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ABSTRACT Glaucoma is a neurodegenerative disease that affects the optic nerve head and causes visual
field defect. Current investigations focus on neural component which may overlook other important factors
such as the vascular cause. The optical coherence tomography angiography (OCTA) imaging has been
developed and provided quantitative parameters that showed good diagnostic accuracy to detect glaucoma.
However, those parameters are based on image processing of observed clinical findings, therefore, some
image information can be lost. Convolutional neural network has been successfully applied for automatic
feature extraction and object classification. In this study, the glaucoma diagnosis network, namely GlauNet,
has been proposed. GlauNet consists of two sections: the feature-extraction section and the classification
section. The feature-extraction section has three convolutional layers. Each convolutional layer is followed
by rectified linear unit and maximum pooling layer. The classification section contains five fully connected
layers. GlauNet was trained with 258 glaucomatous and 439 non-glaucomatous eyes. The visualization
of the feature-extraction section showed the highlight in the area of optic nerve head and retinal nerve
fiber layer in the superotemporal and inferotemporal regions. It was then tested on 27 glaucomatous and
48 non-glaucomatous eyes. Its sensitivity and specificity were 88.9% with 89.6%, respectively. The area
under receiver operating characteristic curve of GlauNet was 0.89. GlauNet was robust against the artifacts.
Its sensitivity and specificity were still higher than 80% (82.4% and 80.3%, respectively) when tested on
88 poor-quality images.

INDEX TERMS Artificial intelligence, convolutional neural network, deep learning, glaucoma, optical
coherence tomography angiography, retinal blood vessels.

I. INTRODUCTION
Glaucoma is a major visual disability disease that presents

as a result, the prevalence of undiagnosed patients were
between 53% and 88% around the world [2], [3], [4], [5],

with irreversible progressive neurodegeneration. It is caused
by multiple factors. The prevalence of glaucoma in the world
was 3.54% in the year 2014 and there will be about 111.8 mil-
lion glaucoma patients in the year by 2040. The majority of
patients will be in Asia and Africa [1]. Most of the patients
are still asymptomatic until the late stage of the disease,
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[6]. In addition, challenge in glaucoma diagnosis is based on
anatomical variations among people. The current definition
of glaucoma is based on evaluation of neural structure of
the optic nerve head and surrounding retina and visual field,
while intraocular pressure is a major risk factor.

The mainstay glaucoma diagnostic tools in current practice
are optic disc examination, optical coherence tomography
(OCT) and visual field or perimetry. Optic nerve head assess-
ment is the most commonly used method, because it is easy to
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access and inexpensive. However, the diagnosis is subjective
and has both intra- and inter-observer variations [7], [8]. OCT
is a structural investigation. It provides quantitative measure-
ment to overcome the limitations of optic disc examination.
The retinal nerve fiber thickness around the optic nerve head
in OCT is the most commonly used parameter and provides
good diagnostic accuracy for glaucoma detection. However,
OCT retinal nerve fiber layer thickness has the limitation in
the diagnosis of advanced glaucoma [9]. The retinal nerve
fiber layer thickness can also be out of normal range in
patients with other retinal pathologies and eye morphology,
such as myopia [10], [11], [12]. Visual field is another instru-
ment to measure and monitor visual function, including the
depth and extension of visual field defect. However, this is
another subjective tool and requires patient’s performance
and attention. Therefore, it has a lot of unreliable results
due to fixation loss, false positive, false negative and other
confounding errors.

Recently, OCT angiography (OCTA) has been developed
as a non-invasive method to evaluate microvasculopathy and
widely used to diagnose and monitor retinal disorders. The
principle is to compare the variation between moving objects
in blood vessels and surrounding static tissue. In OCTA
imaging, the enface image of the region of interest (ROI)
is generated [13], [14], [15], [16]. Then a retinal and a
choroidal layers are automatically segmented into multiple
slabs. At present, there is no consensus on which ROI gives
the best indication of glaucoma. So the ROI and the layer
of interest are selected by physicians/researchers. Various
quantitative parameters have been extracted from the OCTA
image for glaucoma diagnosis. Following are the parameters
that are found to be comparable with neural component in
OCT.

« Blood vessel density is the most explored parameter.
Reduction of blood vessels density in optic disc and
macular area was correlated with glaucoma severity
[17], [18], [19], [20] and retinal nerve fiber layer thin-
ning derived from OCT [21]. It was found that in
advanced glaucoma cases, the blood vessels density is
a better indicator than the retinal nerve fiber layer thick-
ness [21].

« Foveal avascular zone is an area around the macula
that is absent of blood vessel. Previous study found
an increase in the area of the foveal avascular zone in
glaucoma patients [22]. This finding was correlated with
visual field abnormalities. In addition, the foveal avas-
cular zone became less circular in acute angle closure
glaucoma [23] and glaucoma with central visual field
defect [24].

¢ Microvascular dropout, found in glaucomatous eyes,
is an area that is absent of choroidal blood vessels in
B-zone peripapillary area. It was correlated with the
reduction of blood vessel density [25], rate of reti-
nal nerve fiber layer thinning [26] and visual field
defect [25].
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Besides the above parameters, there are other vascular
parameters related to glaucoma [27]. For examples, disc flow
index, blood vessels tortuosity, vessel perimeter index, ves-
sel complexity, branchpoint analysis, and flow analysis. The
relation of these parameters to the glaucoma comes from
clinical observation, thus, some image information can be
overlooked. Furthermore, the features that were described in
previous literature are individually extracted/segmented by
tailor-made image processing techniques which is time con-
suming and may gave an incorrect value in noisy image [28].

Convolutional neural network (CNN) is an effective image
classifier. It is trained to automatically capture the image
features important for its problem. CNN can be the more
effective glaucoma detector, since it can be trained to use the
non-clinical features that are correlated with vascular mech-
anism in the pathogenesis of glaucoma. CNN uses a patch
convolved over the entire image. It extracts dominant features
in the hidden layers while preserves the correlation between
neighboring pixels [29]. After that, the output signal is trans-
formed into a vector and classified. CNN has been applied to
many ophthalmologic image modalities. Several studies eval-
uated the performance of glaucoma detection in the fundus
photograph using transfer learning [30], [31], [32], [33] on
various conventional deep learning models such as VGG16,
VGG19, Inception-v3, ResNet50, and GooglLeNet. The area
under receiver operating characteristic curves (AUC) were
around 0.90 or more [32], [33], [34]. The results showed
the accuracy equal to or more than ophthalmology trainees
[34], [35]. Some investigators evaluated the performance of
deep learning in OCT retinal nerve fiber layer thickness and
found the AUC of more than 0.90 [36], [37], [38]. In addi-
tion, a combination of OCT quantitative value to the fundus
photograph was another approach to improve the accuracy of
glaucoma diagnosis [39].

A number of deep learning methods have been applied to
an OCTA image for diagnosing retinal diseases [40], [41],
[42]. Nagasato et al. [40] applied VGG16 and supported
vector machine to detect non-perfusion area in retinal vein
occlusion. 322 OCTA images of normal and retinal vein
occlusion were augmented and used. The AUC of VGG16
was 0.98 which was better than supported vector machine and
ophthalmologists. Le et al. [41] also used VGG16 to detect
diabetic retinopathy. The VGG16 was trained with a very
small dataset (32 controls and 99 diabetic eyes). The best
accuracy (AUC of 0.97-0.98) was achieved when the final
9 layers were retrained. Another study on diabetic retinopathy
was done by Heisler, et al. [42]. They use ensemble method
on multiple layers of foveal avascular zone area in 380 eyes
and found that VGG19 provided the best performance with
an AUC of 0.90-0.92.

The application of deep learning for glaucoma detection in
an OCTA image is still limited. Recently, Bowd, et al. [43]
compared the performance of VGG16 and gradient boosting
classifier model in 4.5 x 4.5 mm? of radial peripapillary
capillary vessel density layer of optic nerve head image.
The weight in the first 4 convolution blocks were frozen
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TABLE 1. Demographic data of study sample is 939 eyes from
546 patients to take the OCTA images by the three glaucoma specialists.

. Train Test
Demographic data GO NG GL NG
m=258)| (n=439) | (n=27) |(n=48)
Age (y); mean (SD) 67.7 62.8 68.5 62.9
(11.0) (13.7) 5.9) (13.3)
Gender; male (%) 47.3 36.0 48.1 359
RNFLT (xm); mean (SD) | 68.9 88.2 67.4 88.2
(10.4) (10.0) 9.7) 9.9)
VF MD (dB); mean (SD) -1.5 -2.5 -7.5 -2.4
(7.8) 4.1 (7.3) 4.1)
VF PSD (dB); mean (SD) 6.0 2.8 6.1 2.8
“4.1) (2.0) 4.4) (2.0)

GL; glaucoma group, NG; non-glaucoma group, RNFLT; retinal nerve
fiber layer thickness, VF; visual field, MD; mean deviation, PSD; pattern
standard deviation, dB; decibel

and the weights in the remaining blocks were retrained. The
performance of VGG16 was better than gradient boosting
classifier model that derived from the OCTA machine. They
also implemented other deep learning models and found to be
better than gradient boosting classifier.

In this paper, we applies CNN to diagnose glaucoma from
OCTA images. We hypothesized that the prominent of reti-
nal vessels in OCTA image enhances the visibility of the
neural network for glaucoma classification. In addition, the
role of vascular mechanism in glaucoma pathogenesis may
be important. Instead of focusing only at the optic disc,
we expand our ROI to the surrounding retina and macular
regions. The OCTA imaging is among the recent imaging
modalities. We found only one public OCTA database [44].
However, optic nerve head images are not routinely included.
In this paper, we proposes GlauNet to capture the glaucoma
features from limited data. The architecture of GlauNet was
based on our previous researches [45], [46] which shows that
the shallow convolutional networks is efficient in the analysis
of medical imaging. In the experiment on glaucoma detection,
the proposed GlauNet is compared with the classic VGG16
and ResNet50 and recently proposed, EfficientNetV2 to clas-
sify glaucoma from OCTA images.

Il. METHODOLOGY

A. STUDY SETTING AND POPULATION

The retrospective study was conducted at the Department of
Ophthalmology, Faculty of Medicine, Chulalongkorn Univer-
sity and King Chulalongkorn Memorial Hospital, Bangkok,
Thailand. The Institutional Review Board of the Faculty of
Medicine, Chulalongkorn University according to the decla-
ration of Helsinki approved the protocol. The inclusion crite-
ria was patients presenting to the eye clinic who were over
18 years old and underwent OCTA, optic disc photograph
and/or OCT and visual field test results within 6 months
from each other during January 2018 to October 2021. The
demographic of our data is shown in Table 1. The exclu-
sion criterion was poor quality OCTA images, including eye
movement, defocus, shadow, banding, segmentation error,
blink, or Z offset in at least 10% of the image area [47], [48],
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FIGURE 1. An example of optical coherence tomography angiography
(OCTA) images consists of (top) a normal or non-glaucoma eye image and
(bottom) a glaucomatous eye image which were flipped to the right eye
format. (Yellow arrows: area of retinal vessel density reduction in
glaucomatous eye).

[49]. However, we did not exclude an eye with decentration
if the image still contained optic nerve head and macula. The
poor quality images were later used to evaluate the proposed
GlauNet regarding the robustness against artifacts.

B. GROUND TRUTH

To set the ground truth, three glaucoma specialists (SC,
KR, NU) independently graded optic disc photographs in
conjunction with OCT and/or visual field results and made
a diagnosis to be normal, glaucoma suspect or glaucoma.
The criteria for glaucoma (GL) diagnosis were adapted from
Li, et al. [32]. Normal visual field was determined by glau-
coma hemifield test within normal limits and and pattern stan-
dard deviation more than 5%. The final diagnosis depended
upon majority vote. If the majority vote is not reached,
a senior expert (AM) independently reviewed the investiga-
tion results and made a diagnosis. The normal and suspected
eyes were grouped into non-glaucoma (NG) group. The data
were divided into training and test datasets. The demograph-
ics of the training and test datasets are shown in Table 1.

C. DATA ACQUISITION AND IMAGE PRE-PROCESSING

This research collected OCTA images of the whole retinal
layers with a size of 15 x 9 mm? that was equivalent to 1024 x
614 pixels in RGB format from Zeiss PLEX® Elite 9000
(Software version 2.1.0.55513; Carl Zeiss Meditec, Dublin,
CA, USA). To reduce the computational time and get rid of
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FIGURE 2. The overall proposed architecture of a new convolution neural network for intelligent glaucoma diagnosis on OCTA images
(GlauNet) consists of two sections: feature-extraction section consisting of three convolutional layers(CONV) where each layer is followed by
the rectified linear unit (ReLU) and the maximum pooling filtering (MP) and classification section consisting of five fully connected (FC)

layers.

artifacts that usually appear on both sides of an OCTA image,
all images were cropped to 614 x 614 pixels such that they
still contained optic disc and macula. All left-eye images were
horizontal flipped to the right-eye format, as shown in Fig. 1.
We used stratified random sampling to separate the dataset
at the participants level into 90% for training and 10% for
testing. All images were normalized from a range of 0-255 to
0-1. The input OCTA image was then resized to 307 x 307 x
3 pixels. The training dataset was augmented by applying
horizontal flip, rotation (0-7 degree), width and height shifts
(0%—-5%) and brightness adjustment (80%—-100%). In the
training dataset, 5-fold cross validation was used to find the
best architecture as well as the hyperparameters. Therefore,
the ratio between training and validation data was set to
80:20.

D. GlauNet

In this paper, the new CNN architecture for glaucoma diagno-
sis from an OCTA image, namely GlauNet, is proposed. The
overall architecture of GlauNet is shown in Fig. 2. It has two
sections: feature-extraction section and classification section.
Its input image, Iiypus, is an 307 x 307 x 3 OCTA images as
shown in Fig. 3(a).

The feature-extraction section consists of three convolu-
tional layers and one flatten layer. In the convolutional layer
(CONYV), the outputs of the previous layer are filtered accord-
ing to the following equation.

Zt — ht—l * Wl (1)

where 7' is the pre-activation output of layer #; A’ is the output
of layer f; * is the discrete convolution operator; W' is the
learnable n x n parameters of layer ¢ and can be considered
as the adaptive kernel function. The convolution layer is
followed by rectified linear unit (ReLU), which provides the
output (Z;) according to the following equation.

ReLU(Z;) = max(0, z;). 2)

The maximum pooling layers (MP) seeks the strongest
response inside the s x s windows and can be formulated
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as follows.
t 1—1
hxy = maxi=0,...,s,j=0,..., sZ(x+1)(y+1)’ 3)
o t—1 .
where /1, is the output of layer 7 at (x, y) and Zioy Dy-4) 18 the

output of ReLU unit in the previous layer.

All MP layers have the size of 2 x 2 with the stride of 2.
The first convolutional layer (CONVI) contains a stack of
32 convolution filters with the 3 x 3 kernel size. It was
followed by ReLUI and MPI. The output of MPI was
32 153 x 153 images. Fig. 3(b) shows the sample outputs of
this layer for a glaucomatous and a non-glaucomatous eyes.
The second convolutional layer (CONV2) contains a stack
of 64 3 x 3 convolution filters. The output of the second
layer after MP2 is 64 75 x 75 images. Fig. 3(c) shows the
sample outputs of the glaucomatous and non-glaucomatous
images. The last convolutional layer (CONV3) contains a
stack of 128 3 x 3 convolution filters. The output after MP3
is 128 36 x 36 images. The sample outputs are shown in
Fig. 3(d), respectively.

128 output images are grouped and vectorized into a 1 x
165, 888 vector. The vectorization is represented as a flatten
layer (FL) in Fig. 2. The architecture of the feature-extraction
section can be written in the formulated form of the neural
network model as follows:

GlauNet™ £ = Ijyp(N, N, 3)
— CONV1(3,3,32)—> ReLU1— MP1(2,2)
— CONV2(3,3,64)— ReLU2— MP2(2,2)
— CONV3(3, 3,128)— ReLU3— MP3(2,2)
— FL. 4
The classification section consists of five fully connected
layers (FC). All outputs in the previous layer are linearly
convoluted as follows.
d=wh"". ©)

The sizes of the five layers are 256 (FCI), 128 (FC2),
64 (FC3), 32 (FC4) and 2 (FC5) nodes. To avoid overfit-
ting, the FFC4 layer has the dropout rate of 0.5. There are
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FIGURE 3. Visualization of feature map in GlauNet model of each convolutional layer in (a:left) glaucomatous and (a:right)
non-glaucomatous eyes with (b), (c), and (d) represent the example results of CONV1, CONV2, and CONV3 from glaucomatous

and non-glaucomatous images, respectively.

42,467,584 connected parameters from flatten data. The FC5
layer has 2 nodes: one for glaucomatous and the other for
non-glaucomatous eyes. The activation function of FC is a
sigmoid function. The proposed GlauNet can be represented
by the following formulated form:

GlauNet = GlauNet" £
— FC1(256) — FC2(128)
— FC3(64) — FC4(32)
— FC5(2). 6)
An OCTA image was classified as low-quality image if it
contains one of the following artifacts in at least 10% of the
image.
« Eye movement
o Defocus

o Shadow
« Banding
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« Segmentation error
« Blink

o Z offset
Low-quality images were excluded from the training of

GlauNet as well as for the evaluation of the best architec-
ture and hyperparameters. However, a subset of low-quality
images that contained optic nerve head and macula was used
to test for the robustness against artifacts.

E. STATISTICAL ANALYSIS

The evaluation of GlauNet was based on 8§ diagnostic test
parameters: sensitivity, specificity, positive and negative pre-
dictive values (PPV and NPV), likelihood ratio of positive
(LR+) and negative tests (LR—), accuracy and area under
receiver operator characteristic curve (AUC). The expert
opinion is considered as a ground truth. All statistical analysis
was performed using STATA software version 15.1 (Stata-
Corp LLC). Definitions of all parameters are shown below.
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Sensitivity is a true positive in the patient (positive) group.
e TP
Sensitivity = ———— @)
TP+ FN
Specificity is a true negative in the control (negative)
group.
e N
Specificity = TN + FP (8)
Positive predictive value (PPV) is the collection of patients
who have test positive.
TP
=P+ FP
Negative predictive value (NPV) is the collection of con-
trols who have test negative.

PPV &)

TN
~ IN +FN
Likelihood ratio of positive test (LR+) indicated the degree
that the test is more likely to be positive in disease than
controls. A higher value determines ability of the test to rule
in a disease. LR+ is defined as follows.

_ TP/(TP+FN)
" FP/(TN + FP)

In the contrary, likelihood ratio of negative test (LR —)
indicates the degree that the test is less likely to be negative
in disease than controls. A lower value determines ability of
the test to rule out a disease.

FN /(TP + FN
LR— = M (12)
IN/(TN + FP)
Accuracy means the ratio of correct classification to the

number of included cases.

NPV (10)

LR+ (11)

Accuracy = TP+ 1N (13)
YT TPYFP+FN + 1IN

IIl. EXPERIMENTAL RESULTS

939 OCTA images were taken from 546 patients. One hun-
dred and sixty-seven images (17.8%) were excluded from the
training process due to poor image quality. Therefore, the
dataset in the experiment composed of 285 GL and 487 NG
eyes. Demographic of the samples is shown in Table 1. There
were 258 GL and 439 NG eyes in the training set and 27 GL
and 48 NG eyes in the test set. GlauNet was compared with
VGG16, ResNet50, and EfficientNetV2.

A. GlauNet PARAMETERS SETTING

We divided the study group at the participant level into
2 groups: 90% for training and 10% for testing. In the training
group, the ratio of the training and the validation images
was set to 4:1. Five-fold cross validation was applied to
the training group to find the best architecture and hyper-
parameters. Adams optimizer was used. The accuracy was
evaluated from the validation images. The batch size was
varied from 16 to 300. The training rate was varied from
0.01 to 0.00001 for finding the best setting. It was found that
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the architecture in Fig. 2. provided the highest accuracy. The
best hyperparameter of GlauNet was set as followed: batch
size 200, learning rate 0.0001, and trained for 100 epochs.

B. DIAGNOSTIC PERFORMANCE

The accuracy of the GlauNet with 5-fold cross validation for
the training set varied between 85.30% and 90.11%. For the
test set, the accuracy ranged from 79.86% to 87.05%. One
example of the accuracy and loss graph was shown in Fig. 4.
In our experiment, only GlauNet was capable of differentiat-
ing glaucomatous and normal eyes. VGG16, ResNet50 and
EfficientNetV2 failed to learn and classified images either as
all normal or all glaucomatous eyes.

The visualization of the feature extraction in GlauNet was
shown in Fig. 3. The most highlighted area was the optic disc
and superotemporal and inferotemporal area. Yellow arrow in
Fig. 3(a:left) show the area with a decrease in vessel density.
The macula was highlighted only in the first convolutional
layer and became less prominent afterwards. In glaucomatous
eye, the loss of retinal vessel density was highlighted in the
last convolution layer, as shown inside the yellow rectangle
in Fig. 3(d:left). This finding was correlated with clinical
observation that found reduction of retinal vessel density
in the affected area (between arrows in Fig. 3(a:left)). This
finding was not presented in nonglaucomatous eye with the
same filter, as shown in Fig. 3(d:right).

C. MODEL EVALUATION

The test set was augmented in the same manner as the training
set in order to evaluate the robustness against the change in
camera setting. The performance of GlauNet for the test set
and the augmented test set was shown in Table 2. There was
only a slight difference between the performance in these
two test sets, so it can be concluded that GlauNet was robust
against the change in camera setting. In the test set, the
classification by other three CNNs were poor. All eyes were
classified as glaucoma.

The predictive values in Table 2 can be used to explain
the probability of getting the correct diagnosis. GlauNet had
93.5% negative predictive value. This meant that if an image
was classified as non-glaucomatous, the probability of the
image being non-glaucomatous would be more than 90%.
The likelihood ratio of positive test (LR+) of 8.06 implied
that the probability of the image being glaucomatous was
moderately increased when the input was classified as glau-
coma. Furthermore, the likelihood ratio of negative test
(LR -) of 0.12 meant that the probability of the image being
non-glaucomatous was moderately decreased when the input
was classified as glaucoma.

There were 8 (10.1%) and 45 (10.0%) misclassified images
in the test and the augmented test set, respectively. The
numbers of false negatives were 3 and 30. The numbers of
false positives were 5 and 15.

GlauNet was also tested for the robustness against OCTA
artifacts. Poor-quality images that still contained optic nerve
head and macula were used as the testing images. Out of
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FIGURE 4. Training and validate results of GlauNet model represent the
accuracy and loss values from the training and validate dataset.

TABLE 2. Performance of GlauNet for glaucoma diagnosis from an OCTA
image.

Model Test set Augmented Poor quality
test set images

Sensitivity (%) | 88.9 90.1 82.4
Specificity (%) | 89.6 86.5 80.3

PPV (%) 82.8 78.9 50.0

NPV (%) 93.5 94.0 95.0

LR+ 8.06 8.75 4.55

LR- 0.12 0.15 0.24
Accuracy (%) |89.3 87.8 80.7

AUC 0.89 0.88 0.81
(95%CTI) (0.82-0.97) (0.85-0.91) (0.71 - 0.92)

PPV; Positive predictive value, NPV; Negative predictive value, LR+;
Likelihood ratio for positive test, LR-; Likelihood ratio for negative
test, AUC; Area under receiver operating characteristic curve

167 poor quality images, 88 images met our criterion. There
were 17 GL and 71 NG eyes. The result was shown in Table 2.
Though there was some drop in performance, but the sensitiv-
ity, specificity and accuracy were still more than 80%. Exam-
ple of poor quality images and their classifications are shown
in Fig. 5. The robustness against artifacts were not inves-
tigated for VGG16, ResNet50 and EfficientNetV2, because
these three CNNs failed even in images without artifacts.

IV. DISCUSSION

In this study, we evaluated the performance of CNN to detect
glaucoma from OCTA images. OCTA is a new tool for glau-
coma diagnosis, therefore, a large image database has not
been available yet. We developed a customized CNN model,
namely GlauNet. GlauNet contained 3 convolutional layers
and was applied to the dataset with 697 eyes in the training
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e \F e riExe
FIGURE 5. Example of poor quality images that were predicted by
GlauNet. Top left; true positive in glaucomatous eye, Top right; false
negative in glaucomatous eye, bottom left; true negative in
non-glaucomatous eye, bottom right; false positive in non-glaucomatous
eyes.
set and 75 eyes in the test set. Only our proposed GlauNet was
capable of differentiating between glaucomatous and non-
glaucomatous eyes. The moderate high likelihood ratio value
of GlauNet indicated that it was applicable to large dataset
(general population).

VGG16 and ResNet50 with transfer learning have been
applied to OCTA images to detect retinal vein occlusion [40],
diabetic retinopathy [41], [42] and glaucoma [43]. They pro-
vided excellent results. However, pre-trained networks did
not work well with our data. The primary reason would be
a limited dataset. To deal with this issue, previous reports
modified the training steps to fit their data [40], [41], [42],
[43]. Another possible explanation was the distinct difference
between normal eyes and eyes with diabetic retinopathy or
retinal vein occlusion. The first character was the broadening
of white area with distinct border, such as retinal vessel
thickening and microaneurysm in diabetic retinopathy. The
second character was the black area inside the white retina
area. The black area was the result of the capillary loss in
diabetic retinopathy and non-perfusion area in retinal vein
occlusion [40], [42]. Both characters are prominent and easy
to identify, whereas the change of retinal vessels in a glau-
coma eye is gradual and sometimes has ill-defined border.

Recently, Bowd, et, al. [43] applied modified VGG16 to
the peripapillary OCTA images and found the areas under
precision-recall curves of 0.97. In this study, we used wider
field of OCTA image that included retinal and capillary ves-
sels outside the peripapillary area because the correlation
between foveal avascular zone and glaucoma was reported
in [22], [23], [24]. In addition, because the prevalence of
poor image quality was high [47], [48], [49], wider field of
view that includes more clinical important area may provide
more data for CNN to learn and predict in less severe case
of poor quality image. We evaluated the generalization of

95619



IEEE Access

A. Manassakorn et al.: GlauNet: Glaucoma Diagnosis for OCTA Imaging Using a New CNN Architecture

i3 @x31q9 2

“ PLEX® ENif

RN J
FIGURE 6. Example of misclassified OCTA images. Top; false negative in
glaucomatous eyes, bottom; false positive in non-glaucomatous eyes.

the GlauNet model by comparing the performance in test
and augmented test sets which showed similar results. Also,
we found good performance of GlauNet in poor quality
images that usually excluded in previous studies, as repre-
sented in Table 2.

Our model found misclassification in about 10% of both
test and augmented-test images. The examples are shown
in Fig. 6. False negative results were found in images with
less or absence of retinal vessel density reduction area. The
false positive images were presented in images that contained
shadow and/or the mimic of retinal vessel reduction due to
the brightness reduction. This finding was not similar to the
training in optic disc photograph that found false positive
results in eyes with other retinal conditions [32]. In this study,
we did not exclude other eye diseases or patients who under-
went intraocular surgery to make the model more generalized.
However, to be included in the study, the patients need to
have OCTA, and optic disc photograph within 6 months.
Therefore, there were only 72 (9.3%) eyes with other ocular
disorders. However, our proposed GlauNet correctly classi-
fied these 72 images.

There are some limitations in our study. OCTA is a new
tool compared to optic disc photograph or OCT, therefore,
we still lack a large dataset. The only OCTA public dataset
focuses on the macula area that does not match our purpose.
Glaucoma mostly affect retina area in macular and optic
disc. Even with small dataset with image augmentation, the
proposed GlauNet still provided a very good accuracy in
the test set. Furthermore, we developed this CNN architec-
ture based on the image from only one OCTA instrument.
The performance in other machines needed to be explored.
In addition, OCTA vascular structure for glaucoma diagnosis
is an on-going research and it is not generally available in
most ophthalmology clinics. However, if the vascular cause
has a significant role, we may need to combine this finding
with the current examination of neural structure.
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V. CONCLUSION

GlauNet was proposed for glaucoma diagnosis based on
an OCTA image. It was trainable with small dataset and
robust against different camera projection setting as well as
image artifacts. The robustness can be further improved if
actual data with more variation are used for training. Varia-
tion comes from both patients (ethnicities, severity, etc.) and
OCTA instruments (manufacturer, setting, etc.). Currently,
the input of GlauNet is retinal vessels in all layers of the
OCTA image. However, some layers may be more correlated
to glaucoma than the others. The correlation between the
specific layer and glaucoma should be further investigated for
both the understanding of the disease and better classification.
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