strictly satisfy each condition specified in the query or
returning an empty result if otherwise. The recent develop-
ments in query processing attempt to relax these stringent
requirements, by retrieving the best, most preferred objects
from the collection according to the conditions specified in
the query, also known as user-defined preferences. These
preference queries employ preference evaluation techniques,
have achieved significant success, as they are widely used in
applications related to multi-criteria decision support. During
the past two decades, several preference evaluation tech-
niques have been introduced, among them are: top-k [1], [2],
(31, [4], [5], [6], [71, [8], [9], [10], [11], skyline [12], [13],
(14], [15], [16], (1], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
[35], k-dominance [36], [26], [37], [38], [39], [40], [41] top-
k dominating [3], [42], [5], [43], [44], [45], [46], [47], [48],
and k-frequency [49].

The skyline operator introduced by [12] which is used
to filter a set of interesting objects from a potentially large
multi-dimensional set of objects by keeping only those
objects that are not worse than any other, has been greatly
explored in several studies in an attempt to accurately and
efficiently solve problems of real-world applications that are
related to decision support and decision making. It attempts
to derive the best, most preferred set of objects known as sky-
lines objects (or skylines in short) according to a set of eval-
uation criteria.> The process of computing skylines becomes
more challenging when conflicting criteria are involved while
the number of criteria to be considered is huge. A classic
example is selecting a hotel for a holiday whereby hotels
that are close to the beach are known to be expensive. While
other criteria like facilities, rating, and service, are equally
important, distance and price are examples of conflicting
criteria.

Since the introduction of the skyline operator by [12],
an abundance of skyline algorithms have been proposed for
data processing in order to retrieve useful insights. These
variants of skyline algorithms are introduced to deal with
different characteristics of data, such as uncertain data [58],
incomplete data [50], [51], [52], [53], encrypted data [54],
and streaming data [55]; while others are based on the plat-
form being considered like distributed database [51], cloud
computing [38], road networks [56], and others [57], [58],
[59]. Nonetheless, these skyline algorithms focus mainly on
the optimisation problem of skyline computation for a given
single user query. Since the location of the user is insignifi-
cant in these studies, hence, it is sufficient to derive skyline
objects by considering only the attributes of these objects,
also known as non-spatial attributes, as the evaluation
criteria.

Howeyver, in real world scenario, due to the advancement
of technology, ad-hoc meetings or impromptu gatherings are

2In this paper, the evaluation criteria used in determining the skyline
objects are the attributes (the terms dimension and attribute are used inter-
changeably) of the objects.
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becoming more and more common [60], [61], [62], [63],
[64], [65], [66], [67]. Intuitively, the meetings/gatherings will
involve a group of people (at least two people) and they
will have to decide on a specific physical point location
that is useful or interesting to them, called point of interest’
(henceforth referred to as Pol). Some examples of Pol are
restaurants, hotels, cafes, etc. These people might be residing
at different locations; each with their own preferences which
are most likely to be different. Undoubtedly, given n people
in a group, there will be n users’ queries.* The existing
skyline algorithms are unsuited for such a scenario for two
main reasons: (i) they cater a user’s preferences at a time
(single user query) and (ii) they deal only with the non-spatial
attributes of the objects. While, deriving the skyline objects
of a group of users that are located at different locations, both
the spatial and non-spatial attributes of the objects need to
be considered. Thus, identifying objects that best meet the
preferences of a group of users is crucial and challenging.

The following scenarios typify the samples of situations
considered in this paper.

Scenario I: Assuming several users whom are not close to
each other would like to meet; hence a group is said to be
formed and these users will have to decide on a specific Pol
within a predetermined area® that is useful or interesting to
them. There are many Pols that they can choose. However,
several criteria need to be considered before they decide on a
specific Pol to visit. These include the location of the Pol, i.e.
how far it is from the location of each user (spatial attribute),
the opening hour, food, ticket price, rating, facilities provided,
etc (non-spatial attributes). A Pol which is near to the users
might not be the Pol that meets all the users’ preferences.
While a Pol which provides facilities that meet most of the
users’ preferences might be located far away from these
users. Therefore, recommending a Pol to visit to these users
is not a straightforward task as many criteria need to be
considered. These include the location of each user (spatial
attribute), the locations of the objects (spatial attribute), and
the features of the objects (non-spatial attributes). It becomes
more complicated when the number of users in the group is
large, the objects to be analysed in the space (area) are high
multi-dimensional while their number is huge. Meanwhile,
an area that has been visited by a group of users might be the
area of interest of another group of users in the future. Thus,
it is essential to have a method that could find an object(s)
that dominates other objects that best suits the preferences of
a group of users with respect to both the spatial (location)
and non-spatial attributes of the objects that are within a
predetermined area. Also, it is hypothesised that utilising

3The term object of interest is also used that reflects the Pol that is saved
as object in a data set.

4In this paper, the n users’ queries are assumed to be distinct (reflecting
different preferences) due to the fact that the skyline objects for a user might
be different from another user as the area covered by each user’s query might
be different.

SWithout loss of generality, the terms area, region, and space are used
interchangeably throughout this paper.
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the previous skyline computation results in identifying the
skyline objects of the subsequent group of users can greatly
reduce the skyline computation time.

Scenario 1I: Similar to the Scenario 1 described above, the
group of users might be looking for a Pol to visit which
is near to other useful or interesting facilities/objects (other
types of Pol). Undeniably, a Pol that is nearby to other
attractions is appealing and worth the journey. Therefore,
besides considering the spatial attribute, i.e. the location of
the objects, and the non-spatial attributes of the objects like
opening hour, food, ticket price, rating, etc; another criterion
needs to be established which is the distance between the Pol
to other useful or interesting facilities/objects like mosque,
cinema, hospital, etc. Thus, it is essential to have a method
that could find an object(s) that dominates other objects that
best suits the preferences of a group of users with respect to
both the spatial (location) and non-spatial attributes of the
objects as well as how close the object is to other useful or
interesting facilities/objects that are within a predetermined
area.

This paper takes the challenge to solve the problem associ-
ated to identifying skyline objects for a group of users whom
intend to have a meeting/gathering. Two different solutions
are proposed, each handling a different scenario as described
in Scenario 1 and Scenario 11. Generally, each solution will
make use of the spatial attribute of the users, as well as the
spatial and non-spatial attributes of the objects. In general,
the main contributions of this work are briefly described as
follows:

« We have formally introduced the problem of computing
skylines of a group of users and justify the significance
of addressing the problem.

« We have proposed an efficient solution, named Region-
based Skyline for a Group of Users (RSGU) framework
that is designed for processing the skyline queries of a
given group of users by considering both the locations
of the users in the group, as well as the spatial and
non-spatial attributes of the objects that are within a
predetermined region of the group of users; with two
main aims that are (i) avoiding the process of rescanning
the set of objects within a predetermined region that is
known to have been previously visited by a group of
users and (ii) avoiding the recomputation of skylines
of a set of objects within a predetermined region that
has been analysed in earlier computations of previously
visited group of users.

o We have proposed the Extended Region-based Skyline
for a Group of Users (ERSGU) framework, an enhance-
ment of the RSGU framework, which has similar aims as
RSGU with an additional feature in which the closeness
of the objects to the other desirable facilities or interest-
ing objects in the region are taken into consideration in
the derivation of skyline objects for a group of users.

o« We have conducted extensive experiments to prove
RSGU’s and ERSGU’s capabilities in deriving the
skyline objects for a group of users.
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The rest of the paper is structured as follows. In Section II,
the previous works that are related to computing skylines for
a single user as well as for a group of users are presented.
In Section III, the necessary definitions and notations, which
are used throughout the paper, are set out. Section IV and
Section V elaborate our proposed frameworks, RSGU and
ERSGU respectively, that are purposedly designed for han-
dling the computation of skyline objects for a group of users.
A running database example is also given to clarify the phases
of the proposed frameworks. The experimental results are
demonstrated in Section VI. Conclusion and further research
direction are depicted in the final section, Section VII.

Il. RELATED WORKS

Since the introduction of the skyline operator by [12] many
variants of skyline algorithms have been proposed. Although
the ultimate goal of these algorithms is to derive the best, most
preferred objects from a multi-dimensional set of objects,
each of them tackled a slightly different issue. We categorised
these skyline algorithms into two main categories, namely:
skyline algorithms for a single user and skyline algorithms
for a group of users.

Skyline algorithms for a single user — Generally, these
skyline algorithms attempt to optimise the process of filtering
the best, most preferred objects from a potentially large
multi-dimensional set of objects. These algorithms aim at
reducing the processing time by reducing the search space
as small as possible. Thus, ensuring that only the set of
objects that may potentially be the skylines is analysed.
In this category, users’ queries are assumed to have the same
objective function; hence users are assumed to have the same
preferences.

Among the earlier and most cited skyline algorithms in
the literature are Block Nested Loop (BNL) [12], Divide-and-
Conquer (D&C) [12], Linear Elimination Sort for Skyline
(LESS) [68], Branch and Bound Skyline (BBS) [69], SkyCube
[12], and Sort and Limit Skyline algorithm (SaLSa) [70].
Recently, several skyline algorithms have been proposed that
attempt not only to resolve the optimisation problem but also
issues related to the uncertainty of data; which is defined as
the degree to which data are inaccurate, imprecise, untrusted,
unknown or incomplete. These include among others ISky-
line [22], sorting-based bucket skyline [71], Incoskyline [72],
Jincoskyline [73], and OIS [74] that handle the issues of
incompleteness of data. The incompleteness of data leads
to the loss of transitivity property of skyline technique.
It also leads to cyclic dominance between the objects as some
objects are incomparable to each other that results in no
object can be considered as skyline. Meanwhile, probabilistic
skyline model [75], t-Skyline [76], SkyQUD [77], [78], [79],
[80] and SQUiD [71] focus on the challenges in computing
skyline queries for uncertain database. Here, the exact values
of the objects are not known at the point of processing.
Consequently, one cannot derive the exact skyline but can
only compute the probability of an object being a skyline
member. On the other hand, the works by [81] and [82]
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attempt to solve the issues related to uncertain data in a data
stream. Processing such data is challenging due to the objects
in the stream arrive online and data streams are potentially
unbounded in size. Besides, the work by [52] focuses on
dynamic database. Nonetheless, these skyline algorithms are
specifically designed to cater only a single user query, i.e.
only a single user’s preferences is considered in the skyline
computation.

Skyline algorithms for a group of users — These skyline
algorithms compute the skyline objects of a group of users
from a potentially large multi-dimensional set of objects.
As we assume that the objects are static, hence we further
elaborate only those works that are similar to our intention.
To the best of our knowledge the only works that contribute
to skyline queries for a group of users are the works done
by [60], [61], and [63]. In processing spatial skyline query
for a group of users, two algorithms are proposed by [60],
namely: B2S? and VS?. Both algorithms assumed that the
user points are static. The B2S? algorithm utilises the R-
tree while the VS? algorithm utilises the Voronoi diagram.
Then, [61] proposed the VCS? algorithm which enhanced the
work by [60]. VCS? algorithm aims at processing skyline
query by taking into consideration the movements of the
users. However, VCS? only calculates the last location of
the users and does not consider the changes of locations to
prevent recalculation of the skylines. In [63], the authors
proposed the VR algorithm, that combined two data structures
as used in [61], R-tree and Voronoi, in order to find spatial
skylines for a group of user points. In their work, both the
user points and objects are considered static. While the spatial
and non-spatial attributes of the objects are analysed to find
the skylines. Meanwhile, our previous solution, SGMU [83],
is designed with the main aim to continuously derive skylines
for a group of mobile users.

Although [60], [61], [63], [83] considered the spatial
attributes of the group of users in determining the skylines,
but there is no attempt made to avoid rescanning of objects of
previously visited regions and simultaneously avoid repeat-
ing the process of pairwise comparisons among the objects.

Ill. DEFINITIONS AND NOTATIONS

In this section, we present the necessary definitions and
introduce the notations that are used throughout this paper.
First, we give the definitions that are related to RSGU. This
is then followed with definitions of RSGU that are modi-
fied/extended to suit with the ERSGU’s solution. Examples
are provided where necessary to further clarify the defini-
tions. A formal definition of the problem addressed by each
solution is then put forward at the end of each section.

A. PRELIMINARIES OF RSGU

To clarify the concepts and steps proposed in this work, the
following sample of data is used. Table 1(a) and Table 1(b)
present the spatial attribute (Location) of the users of group a,
G,, and group b, Gy, respectively. Here, the request submitted
by G, is assumed at time #,, while the request submitted
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TABLE 1. The spatial attribute of the users.

1D Location 1D Location
t (8.8 t 5.8
Uz (14, 16) Uz (10, 10)
Us 2,95 Us (18, 10)
(a) Groupa, G, (b) Group b, G,

TABLE 2. The spatial and non-spatial attributes of the objects.

Restaurant Location Rate Price Restaurant Location Rate Price
01 (2,3) 3 70 0y4 (4,133) 3 75
0, 3.4 4 65 025 (7,13) 1 90
o (3.1) 5 30 056 (16, 15) 2 86
04 (7,1.7) 2 75 0y7 (20, 14) 5 80
05 (6,5) 3 65 055 (23,20) 3 60
0¢ (7.7) 5 70 029 (21,21) 5 62
o. (9, 8) 1 30 039 (17,23) 4 95
0y (8,.9.7) 2 35 031 (14, 20) 2 65
09 (7,11) 4 73 0; (13,18) 2 55
019 (10,5) 3 50 o (10,19) 3 70
011 (107, 6) 1 65 034 (1, 16) 4 62
017 (15,2) 2 80 035 (3,22) 4 81
0, (17,1) 5 105 036 (7,20) 3 90
0,4 (22, 4.7) 4 90 0. (24, 15) 2 66
015 (17,5.7) 3 35 039 (:3,-1) 1 57
016 (20,7) 4 90 039 L7 1 61
o0, (23,9) 1 55 049 (103,13) 4 71
018 (16, 8) 2 54 041 (4.4 3 98
010 (14, 10) 4 30 04 (8.-2) 2 58
050 (11,9.7) 5 56 043 (8, 18) 2 85
071 (4,10) 3 67 044 (-2,10) 4 70
o. (2,12) 5 100 [ 3,-1) 5 80
033 (3,13) 4 74

by Gj is at time #, where t, < ft,. Table 2 presents the
spatial (Location) and non-spatial (Rate, Price) attributes of
the objects. For the non-spatial attributes, it is assumed that
higher rate and lower price are preferable.

Given a data set D = < R,U,O >, where U =
{ur, up, ..., u,}is alist of n users, O = {01, 02, ...,0,}is a
list of m objects, and R =< Ag, Ay > where Ag representing
a spatial attribute while Ay = {d,d>,...,d;} is a set of
non-spatial attributes. The following definitions defined the
properties of a user and an object as used in this work.

Definition 1 (Property of a User): Each user, u; € U,
is associated with a spatial attribute which represents the
location of the user at a time, . This is denoted as u;(x;, ;).
For instance, u;(8, 8) of Table 1(a) denotes the location of
user u; at time t,.

Definition 2 (Properties of an Object): Each object 0; € O
has two main elements denoted by o; = (s, ns;) where s;
is the value of spatial attribute (location), As, and ns; =
{oj.d1,0j.d>, ...,0;.d;} is a set of values of non-spatial
attributes, Ay, associated to o;. The location of an object
0oj € O is denoted as 0j(xj, y;). As each object 0o; € O
is assumed to be static, thus the location of the object is
fixed regardless the changes in time. Hence, 0; = (s}, ns;)
can be written as o; = ((xj,¥)),{0j.d1,0j.d>, ..., 0;.dD}.
For instance, the object o1 of Table 2 can be written as
o1 =((2,3),{3,70).

The following definitions defined the notion of dominance
in this work.
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Definition 3 (Dominance®): Given two objects o; =
(si,ns;) and 0; = (sj,ns;)) € O where i # j, o; is said to
dominate o; (denoted by o; < o)) if and only if both of the
following conditions hold: (1) o; non-spatially dominates o;
(0i <ps 0j) and (2) o; spatially dominates o; (0; <; 0;).

Definition 4 (Non-spatial Dominance): Given two objects
oj = (si,ns;) and 0o; = (sj,ns;)) € O where i # j, o; is
said to non-spatially dominate o; (denoted by 0; <us 0;) if
and only if o; is no worse than (in this definition, greater
value is preferable) o; in all the non-spatial attributes, Ay.
This is formally written as follows: 0; <, o; if and only if
Vd, € Ay, o0;.dy > oj.diy AN 3d; € Ay, 0;.d; > 0j.d;. For
instance, given o = ((7, 7), {5, 70}) and o012 = ((15, 2),
{2, 80}), 06 <ns 012 since og is better than o7 in both the
dimensions Rate and Price; with the assumption that higher
rate and lower price are preferable.

Definition 5 (Spatial Dominance): Given two objects 0; =
(si,ns;) and o; = (sj,ns;)) € O where i # j, o; is said
to spatially dominate o; (denoted by o; < o)) if and only
if for every user u; € U, the distance between o; and uy,
dist (0;, ux) , is no worse than the distance between o; and uy,
dist (0j, u). This is formally written as follows: 0; <, o; if
and only if Vi € U, dist (0;, uy) < dist (0j, u) A Ju; €
U, dist(oj, u;) < dist (oj, ul). For instance, the distances
between o1 = ((2, 3), {3, 70}) and uy, up, and u3 of group
G, are 7.81, 17.69, and 2, respectively; while the distances
between 0y = ((3, 4), {4, 65}) and u1, up, and u3 of group G,
are 6.4, 16.27, and 1.41, respectively. Thus, 0y <; 01.

Definition 6 (Dominance in a Space): Given a bounded
space, S (region, MBR, fragment, area, polygon, etc.), and
two objects o; = (s, ns;) and 0; = (sj, ns;) € O where i # j
in S, o; is said to dominate o; (denoted by 0; < 0;) in § if
and only if (1) o; non-spatially dominates o; (0; <us 0;) in S
and (2) o; spatially dominates o; (0; <5 0j) in S.

Definition 7 (Skylines of a Space): An object 0; € O in a
space S is a skyline of S if there are no other objects 0; € O
where i # j in the space S that dominates o;. In this paper,
Skpr is used to denote the skyline set for the group G, of a
given space S.

Based on the above definitions, the problem that is tackled
by RSGU is formulated as follows:

Given a group of users, G, = {uy,uz, ..., up}, where
G, C U, and the candidate skylines of G, in region R,
denoted as CSg,. Find the skylines of a group of users G; =
{ur,uz, ..., ugs} in region Ry, ie. CSGq, where G, C U,
Gy # Gp, and R; N R, # { by utilising CSg, that has
been derived for G,. This is depicted in Fig. 1 where the area
covered to compute the skylines for G, that falls in the region
Sc , can be reduced to the area defined by Sg .~ SG, while
the results of skyline computation that have been performed
earlier over the area SGp N qu for G, can be avoided by
simply utilising the obtained results derived for G, i.e. CSg,.

SWithout loss of generality, the definition is applicable for a given bounded
space, S, i.e. O is a set of objects in the space S. Similar note applies for
Definition 4 and Definition 5.
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FIGURE 1. The reduction area in deriving skylines for a group of users.

TABLE 3. The spatial attribute of the interesting objects.

ID Location
IN;_4 (10, 7)
IN;_, (5,12)
IN,_3 (3, 15)
IN,_4 2.5,9)
N, | (8.4)
IN,_5 | (11.5,3)
IN;_4 (16, 10)
IN;_, 4,11)
IN;_5 9,6.5)

B. PRELIMINARIES OF ERSGU

Since ERSGU is an extended framework of RSGU, thus the
concepts, terms, and notations introduced and clarified in Part
A above are applied here. Also, the sample of data given in
Table 1 and Table 2 will be referred to as example to clarify
the steps of ERSGU. Therefore, the definitions of property of
a user, properties of an object, non-spatial dominance, spa-
tial dominance, non-spatial dominance of the fragment Fy,
and candidate skylines of the fragment Fj are omitted here;
readers can easily refer to their definitions in Part A. Never-
theless, three new definitions are included that are Definition
10 Property of an Interesting Object, Definition 11 Closest
Property of a t Type of Interesting Objects, and Definition 13
p-Closest Dominance. These are further elaborated below.

Given a set of p distinct types of interesting objects,
IN ={INy,IN>,...,INp},where IN; = {IN;—1,IN;—, ...,
IN;_,} is a list of n interesting objects of type ¢. The notation
IN;_; is used to denote the /-th interesting object of type 7.

Definition 10 (Property of an Interesting Object): Each
interesting object, IN;_; € IN,, is associated with a spa-
tial attribute which represents the location of the interesting
object. This is denoted as IN;_;(x;, y;).

Table 3 presents samples of interesting objects that are used
throughout this paper. There are three types of interesting
objects with each type having three objects. The IN>_3 in
Table 3 represents the third object of type 2 with location
(11.5, 3).

Definition 11 (Closest Property of a t Type of Interest-
ing Objects): Given a set of ¢ type of interesting objects,
IN;, = {IN;,_1,IN;_>,...,IN,_,},IN,_; is said to be the
closest interesting object to an object 0; € O if and only if
min(dist(oj, IN;_1), dist(0j, IN;,_3), ..., dist(0j, IN;_)) =
dist(0j, IN,_;). Therefore, each object 0; € O is associated
with p interesting objects that are closest to it, with their
distances captured.

VOLUME 10, 2022
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The Definition 3 Dominance, Definition 6 Dominance in a
Space, and Definition 7 Skylines of a Space defined in Part
A are extended to incorporate the additional condition on
interesting objects. These are reflected in Definition 12 Dom-
inance, Definition 14 Dominance in a Space, and Definition
15 Skylines of a Space, respectively.

Definition 12 (Dominance): Given two objects 0; =
(si,ns;) and 0j = (sj,ns;)) € O where i # j, o; is said to
dominate o; (denoted by 0; < o)) if and only if the following
conditions hold: (1) o; non-spatially dominates o; (0; <ns 0}),
(2) o; spatially dominates o; (0; < 0;), and (3) o; dominates
o;j with p-closest interesting objects (0; <s—iy 0;).

The definition of non-spatially dominate (condition (1))
is as given in Definition 5; while the definition of spatially
dominate (condition (2)) is as given in Definition 6 of Part A.
Meanwhile, Definition 13 p-Closest Dominance is introduced
to cater the condition (3) defined in Definition 12 Dominance.

Definition 13 (p-Closest Dominance): Given two objects
oj = (si,ns;)) and o; = (sj,ns;)) € O where i # j, 0; is
said to dominate o; with p interesting objects (denoted by
0j <s—iv 0j) if and only if o; is no worse than o; in all
the p types of interesting objects. This is formally written as
follows: 0; <;— v ojif and only if Vt € p, 0;.t < 0j.t A3s €
P, 0i.§ < 0j.5.

Definition 14 (Dominance in a Space): Given a bounded
space, S (region, MBR, fragment, area, polygon, etc.), and
two objects 0; = (s;, ns;) and 0; = (sj, ns;) € O where i # j
in S, o; is said to dominate o; (denoted by 0; < 0;) in § if and
only if (1) o; non-spatially dominates o; (0; <ps 0j) in S, (2)
o; spatially dominates o; (0; <y 0;) in S, and 0; dominates o;
with p-closest interesting objects (0; <5y 0;) in S.

Definition 15 (Skylines of a Space): An object o; € O in a
space S is a skyline of § if there are no other objects 0; € O
where i # j in the space S that dominates o;. In this paper,
Skpr is used to denote the skyline set for the group G, of a
given space S.

Based on the above definitions, the problem that is tackled
by ERSGU is formulated as follows:

Given a group of users, G, = {uj,uz, ..., uy}, where
G, C U, and the candidate skylines of G, in region R,
denoted as CSg, . Find the skylines of a group of users G4 =
{u1,u2, ..., ug} in region Ry, i.e. CS(;q, where G, C U,
G4 # Gp, and Ry N R, # () by utilising CSg, that has been
derived for G). Note that the CS ¢, has been derived based on
the objects’ spatial and non-spatial attributes as well as their
p-closest interesting objects. The area covered to compute the
skylines for G, that falls in the region Sg, can be reduced to
the area defined by Sg, — Sg,. while the results of skyline
computation that have been performed earlier over the area
SG, N Sg, for G, can be avoided by simply utilising the
obtained results derived for G, i.e. CS Gp-

IV. THE RSGU FRAMEWORK

This section presents the Region-based Skyline for a Group
of Users (RSGU) framework that is mainly proposed for
processing the skyline queries of a given group of users;
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with two main aims that are (i) avoiding the process of
rescanning the set of objects within a predetermined region
that is known to have been previously visited by a group of
users and (ii) avoiding the recomputation of skylines of a set
of objects within a predetermined region that has been anal-
ysed in earlier computations of previously visited group of
users. Consequently, the number of pairwise comparisons and
skyline computation time can be greatly reduced. To achieve
these aims, each region is partitioned into smaller units called
fragments in such a way that overlapping areas between the
currently and previously visited regions can be easily deter-
mined; hence rescanning the set of objects within these over-
lapping areas can be avoided. The results of computing the
skylines of each fragment, known as fragment skylines, are
saved to be utilised by the subsequent requests. This avoids
the need to recompute the skylines of subsequent requests
that fall within the same region. In this work, skylines objects
are point of interests (Pols) that are recommended to a group
of users that are derived by analysing both the locations of
the users, i.e. spatial attributes, as well as the spatial and
non-spatial attributes of the set of objects that is within a
predetermined region of the group of users.
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FIGURE 2. Example of (a) previously analysed region (b) current region.

Fig. 2 simulates a sample of situation considered in this
paper. There are 15 distinct objects representing point of
interests (Pols). Fig. 2(a) presents the region that is derived
based on the locations of a group of users while Fig. 2(b)
presents the region that is derived based on the locations
of a different group of users. For simplicity, these users are
not depicted in the figure. The derivation of these regions
is explained in the following sections. Here, the region pre-
sented in Fig. 2(b) is considered as the current visited region
while Fig. 2(a) represents the previously visited region.
As shown in Fig. 2(a) the set of objects that falls within
the derived region is {03, 04, 05, 06, 07, 09, 011, 013}. These
objects are then compared to recognise the final skylines to be
recommended to the group of users. Assume that the object o7
is the skyline object. Meanwhile, based on the region depicted
in Fig. 2(b), the set of objects that needs to be analysed
in order to derive the skyline objects is {01, 03, 04, 05, 06,
07, 08, 09}. From these figures, it is obvious that both regions
cover similar area and contain several common objects,
namely: {03, 04, 05, 06, 07, and 0g}. Attempting to rescan
the objects of previously visited region and recompute the
skylines of the regions (i.e. repeating the process of pairwise
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comparisons among objects) are undoubtedly unwise and
costly. In this example, to derive the skylines of {0y, 03, 04, 05,
06, 07, 08, 09} (Fig. 2(b)) would require pairwise comparisons
to be performed between these objects; while the objects 03,
04, 05, 0¢, 07, and o9 have been compared while they are
being analysed in identifying the skyline objects of the region
presented in Fig. 2(a).

Spatial attributes of users
Spatial attributes of objects, A
Identify the centroid

- Non-spatial attributes of
. objects, Ax

Search region

[ Construct a search region ]

Candidate skylines
Fragments
Search region

Candidate skylines
Fragments

Construct the fragments of a
search region
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‘ Construct the R-tree of the }
)
J
J
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[ Derive the non-spatial skylines

|

[ Derive the spatial skylines

1

[ Derive the final skylines

FIGURE 3. The Region-based Skyline for a Group of Users (RSGU)
framework.

The RSGU framework is presented in Fig. 3. It consists of
eight main steps that are: (1) Identify the centroid, (2) Con-
struct a search region, (3) Identify the overlapping region, (4)
Construct the fragments of a search region, (5) Construct the
R-tree of the fragments, (6) Derive the non-spatial skylines,
(7) Derive the spatial skylines, and (8) Derive the final sky-
lines. Step (3) is conducted only when past computed skyline
results of the fragments are available. Each of these steps is
elaborated in the following sections.
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FIGURE 4. (a) The direction of movements of a group of users towards a
point which is not the centre point (b) The direction of movements of a
group of users towards a point which has the tendency to be the centre
point.
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A. IDENTIFY THE CENTROID

When a group of users, G, = {uj, up, ..., uy}, decided to
meet, there must be a point to guide the direction of their
movements. Fig. 4 shows some examples of direction of
movements of a group of users towards a targeted point.
In Fig. 4(a), the users u;, uy, and u3 are moving towards the
object 012 while in Fig. 4(b), these users are moving towards
the object 07.

In this work, it is assumed that the group of users will
move towards a point that has the tendency to be a cen-
ter based on the users’ locations. This point is called cen-
troid and is denoted by CGp(pr, pr). The centroid of a
given group of users, Cg,, is determined using the following
formula [84], [85]:

iy Xi 2y Vi

Cg,(xg, = Y6 =T ) ()

where x; is the x coordinate of user u; location, y; is the y
coordinate of user u; location, xG, is the average of the x
coordinates of all users in the group Gy, and yg, is the average
of the y coordinates of all users in the group G,. Based on the
example given in Table 2, the centroid of G, is Cg, (8, 9.6).

B. CONSTRUCT A SEARCH REGION

The aim of constructing a search region is to limit the
searching space to those spaces in which potential candidate
skyline objects are derived. Hence, given a group of users,
the searching space should include the regions of interest of
all users in the group. This is achieved by: (1) identifying the
search region for each user, S, and (i) identifying the search
region given a group of users, Sg, .

Identify the search region for each user, S, — Since the
centroid of a given group of users, say Cg,, which s identified
in the previous step does not necessarily contain an object,
therefore the nearest object, oy, to the centroid CGP will have
to be determined. The nearest object is an object with the
shortest Euclidean distance from the centroid, i.e. {0,|0, €
O AVYo; € O — {o,}: Ed(CGP, 0,) < Ed(CGP, 0;)} where
Ed is the Euclidean distance function. Based on the example
given in Table 1(a), the nearest object to the centroid of G,
i.e. Cg,(8,9.6),is 0g(8, 9.7). The search region for a user, u;,
denoted as S, is the area bounded by a rectangle also known
as the minimum bounding rectangle, MBR,,. The notation
Sy, 1s used to denote the search region of u; while MBR,,, is
used in forming the S,,. The distance between a user, u;, and
the nearest object, 0,, denoted by R,,,,, is calculated by the
following equation:

Ruion=\/(xo,, - xi)2 + ()70,1 - yi)2 2)

where x; is the x coordinate of user u; location, y; is the y
coordinate of user u; location, x,, is the x coordinate of object
0y, location, and y,, is the y coordinate of object o, location.
A MBR is formed based on four vertices as explained in the
following: the vertex at the bottom left of the MBR is denoted
by bl = (xp1, yp1); the vertex at the bottom right of the MBR
is denoted by br = (xp,, ypr); the vertex at the top left of the
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FIGURE 5. Minimum bounding rectangle (MBR).

MBR is denoted by 1l = (x4, yy); and the vertex at the top
right of the MBR is denoted by tr = (x;, ;). Fig. 5 depicts
these notations. These vertices are calculated as follows:

bl = (x; — Ruy;0,, i — Rujo,)
br = (x; + Ru0,, ¥i — Rujo,)
tl = (x;i — Ruy0,,¥i + Ruo,)
tr = (x,- + Ruy;0,, Vi + RuiOn)

Identify the search region given a group of users, Sg, —
This step is simply achieved by performing union on the
search region of each user in the group, i.e. Sg, = Uf: 1 Su;
An example of a search region Sg, = U?:] Sy; can be seen
in Fig. 6. The search region constructed in this step is saved
to be utilised later in identifying the overlapping region of
subsequent requests.

[

08 042 2186 8 FP 12114 10 18 20 22 20 | =2

FIGURE 6. The search region for a group of users.

C. CONSTRUCT THE FRAGMENTS OF A SEARCH REGION
This step partitions the search region of a group of users, S, ,
into m fragments (subspaces). Here, the vertices of the MBR
associated to each S, are analysed and sorted according to the
x- and y-axes. The search region (space) is vertically frag-
mented based on the x-coordinates, while it is horizontally
fragmented based on the y-coordinates. The MRBs formed
within the Sg, are the fragments of the region.

Objects that fall within each fragment are then identified.
Given an object, 0;(x;, yj), and a fragment, Fy, with bl(x;, yp),
br(xr, yp), tl(x, y;), and tr(x,, y;), the following cases are
identified:
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(@ Ifx;, < x; < x,andy, < yj < Y, then the object
0j(x;j, yj) is said to fall within the boundary of fragment,
Fy.

(b) If x; = x; orx; = x, ory; = yp or y; = y;, then the
object 0;(x;j, y;) is said to intersect with the boundary of
fragment, Fy.

(c) Objects that do not meet the above two cases are objects

that are outside the boundary of fragment, Fy.
Further, utilising the non-spatial dominance testing given

in Definition 8, an extension to the Definition 4, over the set
of objects that satisfies the cases (a) or (b) above, denoted
by Op,, the non-spatial candidate skylines of a fragment are
determined, CSnst , as defined by Definition 9.

Definition 8 (Non-Spatial Dominance of the Fragment Fy):
Given two objects o; = (s, ns;) € O, and o; = (s}, ns;) €
Of, where i # j, o; is said to non-spatially dominate o;
(denoted by 0; <us o)) if and only if o0; is no worse than
(in this definition, greater value is preferable) o; in all the
non-spatial attributes, Ay . This is formally written as follows:
0; <ps 0j if and Ol’lly if Vdy € Ay, 0;.dy > Oj.dk A 3d; € Ay,
o0i.d; > 0;.dj.

Definition 9 (Candidate Skylines of the Fragment Fy): An
object o; € Opf, in a space Fy is a non-spatial candidate
skyline of Fy if there are no other objects 0o; € Of, where
i # j in the space F that non-spatially dominates o;.
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FIGURE 7. The fragments derived based on the S¢,, given in Fig. 6.

This will avoid rescanning the objects of the region and
repeating the process of pairwise comparisons among the
objects during the skyline computation of subsequent skyline
queries. Fig. 7 presents the fragments constructed based on
the Sg, given in Fig. 6. The x-coordinates = {-5.6, 0, 5.3,
6.3,9.6,9.7,22.7} and y-coordinates = {-2.6,0, 6.3,7.3,9.7,
12.6,24.7}. Altogether there are 28 fragments; some samples
are given in Table 4.

D. CONSTRUCT THE R-TREE OF THE FRAGMENTS

The aim of constructing the R-tree of the fragments is to
reduce the searching process time. An R-tree is a classified
data structure and it is used for dynamic classification of a set
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TABLE 4. Sample of fragments and their associated candidate skylines.

x y Fragment Cand'idate
Coordinate | Coordinate | bl(x,y,) | br(x,yp) | ti(x,yo) | tr(x,.,ye 7 ’ Objects skylines,
(xlt xr) (ybf yt) k Csnst
5.6,0 26,0 5.6,2.6 0,-2.6 56,0 |00 F 013 038
0,53 26,0 0,-2.6 53,26 0,0 53,0 F, 045 045
53,63 -2.6,0 53,-2.6 6.3,-2.6 53,0 6.3,0 F3 - -
6.3,9.6 26,0 6.3, 2.6 96,26 | 63,0 96,0 F, 04y 042
0,53 0,63 0,0 53,0 0,63 53,63 F, 04,05,04 0,05
9.7,22.7 73,247 97,73 227,73 | 97,247 | 22.7,24.7 Fpg 026, 027, 029, 03
029,030,
031,032,
033, 049
of d-dimensional coordination, rectangles or objects demon-
strating them by the minimum bounding d-dimensional rect- nIII
angles. Each node of the R-tree relates to the MBR that con-
fines its children. An R-tree of order (m, M) considering each
leaf node can have up to M entries, while the minimum per- elcld elelh

mitted number of entries is m <= M /2. All leaf nodes of the
R-tree are at the same level. The R-tree is constructed based on
the algorithms proposed by [84]. In this work, the following
algorithms are utilised during the construction of the R-tree:
Search, Insert, ChooseLeaf , SplitNode, and AdjustTree.

Based on Fig. 7 the MBRs constructed are as shown in
Fig. 8 while Fig. 9 shows the R-tree derived based on the
MBRs of the fragments.
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FIGURE 8. The MBRs derived based on the fragments of the S, given
in Fig. 7.

E. DERIVE THE NON-SPATIAL SKYLINES

This step performs the non-spatial dominance testing given
in Definition 8 Non-spatial Dominance of the Fragment Fy
towards the CSnsr, lists derived in the previous step, Con-
struct the Fragments of a Search Region, presented in Part C
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FIGURE 9. The R-tree derived based on the MBRs of the fragments given
in Fig. 8.

to generate the non-spatial skylines of a given group of users.
In other words, the pairwise comparisons are only performed
between objects that are the candidate skylines of a fragment.
The objects that non-spatially dominate the other objects,
given the CS,,SFi lists where i = {1, 2, ..., 28} in Table 4
are 01g and 079, thus Skynsca = {013, 020}.

F. DERIVE THE SPATIAL SKYLINES
This step applies the spatial dominance testing given in
Definition 5 Spatial Dominance towards the CSj,. lists.
First, the distance between each object, o;, and each ulser, uj,
is determined, denoted as o; — u;. Given a group of [ users,
there will be / values of distances with regard to the object o;,
i.e.0;—uy, 0;—uy, ..., o0;—u;. These values are treated as the
values of dimensions to be used in the spatial skyline compu-
tation. Then, the total distance between an object, o;, to each
user, u;j, in the group of users is calculated and saved into a
parameter named Sum Distance — o;, i.e. Sum Distance —o; =
Zﬁ;:l 0; — up. The value of Sum Distance — o; is used as a
selection criterion in determining the object that should be
considered in each iteration of the spatial skyline compu-
tation. The smallest value of Sum Distance — o; indirectly
indicates that most users in the group are close to the object
o; and has more chances to dominate the other objects.

An example is shown in Table 5 where the attributes o; —
ui, o; — up, and o; — u3 are the distances of each object,
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TABLE 5. The distance and sum distance of each object in CS,.sFt.

0;i — Uy 0j — U3z

Restaurant | 0; —uq Sum Distance — o;
01 7.81 17.69 2 27.5
0, 6.4 16.27 1.41 24.08
03 8.6 18.6 4.12 31.32
04 6.37 15.92 5.99 28.28
05 3.6 13.6 4 21.2
[ 1.41 11.4 5.38 18.19
07 1 9.43 7.61 18.04
0g 1.7 8.7 7.62 18.02
[ 3.16 8.6 7.81 19.57
018 8 8.24 14.31 30.55
019 6.32 6 13 25.32
020 3.44 6.97 10.15 20.56
021 4.47 11.66 5.38 21.51
022 721 12.64 7 26.85
025 5.09 7.61 9.43 22.13
026 10.63 223 17.2 30.06
027 13.41 6.32 20.12 39.85
029 18.38 8.6 24.83 51.81
030 18.6 7.61 23.43 49.64
031 13.41 4 19.2 36.61
032 11.18 2.23 17.02 30.43
033 11.18 5 16.12 323
036 12.04 8.06 15.81 3591
03g 14.21 24.04 7.81 46.06
039 9.05 17.49 3.6 30.14
040 5.5 4.76 11.52 21.78
041 12.64 21.63 6.08 40.35
042 10 18.97 9.21 38.18
043 10 6.32 14.31 30.63
044 10.19 17.08 6.4 33.67
045 8.6 20.24 6.08 34.92

0;, and each user up, up, and u3, respectively; meanwhile
the Sum Distance — o; attribute presents the total distance
of an object to each user in the group of users. Here, og
will be the first object selected which is then followed by
07. The objects that spatially dominate the other objects,
given the CSpg;, lists in Table 4 are as listed in Skyy, =
{02, 05, 06, 07, 08, 09, 020, 025, 026, 032, 040}

G. DERIVE THE FINAL SKYLINES

This is the final step that combines the results produced
in the steps presented in Parts £ and F above. Based on
Definition 7 Skylines of a Space, the final skylines for a
given group G; is given by, Skyg, Skym,Gi U SkySGi.
Thus, the final skylines for the group G,, Skyg, =
{02, 05, 06, 07, 08, 09, 018, 020, 025, 026, 032, 040}.

H. IDENTIFY THE OVERLAPPING REGION

This step constructs the overlapping region, Og, between the
search regions of two groups of users, say Sg,; and Sg;. Here,
it is assumed that the results of the skyline queries of a group
of users, say G, have been derived. Thus, the overlapping
region indicates that the region has been scanned and it is
unwise to scan it again. Fig. 10 shows two search regions, Sg,,,
the polygon with black border line and Sg, , the polygon with
red border line which represent the search region of group
G, and group Gy, respectively. If there are more than one
search region that are available, {Sg;, Sg,, - . ., SG,,}, then the
overlapping area between Sg; and each of the available search
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FIGURE 10. The overlapping region between S¢, and SGb'

region is analysed and the region with the highest percentage
of overlapping area is selected in this step.

To identify the overlapping region, the following steps are
performed:

(1) Get the polygon’s vertices of Sg,. Based on the exam-
ple, SG, = {p1. P2, p3, P4, Ps, Pe. P7, P8, P9, pio}. Note
that for simplicity, the coordinates of the vertices are
omitted.

(2) Get the polygon’s vertices of S¢;. Based on the exam-
ple, Sg, = {41, 92. 43, 94, 5. 96, 47, g3}

(3) Get the vertices of Sg, that are also in Sg;. Based on the
example, /G,—G, = {p3, p4. Ps, P6. Po}-

(4) Get the vertices of SGJ, that are also in Sg;. Based on the
example, /,—G, = {41, g6, q7}-

(5) Get the coordinates where the edges of Sg;
and SGj meet. Based on the example, H =
{h1(9.6, 1.8), ha(11.2,7.3), h3(22.7, 17), h4(5.3, 14.2),
h5(—1.2.12.6)}.

(6) The overlapping region, Og, is defined as a polygon
derived based on the following vertices: Ig,—g, U
Ig,—G, U H. Based on the example, Op =
{h1, p3, p4, ps, ha, pe. h3, g6, 7, ha, po, hs, q1}.

Once the Og has been defined, the fragments derived in
the earlier step are analysed. Those fragments that fall within
the Og; are retrieved together with their candidate skylines,
CS nsg - To search for the fragments that are within the Og,
the R-tree constructed in Part D is traversed starting from
the root node. The search is based on the depth-first search
tree traversal algorithm. The following rules are applied:
(i) If the visited node, v,, is an internal node (example, the
node with the a, b, ¢, d entries of Fig. 9), then each entry
of the internal node, e;.v,, is examined (example a). If the
entry (example a) overlaps with Og, then rules (i) and (ii)
are applied accordingly over the entry, e;.v,; (ii) If the vis-
ited node, v,, is a leaf node (example, the node with the
F1, Fy, F3, F4 entries of Fig. 9), then each entry of the
leaf node, e;.v,, is examined. If the entry overlaps with Og,
then it is one of the fragments that will be retrieved for
further analysis. Hence, scanning this area is no longer nec-
essary. While for the non-overlapping area, denoted as —Okg,
the following steps as discussed above will be conducted:
(4) Construct the fragments of the non-overlapping region,
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ie. 7Op = SG — Or (5 and 6) Derive non-spatial skylines
and spatial skylznes respectively by considering both the lists
CSog and CS—o,, and (7) Derive the final skylines.

V. THE ERSGU FRAMEWORK

This section presents the Extended Region-based Skyline for a
Group of Users (ERSGU) framework, an enhancement of the
previous framework, RSGU, presented in Section IV. RSGU
is designed for processing the skyline queries of a given group
of users. RSGU attempts to avoid the process of rescanning
the set of objects and the recomputation of skylines of a set of
objects that is within a predetermined region that is known to
have been previously visited by a group of users. As a result,
the number of pairwise comparisons and skyline computation
time can be greatly reduced. ERSGU has similar aims as
RSGU with an additional feature. The skylines derived for a
group of users by ERSGU are not only based on the evaluation
of the spatial and non-spatial attributes of the objects that
are within the predetermined region, but also the closeness
of the objects to the desirable facilities or other interesting
objects in the region. An example of object of interest is
hotel while other desirable facilities/interesting objects are
clinic, bus station, airport, etc. This would benefit the users,
since they might want to visit a place where there are several
other useful facilities or interesting objects (for simplicity,
henceforth referred to as interesting objects) nearby. Hence,
the skylines, which are the objects recommended to be visited
by the group of users, are derived by analysing both the
locations of the users, i.e. spatial attributes, as well as the
spatial and non-spatial attributes of the objects along with
the closeness of the objects to other interesting objects.
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FIGURE 11. Example of (a) previously analysed region (b) current region
with interesting objects/facilities.

Fig. 11 simulates a sample of situation considered in this
paper which is similar to the sample of situation described in
Fig. 2. Besides, the 15 distinct objects representing objects
of interest (A), several other interesting objects are also pre-
sented. The symbols (%), (e), and (¢) in the figure represent
the distinct types of interesting objects. Fig. 11(a) presents the
previously visited region that is derived based on the locations
of a group of users in which the skylines of the region have
been derived; while Fig. 11(b) presents the current visited
region that is derived based on the locations of a different
group of users in which the skylines are to be identified.
As shown in Fig. 11(a) and Fig. 11(b) the sets of objects
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that fall within the derived regions are {03, 04, 05, 06, 07,
09, 011, 013} and {01, 03, 04, 05, 06, 07, 08, 09}, respectively.
Each set of objects is then compared not only based on
the objects’ spatial and non-spatial attributes but also how
close are they to the other interesting objects before the final
skylines are recommended to the group of users. The object
o7 for instance is near to several interesting objects compared
to the objects 04 and 0g. From these figures, it is obvious that
both regions cover similar area and contain several common
objects, namely: 03, 04, 05, 0¢, 07, and 0g9. Hence, attempting
to rescan the objects of previously visited region and recom-
pute the skylines of the region (i.e. repeating the process
of pairwise comparisons among objects) are undoubtedly
unwise and costly. This is because not only the objects’ spatial
and non-spatial attributes will be analysed again but also all
the other interesting objects that are close to the objects need
to be reexplored.

RSGU

Spatial attributes of users
Spatial attributes of objects,
As

Non-spatial attributes of
s
Tdentify the centroid ]
‘ )

Search region

Construct a search region

Candidate skylines l
Fragments
Search region

Construct the fragments of a
search region

|

Fr
_( Construct the R-tree of fragments

DB

F Y %

Derive the non-spatial skylines

|

[ Derive the spatial skylines

lr

Derive the candidate skylines

Cnndlrlnte skylines

| S W

!

Derive the final skylines ]

Spatial attributes of interesting facilities [

FIGURE 12. The extended region-based skyline for a Group of users
(ERSGU) framework.

The ERSGU framework is presented in Fig. 12. It con-
sists of nine main steps that are: (1) Identify the centroid,
(2) Construct a search region, (3) Identify the overlapping
region, (4) Construct the fragments of a search region, (5)
Construct the R-tree of the fragments, (6) Derive the non-
spatial skylines, (7) Derive the spatial skylines, (8) Derive the
candidate skylines, and (9) Derive the final skylines. Steps (1)
till (7) are the same steps as RSGU, while Step (8) Derive the
final skylines of RSGU is renamed as (8) Derive the candidate
skylines without any changes with regard to the step. Step
(9) Derive the final skylines is the new step incorporated
into ERSGU. Hence, only Step (8) and Step (9) of ERSGU
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will be further discussed while the earlier seven steps are as
explained in Section IV.

A. DERIVE THE CANDIDATE SKYLINES

This step combines the results produced in the steps pre-
sented in Section IV Parts E and F. Based on Definition 7,
the candidate skylines for a given group G; is given by,
C —Skyg, = Skynmi U Skysci. Thus, referring to the
same example given in Section IV, the candidate skylines
for the group G4, C — Skyg, = {02, 05, 06, 07, 08, 09, 018,
020, 025, 026, 032, 040}

B. DERIVE THE FINAL SKYLINES
The final step of ERSGU attempts to derive the final sky-
lines based on the list of candidate skylines produced in
Step (8). The candidate skylines are those objects that are not
dominated by any other objects based on the two conditions
defined in Definition 12 Dominance. These conditions are (1)
o; non-spatially dominates o0; (0; <ys 0;) and (2) o; spatially
dominates o; (0; <y 0;j). The final skylines are derived
based on the candidate skylines obtained above in which
condition (3) of Definition 12 Dominance is satisfied, i.e. o;
dominates o; with p-closest interesting objects (0; <s—v 0}).
To clarify this step, consider the group of users, G, and its
searchregion, Sg,, as given in Table 1 and Fig. 6, respectively.
Assume that the interesting objects that fall within the region
of Sg, are as presented in Fig. 13 with their detail locations
presented in Table 3. In this example, the following are
assumed:

18 0032
1 N1z
14 X ﬁDzﬁ
. N @ 025 @0
IN32m od® N3
10 208 2020 2
A
8 IN2-1 7 °
018
og"
ney M
o o
4 5
o® A
INz-z A
2 INz.3
) —
2 4 6 8 10 12 18

FIGURE 13. Locations of the interesting objects in the region Sg,, .

1) Only candidate skylines produced in Step (8) are
presented in the figure, i.e. C — SkyGa = {0, 0s,
06, 07, 08, 09, 018, 020, 025, 026, 032, 040}

These objects are denoted as circles.

2) There are three types of interesting objects symbolised
by star (type 1), triangle (type 2), and rectangular
(type 3).

Each type of interesting object has three objects. The
notation IN,_; is used to denote the [/-th interesting object
of type t. Hence, IN1 = {IN1-1,IN1—2,IN -3}, IN, =
{IN2—1,IN2_3,IN>_3}, and IN3 = {IN3_1,IN3_2,IN3_3}
represent the set of interesting objects of type 1, 2, and 3,
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TABLE 6. The distances between each C — Skyg, and IN.

ID | INy_y |INy_ | INy_3 | IN,_4 | IN;_ | IN;_3 | IN3_4 | IN3_, | IN3_3
0, | 7.61 8.24 11 5.02 5 8.55 | 1431 | 7.07 6.5
os | 447 7.07 | 1044 | 531 2.23 585 | 11.18 | 6.32 3.35
0 3 5.38 8.94 4.92 3.16 6.02 9.48 5 2.06
0, 1.41 5.65 9.21 6.57 4.12 5.59 7.28 5.83 L5
og | 3.36 3.78 7.28 5.54 5.7 7.55 8 42 3.35
09 3 223 5.65 4.92 7.07 9.17 9.05 3 4.92

05| 608 | 1170 | 1476 | 13.53 | 8.94 | 6.72 2 | 1236 | 7.15
00| 287 | 642 | 959 | 852 | 644 | 6.71 5 711 | 3.77
0p5 | 670 | 223 | 447 | 6.02 | 9.05 | 1096 | 9.48 | 3.60 | 6.80
06| 10 | 1140 | 13 | 1477 | 1360 | 1281 | 5 12.64 | 11.01

03, | 11.40 10 10.44 | 13.82 | 14.86 | 15.07 | 8.54 | 11.40 | 12.17
040 6 539 7.56 8.76 9.28 | 10.07 | 6.44 6.60 6.62

respectively. The locations of each of these objects are as
given in Table 3.

Given a set of candidate skylines for a group of users,
C— SkyGl. = {01, 02, ..., 0y} and a set of p distinct type of
interesting objects, IN = {IN, IN3, ..., IN,}, the following
steps are performed:

(a) For each oj € C — Sky, and for each set of 7 type of
interesting objects, IN, = {IN;_1,IN;_2, ..., IN,_,},
get the Euclidean distance between o; and IN;_,,
dist(oj, IN,_;). Hence, if there are y objects of can-
didate skylines and p types of interesting objects
with each type having approximately n objects, then
the number of distances that needs to be measured
~y x p x n. Table 6 shows the distances measured
for each 0; € C — Skyg, and each IN. Here, there are
12 x 9 = 108 distances that are captured.

(b) For each o; € C — Sky, and for each set of 7 type of
interesting objects, IN; = {IN;_1,IN;_2, ..., IN,_,},
the closest interesting object to the object o; is deter-
mined based on Definition 11 Closest Property of a t
Type of Interesting Objects. The distance of the closest
interesting object, say IN,_;, to o; is then captured. This
will produce an object o; with p values of distances
denoted as o; (cd 1,cda, ..., cd p) with cd}, represents
the closest distance of an interesting object of type &
to the object o;. Here, each p type can be regard as
a dimension while cd), is a value of the dimension p.
By applying Definition 11 Closest Property of a t Type
of Interesting Objects to the example given in Table 6,
the closest object of each type to each C — Skyg, is
as given in Table 7. Meanwhile, Table 8 presents the
closest distance values of each type to each C — Skyg, .
For instance, the closest interesting objects of types 1,
2, and 3 to op are IN|_1, IN>_>, and IN3_3, with
distances 7.61, 5, and 6.5, respectively.

(c) The final skylines are determined by performing the
conventional skyline algorithm over the candidate sky-
lines with p types of interesting objects as dimensions
and distances as the values used in the pairwise com-
parisons. Here, Definition 15 Skylines of a Space is
applied. For instance, 04(3, 3.16, 2.06) is said to dom-
inate 03(7.61, 5, 6.5) since V¢t € {1, 2, 3}, 0.t < 03.1.
However, 09(2.23, 4.92, 3) and 015(6.08, 6.72, 2) are
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TABLE 7. The closest object of each type to each C — Skyg;.

ID [INy 4 | INy_, | INy_3 | IN;_q | INy_; | INy_3 | IN3_y | IN3_, | IN5_3
0, | 7.61 P - - 5 - . - 6.5
o0 | 447 P s . 2.23 2 = . 335
0, | 3 - - - 3.16 - - - 2.06
0, | 141 - - - 4.12 - - - 1.5
og | 3.36 5 = 5.54 = s - = 3.35
0, - 2.23 - 4.92 - - - 3 -
0,5 | 6.08 = = - = 6.72 2 = -
0,0 | 2.87 - - - 6.44 - - . 3.77
os5| = 223 : 6.02 - - > 3.60 .
0,6 | 10 - - 1281 5

052 | - 10 p 1382 - . 8.54

00 | - 539 2 8.76 . = 6.44

said not to dominate each other as o9 is better than
o018 in type 1 and type 2 and worse than o3 in type
3. Consequently, o5 dominates 03, 07 dominates og, 09,
018, 020, 025, 026, 032, an 04¢; While og is not dominated
by any other objects. As a result, the final skylines,
Skyg, ={0s, 06, 07}.

VI. RESULTS AND DISCUSSION

A. EXPERIMENTAL SETTINGS

To fairly evaluate the performance and prove the efficiency
of RSGU and ERSGU, several extensive experiments are
designed. These experiments are conducted on Intel Core i7
3.6GHz processor with 32GB of RAM and Windows 8 pro-
fessional. The implementation of RSGU and ERSGU was
done on VB.NET 2013. The performance results of RSGU
and ERSGU are compared to the VR algorithm proposed
by [63]. To the best of our knowledge, the works that are
closely related to our work are by [60], [61], [62], and [63];
with [63] being the most recent among the list above.

In validating the correctness of RSGU, the following is
conducted: The VR algorithm and the RSGU framework were
run over a given data set and a group of users, G, to derive a
set of skylines, Sky; — VR and Skyg, — RSGU, respectively.
Then, given another group of users, Gp, the VR algorithm
and the RSGU framework were run again and the set of
skylines produced, namely: Skyg, — VR and Skyg, — RSGU
are recorded. Intuitively, the correctness of RSGU is proven
as the skyline objects produced by the VR algorithm, Sky¢, —
VR, is equal to the skyline objects produced by the RSGU
framework, i.e. SkyGa — VR = SkyG(Z — RSGU. Similarly,
Skyg, — VR = Skyg, — RSGU.

Meanwhile, the correctness of ERSGU framework could
not be verified since both the VR algorithm and the RSGU
framework that utilised the same evaluation criteria do not
consider the closeness of the objects to other interesting
objects. Undoubtedly, the skyline objects produced by the
ERSGU framework are different from those produced by the
VR algorithm and the RSGU framework.

Two types of data sets are used in the experiments, namely:
synthetic and TIGER data sets. The synthetic data set is used
to simulate several experimental settings to reflect all possible
real settings. The synthetic data set is generated in such a way
that all objects are independent with uniform distribution.
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TABLE 8. The closest distance value of type 1, 2, and 3 to each C — Skyg,,.

ID IN, IN, IN,
0, 7.61 5 6.5
P 4.47 2.23 3.35
og 3 3.16 2.06
0, 1.41 4.12 1.5
og 3.36 5.54 3.35
0o 2.23 4.92 3

015 6.08 6.72 2

020 2.87 6.44 3.77
Oz 223 6.02 3.60
026 10 12.81 5

P 10 13.82 | 854
040 5.39 8.76 6.44

This is in line with the settings used in previous works [60],
[61], [63]. In addition, in skyline queries, the synthetic data
set is commonly used by previous researchers in evaluating
the performance of their proposed approaches [70], [4], [81],
[72], [73], [54], [51], [55], [59], [52]. On the other hand,
the TIGER data set is a real data set from the line segment
data of Long Beach. It is used by previous works that are
related to spatial skyline queries [60], [61], [63]. The set of
objects is prepared by extracting the midpoint of each road
line segment. The data set contains 50,747 objects. There
are 8 different types of objects, namely: hospital, restaurant,
church, school, institution, building, hotel, and populated
place. Each type of object has a different number of objects,
a different list of non-spatial attributes, and spatial attributes.
Skyline computation requires objects to be of same arity
while the domination test is performed only on numerical
values. Since rate and price are the only dimensions with
numerical values, thus these dimensions are used as the
evaluation criteria of the skyline computation.

Each experiment is run 10 times and the average value
of these runs is reported. In deriving the set of skylines,
it is assumed that lower values are preferable compared
to higher ones. The performance measurement used in the
experiments is processing time as it is the most commonly
used measurement in evaluating the performance of skyline
algorithm [63]. The processing time is evaluated for different
parameter settings that are:

(i) number of users in a group — which is varied with

minimum 4 users and maximum 25 users,

(i) number of groups of users — which is varied with
minimum 2 groups and maximum 32 groups,

(iii) overlapping region — the overlapped regions between
different groups of users are controlled with 20%, 40%,
60%, 80%, and 100% of overlapped,

(iv) space size — the space area of the synthetic and TIGER
data sets is as presented in Table 9,

(v) density — for the TIGER data set, the density of the

objects is set to 0.56%, 1.60%, 7%, 15%, and 34%,

(vi) dimensionality — for both the TIGER and synthetic data
sets, the number of dimensions is varied with 2, 4, 6, 8,
and 10 dimension, and

(vii) number of objects — the initial size of the Long Beach
from the TIGER data set is 50,747 objects while the
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TABLE 9. The parameter settings of the synthetic and TIGER data sets.

Parameter Data Sets

Settings Synthetic Long Beach Tiger
Number of 2,4,6,8,10 2,4,6,8,10
dimensions

Number of 2,4,8,16,32 2,4,8,16,32
Groups of Users

Number of 4, 8,15, 20,25 4,8, 15, 20,25

Users in Groups

Percentage of 20%, 40%, 60%, 20%, 40%, 60%,

Overlapping 80%, 100% 80%, 100%

Region

Number of 20,000, 50,000, 80,000 50,747

Objects

Space [0, 2501*[0, 250], [0, 250]*[0, 250],
[0, 500]*[0, 5007, [0, 500]*[0, 500],
[0, 750]*[0, 7501, [0, 750]*[0, 7501,
[0, 1000]*[0, 1000] [0, 1000]*[0, 1000]

Density - 0.56%, 1.60%, 7%,

15%, 34%

number of objects of the synthetic data set is varied with
50K as the minimum and 80K as the maximum number
of objects.
Meanwhile, the location of each user is randomly generated
within a given space size. These parameter settings are clearly
shown in Table 9 with values in bold representing the default
values.

B. THE EXPERIMENTAL RESULTS

This section presents the experimental results of the RSGU
and ERSGU frameworks that are designed with the aim at
deriving skyline objects of a group of users in a predetermined
region. The performance of both frameworks is measured
with regard to processing time with different parameter set-
tings as discussed in Part A and presented in Table 8. These
results are compared to the results of VR [63], based on the
synthetic and real data sets. Both the RSGU and ERSGU
frameworks derived skyline objects by analysing the loca-
tions of the users, i.e. spatial attributes, as well as the spatial
and non-spatial attributes of the set of objects that is within a
predetermined region of the group of users. However, in the
ERSGU framework, the closeness of an object to the desirable
facilities or other interesting objects in the region is also con-
sidered. Both frameworks work by partitioning the region into
smaller units called fragments in such a way that overlapping
areas between the current and previous visited regions can
be easily determined. The results of computing the skylines
of each fragment, known as fragment skylines, are saved and
utilised in the skyline computation of subsequent requests.
Meanwhile, the VR algorithm is performed repeatedly for
each group of user’s query without exploiting the previous
skyline computation results.

Effect of Number of Groups of Users — The number of
groups of users is one of the factors that has significant
effect on the performance of skyline algorithms in processing
skyline queries of a group of users. In this section, the experi-
mental results of the proposed solutions, RSGU and ERSGU,
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and the previous algorithm, namely: VR [63] are illustrated,
for both the synthetic and TIGER data sets with respect to
processing time, by varying the number of groups of users
from 2 — 32 as applied in [63]. The parameter settings for the
synthetic data set are as follows: the number of dimensions is
set to 6, the number of users in a group is set to 15 in a fixed
space [0, 1000]*[0, 1000] with 40% overlapping region, while
the number of objects is set to S0K. Meanwhile, the parameter
settings for the TIGER data set are as follows: the number of
dimensions is maintained to 2, the number of users in a group
is set to 15 in a fixed space [0, 1000]*[0, 1000] with 40%
overlapping region, while the number of objects is 50,747.
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FIGURE 14. The results of processing time with varying number of groups
of users.

Fig. 14(a) and 14(b) present the processing time achieved
by the RSGU, ERSGU, and VR algorithm [63] based on the
synthetic and TIGER data sets, respectively, with the number
of groups sets from 2 to 32 groups. The processing time is
calculated based on the following formula:

Zn ) processing time; 3)
=

where n is the number of groups in a run. For instance,
if the number of groups is 4, the processing time is calculated
as Zle processing time;. The VR algorithm is performed
repeatedly for each group of user’s query in which the prede-
termined region of a group is explored even though it has been
analysed during the skyline computation of the earlier groups.
Meanwhile, for both RSGU and ERSGU, only the fragment
skylines that are related to the identified overlapping area
need to be analysed.

Intuitively, when the number of groups increases, the
processing time also increases which can be clearly seen
through the performance of the RSGU, ERSGU, and VR algo-
rithm. Nonetheless, both RSGU and ERSGU show a steady
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performance for all runs with lesser processing time as com-
pared to the VR algorithm. The processing time of ERSGU
is slightly higher than RSGU since it has an additional
evaluation criterion to be analysed, i.e. the closeness of an
object to the desirable facilities or other interesting objects
in the region. Similar trends as presented in Fig. 14(a) can
be seen in Fig. 14(b). On the average, RSGU and ERSGU
gained 70% and 67% improvements for the synthetic data
set, respectively, and 72% and 69% for the TIGER data set,
respectively; compared to the VR algorithm.

Effect of Number of Objects — In this study, the effect of
number of objects on the performance of RSGU, ERSGU,
and VR algorithm [63] is investigated. It is one of the impor-
tant factors that has high impact on the skyline algorithms
in deriving skyline objects. The parameter settings for the
synthetic data set are as follows: the number of dimensions
is fixed to 6, the number of groups is set to 16 groups with
each group consisting of 15 users, the overlapping region is
fixed to 40%, and the number of objects is varied with the
following values: 20K, 50K, and 80K. Since the TIGER data
set contains only 50,747 objects, hence it is excluded from
this experiment.

50
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Number of Objects
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FIGURE 15. The results of processing time with varying number of objects.

Fig. 15 presents the processing time achieved by the RSGU,
ERSGU, and VR algorithm [63] based on the synthetic data
set, with the number of objects sets as 20K, 50K, and 80K.
The processing time is calculated based on formula (3) with
the number of groups, n = 16. The VR algorithm is per-
formed repeatedly for each group of user’s query in which the
predetermined region of a group is explored repeatedly even
though it has been analysed during the skyline computation of
the earlier groups. Meanwhile, for both RSGU and ERSGU,
only the fragment skylines that are related to the identified
overlapping area need to be analysed.

Obviously, when the number of objects increases, the pro-
cessing time also increases which can be clearly seen through
the performance of the RSGU, ERSGU, and VR algorithm.
Nonetheless, both RSGU and ERSGU show a steady perfor-
mance for all runs with lesser processing time as compared to
the VR algorithm. The processing time of ERSGU is slightly
higher than RSGU since it has an additional evaluation cri-
terion to be analysed, i.e. the closeness of an object to the
desirable facilities or other interesting objects in the region.
On the average, RSGU and ERSGU gained 74% and 72%,

94510

improvements, respectively, compared to the VR algorithm
for the synthetic data set.

Effect of Data Dimensionality — Besides the number of
groups of users and the number of objects, data dimensional-
ity is also one of the factors that has substantial effect on the
performance of skyline algorithms in identifying the skyline
objects of a group of users. In this section, the experimen-
tal results of the proposed solutions, RSGU and ERSGU,
and the previous algorithm, namely: VR [63] are illustrated,
for both the synthetic and TIGER data sets with respect to
processing time, by varying the number of dimensions from
2 — 10 dimensions. The parameter settings for the synthetic
data set are as follows: the number of objects is fixed to 50K,
the number of groups is set to 16 groups with each group
consisting of 15 users, and the overlapping region is fixed to
40%. For the TIGER data set, the same parameter settings as
above are used except that the number objects is maintained
to its initial number, i.e. 50,747 objects.
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FIGURE 16. The results of processing time with varying dimensionality.

Fig. 16(a) and 16(b) present the processing time achieved
by the RSGU, ERSGU, and VR algorithm [63] based on the
synthetic and TIGER data sets, respectively, with number of
dimensions varied from 2 — 10 dimensions. The processing
time is calculated based on the formula (3) with the number of
groups, n = 16. Obviously, when the number of dimensions
increases, the processing time also increases which can be
clearly seen through the performance of the RSGU, ERSGU,
and VR algorithm. Nonetheless, both RSGU and ERSGU
show a steady performance for all runs with lesser processing
time as compared to the VR algorithm. The processing time
of ERSGU is slightly higher than RSGU since it has an addi-
tional evaluation criterion to be analysed, i.e. the closeness of
an object to the desirable facilities or other interesting objects
in the region. On the average, RSGU and ERSGU gained 69%
and 67% improvements, respectively, for the synthetic data
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TABLE 10. The density rate of the types of objects in the TIGER data set.

% of the type of object
Types of objects in the whole No. of objects
population

Hospital 0.56 284
Restaurant 1.60 812
Church 7.00 3,552
School 15.00 7,612
Institution 34.00 17,254
Building 10.84 5,502
Hotel 13.00 6,597
Populated place 18.00 9,134

set and 69% and 67% improvements, respectively, for the
TIGER data set compared to the VR algorithm.

Effect of Density — In this study, the effect of density on the
performance of RSGU, ERSGU, and VR [63] is investigated.
For this experiment, only the TIGER data set is considered.
The TIGER data set consists of eight types of objects, namely:
hospital, restaurant, church, school, institution, building,
hotel, and populated place. This is represented in Table 10.
The % of the type of object in the whole population and No.
of objects reflect the density rate of a particular type of object
in the area. For instance, the number of hospitals is 284 which
is 0.56% of the whole population, i.e. 0.56% x 50747.
Meanwhile, institution is the densest objects with density
rate = 34%. Intuitively, the higher the density rate; the higher
is the processing time as more objects need to be analysed.

In this section, the experimental results of the proposed
solutions, RSGU and ERSGU, and the previous algorithm,
namely: VR [63] are illustrated, for the TIGER data set with
respect to processing time, with various density rates as fol-
lows: 0.56% (hospital), 1.60% (restaurant), 7.00% (church),
15.00% (school), and 34.00% (institution). These density
rates reflect the least dense to the densest that are available in
the data set. The parameter settings used are as follows: the
number of objects is 50,747, the number of groups is set to
16 groups with each group consisting of 15 users, the number
of dimensions and the overlapping region is fixed to 2 and
40%, respectively.
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TIGER

FIGURE 17. The results of processing time with varying density rate.

Fig. 17 shows the performance of RSGU, ERSGU, and VR
algorithm [63] with regard to processing time. The perfor-
mance of RSGU, ERSGU, and VR algorithm shows similar
trends in which it starts to show a drastic increment when the
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density rate is 15.00% until it reaches to 34.00%. This is due
to the fact that the number of institutions (34.00%) is slightly
more than twice the number of schools (15.00%). Despite
that, both RSGU and ERSGU show a better performance for
all runs with lesser processing time as compared to the VR
algorithm. The percentage of improvement gained by RSGU
and ERSGU is 21% and 14%, respectively. The processing
time of ERSGU is slightly higher than RSGU since it has an
additional evaluation criterion to be analysed, i.e. the close-
ness of an object to the desirable facilities or other interesting
objects in the region. For instance, if the object of interest
is restaurant, then the desirable facilities or other interesting
objects are hospital, church, school, and institution.

Effect of Space Size — In this study, the effect of space size
on the performance of RSGU, ERSGU, and VR algorithm is
also investigated. In this section, the experimental results of
the proposed solutions, RSGU and ERSGU, and the previous
algorithm, namely: VR [63] are illustrated for both the syn-
thetic and TIGER data sets with respect to processing time,
by varying the space size as follows: [0, 250]*[0, 250], [O,
5001*[0, 5001, [0, 750]*[0, 7501, and [0, 1000]*[0, 1000]. The
parameter settings used for the TIGER data set are as follows:
the number of objects is fixed to 50,747 objects, the number
of groups is set to 16 groups with each group consisting of
15 users, and the overlapping region is set to 40%. For the
synthetic data set, the same parameter settings as above are
used except that the number objects is set to S0K objects.
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FIGURE 18. The results of processing time with varying space size.

Fig. 18(a) and 18(b) present the processing time achieved
by the RSGU, ERSGU, and VR algorithm [63] based on the
synthetic and TIGER data sets, respectively, with different
space sizes. The processing time is calculated based on the
formula (3) with the number of groups, n = 16. Obvi-
ously, the bigger the space size, the more objects it covered;
hence the higher is the processing time. The VR algorithm
is performed repeatedly for each group of user’s query in
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which the predetermined region of a group is explored repeat-
edly even though it has been analysed during the skyline
computation of the earlier groups of users. Meanwhile, for
both RSGU and ERSGU, only the fragment skylines that are
related to the identified overlapping area need to be analysed.
From the figure, both RSGU and ERSGU show a steady
performance with a slight increment in each iteration. Based
on this analysis, RSGU and ERSGU gained 73% and 74%
improvements, respectively, for the synthetic data set, and
82% and 83% improvements, respectively, for the TIGER
data set, compared to the VR algorithm.

Effect of Overlapping Region — Another factor that has a
significant effect on the performance of skyline algorithms
for a group of users is the overlapping region covered between
the groups of users. In this section, the experimental results
of the proposed solutions, RSGU and ERSGU, and the pre-
vious algorithm, namely: VR [63] are illustrated, for both
the synthetic and TIGER data sets with respect to processing
time, by varying the percentage of overlapping region from
20% — 100%. The parameter settings for the synthetic data
set are as follows: the number of objects is fixed to 50K,
the number of groups is set to 16 groups with each group
consisting of 15 users, and the number of dimensions is fixed
to 6. For the TIGER data set, the same parameter settings as
above are used except that the number objects is maintained
to its initial number, i.e. 50,747 objects in [0,1000]*[0,1000],
and each object is with 2 dimensions.
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FIGURE 19. The results of processing time with varying percentage of
overlapping area.

Fig. 19(a) and 19(b) present the processing time achieved
by the RSGU, ERSGU, and VR [63], based on the synthetic
and TIGER data sets, respectively, with varying percentage of
overlapping region. The processing time is calculated based
on the formula (3) with the number of groups, n = 16. From
these figures, both the RSGU and ERSGU show a steady
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performance which reflects that when the percentage of over-
lapping region increases, the processing time decreases. This
is due to the fact that both the RSGU and ERSGU exploit
the skyline computation results of the previous groups of
users that are associated to the identified overlapping region.
Hence, the higher the percentage of overlapping region means
the higher the percentage of the area that has been explored
in the earlier skyline computations of the groups of users.
In both solutions, RSGU and ERSGU, rescanning of the over-
lapping region and recomputation of skyline objects within
the overlapping region are avoided. Interestingly, when the
percentage of overlapping region is 100%, which implies that
the region covered by the current group of users is the exact
same region that has been explored in the skyline computa-
tions of the previous groups of users; shows the processing
time taken is almost O because of the skyline results are the
same. However, the VR algorithm shows a steady perfor-
mance for all runs which clearly indicates that the overlapping
region has no significant effect on the performance of the VR
algorithm. This is true since the VR algorithm is performed
repeatedly for each group of user’s query in which the pre-
determined region of a group is explored repeatedly even
though it has been analysed during the skyline computation
of the earlier groups. Based on this analysis, RSGU and
ERSGU gained 82% and 81% improvements, respectively,
for the synthetic data set, and 87% and 86% improvements,
respectively, for the TIGER data set, compared to the VR
algorithm.

Effect of Number of Users in a Group — Another factor that
has a major impact on the performance of skyline algorithms
in processing the skyline queries of a group of users is the
number of users in a group. In this section, the experimental
results of the proposed solutions, RSGU and ERSGU, and the
previous algorithm, namely: VR [63] are illustrated, for both
the synthetic and TIGER data sets with respect to processing
time by varying the number of users in a group from 4 — 25 as
applied in the previous study [63]. The parameter settings for
the synthetic data set are as follows: the number of objects
is fixed to 50K, the number of groups is set to 16 groups in a
fixed space [0, 1000]*[0, 1000] with 40% overlapping region,
while the number of dimensions is fixed to 6. For the TIGER
data set, the same parameter settings as above are used except
that the number objects is maintained to its initial number, i.e.
50,747 objects, with the number of dimensions fixed to 2.

Fig. 20(a) and 20(b) present the processing time achieved
by RSGU, ERSGU, and VR [63] based on the synthetic and
TIGER data sets, respectively, with the number of users in
a group sets to 4, 8, 15, 20, and 25. The processing time
is calculated based on the formula (3) with the number of
groups, n = 16. From these figures, both RSGU and ERSGU
show similar performance for all runs with lesser processing
time as compared to the VR algorithm. The processing time
of ERSGU is slightly higher than RSGU since it has an addi-
tional evaluation criterion to be analysed, i.e. the closeness of
an object to the desirable facilities or other interesting objects
in the region. On the average, RSGU and ERSGU gained 72%
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FIGURE 20. The results of processing time with varying number of users
in a group.

and 70% improvements, respectively, for the synthetic data
set and 76% and 78%, respectively, for the TIGER data set,
compared to the VR algorithm.

Number of Skyline Objects — Since the number of skyline
objects is a significant factor in validating the correctness
of the skyline algorithms in processing skyline queries, thus
investigating the performance of RSGU, ERSGU, and the
previous algorithm, VR [63] with regard to the skyline objects
derived by these solutions is inevitable. In this section, the
experimental results of the proposed solutions, RSGU and
ERSGU, and the previous algorithm, namely: VR [63], for
both the synthetic and TIGER data sets with respect to the
number of skyline objects derived by these solutions are illus-
trated. The parameter settings for the synthetic data set are as
follows: the number of objects is fixed to 50K, the number of
groups is set to 16 groups in a fixed space [0, 1000]*[0, 1000]
with 40% overlapping region, the number of dimensions is
fixed to 6, while the number of users in a group is varied
from 4 — 25. For the TIGER data set, the same parameter
settings as above are used except that the number objects is
maintained to its initial number, i.e. 50,747 objects, with the
number of dimensions fixed to 2.

Fig. 21(a) and 21(b) present the number of skyline objects
derived by the RSGU, ERSGU, and the VR algorithm [63],
based on the synthetic and TIGER data sets, respectively.
From these figures, it is obvious that the number of skyline
objects derived by RSGU and VR is the same for all runs
which verified the correctness of RSGU. This is because
in deriving the skyline objects, both RSGU and VR utilised
the same evaluation criteria, namely: spatial and non-spatial
attributes of the objects. However, as expected the number
of skyline objects produced by ERSGU is different from the
number of skyline objects obtained by both the RSGU and VR
algorithm since ERSGU has an additional evaluation criterion
to be analysed, i.e. the closeness of an object to the desirable
facilities or other interesting objects in the region.
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FIGURE 21. The results of number of skyline objects with varying number
of users in a group.

C. TIME COMPLEXITY ANALYSIS

This section presents the time complexity analysis of the
proposed frameworks, Region-based Skyline for a Group
of Users (RSGU) and Extended Region-based Skyline for a
Group of Users (ERSGU). Since ERGSU utilises a different
set of evaluation criteria in deriving the final skyline objects,
hence we only report its time complexity without compar-
ing it to the baseline method. On the other hand, the time
complexity of RSGU is compared to a baseline method (BM)
which utilises the conventional skyline algorithm in deriving
the skyline objects for a group of users. In this method, each
group of users is treated separately. This approach is assumed
by many methods including the VR algorithm [63].

The time complexity analysis is based on the follow-
ing: Given a data set D = < R,U,0 >, where U =
{ur, up, ..., u,}is alist of nusers and O = {01, 03, ..., 0p}
is a list of m objects. Let G, = {u1, u2, ..., up} be a group
of p users where G, C U in region R,. Assume that O, =
{o1, 02, ..., 0.} is the list of objects that is within the region
Ry. Table 11 and Table 12 present the time complexity at each
step of the RSGU and ERSGU, respectively.

In order to compare the time complexity of RSGU against
the baseline method (BM), assume the following:

Given a group of users, G, = {u1,us, ..., up}, where
G, C U, and the candidate skylines of G, in region R,
denoted as CS¢, with ¢ cardinality. Find the skylines of a
group of users G, = {uy, up, . .., ug} inregion Ry, i.e. CSGq,
where G, C U, G; # Gp, and R; N R, # (. Assume that
O, = {01, 02, ..., 0.} is the list of objects that is within the
region Ry; Os = {01, 02, ..., o5} is the list of objects that is
within the region Ry, u is the number of candidate skylines
of CSg, that are in the overlapping area Og, and v is the
number of objects that are in the non-overlapping area —Og.
Obviously, u <r,u <s,u <c,andu+v <s.
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TABLE 11. The time complexity of RSGU.

TABLE 11. (Continued.) The time complexity of RSGU.

Steps Time Remarks (7) Derive the | O(pr)+0(r) | 1. Calculate the distance
Complexity spatial + 0(rlogr) between each user of G,
(1) Identify the 0(1) The centroid is identified using skylines +00?) and each object of
centroid Equation (1). 0,: p X r iterations.
(2) Construct a | 0@)+0(p) | 1. Identify the closest object 2. Calculate the
search region +0(1) to the centroid: Sum Distance —o;  of
r iterations, where r is the each object of O,: r
number of objects within iterations.
the region R, 3. Sortthe Sum Distan;e -
2. Construct a search region 0; of the O, objects:
of each user in the G: O(rlogr) )
p iterations, where p is the 4. dAppI.y the spatial
. ominance over the
number of users in Gj,. objects of 0.:
. -
3. Construct a sgarch region r(r — 1)/2 iterations.
for Gp: 1 iteration, by (8) Derive the o(1) Union between the non-spatial
performing union over the final skylines skylines and spatial skylines.
search region of each
user. TABLE 12. The time complexity of ERSGU.
(3) Identify the | 0(1) 1. Identify the overlapping
overlapping + O(logM n) region based on the Steps Time Remarks
region polygon’s vertices: 1 Complexity
iteration. Steps (1) till (7) are the same steps as RSGU.
2. Traverse the R-tree to (8) Derive the 0(1) Union between the non-spatial
identify the fragments that candidate skylines and spatial skylines.
are within the overlapping skylines
region: O(log M n), (9) Derive the 0(yh) 1. Calculate the distance between
where M is the maximum final +0(yh) each candidate skyline o; and a
number of entries and n is skylines +0(y?) set of p distinct type of
the minimum number of interesting objects with h total
entries in a node. number of objects: yxh
(4) Construct the | 0(2plog2p) 1. Sort the x-coordinates of iterations, where y is the number
fragments of | + 0(2plog2p) each  search  region: of candidate skylines.
a search | +0(k) 0(2plog2p) with 2 x- 2. Idgntify the closest interest.ing
region +0(w?) coordinates for each p object of each type to the object
user. 0j: ?:1 y X h; iterations, where
2. Sort the y-coordinates of h; is the number of objects of
each  search  region: type p;. ) )
0(2plog2p) with 2 y- 3. Perfo.rm the conventional sk?llme
coordinates for each p algo'rlthm ~over the car}dldate
user. skylines with the closest distance
of each type as the evaluation
3. Construct the k L L
fragments: k iterations. criteria: y(y — 1) /2 iterations.
4. Derive the non-spatial
?;ng(ﬂia;teszsggne;{;; f region R, is an unexplored region while R; N R, # ¥ implies
1)/2 iterationsl,_ivhlerelwi that some parts of the region R; have been analysed in step
is the number of objects of (). To simplify the comparisons, only the steps followed by
the i-th fragment; this is BM and RSGU with different time complexities are analysed.
lstl:rlilgid ’ow (i) To derive the final skylines of G, using the baseline
(5) Construct the | O0(logM n) | The R-tree is constructed based method, similar steps to the steps 1, 2, 6, 7, and 8 are
R-tree of the on the algorithms proposed by performed. The objects analysed in Step 6 are those
fragments [30]: O(logM n), where M is objects that are within the region R,; hence the number
the maximum number of . . . I
. . e of objects analysed is r with r7(r — 1)/2 pairwise com-
entries and n is the minimum ; . . . .
number of entries in a node. parisons [52]. The time complexity to derive the final
(6) Derive  the 0(c? Apply  the  non-spatial skylines of G, with the baseline method, 7(BMg,),
non-spatial dominance over the candidate is given below:
skylines skylines of the k fragments:
c(c —1)/2 iterations, where ¢
is the number of candidate
skylines of the k fragments. T(BMGP) =T (Step 6) ~ O (r2>

The time complexity of both methods is analysed based
on the following steps: (i) derive the final skylines of G, and
(ii) derive the final skylines of G,. Here, we assumed that the

Meanwhile, utilising the RSGU, steps 1, 2, 4, 5, 6, 7,
and 8 are performed. The time complexity to derive
the final skylines of G, with RSGU, T(RSGU G,,), is as
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given below:

T (RSGUg,) = T (Step 4) + T (Step 5) + T (Step 6)
= [0(2plog2p) + O(2plog 2p)
+0(k) + OwW*)] + O(log Mn)
+0(c?) ~ OW*) + 0(c?)

Since w + ¢ < r, thus T (RSGUg,) < T(BMg,).

(ii) To derive the final skylines of G, using the baseline
method, similar steps to the steps 1, 2, 6, 7, and 8 are
performed. The objects analysed in Step 6 are those
objects that are within the region R,; hence the number
of objects analysed is s with s(s — 1)/2 pairwise com-
parisons [52]. The time complexity to derive the final
skylines of G utilising the baseline method, 7(BM ¢,)
is as follows:

T(BMg,) =T (Step 6) ~ O <s2)

Meanwhile, utilising the RSGU, steps 1, 2,3,4,5,6,7,
and 8 are performed.

T (RSGUg,)
=T (Step3)+ T (Step 4) + T (Step 5)
+ T (Step 6) = O(log Mn)
+ [0@p10g20) + 02102 20) + O) + 00

+ Olog Mn) + 0G?) ~ O (v2) + 0

Step 4 is performed over the non-overlapping area
involving v objects, while Step 6 is performed over the
overlapping area in which u candidate skylines of CSg,
are analysed.

Since v+ u < s, thus T (RSGUg,) < T(BMg,).

(iii) The total time complexities for both methods are as
follows:

T(BM) =T (BMg,) +T(BMg,)

() o()

T(RSGU) =T (RSGUg,) + T (RSGU,)

A 0(w)+0<c )+(v >+0(u2)
It is obvious that T(RSGU) < T(BM) sincew+c < r
andv+u < s.

VIl. CONCLUSION

In this paper, we proposed the Region-based Skyline for a
Group of Users (RSGU) and Extended Region-based Skyline
for a Group of Users (ERSGU) frameworks that are designed
to derive skyline objects which are point of interests (Pols)
to be recommended to a group of users. The skyline objects
are derived by analysing both the locations of the users,
i.e. spatial attributes, as well as the spatial and non-spatial
attributes of objects that are within a predetermined region
of the group of users. Two main aims have been set that are:
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(i) to avoid the process of rescanning the set of objects within
a predetermined region that is known to have been previously
visited by a group of users and (ii) to avoid the recomputation
of skylines of a set of objects within a predetermined region
that has been analysed in earlier computations of previously
visited group of users. Meanwhile, ERSGU framework con-
siders the closeness of the objects to other interesting objects
in its solution as its additional feature. Several experiments
have been conducted and the results show that both the RSGU
and ERSGU outperform the work by [63] with respect to
CPU time. There are several further enhancements that can
be made based on the findings presented in the paper. These
include (i) proposing an approach to continuously derive
skyline objects by considering the movement of the users, (ii)
incorporating the Group-based skyline in finding the optimal
combinations of skyline objects [86] for a group of users, and
(iii) embedding the proposed frameworks into a Travelling
Recommender System similar to the work in [87].
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