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ABSTRACT Glaucoma is a neurodegenerative disease that affects the optic nerve head and causes visual
field defect. Current investigations focus on neural component which may overlook other important factors
such as the vascular cause. The optical coherence tomography angiography (OCTA) imaging has been
developed and provided quantitative parameters that showed good diagnostic accuracy to detect glaucoma.
However, those parameters are based on image processing of observed clinical findings, therefore, some
image information can be lost. Convolutional neural network has been successfully applied for automatic
feature extraction and object classification. In this study, the glaucoma diagnosis network, namely GlauNet,
has been proposed. GlauNet consists of two sections: the feature-extraction section and the classification
section. The feature-extraction section has three convolutional layers. Each convolutional layer is followed
by rectified linear unit and maximum pooling layer. The classification section contains five fully connected
layers. GlauNet was trained with 258 glaucomatous and 439 non-glaucomatous eyes. The visualization
of the feature-extraction section showed the highlight in the area of optic nerve head and retinal nerve
fiber layer in the superotemporal and inferotemporal regions. It was then tested on 27 glaucomatous and
48 non-glaucomatous eyes. Its sensitivity and specificity were 88.9% with 89.6%, respectively. The area
under receiver operating characteristic curve of GlauNet was 0.89. GlauNet was robust against the artifacts.
Its sensitivity and specificity were still higher than 80% (82.4% and 80.3%, respectively) when tested on
88 poor-quality images.
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INDEX TERMS Artificial intelligence, convolutional neural network, deep learning, glaucoma, optical
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I. INTRODUCTION20

Glaucoma is a major visual disability disease that presents21

with irreversible progressive neurodegeneration. It is caused22

by multiple factors. The prevalence of glaucoma in the world23

was 3.54% in the year 2014 and there will be about 111.8 mil-24

lion glaucoma patients in the year by 2040. The majority of25

patients will be in Asia and Africa [1]. Most of the patients26

are still asymptomatic until the late stage of the disease,27
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approving it for publication was Prakasam Periasamy .

as a result, the prevalence of undiagnosed patients were 28

between 53% and 88% around the world [2], [3], [4], [5], 29

[6]. In addition, challenge in glaucoma diagnosis is based on 30

anatomical variations among people. The current definition 31

of glaucoma is based on evaluation of neural structure of 32

the optic nerve head and surrounding retina and visual field, 33

while intraocular pressure is a major risk factor. 34

Themainstay glaucoma diagnostic tools in current practice 35

are optic disc examination, optical coherence tomography 36

(OCT) and visual field or perimetry. Optic nerve head assess- 37

ment is the most commonly used method, because it is easy to 38
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access and inexpensive. However, the diagnosis is subjective39

and has both intra- and inter-observer variations [7], [8]. OCT40

is a structural investigation. It provides quantitative measure-41

ment to overcome the limitations of optic disc examination.42

The retinal nerve fiber thickness around the optic nerve head43

in OCT is the most commonly used parameter and provides44

good diagnostic accuracy for glaucoma detection. However,45

OCT retinal nerve fiber layer thickness has the limitation in46

the diagnosis of advanced glaucoma [9]. The retinal nerve47

fiber layer thickness can also be out of normal range in48

patients with other retinal pathologies and eye morphology,49

such as myopia [10], [11], [12]. Visual field is another instru-50

ment to measure and monitor visual function, including the51

depth and extension of visual field defect. However, this is52

another subjective tool and requires patient’s performance53

and attention. Therefore, it has a lot of unreliable results54

due to fixation loss, false positive, false negative and other55

confounding errors.56

Recently, OCT angiography (OCTA) has been developed57

as a non-invasive method to evaluate microvasculopathy and58

widely used to diagnose and monitor retinal disorders. The59

principle is to compare the variation between moving objects60

in blood vessels and surrounding static tissue. In OCTA61

imaging, the enface image of the region of interest (ROI)62

is generated [13], [14], [15], [16]. Then a retinal and a63

choroidal layers are automatically segmented into multiple64

slabs. At present, there is no consensus on which ROI gives65

the best indication of glaucoma. So the ROI and the layer66

of interest are selected by physicians/researchers. Various67

quantitative parameters have been extracted from the OCTA68

image for glaucoma diagnosis. Following are the parameters69

that are found to be comparable with neural component in70

OCT.71

• Blood vessel density is the most explored parameter.72

Reduction of blood vessels density in optic disc and73

macular area was correlated with glaucoma severity74

[17], [18], [19], [20] and retinal nerve fiber layer thin-75

ning derived from OCT [21]. It was found that in76

advanced glaucoma cases, the blood vessels density is77

a better indicator than the retinal nerve fiber layer thick-78

ness [21].79

• Foveal avascular zone is an area around the macula80

that is absent of blood vessel. Previous study found81

an increase in the area of the foveal avascular zone in82

glaucoma patients [22]. This finding was correlated with83

visual field abnormalities. In addition, the foveal avas-84

cular zone became less circular in acute angle closure85

glaucoma [23] and glaucoma with central visual field86

defect [24].87

• Microvascular dropout, found in glaucomatous eyes,88

is an area that is absent of choroidal blood vessels in89

β-zone peripapillary area. It was correlated with the90

reduction of blood vessel density [25], rate of reti-91

nal nerve fiber layer thinning [26] and visual field92

defect [25].93

Besides the above parameters, there are other vascular 94

parameters related to glaucoma [27]. For examples, disc flow 95

index, blood vessels tortuosity, vessel perimeter index, ves- 96

sel complexity, branchpoint analysis, and flow analysis. The 97

relation of these parameters to the glaucoma comes from 98

clinical observation, thus, some image information can be 99

overlooked. Furthermore, the features that were described in 100

previous literature are individually extracted/segmented by 101

tailor-made image processing techniques which is time con- 102

suming and may gave an incorrect value in noisy image [28]. 103

Convolutional neural network (CNN) is an effective image 104

classifier. It is trained to automatically capture the image 105

features important for its problem. CNN can be the more 106

effective glaucoma detector, since it can be trained to use the 107

non-clinical features that are correlated with vascular mech- 108

anism in the pathogenesis of glaucoma. CNN uses a patch 109

convolved over the entire image. It extracts dominant features 110

in the hidden layers while preserves the correlation between 111

neighboring pixels [29]. After that, the output signal is trans- 112

formed into a vector and classified. CNN has been applied to 113

many ophthalmologic image modalities. Several studies eval- 114

uated the performance of glaucoma detection in the fundus 115

photograph using transfer learning [30], [31], [32], [33] on 116

various conventional deep learning models such as VGG16, 117

VGG19, Inception-v3, ResNet50, and GoogLeNet. The area 118

under receiver operating characteristic curves (AUC) were 119

around 0.90 or more [32], [33], [34]. The results showed 120

the accuracy equal to or more than ophthalmology trainees 121

[34], [35]. Some investigators evaluated the performance of 122

deep learning in OCT retinal nerve fiber layer thickness and 123

found the AUC of more than 0.90 [36], [37], [38]. In addi- 124

tion, a combination of OCT quantitative value to the fundus 125

photograph was another approach to improve the accuracy of 126

glaucoma diagnosis [39]. 127

A number of deep learning methods have been applied to 128

an OCTA image for diagnosing retinal diseases [40], [41], 129

[42]. Nagasato et al. [40] applied VGG16 and supported 130

vector machine to detect non-perfusion area in retinal vein 131

occlusion. 322 OCTA images of normal and retinal vein 132

occlusion were augmented and used. The AUC of VGG16 133

was 0.98 which was better than supported vector machine and 134

ophthalmologists. Le et al. [41] also used VGG16 to detect 135

diabetic retinopathy. The VGG16 was trained with a very 136

small dataset (32 controls and 99 diabetic eyes). The best 137

accuracy (AUC of 0.97–0.98) was achieved when the final 138

9 layers were retrained. Another study on diabetic retinopathy 139

was done by Heisler, et al. [42]. They use ensemble method 140

on multiple layers of foveal avascular zone area in 380 eyes 141

and found that VGG19 provided the best performance with 142

an AUC of 0.90–0.92. 143

The application of deep learning for glaucoma detection in 144

an OCTA image is still limited. Recently, Bowd, et al. [43] 145

compared the performance of VGG16 and gradient boosting 146

classifier model in 4.5 × 4.5 mm2 of radial peripapillary 147

capillary vessel density layer of optic nerve head image. 148

The weight in the first 4 convolution blocks were frozen 149
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TABLE 1. Demographic data of study sample is 939 eyes from
546 patients to take the OCTA images by the three glaucoma specialists.

and the weights in the remaining blocks were retrained. The150

performance of VGG16 was better than gradient boosting151

classifier model that derived from the OCTA machine. They152

also implemented other deep learning models and found to be153

better than gradient boosting classifier.154

In this paper, we applies CNN to diagnose glaucoma from155

OCTA images. We hypothesized that the prominent of reti-156

nal vessels in OCTA image enhances the visibility of the157

neural network for glaucoma classification. In addition, the158

role of vascular mechanism in glaucoma pathogenesis may159

be important. Instead of focusing only at the optic disc,160

we expand our ROI to the surrounding retina and macular161

regions. The OCTA imaging is among the recent imaging162

modalities. We found only one public OCTA database [44].163

However, optic nerve head images are not routinely included.164

In this paper, we proposes GlauNet to capture the glaucoma165

features from limited data. The architecture of GlauNet was166

based on our previous researches [45], [46] which shows that167

the shallow convolutional networks is efficient in the analysis168

ofmedical imaging. In the experiment on glaucoma detection,169

the proposed GlauNet is compared with the classic VGG16170

and ResNet50 and recently proposed, EfficientNetV2 to clas-171

sify glaucoma from OCTA images.172

II. METHODOLOGY173

A. STUDY SETTING AND POPULATION174

The retrospective study was conducted at the Department of175

Ophthalmology, Faculty ofMedicine, ChulalongkornUniver-176

sity and King Chulalongkorn Memorial Hospital, Bangkok,177

Thailand. The Institutional Review Board of the Faculty of178

Medicine, Chulalongkorn University according to the decla-179

ration of Helsinki approved the protocol. The inclusion crite-180

ria was patients presenting to the eye clinic who were over181

18 years old and underwent OCTA, optic disc photograph182

and/or OCT and visual field test results within 6 months183

from each other during January 2018 to October 2021. The184

demographic of our data is shown in Table 1. The exclu-185

sion criterion was poor quality OCTA images, including eye186

movement, defocus, shadow, banding, segmentation error,187

blink, or Z offset in at least 10% of the image area [47], [48],188

FIGURE 1. An example of optical coherence tomography angiography
(OCTA) images consists of (top) a normal or non-glaucoma eye image and
(bottom) a glaucomatous eye image which were flipped to the right eye
format. (Yellow arrows: area of retinal vessel density reduction in
glaucomatous eye).

[49]. However, we did not exclude an eye with decentration 189

if the image still contained optic nerve head and macula. The 190

poor quality images were later used to evaluate the proposed 191

GlauNet regarding the robustness against artifacts. 192

B. GROUND TRUTH 193

To set the ground truth, three glaucoma specialists (SC, 194

KR, NU) independently graded optic disc photographs in 195

conjunction with OCT and/or visual field results and made 196

a diagnosis to be normal, glaucoma suspect or glaucoma. 197

The criteria for glaucoma (GL) diagnosis were adapted from 198

Li, et al. [32]. Normal visual field was determined by glau- 199

coma hemifield test within normal limits and and pattern stan- 200

dard deviation more than 5%. The final diagnosis depended 201

upon majority vote. If the majority vote is not reached, 202

a senior expert (AM) independently reviewed the investiga- 203

tion results and made a diagnosis. The normal and suspected 204

eyes were grouped into non-glaucoma (NG) group. The data 205

were divided into training and test datasets. The demograph- 206

ics of the training and test datasets are shown in Table 1. 207

C. DATA ACQUISITION AND IMAGE PRE-PROCESSING 208

This research collected OCTA images of the whole retinal 209

layers with a size of 15×9mm2 that was equivalent to 1024× 210

614 pixels in RGB format from Zeiss PLEX R© Elite 9000 211

(Software version 2.1.0.55513; Carl Zeiss Meditec, Dublin, 212

CA, USA). To reduce the computational time and get rid of 213
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FIGURE 2. The overall proposed architecture of a new convolution neural network for intelligent glaucoma diagnosis on OCTA images
(GlauNet) consists of two sections: feature-extraction section consisting of three convolutional layers(CONV) where each layer is followed by
the rectified linear unit (ReLU) and the maximum pooling filtering (MP) and classification section consisting of five fully connected (FC)
layers.

artifacts that usually appear on both sides of an OCTA image,214

all images were cropped to 614 × 614 pixels such that they215

still contained optic disc andmacula. All left-eye imageswere216

horizontal flipped to the right-eye format, as shown in Fig. 1.217

We used stratified random sampling to separate the dataset218

at the participants level into 90% for training and 10% for219

testing. All images were normalized from a range of 0–255 to220

0–1. The input OCTA image was then resized to 307×307×221

3 pixels. The training dataset was augmented by applying222

horizontal flip, rotation (0–7 degree), width and height shifts223

(0%–5%) and brightness adjustment (80%–100%). In the224

training dataset, 5-fold cross validation was used to find the225

best architecture as well as the hyperparameters. Therefore,226

the ratio between training and validation data was set to227

80:20.228

D. GlauNet229

In this paper, the new CNN architecture for glaucoma diagno-230

sis from an OCTA image, namely GlauNet, is proposed. The231

overall architecture of GlauNet is shown in Fig. 2. It has two232

sections: feature-extraction section and classification section.233

Its input image, Iinput , is an 307× 307× 3 OCTA images as234

shown in Fig. 3(a).235

The feature-extraction section consists of three convolu-236

tional layers and one flatten layer. In the convolutional layer237

(CONV), the outputs of the previous layer are filtered accord-238

ing to the following equation.239

zt = ht−1 ∗W l (1)240

where zt is the pre-activation output of layer t; ht is the output241

of layer t; ∗ is the discrete convolution operator; W t is the242

learnable n × n parameters of layer t and can be considered243

as the adaptive kernel function. The convolution layer is244

followed by rectified linear unit (ReLU), which provides the245

output (Zi) according to the following equation.246

ReLU (Zi) = max(0, zi). (2)247

The maximum pooling layers (MP) seeks the strongest248

response inside the s × s windows and can be formulated249

as follows. 250

htxy = max i=0,...,s,j=0,...,sZ
t−1
(x+1)(y+1), (3) 251

where htxy is the output of layer t at (x, y) and Z
t−1
(x+i)(y+j) is the 252

output of ReLU unit in the previous layer. 253

All MP layers have the size of 2 × 2 with the stride of 2. 254

The first convolutional layer (CONV1) contains a stack of 255

32 convolution filters with the 3 × 3 kernel size. It was 256

followed by ReLU1 and MP1. The output of MP1 was 257

32 153× 153 images. Fig. 3(b) shows the sample outputs of 258

this layer for a glaucomatous and a non-glaucomatous eyes. 259

The second convolutional layer (CONV2) contains a stack 260

of 64 3 × 3 convolution filters. The output of the second 261

layer after MP2 is 64 75 × 75 images. Fig. 3(c) shows the 262

sample outputs of the glaucomatous and non-glaucomatous 263

images. The last convolutional layer (CONV3) contains a 264

stack of 128 3× 3 convolution filters. The output after MP3 265

is 128 36 × 36 images. The sample outputs are shown in 266

Fig. 3(d), respectively. 267

128 output images are grouped and vectorized into a 1 × 268

165, 888 vector. The vectorization is represented as a flatten 269

layer (FL) in Fig. 2. The architecture of the feature-extraction 270

section can be written in the formulated form of the neural 271

network model as follows: 272

GlauNetF .E . = Iinput (N ,N , 3) 273

→ CONV1(3, 3, 32)→ ReLU1→ MP1(2, 2) 274

→ CONV2(3, 3, 64)→ ReLU2→ MP2(2, 2) 275

→ CONV3(3, 3, 128)→ ReLU3→ MP3(2, 2) 276

→ FL. (4) 277

The classification section consists of five fully connected 278

layers (FC). All outputs in the previous layer are linearly 279

convoluted as follows. 280

zl = W lhl−1. (5) 281

The sizes of the five layers are 256 (FC1), 128 (FC2), 282

64 (FC3), 32 (FC4) and 2 (FC5) nodes. To avoid overfit- 283

ting, the FC4 layer has the dropout rate of 0.5. There are 284

95616 VOLUME 10, 2022



A. Manassakorn et al.: GlauNet: Glaucoma Diagnosis for OCTA Imaging Using a New CNN Architecture

FIGURE 3. Visualization of feature map in GlauNet model of each convolutional layer in (a:left) glaucomatous and (a:right)
non-glaucomatous eyes with (b), (c), and (d) represent the example results of CONV1, CONV2, and CONV3 from glaucomatous
and non-glaucomatous images, respectively.

42,467,584 connected parameters from flatten data. The FC5285

layer has 2 nodes: one for glaucomatous and the other for286

non-glaucomatous eyes. The activation function of FC is a287

sigmoid function. The proposed GlauNet can be represented288

by the following formulated form:289

GlauNet = GlauNetF .E .290

→ FC1(256)→ FC2(128)291

→ FC3(64)→ FC4(32)292

→ FC5(2). (6)293

An OCTA image was classified as low-quality image if it294

contains one of the following artifacts in at least 10% of the295

image.296

• Eye movement297

• Defocus298

• Shadow299

• Banding300

• Segmentation error 301

• Blink 302

• Z offset 303

Low-quality images were excluded from the training of 304

GlauNet as well as for the evaluation of the best architec- 305

ture and hyperparameters. However, a subset of low-quality 306

images that contained optic nerve head and macula was used 307

to test for the robustness against artifacts. 308

E. STATISTICAL ANALYSIS 309

The evaluation of GlauNet was based on 8 diagnostic test 310

parameters: sensitivity, specificity, positive and negative pre- 311

dictive values (PPV and NPV), likelihood ratio of positive 312

(LR+) and negative tests (LR−), accuracy and area under 313

receiver operator characteristic curve (AUC). The expert 314

opinion is considered as a ground truth. All statistical analysis 315

was performed using STATA software version 15.1 (Stata- 316

Corp LLC). Definitions of all parameters are shown below. 317
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Sensitivity is a true positive in the patient (positive) group.318

Sensitivity =
TP

TP+ FN
(7)319

Specificity is a true negative in the control (negative)320

group.321

Specificity =
TN

TN + FP
(8)322

Positive predictive value (PPV) is the collection of patients323

who have test positive.324

PPV =
TP

TP+ FP
(9)325

Negative predictive value (NPV) is the collection of con-326

trols who have test negative.327

NPV =
TN

TN + FN
(10)328

Likelihood ratio of positive test (LR+) indicated the degree329

that the test is more likely to be positive in disease than330

controls. A higher value determines ability of the test to rule331

in a disease. LR+ is defined as follows.332

LR+ =
TP/(TP+ FN )
FP/(TN + FP)

(11)333

In the contrary, likelihood ratio of negative test (LR –)334

indicates the degree that the test is less likely to be negative335

in disease than controls. A lower value determines ability of336

the test to rule out a disease.337

LR− =
FN/(TP+ FN )
TN/(TN + FP)

(12)338

Accuracy means the ratio of correct classification to the339

number of included cases.340

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(13)341

III. EXPERIMENTAL RESULTS342

939 OCTA images were taken from 546 patients. One hun-343

dred and sixty-seven images (17.8%) were excluded from the344

training process due to poor image quality. Therefore, the345

dataset in the experiment composed of 285 GL and 487 NG346

eyes. Demographic of the samples is shown in Table 1. There347

were 258 GL and 439 NG eyes in the training set and 27 GL348

and 48 NG eyes in the test set. GlauNet was compared with349

VGG16, ResNet50, and EfficientNetV2.350

A. GlauNet PARAMETERS SETTING351

We divided the study group at the participant level into352

2 groups: 90% for training and 10% for testing. In the training353

group, the ratio of the training and the validation images354

was set to 4:1. Five-fold cross validation was applied to355

the training group to find the best architecture and hyper-356

parameters. Adams optimizer was used. The accuracy was357

evaluated from the validation images. The batch size was358

varied from 16 to 300. The training rate was varied from359

0.01 to 0.00001 for finding the best setting. It was found that360

the architecture in Fig. 2. provided the highest accuracy. The 361

best hyperparameter of GlauNet was set as followed: batch 362

size 200, learning rate 0.0001, and trained for 100 epochs. 363

B. DIAGNOSTIC PERFORMANCE 364

The accuracy of the GlauNet with 5-fold cross validation for 365

the training set varied between 85.30% and 90.11%. For the 366

test set, the accuracy ranged from 79.86% to 87.05%. One 367

example of the accuracy and loss graph was shown in Fig. 4. 368

In our experiment, only GlauNet was capable of differentiat- 369

ing glaucomatous and normal eyes. VGG16, ResNet50 and 370

EfficientNetV2 failed to learn and classified images either as 371

all normal or all glaucomatous eyes. 372

The visualization of the feature extraction in GlauNet was 373

shown in Fig. 3. The most highlighted area was the optic disc 374

and superotemporal and inferotemporal area. Yellow arrow in 375

Fig. 3(a:left) show the area with a decrease in vessel density. 376

The macula was highlighted only in the first convolutional 377

layer and became less prominent afterwards. In glaucomatous 378

eye, the loss of retinal vessel density was highlighted in the 379

last convolution layer, as shown inside the yellow rectangle 380

in Fig. 3(d:left). This finding was correlated with clinical 381

observation that found reduction of retinal vessel density 382

in the affected area (between arrows in Fig. 3(a:left)). This 383

finding was not presented in nonglaucomatous eye with the 384

same filter, as shown in Fig. 3(d:right). 385

C. MODEL EVALUATION 386

The test set was augmented in the samemanner as the training 387

set in order to evaluate the robustness against the change in 388

camera setting. The performance of GlauNet for the test set 389

and the augmented test set was shown in Table 2. There was 390

only a slight difference between the performance in these 391

two test sets, so it can be concluded that GlauNet was robust 392

against the change in camera setting. In the test set, the 393

classification by other three CNNs were poor. All eyes were 394

classified as glaucoma. 395

The predictive values in Table 2 can be used to explain 396

the probability of getting the correct diagnosis. GlauNet had 397

93.5% negative predictive value. This meant that if an image 398

was classified as non-glaucomatous, the probability of the 399

image being non-glaucomatous would be more than 90%. 400

The likelihood ratio of positive test (LR+) of 8.06 implied 401

that the probability of the image being glaucomatous was 402

moderately increased when the input was classified as glau- 403

coma. Furthermore, the likelihood ratio of negative test 404

(LR –) of 0.12 meant that the probability of the image being 405

non-glaucomatous was moderately decreased when the input 406

was classified as glaucoma. 407

There were 8 (10.1%) and 45 (10.0%)misclassified images 408

in the test and the augmented test set, respectively. The 409

numbers of false negatives were 3 and 30. The numbers of 410

false positives were 5 and 15. 411

GlauNet was also tested for the robustness against OCTA 412

artifacts. Poor-quality images that still contained optic nerve 413

head and macula were used as the testing images. Out of 414
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FIGURE 4. Training and validate results of GlauNet model represent the
accuracy and loss values from the training and validate dataset.

TABLE 2. Performance of GlauNet for glaucoma diagnosis from an OCTA
image.

167 poor quality images, 88 images met our criterion. There415

were 17 GL and 71 NG eyes. The result was shown in Table 2.416

Though there was some drop in performance, but the sensitiv-417

ity, specificity and accuracy were still more than 80%. Exam-418

ple of poor quality images and their classifications are shown419

in Fig. 5. The robustness against artifacts were not inves-420

tigated for VGG16, ResNet50 and EfficientNetV2, because421

these three CNNs failed even in images without artifacts.422

IV. DISCUSSION423

In this study, we evaluated the performance of CNN to detect424

glaucoma from OCTA images. OCTA is a new tool for glau-425

coma diagnosis, therefore, a large image database has not426

been available yet. We developed a customized CNN model,427

namely GlauNet. GlauNet contained 3 convolutional layers428

and was applied to the dataset with 697 eyes in the training429

FIGURE 5. Example of poor quality images that were predicted by
GlauNet. Top left; true positive in glaucomatous eye, Top right; false
negative in glaucomatous eye, bottom left; true negative in
non-glaucomatous eye, bottom right; false positive in non-glaucomatous
eyes.

set and 75 eyes in the test set. Only our proposed GlauNet was 430

capable of differentiating between glaucomatous and non- 431

glaucomatous eyes. The moderate high likelihood ratio value 432

of GlauNet indicated that it was applicable to large dataset 433

(general population). 434

VGG16 and ResNet50 with transfer learning have been 435

applied to OCTA images to detect retinal vein occlusion [40], 436

diabetic retinopathy [41], [42] and glaucoma [43]. They pro- 437

vided excellent results. However, pre-trained networks did 438

not work well with our data. The primary reason would be 439

a limited dataset. To deal with this issue, previous reports 440

modified the training steps to fit their data [40], [41], [42], 441

[43]. Another possible explanation was the distinct difference 442

between normal eyes and eyes with diabetic retinopathy or 443

retinal vein occlusion. The first character was the broadening 444

of white area with distinct border, such as retinal vessel 445

thickening and microaneurysm in diabetic retinopathy. The 446

second character was the black area inside the white retina 447

area. The black area was the result of the capillary loss in 448

diabetic retinopathy and non-perfusion area in retinal vein 449

occlusion [40], [42]. Both characters are prominent and easy 450

to identify, whereas the change of retinal vessels in a glau- 451

coma eye is gradual and sometimes has ill-defined border. 452

Recently, Bowd, et, al. [43] applied modified VGG16 to 453

the peripapillary OCTA images and found the areas under 454

precision-recall curves of 0.97. In this study, we used wider 455

field of OCTA image that included retinal and capillary ves- 456

sels outside the peripapillary area because the correlation 457

between foveal avascular zone and glaucoma was reported 458

in [22], [23], [24]. In addition, because the prevalence of 459

poor image quality was high [47], [48], [49], wider field of 460

view that includes more clinical important area may provide 461

more data for CNN to learn and predict in less severe case 462

of poor quality image. We evaluated the generalization of 463
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FIGURE 6. Example of misclassified OCTA images. Top; false negative in
glaucomatous eyes, bottom; false positive in non-glaucomatous eyes.

the GlauNet model by comparing the performance in test464

and augmented test sets which showed similar results. Also,465

we found good performance of GlauNet in poor quality466

images that usually excluded in previous studies, as repre-467

sented in Table 2.468

Our model found misclassification in about 10% of both469

test and augmented-test images. The examples are shown470

in Fig. 6. False negative results were found in images with471

less or absence of retinal vessel density reduction area. The472

false positive images were presented in images that contained473

shadow and/or the mimic of retinal vessel reduction due to474

the brightness reduction. This finding was not similar to the475

training in optic disc photograph that found false positive476

results in eyes with other retinal conditions [32]. In this study,477

we did not exclude other eye diseases or patients who under-478

went intraocular surgery tomake themodelmore generalized.479

However, to be included in the study, the patients need to480

have OCTA, and optic disc photograph within 6 months.481

Therefore, there were only 72 (9.3%) eyes with other ocular482

disorders. However, our proposed GlauNet correctly classi-483

fied these 72 images.484

There are some limitations in our study. OCTA is a new485

tool compared to optic disc photograph or OCT, therefore,486

we still lack a large dataset. The only OCTA public dataset487

focuses on the macula area that does not match our purpose.488

Glaucoma mostly affect retina area in macular and optic489

disc. Even with small dataset with image augmentation, the490

proposed GlauNet still provided a very good accuracy in491

the test set. Furthermore, we developed this CNN architec-492

ture based on the image from only one OCTA instrument.493

The performance in other machines needed to be explored.494

In addition, OCTA vascular structure for glaucoma diagnosis495

is an on-going research and it is not generally available in496

most ophthalmology clinics. However, if the vascular cause497

has a significant role, we may need to combine this finding498

with the current examination of neural structure.499

V. CONCLUSION 500

GlauNet was proposed for glaucoma diagnosis based on 501

an OCTA image. It was trainable with small dataset and 502

robust against different camera projection setting as well as 503

image artifacts. The robustness can be further improved if 504

actual data with more variation are used for training. Varia- 505

tion comes from both patients (ethnicities, severity, etc.) and 506

OCTA instruments (manufacturer, setting, etc.). Currently, 507

the input of GlauNet is retinal vessels in all layers of the 508

OCTA image. However, some layers may be more correlated 509

to glaucoma than the others. The correlation between the 510

specific layer and glaucoma should be further investigated for 511

both the understanding of the disease and better classification. 512
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