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ABSTRACT Sign language is the primary communication medium for persons with hearing impairments.
This language depends mainly on hand articulations accompanied by nonmanual gestures. Recently, there
has been a growing interest in sign language recognition. In this paper, we propose a trainable deep learning
network for isolated sign language recognition, which can effectively capture the spatiotemporal information
using a small number of signs’ frames. We propose a hierarchical sign learning module that comprises three
networks: dynamic motion network (DMN), accumulative motion network (AMN), and sign recognition
network (SRN). Additionally, we propose a technique to extract key postures for handling the variations
in the sign samples performed by different signers. The DMN stream uses these key postures to learn
the spatiotemporal information pertaining to the signs. We also propose a novel technique to represent the
statical and dynamic information of sign gestures into a single frame. This approach preserves the spatial and
temporal information of the sign by fusing the sign’s key postures in the forward and backward directions to
generate an accumulative video motion frame. This frame was used as an input to the AMN stream, and the
extracted features were fused with the DMN features to be fed into the SRN for the learning and classification
of signs. The proposed approach is efficient for isolated sign language recognition, especially for recognizing
static signs. We evaluated this approach on the KArSL-190 and KArSL-502 Arabic sign language datasets,
and the obtained results on KArSL-190 outperformed other techniques by 15% in the signer-independent
mode. Additionally, the proposed approach outperformed the state-of-the-art techniques on the Argentinian
sign language dataset LSA64. The code is available at https://github.com/Hamzah-Lugman/SLR_AMN.

INDEX TERMS Sign language recognition, Arabic sign language, Argentinian sign language, KArSL,
LSAG64, gesture recognition, action recognition.

I. INTRODUCTION

Hearing loss has become a common problem globally.
According to the World Health Organization [1], 2.5 bil-
lion people (i.e., one in four persons) are projected to have
some degree of hearing loss by 2050; approximately 700 mil-
lion of these will need hearing rehabilitation. This increases
the dependence on sign language, which is the primary
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communication language for persons with various levels of
hearing disabilities.

Sign languages are complete languages with their own
grammar and syntax; however, their linguistic properties dif-
fer from those of natural languages [2]. Each sign language
has its own dictionary that is usually limited in size in compar-
ison with the dictionaries of natural languages. Consequently,
signers use one sign to refer to several spoken synonymous
words, such as home, house, and apartment. Similar to spoken
languages, sign languages are diverse; several sign languages
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are used worldwide, such as the American sign language
(ASL), Chinese sign language (CSL), and Arabic sign lan-
guage (ArSL) [3]. ArSL is one of the sign languages used
in Arabic countries. This is a unified language of several
sign languages used in Arabic countries [4]. ArSL was pro-
posed in 1999 by the League of the Arab States and the
Arab League Educational, Cultural and Scientific Organi-
zation. The ArSL dictionary consisting of 3200 sign words
was published in two parts in 2000 [5] and 2006 [6]. The
signs for the dictionary were mainly selected by finding the
shared signs among the majority of the sign languages in Arab
countries and in Arab Gulf countries. ArSL is mainly used in
the Arab states of the Arab Gulf countries (e.g., Qatar and the
United Arab Emirates). Further, in almost all Arab countries,
ArSL is used at airports and by the news media, such as
Al-Jazeera. The correlation between signs and spoken lan-
guages is complex and varies depending on the country more
than the spoken language. Therefore, countries that share the
same spoken language may have different sign languages, for
example, although English is the spoken language of both
the United Kingdom and the United States, they have differ-
ent sign languages, namely, British sign language and ASL,
respectively [7].

Sign language is a descriptive language that simultane-
ously utilizes manual and nonmanual gestures [8]. A majority
of the sign words depend on manual movements that use hand
motions for interpersonal communication [9]. These signs are
accompanied usually by nonmanual gestures that consist of
body postures and facial expressions. Nonmanual gestures
play an important role in many sign languages to convey
emotions and linguistic information that cannot be expressed
by manual gestures. For example, facial expressions are used
to express negations in ArSL, and they serve as adverbs and
adjectives that modify manual signs [10]. Additionally, facial
expressions are used to distinguish between signs that share
the same manual gesture. For instance, the sign for ““brother”
is identical to the sign for ““sister”” in German sign language;
however, their lip patterns differ [11].

Motion represents a basic component of sign gestures.
Based on the motions involved, signs can be classified into
two types: static and dynamic signs. Most of the sign lan-
guage letters and digits are static signs in which the signs
do not involve any motion. These signs depend mainly on
the shapes and orientations of the hands and fingers [12].
Therefore, still images can adequately capture these types of
signs, which justify the availability of most of the alphabet
datasets in the form of images. By contrast, dynamic signs
involve manual and/or nonmanual motions of body parts.
These signs represent a majority of the sign words used in
the sign language vocabulary [13]. Hence, a video stream is
required to represent signs in which the motion component is
basic.

Sign language interpretation involves recognition and
translation. Recognition is the task of identifying sign ges-
tures either in the images or videos of a sign language and
returning their equivalent in a natural language. The output
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of this stage can be isolated words or sentences depend-
ing on the input provided. Isolated sign recognition systems
accept a sign and output an equivalent word in a spoken lan-
guage. Continuous sign language recognition systems iden-
tify a sequence of signs performed continuously and output
a set of words in the form of sentences. These sentences
have the structure and grammar of the source sign language,
which are usually different from the structure and grammar of
natural languages. Thus, a machine translation system is used
to translate these sentences into the target natural language.

Several approaches have been proposed recently for sign
language recognition. However, there are still some limita-
tions that need to be addressed. Firstly, most of the sign recog-
nition systems consider all signs’ frames for sign learning and
classification. This can result in degrading the recognition
accuracy due to the variations between the signs performed
by different signers. Therefore, there is a need for an approach
to extract the main postures of the sign gesture and ignore less
important postures. Secondly, most of the temporal learning
techniques for dynamic sign gesture recognition could not
learn the non-manual gestures efficiently. Thirdly, few tech-
niques have been proposed for ArSL recognition compared
with other sign languages. This can be attributed mainly to the
lack of a benchmarked dataset. We aim in this work to address
these limitations. The main contributions of this research are
as follows:

« We propose a trainable deep learning network for sign
language recognition that can effectively capture the
spatiotemporal information with few frames of the signs

o We design a hierarchical sign learning model, which
learns the spatial and temporal information of the sign
gesture in three networks: dynamic motion network
(DMN), accumulative motion network (AMN), and sign
recognition network (SRN).

o We propose a technique to extract the dominant and
important sign postures. This approach helps tackle the
variations of the sign samples.

« We propose an accumulative video motion (AVM) tech-
nique to encode the sign motions in the video stream into
a single image.

o We evaluated the proposed approach on the KArSL and
LSA64 datasets and found that the proposed method
outperformed other methods.

o We benchmarked the KArSL-502 dataset.

The rest of the paper is organized as follows. Section II
reviews the related work dealing with sign language recog-
nition. Section III presents the architecture of the proposed
system, and Section IV describes the experimental work and
the obtained results. Section V highlights the contributions of
this research and concludes the paper.

Il. RELATED WORK

Several techniques have been proposed in the last two
decades for automatically recognizing various sign lan-
guages. Based on the acquisition devices, these tech-
niques can be classified into two types: sensor-based and
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vision-based techniques [14]. Most of the early recognition
techniques depended on motion sensors for the detection
and tracking of hand movements; however, recent techniques
have abandoned these sensors, and sign captioning is facili-
tated by applying cameras.

A. SENSOR-BASED TECHNIQUES

Sensor-based techniques use motion sensors to acquire sign
gestures [15]. These sensors can track the movements and
shapes of fingers and hands. Electronic gloves are the most
commonly used sensors in literature [16], [17], [18], [19],
[20], [21], [22], [23]. Ritchings et al. [22] proposed a sign
language recognition system using two bend sensors with
push-button switches for motion tracking. This system was
evaluated on 65 signs and an accuracy of 93% was reported.
However, this system failed to track signs when the signers
had small hands.

Dempster—Shafer Theory of Evidence was used by
Mohandes and Deriche [23] to integrate the data obtained
from a hand-tracking system and a glove sensor. A dataset
consisting of 100 signs was collected using these sensors,
and these signs were used to evaluate the proposed system.
Twenty-eight signals were provided by both sensors for each
hand. The accuracy reported using the hand-tracking sys-
tem was 84.7%, whereas a better accuracy of 91.3% was
obtained using the glove-based system. The authors found
that data fusion at the classification level had a higher accu-
racy of 98.1% when compared with the data fusion accu-
racy of 96.2% at the features level. The glove-based sys-
tem using a pair of DG5-VHand gloves was developed by
Tubaiz et al. [24]. The information retrieved by these sensors
was fed into the modified K-nearest neighbor for classifica-
tion, and an accuracy of 98.9% was reported for a dataset
comprising 40 sentences.

The sensor-based acquisition techniques helped in the
tracking of hands and in handling environmental constraints,
such as background removal; however, requiring the signer
to wear gloves during the signing was difficult for real-time
systems. Also, these sensors could not capture the nonmanual
gestures that are a basic component of any sign language.
Thus, a majority of the recent sign language recognition
systems are vision-based where single or multiple camera
devices are used for sign capturing. These systems require
only video cameras for sign acquisition, which helps to inte-
grate these systems easily using new technologies such as
smartphones. Additionally, new cameras can provide depth
information that helps to obtain more information about the
performed signs.

B. VISION-BASED TECHNIQUES

Vision-based techniques can be broadly classified into classic
and machine learning techniques. Classic techniques depend
on extracting statistical and geometric features from sign ges-
tures and feeding them into a classifier. Nai et al. [25] pro-
posed a system to recognize ASL digits on depth images.
A set of statistical features were extracted and classified using
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the random forest classifier, and an accuracy of 89.6% was
reported. Depth images were also used by Ameida et al. [26]
for Brazilian sign language recognition. A set of seven struc-
tural features were extracted from these images and fed
into support vector machines (SVM) for classification to
obtain an accuracy above 80% with 34 signs. Joshi et al. [27]
applied a multilevel histogram of gradient (HOG) for recog-
nizing Indian sign language letters in complex backgrounds.
An accuracy of 92% has been reported on a dataset that con-
sists of 26 signs. Nevertheless, this accuracy is low given the
dataset size and the hand segmentation.

Hidden Markov model (HMM) was used by Zaki and Sha-
heen [28] for recognizing 50 signs of ASL. The principal
component analysis (PCA) was used for features reduction
and an accuracy of 89.1% was reported. A PCA with linear
discriminant analysis was also used by Pan et al. [29]. The
extracted features were classified using SVM, and the accu-
racies of 94% and 99.8% were reported using the 26 signs
of ASL and CSL, respectively. Nguyen and Do [30] used
HOG and local binary pattern (LBP) techniques for features
extraction and SVM for classification.

Several frequency domain features have been used in litera-
ture for sign language recognition. The main frequency-based
techniques used in the literature are dynamic time warp-
ing [31], [32], Fourier descriptors [3], [29], Hu moments [29],
discrete wavelet transform [33], [34], and wavelet trans-
form [35]. Makhashen et al. [7] used the Gabor transform
for features extraction. These features were fed into a con-
volutional neural network (CNN), and an accuracy higher
than 95% was reported for the ASL letters. However, Zernike
moments outperformed Hu moments, PCA, and Fourier
descriptors for sign language recognition [36], [37], [38].

Machine learning techniques have been extensively
applied for sign language recognition during the last 10 years.
These techniques can be classified into traditional machine
learning techniques and deep learning techniques. Traditional
machine learning techniques apply classical algorithms for
sign language recognition, such as SVM, PCA, and HMM.
These techniques have been used with different input repre-
sentations including sensor-based features. Other researchers
combined them with deep learning models, such as CNN
and long short-term memory (LSTM). CNN was used by
Jiang and Zhang [39] for CSL recognition, and an accu-
racy of 88.1% was reported using 1260 RGB images. Sim-
ilarly, Barbhuiya et al. [40] proposed a CNN-SVM model
for sign language recognition. The proposed model utilizes
the pre-trained AlexNet and VGG16 models. The proposed
model was used for features extraction, and the SVM was
used for classification. This approach reported an accuracy
of 99.8% on the static signs of ASL. For more details about
the deep learning techniques utilized for sign language recog-
nition, we refer to this survey [41].

Liu et al. [42] used the joint points of the signer’s hand
skeleton as the input to the LSTM model. Twelve joint points
were obtained using the Kinect sensor and fed into LSTM
with seven layers. This technique was evaluated on the two
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CSL datasets with 25K and 125K images with reported
accuracies of 86% and 64%, respectively. Sidig and Mah-
moud [43] also used hand trajectories for ArSL recogni-
tion. The skeletons of the signer’s hands were tracked using
the Kinect camera, and the captured joint points were fed
into KNN for classification. This technique was evaluated
on 100 signs of the KArSL dataset, and accuracies of 99%
and 64% were reported for signer-dependent and signer-
independent modes, respectively.

Multimodality systems have been proposed by several
researchers for sign language recognition. A combination
of joint points with color and depth images was used by
Huang et al. [44] as an input to a CNN model with eight lay-
ers. This model was evaluated on a dataset comprising 25 sign
gestures, and an accuracy of 94.2% was reported. Color and
depth images were also concatenated by Li et al. [45] and
used for recognizing 24 letters of ASL. A sparse autoen-
coder model with CNN was used to extract the features from
the color and depth images to be classified by SVM. This
approach reported an accuracy of 99.05% on the dataset com-
prising 20K samples.

Although most of the surveyed studies on sign lan-
guage recognition considered only manual gestures, several
researchers have studied the importance of nonmanual fea-
tures for sign language recognition. Lugman and El-Alfy [13]
combined the facial expressions with hand gesture features;
this fusion improved the accuracy by 3.6% when compared
with the case when only manual gestures were performed in
the signer-independent mode by four signers using 50 ArSL
signs. The fusion of manual gestures with facial expressions
was also performed by Sabyrov et al. [46]. The OpenPose
library was used to extract the keypoints from the facial
expressions and hand gestures. This hybrid system boosted
the recognition accuracy by 7% when compared with only
hand gestures. Kumar et al. [47] used Kinect with a Leap
Motion Controller to capture facial expressions and hand ges-
tures. Each of these modalities was separately fed into the
HMM to be combined later at the classification level using
the Bayesian classifier. An Indian sign language dataset with
51 signs was used to evaluate this approach, and the reported
results showed that the fusion of the manual and nonmanual
gestures improved the accuracy by 1.04% when compared
with a single modality. Table 1 shows the summary of the
surveyed papers.

lll. PROPOSED METHOD

The objective of this research is to develop a trainable deep
learning network for sign language recognition that can
effectively capture the spatiotemporal information with few
frames. To this end, we propose a sign recognition system
that consists of a key postures extractor and sign learning
networks, as shown in Figure 1. The key postures extractor
is used to capture the main postures of the sign gesture by
extracting the key frames in the sign video stream. We also
propose the AVM technique to capture the motion of the
signs’ frames and represent the motion using a single image
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while preserving the spatiotemporal information of the sign
gesture. The key postures and AVM frame are fed into a
novel two-stream network for sign language recognition. The
key postures are fed into the DMN to learn the spatiotem-
poral information in the sign gesture. The AVM frame is
used as an input to the AMN that learns the motion in the
AVM image. The extracted features from the two streams
are concatenated and fed into the SRN for learning the fused
features and performing the classification. In this section,
we start by describing the key frames and AVM extraction
techniques. Then, we discuss the proposed two-stream sign
learning architecture and the fusion technique.

A. KEY POSTURES

Based on body motion, sign gestures can be classified into
two types: static and dynamic. Static signs are motionless
gestures, and they depend mainly on the shape, orientation,
and articulation of the hands and fingers to convey meanings.
By contrast, dynamic signs employ body movements during
signing. Dynamic gestures represent a majority of signs used
in sign languages, whereas static gestures are used mainly for
letters, digits, and a few sign words.

Dynamic gestures are more challenging to recognize than
static gestures. The recognition of static gestures depends
only on spatial information, whereas the recognition of
dynamic gestures requires spatial and temporal information.
An additional challenge for recognizing such signs is the ges-
ture variations among the different signers of the sign. These
variations are obvious with signs that consist of more than one
posture. Another challenge with the recognition of dynamic
gestures is the large number of generated frames, especially
when sign gestures are recorded at high frame rates. Some of
these frames are often redundant, which increases the recog-
nition time of the systems that process sign video frames
for recognizing sign gestures. To address these problems,
we extracted the key frames from each sign and used these
frames as the input to the recognition system.

A key posture technique is used to extract the prominent
sign postures in the sign video stream by extracting the corre-
sponding frames in the sign’s video stream. Inspired by [43],
we extracted the key frames by employing the hand trajecto-
ries captured by tracking the hand joint points, which were
returned by Kinect as part of the skeleton data. The points
for the hand’s joints can have some outliers that can signifi-
cantly impact the extraction of key postures. To address this
problem, we preprocessed these joint points by smoothing
the hand locations using the median filter to remove the out-
liers. For occluded hands or lost joints, Kinect V2 is efficient
in joint estimation while providing skeletal tracking that is
more robust to occlusions [48]. However, if this estimation
is noisy or inaccurate, our median filter will smooth it in
the preprocessing stage. Then, we extracted the key frames
by connecting the hand locations during signing to form a
polygon, as shown in Figure 2.

The sharp changes in hand locations represent the ver-
tices of the polygon. To keep the most important N vertices,
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TABLE 1. Summary of the surveyed papers.

Paper Sign language Features Classifier ~Number of Signs  Accuracy
Nai et al. [25] American 10 89.6%
Zaki et al. [28] American 50 89.1%
Pan et al. [29] éﬁf}:’an 26 gg:gzz
Makhashen et al. [7] American Gabor, CNN SVM 26 95.0%
Nguyen et al. [30] HOG-LBP SVM 24

Jiang and Zhang [40] Chinese CNN 88.1%
Barbhuiya et al. [41] American CNN SVM 26 99.8%
Sidig and Mahmoud [44]  Arabic Hands Trajectory KNN 100 64.0%
Huang et al. [45] American Hands Trajectory CNN 25 94.2%
Liat al. [46] American 24 99.1%
Lugman and Alfy [13] Arabic CNN-LSTM 50 72.4%
Liu et al. [43] Chinese 500 63.3%
Sabyrov et al. [47] Kazakh-Russian 20 73.0%
Kumar et al. [48] Indian 51 94.3%

Dynamic

motion features

AMN

(Accumulative Motion Network)

—l

Accumulative

Natural Language word

motion features

FIGURE 1. Framework of the sign recognition system.

Lva

Lvs

FIGURE 2. An illustration of how hand locations are connected to form a
polygon to compute the importance of the vertices.

we applied a polygon approximation algorithm. This algo-
rithm measures the importance of each vertex by taking the
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product of its edge’s lengths and the angle between the edges
of this vertex. As shown in Figure 2, the importance of the
vertex V is computed as follows:

Vimportance = Lay X Lyp X C) (D

where Lgy and Lyp are the lengths from the vertex V to
the vertices A and B, respectively, whereas 6 is the angle
between the vertex V and the two adjacent segments. The
process is applied to all polygonal vertices, and the least
important vertex is removed. This reduction algorithm is
iteratively repeated to recompute the importance of the
remaining vertices until N vertices remain, as shown in
Figure 3; this figure shows the raw hand trajectory and the
trajectory obtained after applying the algorithm. This algo-
rithm was applied to all the color videos to extract N key
postures.
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FIGURE 3. Result of applying the key postures algorithm to the “First aid” sign of ArSL. The X and Y axes represent the coordinates of the
hand joint points projected to the color frames for (a) a raw hand trajectory and (b) a trajectory obtained after smoothing and applying the

algorithm for extracting the key postures.

B. ACCUMULATIVE VIDEO MOTION
Motion is a primary component of dynamic sign gestures
that represent a majority of the signs in the sign language
dictionary. Encoding this motion into one still image helps
in using spatial features extraction techniques to learn signs.
Additionally, encoding helps overcome the problem of mis-
classifying static signs that do not include motion. These
signs differ based on the shapes and orientations of the hands
and fingers. These variations cannot be captured easily by
time-series techniques, such as the LSTM model. To address
this challenge, we propose the AVM technique that encodes
the sign with its motion into a single image. This approach
is inspired by the accumulative temporal difference (ATD)
technique proposed by Shanableh et al. [49]. ATD represents
the sign video as a single binary still image using the thresh-
olded accumulated difference between consecutive frames.
In contrast, the AVM approach proposed in this work utilizes
the accumulated summation between the sign’s frames and
produces an RGB image representing the whole sign. In addi-
tion, our approach preserves the spatial information between
frames even if there is no motion in the sign, whereas the
ATD technique preserves only the motion and removes the
static features between frames, which makes it inefficient for
recognizing static gestures.

This technique creates a bidirectional composite image
(Bi-AVM) by fusing the key frames in the forward and back-
ward directions, as follows:

KP 1
Bi-AVM = Z KeyFrame; + Z KeyFrame; 2)
i=1 i=KP

where KP is the number of key frames that correspond to
the number of key postures. The forward AVM (FWD-AVM)
fusion creates a composite image by fusing the images start-
ing from the first frame till the last frame. The backward AVM
(BWD-AVM) fusion starts the fusion in the reverse order
from the last key frame. Figure 4 shows a sample of the AVM
image.

C. SIGN LEARNING SYSTEM
The proposed system consists of three networks for sign
recognition as shown in Figure 1. The first network, DMN,
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learns the spatiotemporal information on the key frames of
the sign gesture. The AMN stream accepts the AVM image
as an input to learn the spatial information of this image. The
outputs of both streams are fused at the features level and fed
into the SRN model for learning and classification.

1) DYNAMIC MOTION NETWORK

Sign language recognition is a time-series problem that
depends on two sources of information for each sign gesture:
spatial and temporal. The spatial information represents the
sign using fingers, hands, and body shapes and rotations.
The temporal information represents the motion used by all
the dynamic signs. Motion is a primary component in sign
language, and it involves changing the position and/or shape
of the hands during gesturing.

To learn and extract the spatial and temporal information
from the key frame of the sign gesture, a combination of
CNN and LSTM is applied. Figure 5 shows the architec-
ture of the proposed network. CNN has been extensively
employed for several pattern recognition problems, and its
efficiency in extracting the spatial features is well established.
We fine-tuned four pre-trained models (viz., VGG16 [50],
Xception [51], ResNet152V2 [52], and MobileNet [53]) for
extracting the spatial information from each key frame. These
three models have been trained on ImageNet for large-scale
image classification with 14,197,122 images and 21,841 sub-
categories. Although these models have been trained on the
same dataset, the specifications and structure of the models
made them fit well for different pattern recognition problems
in the literature.

As shown in Figure 5, the extracted features using the
pre-trained models are fed into a stacked LSTM. The LSTM
consists of two LSTM layers with 2048 neurons each. The
output of these layers is fed into a fully connected layer with
1024 neurons followed by a rectified linear (ReLU) activation
function. This function handles the nonlinearity by zeroing
the negative values. This function is computationally pow-
erful and helps to reduce the possibility of gradient vanish-
ing [54]. To reduce the overfitting, a dropout layer of 60% is
used after the activation function. For classification, a Soft-
max layer is added as the last layer in the DMN stream to
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FIGURE 4. An example of accumulative video motion fusion approach (the frame

background has been removed for clarity).
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FIGURE 5. Framework of dynamic motion network model.

assign a probability value to each predicted sign. Therefore,
the number of neurons in this layer matches the number of
signs in the dataset. We also used the cross-entropy loss func-
tion during the model training.

2) ACCUMULATIVE MOTION NETWORK
Recognizing sign gestures depends on how the spatial and
temporal information of the sign gestures is recognized.
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As discussed in Section III-B, we represented the motion
of the sign in a single image using the AVM approach.
This image encodes spatial and temporal information. It also
helps to recognize the static sign gestures that do not involve
motion. These signs are a challenge for DMN because
the variations between some static signs are at the level
of finger shapes, which cannot be captured easily by the
DMN networks.
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AMN learns the signs represented by AVM. AVM fusion
is performed in three ways: forward, backward, and bidirec-
tional, as discussed in Section III-B. Each AVM is fed into
the AMN that uses a CNN network fine-tuned on a pre-trained
MobileNet network. This network is used to extract 1024 fea-
tures from each AVM image by applying global average pool-
ing to the output of the last layer before the classification
layer of the MobileNet network. These features are fed into
a dropout layer with 50% probability and the output of this
layer is fed into the classification layer.

3) SIGN RECOGNITION NETWORK

The dynamic and accumulative motion features extracted
from DMN and AMN, respectively, are fused and fed into
the SRN stream. These features are concatenated to form one
vector which is used as an input to the SRN stream as shown
in Figure 1. SRN is a convolutional network that consists
of four stacked layers. The first layer is a batch normaliza-
tion layer that is used to normalize the input features to this
layer and consequently reduce the model training time [55].
In addition, it helps in addressing the internal covariate shift
problem that results from the distribution change of the net-
work activations during the model training [56].

The output of the batch normalization layer is fed into a
convolutional layer. This layer utilizes 256 neurons for learn-
ing with a kernel size of seven, selected empirically. To handle
the nonlinearity of the features extracted using the convolu-
tional layer, we employed a ReLU activation function. The
resulting output of this layer is fed into a dropout layer with
a probability of 60% selected empirically. This layer helps
in reducing the possibility of overfitting. The last layer is
the classification layer that uses a Softmax classifier with
the number of neurons equal to the number of signs. The
whole recognition model is trained with a cross-entropy loss
function and an Adam optimizer with a learning rate of 10™%,
which was selected empirically.

IV. EXPERIMENTAL WORK

A. DATASETS

We evaluated our approach using two datasets, namely,
KArSL [57] and LSA64 [58], which are the Arabic and
Argentinian sign language datasets, respectively. KArSL is
a multimodality ArSL dataset recorded using Kinect V2 at a
rate of 30 frames per second. The dataset comprises 502 signs
performed by three signers, and each sign is repeated 50 times
by each signer; finally, we had 75,300 samples. Each sign was
available in three modalities: RGB, depth, and skeleton joint
points. We employed joint points to extract the key postures
of the sign gestures and used the corresponding frames in the
video stream as the input to the proposed models. The dataset
comprised different types of sign gestures, which included
digits and numbers (30 signs), letters (39 signs), and sign
words (433 sign words). All of these signs are available in
RGB video format. For alphabet letters and digits, the KArSL
dataset contains more signs representing the combination
between some letters or digits of ArSL, such as Alif letter with
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Hamza, 10, 100, and 200 signs. Figure 6 (a) shows samples
from KArSL dataset.

We used two sets of the KArSL dataset: KArSL-190 and
KArSL-502. KArSL-190 is the pilot version of the KArSL
dataset, and it consists of 190 signs that comprise 30 digit
signs, 39 letter signs, and 121 word signs. We used this set
to evaluate the proposed techniques and compared our work
with other studies that used this set. We also evaluated our
approach on more signs using KArSL-502, which included
all the signs (502 signs) of the KArSL dataset. The results
reported for KArSL-502 can also be used to benchmark the
KATrSL dataset because it is the first study to use the whole
KATrSL dataset.

LSA64 is an Argentinian sign language dataset that con-
tains 3200 videos of 64 signs performed by ten signers. Each
sign is repeated five times by each signer. The dataset was
collected using an RGB color camera. The signers who per-
formed the dataset signs wore colored gloves to ease the
detection and tracking of their hands. However, we used
the signs without performing any segmentation. Figure 6 (b)
shows samples from LSA64 dataset.

B. RESULTS AND DISCUSSION

Several experiments have been conducted with different con-
figurations to evaluate the efficiency of the proposed sign lan-
guage recognition systems. Experiments were conducted in
two modes: signer dependent and signer independent. In the
signer-dependent mode, we tested the model on samples of
the signers who were involved in the training of the model.
By contrast, in the signer-independent mode, we tested the
system on the signs performed by the signers who were
not present for the model training. For the signer-dependent
mode, four sets of experiments were performed on the KArSL
dataset—three sets corresponded to each of the three signers
in the KArSL dataset, and one set contained the signs of all
the signers. The signer-independent experiments were con-
ducted using three sets corresponding to each signer tested
for the dataset. For example, in the set used for Signer O1 in
the signer-independent mode, two signers (Signer 02 and
Signer 03) were used for training, and one signer (Signer 01)
was used for testing.

In these experiments, we started by evaluating each com-
ponent of the proposed system independently. We evalu-
ated the DMN stream using different pre-trained networks
on 18 key postures selected empirically. The CNN compo-
nent of this network was fine-tuned using three pre-trained
models for sign recognition, namely, VGG16, Xception,
ResNet152 and MobileNet. The feature vectors resulting
from these networks were fed into the stacked LSTM, as dis-
cussed in Section III-C1. Then, we evaluated the AMN
stream using three configurations: forward (FWD-AMN),
backward (BWD-AMN), and bidirectional (BWD-AMN).
This stream accepts the AVM image as an input and employs a
pre-trained MobileNet network for features extraction, as dis-
cussed in Section III-C2. Finally, we evaluated the SRN
network that accepts the dynamic and accumulative motion
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FIGURE 6. Samples from the used datasets: (a) KArSL and (b) LSA64.

features extracted from the DMN and AMN streams, respec-
tively. All these experiments were performed using Tensor-
flow 2.5 on a workstation with Nvidia GeForce RTX 2080TI
graphics processing unit (GPU) with 11 GB GPU memory
and 64 GB RAM memory.

The DMN stream consists of stacked LSTM layers
as discussed in Section III-C1. The LSTM component
of this stream has been selected empirically as shown
in Table 2. This table shows the recognition accuracies
of the DMN stream with LSTM and GRU components
using different pre-trained models on KArSL-502 dataset.
Clearly, the DMN stream with LSTM and MobileNet
model outperformed the other pre-trained models. There-
fore, we conducted all other experiments in this work using
the DMN stream with LSTM and MobileNet pre-trained
model.

Table 3 shows the obtained results for the proposed mod-
els in the signer-dependent mode using KArSL-190 and
KArSL-502 datasets. It is also noticeable that the AMN
stream with all the fusion configurations outperformed the
DMN stream. This can be attributed to the ability of AMN
to capture the static sign gestures with minor differences
encoded by the AVM technique, which is challenging for
DMN. The highest accuracies of AMN fusions are obtained
with bidirectional AMN (Bi-AMN) that considers fusion in
both directions. We also showed the results of the SRN
stream. The features extracted using DMN with MobileNet
were fused with the features extracted using AMN to form the
input for SRN. DMN with MobileNet was selected because it
performed better than other pre-trained models. We evaluated
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(b)

this fusion with forward, backward, and bidirectional AMNSs,
which are shown in Table 2 as FWD-SRN, BWD-SRN, and
Bi-SRN, respectively. Table 3 also shows that the obtained
accuracies using the SRN network outperformed the DMN
stream for the KArSL-190 and KArSL-502 datasets. By con-
trast, there was no noticeable improvement over the AMN
stream except for Signer 01 of KArSL-502. However, the
obtained results with SRN were high in the signer-dependent
mode.

Although the results obtained for the proposed networks
with the signer-dependent mode can be considered satisfac-
tory, the more challenging type of sign language recognition
is with the signer-independent mode. This type of recognition
is related to the real-time systems that are tested on sign-
ers who are different from the signers involved in system
training. To this end, we used two signers from the KArSL
dataset for training and a third signer for testing. We fol-
lowed the same experimental settings used for the signer-
dependent experiments. Comparing Tables 3 and 4 shows
that the signer-independent recognition was more challeng-
ing than the signer-dependent recognition. It is clear from
Table 4 that the accuracies of all the configurations of the
AMN stream on both datasets were significantly higher than
the accuracies of the configurations of the DMN stream. The
greatest improvement in all the AMN fusions is with the bidi-
rectional AMN. Fusing this stream with DMN-MobileNet
and feeding them into SRN helped to improve the results on
KArSL-190 for all the signers. For KArSL-502, the fusion
of DMN and AMN improved the accuracy of all the signers
as compared with FWD-AMN and BWD-AMN. However,
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TABLE 2. Recognition accuracies of the DMN stream on KArSL-502.

Model Signer-dependent Signer-independent
Signer 1  Signer 2 Signer3  All Signer 1 Signer 2 Signer 3  Average
DMN-VGG16 0.973 0.984 0.992 0.985 0.253 0.156 0.217 0.209
LSTM DMN-Xception 0.976 0.991 0.99 0.986 0.198 0.139 0.141 0.159
DMN-ResNet152 0.981 0.995 0.996 0.988 0.229 0.15 0.207 0.195
DMN-MobileNet 0.981 0.994 0.996 0.993 0.267 0.194 0.236 0.232
DMN-VGG16 0.981 0.996 0.997 0.982 0.224 0.158 0.212 0.198
GRU DMN-Xception 0.982 0.997 0.999 0.991 0.239 0.148 0.154 0.180
DMN-ResNet152 0.981 0.993 0.997 0.988 0.257 0.164 0.243 0.221
DMN-MobileNet 0.985 0.992 0.998 0.992 0.228 0.151 0.216 0.180
TABLE 3. Signer-dependent recognition results on KArSL-190 and KArSL-502.
Model KArSL-190 KArSL-502
Signer 01 Signer 02 Signer 03  All Signer 01 Signer 02 Signer 03  All
DMN-MobileNet 0.967 0.993 0.997 0.981 0.981 0.994 0.996 0.993
FWD-AMN 0.974 0.995 0.999 0.991 0.993 0.998 0.999 0.995
BWD-AMN 0.978 0.997 0.998 0.988 0.990 0.997 0.999 0.992
Bi-AMN 0.980 1.000 0.997 0.991 0.991 0.998 0.999 0.996
FWD-SRN 0.979 0.990 0.993 0.984 0.991 0.989 0.988 0.990
BWD-SRN 0.974 0.988 0.985 0.985 0.996 0.987 0.996 0.980
Bi-SRN 0.971 0.992 0.993 0.990 0.991 0.990 0.996 0.988
TABLE 4. Signer-independent recognition rates.
Model KArSL-190 KArSL-502
Signer 01 Signer 02 Signer 03 Average || Signer 01 Signer 02 Signer 03 Average
DMN-MobileNet 0.167 0.166 0.183 0.172 0.267 0.194 0.236 0.232
FWD-AMN 0.368 0.343 0.180 0.297 0.394 0.285 0.179 0.286
BWD-AMN 0.333 0.294 0.300 0.309 0.289 0.228 0.252 0.256
Bi-AMN 0.408 0.329 0.413 0.383 0.390 0.295 0.343 0.343
FWD-SRN 0.334 0.330 0.390 0.351 0.352 0.298 0.326 0.325
BWD-SRN 0.307 0.356 0.336 0.333 0.258 0.230 0.213 0.234
Bi-SRN 0.363 0.423 0.419 0.402 0.358 0.269 0.355 0.327

the accuracy of only Signer 03 improved with Bi-SRN as
compared with Bi-AMN.

To evaluate the performance of the proposed networks
on each sign category, we show in Table 5 the recognition
accuracies of each stream separately on the three categories
of KArSL signs (numbers, letters, and sign words) in the
signer-independent mode. The accuracies shown in Table 5
are for the bidirectional AMN and DMN with the MobileNet
pre-trained model because both models outperformed other
settings. Table 5 also shows that for all the models, the signs
of type number were the most challenging to recognize, fol-
lowed by the letters signs. This can be attributed to the lack
of motion in these signs. In addition, most of these signs
are static and the differences between some of these static
signs are marginal. For example, *Dat’ and *Sad’ ArSL let-
ters are almost similar and differ only on the position of the
thumb finger. Additionally, certain number signs have only
marginal variations, which cannot be captured easily with
the recognition models. In contrast, the highest recognition
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rates were obtained with sign words that can be attributed
to the variation between sign words and the use of motion
with these signs. It is also noticeable in the confusion matrix
that the AMN stream can recognize the static signs more
efficiently than the DMN stream due to its ability in cap-
turing the spatial features encoded by the AVM technique.
The fusion of the DMN and AMN streams through the SRN
stream improved the accuracies of all sign types for all sign-
ers except Signer 01 of KArSL-190. Furthermore, the SRN
stream outperformed DMN with all sign types of KArSL-502.

To better investigate the misclassifications, we used a pie
chart (Figure 7) of the misclassification signs of KArSL-502
for each network stream organized by the sign chapter (the
KATrSL dataset contains signs from 11 chapters of the ArSL
dictionary). The signs involved in this analysis are those
that could not be recognized by the network streams in the
signer-independent mode for the three signers. As shown in
the figure, most of the signs that could not be recognized by
all the network streams belong to the characteristics chapter.
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TABLE 5. Recognition accuracies of the proposed models per sign category in the signer-independent mode.

Signer Signs KArSL-190 KArSL-502
DMN Bi-AMN Bi-SRN || DMN Bi-AMN Bi-SRN
Numbers 0.062 0.383 0.174 0.118 0.351 0.225
Signer 01 L.etters 0.092 0.447 0.415 0.086 0.436 0.415
Sign words || 0.223 0.428 0.395 0.296 0.359 0.363
Average 0.126 0.420 0.328 0.167 0.382 0.334
Numbers 0.033 0.143 0.297 0.104 0.196 0.166
Signer 02 L.etters 0.095 0.338 0.461 0.041 0.434 0.360
Sign words || 0.222 0.373 0.442 0.214 0.301 0.268
Average 0.117 0.285 0.400 0.119 0.310 0.265
Numbers 0.024 0.202 0.409 0.046 0.146 0.163
Signer 03 L.etters 0.038 0.405 0.462 0.007 0.359 0.408
Sign words || 0.275 0.468 0.412 0.272 0.336 0.334
Average 0.112 0.358 0.428 0.108 0.281 0.302

/w

H AMN B DMN [ SRN

FIGURE 7. Misclassified signs by each network stream on KArSL-502
organized by the sign chapter.

This chapter contains characteristic signs such as happy, poor,
and selfish. Most of these signs have identical manual ges-
tures and differ only in the facial expressions as shown in
Figure 8. This figure shows how the “afraid” and “stand”
signs of ArSL share the same gesture and motion but are
accompanied by different facial expressions. Figure 7 also
shows how the AMN stream could recognize almost all the
static signs, unlike the DMN stream.

C. COMPARISON WITH OTHER WORKS

To evaluate the efficiency of the proposed approach, we com-
pared the obtained results with the state-of-the-art tech-
niques in the literature for the two datasets KArSL-190 and
LSA64. KArSL-502 was published in 2021; therefore, no ear-
lier work was available for comparison. Consequently, the
reported results of this work could be used as a bench-
mark for the KArSL dataset. Sidig et al. [57] proposed four
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FIGURE 8. Two signs that share the same manual gestures but have
different facial expressions: (a) afraid and (b) stand.

techniques for ArSL recognition. Three types of features
were extracted from the skeleton’s joint points provided
by the Kinect sensor and fed into the HMM: (i) the joint
points of the signers’ hands, (ii) the hand shape represented
using HOG, and (iii) a combination of joint points and the
shapes of the signers’ hands. Additionally, they formed a
single image from all the frames of the signs and used a
CNN model with VGG-19 for classification. Table 6 com-
pares the results of these techniques with our results using
KArSL-190. As shown in the table, the obtained results of the
proposed AMN and SRN streams in the signer-dependent and
signer-independent modes outperformed other techniques.
In addition, the improvements in accuracy over the Sidig and
Mahmoud [57] results with Bi-SRN were approximately 11%
and 15% in the signer-dependent and signer-independent
modes, respectively. These results confirm the efficiency of
our proposed networks for sign recognition.

The LSA64 dataset, which is an Argentinian dataset con-
sisting of 64 signs performed by ten signers, was also
used to evaluate the generalization of our approach to other
sign languages. We evaluated the proposed approach in
the signer-dependent and signer-independent modes. For the
signer-dependent mode, we split the data randomly into the
train (80%) and test (20%) sets; we repeated each experiment
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TABLE 6. Comparison with other works using KArSL-190.

Signer-dependent

Signer-independent

Model Average Signer 01 Signer 02 Signer 03 Average
Joint points + HMM [58] 0.843 0.160 0.080 0.117 0.119
HOG + HMM [58] 0.881 0.190 0.150 0.177 0.172
Joint points + HOG + HMM [58] 0.853 0.156 0.080 0.116 0.117
VGG-19 [58] 0.76 0.280 0.267 0.222 0.256
DMN-MobileNet 0.985 0.167 0.166 0.183 0.172
FWD-AMN 0.990 0.368 0.343 0.180 0.297
BWD-AMN 0.990 0.333 0.294 0.300 0.309
Bi-AMN 0.992 0.408 0.329 0.413 0.383
FWD-SRN 0.988 0.334 0.330 0.390 0.351
BWD-SRN 0.985 0.307 0.356 0.336 0.333
Bi-SRN 0.987 0.363 0.423 0.419 0.406
TABLE 7. Comparison with other works using ISA64 dataset (* evaluated on 46 sign gestures of 1ISA64).

Model Signer-dependent Signer-independent

3D CNN [61] 0.939 -

Skeletal features + LSTM [63] 0.981 -

Statistical features + Multiclassifiers [60] 0.974 0917

CNN-LSTM [62] 0.952* -

ConvNet [64] 0.978 -

CSD + SVM [65] - 0.850

DMN-MobileNet 0.991 0.258

FWD-AMN 0.976 0.858

BWD-AMN 0.968 0.848

Bi-AMN 0.985 0.918

FWD-SRN 0.949 0.818

BWD-SRN 0.964 0.784

Bi-SRN 0.975 0.885

TABLE 8. Signer-independent recognition accuracies of the bidirectional accumulative motion network on the LSA64 dataset.

Signer 01 02 03 04 05 06 07 08 09 10 Average
Accuracy || 0.947 0906 0.834 0.966 0919 0931 0.938 0.897 0.934 0913 0.918

five times. For the signer-independent mode, nine signers
were used for model training, and the 10th signer was used as
an unseen signer for testing. We compared the results of our
approach with the results obtained by Ronchetti et al. [59],
Neto et al. [60], Masood et al. [61], Konstantinidis et al. [62],
and Imran et al. [63]. Ronchetti et al. [59] proposed a prob-
abilistic model that combines the outputs of three classi-
fiers trained on a set of statistical features. Neto et al. [60]
proposed a 3D CNN architecture for sign recognition.
Konstantinidis et al. [62] proposed an LSTM model to clas-
sify the signs based on the hand and body skeletal
features. Rodriguez et al. [64] used cumulative shape differ-
ence (CSD) with SVM for sign-independent recognition.
Masood et al. [61] applied a CNN-LSTM model for sign
video classification wherein the CNN model was trained
on a pre-trained Inception model. This approach was eval-
uated on 46 gestures of the LSA64 dataset. Imran et al. [63]
proposed three motion templates to encode the hand move-
ments of the sign gestures. These representations were fed
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into the pre-trained CNN for gestures learning and classi-
fication. The comparative results are presented in Table 7.
Clearly, our approach outperformed other approaches in
the signer-dependent and signer-independent experiments.
The highest accuracy in the signer-independent mode was
obtained using Bi-AMN. In this experiment, the lowest accu-
racies were obtained with Signer 02, Signer 03, and Signer 08
(see Table 8). These signers were nonexpert signers, and they
introduced certain movements that were not part of the sign
language, such as head motions and returning hands to their
resting positions before signing. These observations align
with the challenges reported for the LSA64 dataset in [64].

V. CONCLUSION AND FUTURE WORK

In the last decade, sign language recognition has gained
popularity and attracted the interest of researchers world-
wide. Several approaches that differ in the sign’s acquisition
method, recognition technique, target language, and number
of recognized signs have been proposed for isolated sign
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language recognition. In this research, three deep learning
models (namely, DMN, AMN, and SRN) have been pro-
posed for sign language recognition. The DMN stream learns
the spatiotemporal information of the sign’s key postures.
In this research, we propose a technique to extract key pos-
tures for handling the variations between the sign’s samples.
This technique uses the dominant postures that represent the
key motion changes of the sign. We also proposed the AVM
approach to encode the sign motion into a single image. This
image was used as the input to the second proposed network,
namely, AMN. The third proposed network was SRN, which
fused the features extracted from the DMN and AMN streams
and used them as the input. These networks were evaluated on
two datasets, and the obtained results proved that the AMN is
efficient for sign language recognition compared with other
streams and it outperformed the state-of-the-art techniques.

Signer-independent recognition is more challenging than
signer-dependent, and the number of signers used for model
training plays a vital role in the model’s accuracy. Models
trained on a large number of signers are expected to have
higher signer-independent accuracy compared with models
trained on a small number of signers. This can be noticed in
our results when we used the KArSL dataset with 3 signers
and the ISA64 dataset with 10 signers. This has also been
noticed in the literature where models trained on a large
number of signers reported high signer-independent accu-
racy [34], [65], [66], [67], whereas models trained on a small
number of signers usually reported lower accuracies [13],
[43], [68].

As a future work, other models can be used for sign lan-
guage recognition, such as attention mechanism and Trans-
formers. In addition, we will use other modalities for sign
language recognition.
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