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ABSTRACT Sign language is the primary communication medium for persons with hearing impairments.
This language depends mainly on hand articulations accompanied by nonmanual gestures. Recently, there
has been a growing interest in sign language recognition. In this paper, we propose a trainable deep learning
network for isolated sign language recognition, which can effectively capture the spatiotemporal information
using a small number of signs’ frames. We propose a hierarchical sign learning module that comprises three
networks: dynamic motion network (DMN), accumulative motion network (AMN), and sign recognition
network (SRN). Additionally, we propose a technique to extract key postures for handling the variations
in the sign samples performed by different signers. The DMN stream uses these key postures to learn
the spatiotemporal information pertaining to the signs. We also propose a novel technique to represent the
statical and dynamic information of sign gestures into a single frame. This approach preserves the spatial and
temporal information of the sign by fusing the sign’s key postures in the forward and backward directions to
generate an accumulative video motion frame. This frame was used as an input to the AMN stream, and the
extracted features were fused with the DMN features to be fed into the SRN for the learning and classification
of signs. The proposed approach is efficient for isolated sign language recognition, especially for recognizing
static signs. We evaluated this approach on the KArSL-190 and KArSL-502 Arabic sign language datasets,
and the obtained results on KArSL-190 outperformed other techniques by 15% in the signer-independent
mode. Additionally, the proposed approach outperformed the state-of-the-art techniques on the Argentinian
sign language dataset LSA64. The code is available at https://github.com/Hamzah-Luqman/SLR_AMN.
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I. INTRODUCTION21

Hearing loss has become a common problem globally.22

According to the World Health Organization [1], 2.5 bil-23

lion people (i.e., one in four persons) are projected to have24

some degree of hearing loss by 2050; approximately 700 mil-25

lion of these will need hearing rehabilitation. This increases26

the dependence on sign language, which is the primary27

The associate editor coordinating the review of this manuscript and

approving it for publication was Szidonia Lefkovits .

communication language for persons with various levels of 28

hearing disabilities. 29

Sign languages are complete languages with their own 30

grammar and syntax; however, their linguistic properties dif- 31

fer from those of natural languages [2]. Each sign language 32

has its own dictionary that is usually limited in size in compar- 33

ison with the dictionaries of natural languages. Consequently, 34

signers use one sign to refer to several spoken synonymous 35

words, such as home, house, and apartment. Similar to spoken 36

languages, sign languages are diverse; several sign languages 37
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are used worldwide, such as the American sign language38

(ASL), Chinese sign language (CSL), and Arabic sign lan-39

guage (ArSL) [3]. ArSL is one of the sign languages used40

in Arabic countries. This is a unified language of several41

sign languages used in Arabic countries [4]. ArSL was pro-42

posed in 1999 by the League of the Arab States and the43

Arab League Educational, Cultural and Scientific Organi-44

zation. The ArSL dictionary consisting of 3200 sign words45

was published in two parts in 2000 [5] and 2006 [6]. The46

signs for the dictionary were mainly selected by finding the47

shared signs among themajority of the sign languages inArab48

countries and in Arab Gulf countries. ArSL is mainly used in49

the Arab states of the Arab Gulf countries (e.g., Qatar and the50

United Arab Emirates). Further, in almost all Arab countries,51

ArSL is used at airports and by the news media, such as52

Al-Jazeera. The correlation between signs and spoken lan-53

guages is complex and varies depending on the country more54

than the spoken language. Therefore, countries that share the55

same spoken language may have different sign languages, for56

example, although English is the spoken language of both57

the United Kingdom and the United States, they have differ-58

ent sign languages, namely, British sign language and ASL,59

respectively [7].60

Sign language is a descriptive language that simultane-61

ously utilizes manual and nonmanual gestures [8]. Amajority62

of the sign words depend onmanual movements that use hand63

motions for interpersonal communication [9]. These signs are64

accompanied usually by nonmanual gestures that consist of65

body postures and facial expressions. Nonmanual gestures66

play an important role in many sign languages to convey67

emotions and linguistic information that cannot be expressed68

by manual gestures. For example, facial expressions are used69

to express negations in ArSL, and they serve as adverbs and70

adjectives that modify manual signs [10]. Additionally, facial71

expressions are used to distinguish between signs that share72

the same manual gesture. For instance, the sign for ‘‘brother’’73

is identical to the sign for ‘‘sister’’ in German sign language;74

however, their lip patterns differ [11].75

Motion represents a basic component of sign gestures.76

Based on the motions involved, signs can be classified into77

two types: static and dynamic signs. Most of the sign lan-78

guage letters and digits are static signs in which the signs79

do not involve any motion. These signs depend mainly on80

the shapes and orientations of the hands and fingers [12].81

Therefore, still images can adequately capture these types of82

signs, which justify the availability of most of the alphabet83

datasets in the form of images. By contrast, dynamic signs84

involve manual and/or nonmanual motions of body parts.85

These signs represent a majority of the sign words used in86

the sign language vocabulary [13]. Hence, a video stream is87

required to represent signs in which the motion component is88

basic.89

Sign language interpretation involves recognition and90

translation. Recognition is the task of identifying sign ges-91

tures either in the images or videos of a sign language and92

returning their equivalent in a natural language. The output93

of this stage can be isolated words or sentences depend- 94

ing on the input provided. Isolated sign recognition systems 95

accept a sign and output an equivalent word in a spoken lan- 96

guage. Continuous sign language recognition systems iden- 97

tify a sequence of signs performed continuously and output 98

a set of words in the form of sentences. These sentences 99

have the structure and grammar of the source sign language, 100

which are usually different from the structure and grammar of 101

natural languages. Thus, a machine translation system is used 102

to translate these sentences into the target natural language. 103

Several approaches have been proposed recently for sign 104

language recognition. However, there are still some limita- 105

tions that need to be addressed. Firstly, most of the sign recog- 106

nition systems consider all signs’ frames for sign learning and 107

classification. This can result in degrading the recognition 108

accuracy due to the variations between the signs performed 109

by different signers. Therefore, there is a need for an approach 110

to extract the main postures of the sign gesture and ignore less 111

important postures. Secondly, most of the temporal learning 112

techniques for dynamic sign gesture recognition could not 113

learn the non-manual gestures efficiently. Thirdly, few tech- 114

niques have been proposed for ArSL recognition compared 115

with other sign languages. This can be attributedmainly to the 116

lack of a benchmarked dataset.We aim in this work to address 117

these limitations. The main contributions of this research are 118

as follows: 119

• We propose a trainable deep learning network for sign 120

language recognition that can effectively capture the 121

spatiotemporal information with few frames of the signs 122

• We design a hierarchical sign learning model, which 123

learns the spatial and temporal information of the sign 124

gesture in three networks: dynamic motion network 125

(DMN), accumulative motion network (AMN), and sign 126

recognition network (SRN). 127

• We propose a technique to extract the dominant and 128

important sign postures. This approach helps tackle the 129

variations of the sign samples. 130

• We propose an accumulative video motion (AVM) tech- 131

nique to encode the signmotions in the video stream into 132

a single image. 133

• We evaluated the proposed approach on the KArSL and 134

LSA64 datasets and found that the proposed method 135

outperformed other methods. 136

• We benchmarked the KArSL-502 dataset. 137

The rest of the paper is organized as follows. Section II 138

reviews the related work dealing with sign language recog- 139

nition. Section III presents the architecture of the proposed 140

system, and Section IV describes the experimental work and 141

the obtained results. Section V highlights the contributions of 142

this research and concludes the paper. 143

II. RELATED WORK 144

Several techniques have been proposed in the last two 145

decades for automatically recognizing various sign lan- 146

guages. Based on the acquisition devices, these tech- 147

niques can be classified into two types: sensor-based and 148
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vision-based techniques [14]. Most of the early recognition149

techniques depended on motion sensors for the detection150

and tracking of hand movements; however, recent techniques151

have abandoned these sensors, and sign captioning is facili-152

tated by applying cameras.153

A. SENSOR-BASED TECHNIQUES154

Sensor-based techniques use motion sensors to acquire sign155

gestures [15]. These sensors can track the movements and156

shapes of fingers and hands. Electronic gloves are the most157

commonly used sensors in literature [16], [17], [18], [19],158

[20], [21], [22], [23]. Ritchings et al. [22] proposed a sign159

language recognition system using two bend sensors with160

push-button switches for motion tracking. This system was161

evaluated on 65 signs and an accuracy of 93% was reported.162

However, this system failed to track signs when the signers163

had small hands.164

Dempster–Shafer Theory of Evidence was used by165

Mohandes and Deriche [23] to integrate the data obtained166

from a hand-tracking system and a glove sensor. A dataset167

consisting of 100 signs was collected using these sensors,168

and these signs were used to evaluate the proposed system.169

Twenty-eight signals were provided by both sensors for each170

hand. The accuracy reported using the hand-tracking sys-171

tem was 84.7%, whereas a better accuracy of 91.3% was172

obtained using the glove-based system. The authors found173

that data fusion at the classification level had a higher accu-174

racy of 98.1% when compared with the data fusion accu-175

racy of 96.2% at the features level. The glove-based sys-176

tem using a pair of DG5-VHand gloves was developed by177

Tubaiz et al. [24]. The information retrieved by these sensors178

was fed into the modified K-nearest neighbor for classifica-179

tion, and an accuracy of 98.9% was reported for a dataset180

comprising 40 sentences.181

The sensor-based acquisition techniques helped in the182

tracking of hands and in handling environmental constraints,183

such as background removal; however, requiring the signer184

to wear gloves during the signing was difficult for real-time185

systems. Also, these sensors could not capture the nonmanual186

gestures that are a basic component of any sign language.187

Thus, a majority of the recent sign language recognition188

systems are vision-based where single or multiple camera189

devices are used for sign capturing. These systems require190

only video cameras for sign acquisition, which helps to inte-191

grate these systems easily using new technologies such as192

smartphones. Additionally, new cameras can provide depth193

information that helps to obtain more information about the194

performed signs.195

B. VISION-BASED TECHNIQUES196

Vision-based techniques can be broadly classified into classic197

and machine learning techniques. Classic techniques depend198

on extracting statistical and geometric features from sign ges-199

tures and feeding them into a classifier. Nai et al. [25] pro-200

posed a system to recognize ASL digits on depth images.201

A set of statistical features were extracted and classified using202

the random forest classifier, and an accuracy of 89.6% was 203

reported. Depth images were also used by Ameida et al. [26] 204

for Brazilian sign language recognition. A set of seven struc- 205

tural features were extracted from these images and fed 206

into support vector machines (SVM) for classification to 207

obtain an accuracy above 80% with 34 signs. Joshi et al. [27] 208

applied a multilevel histogram of gradient (HOG) for recog- 209

nizing Indian sign language letters in complex backgrounds. 210

An accuracy of 92% has been reported on a dataset that con- 211

sists of 26 signs. Nevertheless, this accuracy is low given the 212

dataset size and the hand segmentation. 213

Hidden Markov model (HMM) was used by Zaki and Sha- 214

heen [28] for recognizing 50 signs of ASL. The principal 215

component analysis (PCA) was used for features reduction 216

and an accuracy of 89.1% was reported. A PCA with linear 217

discriminant analysis was also used by Pan et al. [29]. The 218

extracted features were classified using SVM, and the accu- 219

racies of 94% and 99.8% were reported using the 26 signs 220

of ASL and CSL, respectively. Nguyen and Do [30] used 221

HOG and local binary pattern (LBP) techniques for features 222

extraction and SVM for classification. 223

Several frequency domain features have been used in litera- 224

ture for sign language recognition. Themain frequency-based 225

techniques used in the literature are dynamic time warp- 226

ing [31], [32], Fourier descriptors [3], [29], Humoments [29], 227

discrete wavelet transform [33], [34], and wavelet trans- 228

form [35]. Makhashen et al. [7] used the Gabor transform 229

for features extraction. These features were fed into a con- 230

volutional neural network (CNN), and an accuracy higher 231

than 95% was reported for the ASL letters. However, Zernike 232

moments outperformed Hu moments, PCA, and Fourier 233

descriptors for sign language recognition [36], [37], [38]. 234

Machine learning techniques have been extensively 235

applied for sign language recognition during the last 10 years. 236

These techniques can be classified into traditional machine 237

learning techniques and deep learning techniques. Traditional 238

machine learning techniques apply classical algorithms for 239

sign language recognition, such as SVM, PCA, and HMM. 240

These techniques have been used with different input repre- 241

sentations including sensor-based features. Other researchers 242

combined them with deep learning models, such as CNN 243

and long short-term memory (LSTM). CNN was used by 244

Jiang and Zhang [39] for CSL recognition, and an accu- 245

racy of 88.1% was reported using 1260 RGB images. Sim- 246

ilarly, Barbhuiya et al. [40] proposed a CNN–SVM model 247

for sign language recognition. The proposed model utilizes 248

the pre-trained AlexNet and VGG16 models. The proposed 249

model was used for features extraction, and the SVM was 250

used for classification. This approach reported an accuracy 251

of 99.8% on the static signs of ASL. For more details about 252

the deep learning techniques utilized for sign language recog- 253

nition, we refer to this survey [41]. 254

Liu et al. [42] used the joint points of the signer’s hand 255

skeleton as the input to the LSTMmodel. Twelve joint points 256

were obtained using the Kinect sensor and fed into LSTM 257

with seven layers. This technique was evaluated on the two 258
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CSL datasets with 25K and 125K images with reported259

accuracies of 86% and 64%, respectively. Sidig and Mah-260

moud [43] also used hand trajectories for ArSL recogni-261

tion. The skeletons of the signer’s hands were tracked using262

the Kinect camera, and the captured joint points were fed263

into KNN for classification. This technique was evaluated264

on 100 signs of the KArSL dataset, and accuracies of 99%265

and 64% were reported for signer-dependent and signer-266

independent modes, respectively.267

Multimodality systems have been proposed by several268

researchers for sign language recognition. A combination269

of joint points with color and depth images was used by270

Huang et al. [44] as an input to a CNN model with eight lay-271

ers. This model was evaluated on a dataset comprising 25 sign272

gestures, and an accuracy of 94.2% was reported. Color and273

depth images were also concatenated by Li et al. [45] and274

used for recognizing 24 letters of ASL. A sparse autoen-275

coder model with CNN was used to extract the features from276

the color and depth images to be classified by SVM. This277

approach reported an accuracy of 99.05% on the dataset com-278

prising 20K samples.279

Although most of the surveyed studies on sign lan-280

guage recognition considered only manual gestures, several281

researchers have studied the importance of nonmanual fea-282

tures for sign language recognition. Luqman and El-Alfy [13]283

combined the facial expressions with hand gesture features;284

this fusion improved the accuracy by 3.6% when compared285

with the case when only manual gestures were performed in286

the signer-independent mode by four signers using 50 ArSL287

signs. The fusion of manual gestures with facial expressions288

was also performed by Sabyrov et al. [46]. The OpenPose289

library was used to extract the keypoints from the facial290

expressions and hand gestures. This hybrid system boosted291

the recognition accuracy by 7% when compared with only292

hand gestures. Kumar et al. [47] used Kinect with a Leap293

Motion Controller to capture facial expressions and hand ges-294

tures. Each of these modalities was separately fed into the295

HMM to be combined later at the classification level using296

the Bayesian classifier. An Indian sign language dataset with297

51 signs was used to evaluate this approach, and the reported298

results showed that the fusion of the manual and nonmanual299

gestures improved the accuracy by 1.04% when compared300

with a single modality. Table 1 shows the summary of the301

surveyed papers.302

III. PROPOSED METHOD303

The objective of this research is to develop a trainable deep304

learning network for sign language recognition that can305

effectively capture the spatiotemporal information with few306

frames. To this end, we propose a sign recognition system307

that consists of a key postures extractor and sign learning308

networks, as shown in Figure 1. The key postures extractor309

is used to capture the main postures of the sign gesture by310

extracting the key frames in the sign video stream. We also311

propose the AVM technique to capture the motion of the312

signs’ frames and represent the motion using a single image313

while preserving the spatiotemporal information of the sign 314

gesture. The key postures and AVM frame are fed into a 315

novel two-stream network for sign language recognition. The 316

key postures are fed into the DMN to learn the spatiotem- 317

poral information in the sign gesture. The AVM frame is 318

used as an input to the AMN that learns the motion in the 319

AVM image. The extracted features from the two streams 320

are concatenated and fed into the SRN for learning the fused 321

features and performing the classification. In this section, 322

we start by describing the key frames and AVM extraction 323

techniques. Then, we discuss the proposed two-stream sign 324

learning architecture and the fusion technique. 325

A. KEY POSTURES 326

Based on body motion, sign gestures can be classified into 327

two types: static and dynamic. Static signs are motionless 328

gestures, and they depend mainly on the shape, orientation, 329

and articulation of the hands and fingers to convey meanings. 330

By contrast, dynamic signs employ body movements during 331

signing. Dynamic gestures represent a majority of signs used 332

in sign languages, whereas static gestures are used mainly for 333

letters, digits, and a few sign words. 334

Dynamic gestures are more challenging to recognize than 335

static gestures. The recognition of static gestures depends 336

only on spatial information, whereas the recognition of 337

dynamic gestures requires spatial and temporal information. 338

An additional challenge for recognizing such signs is the ges- 339

ture variations among the different signers of the sign. These 340

variations are obvious with signs that consist of more than one 341

posture. Another challenge with the recognition of dynamic 342

gestures is the large number of generated frames, especially 343

when sign gestures are recorded at high frame rates. Some of 344

these frames are often redundant, which increases the recog- 345

nition time of the systems that process sign video frames 346

for recognizing sign gestures. To address these problems, 347

we extracted the key frames from each sign and used these 348

frames as the input to the recognition system. 349

A key posture technique is used to extract the prominent 350

sign postures in the sign video stream by extracting the corre- 351

sponding frames in the sign’s video stream. Inspired by [43], 352

we extracted the key frames by employing the hand trajecto- 353

ries captured by tracking the hand joint points, which were 354

returned by Kinect as part of the skeleton data. The points 355

for the hand’s joints can have some outliers that can signifi- 356

cantly impact the extraction of key postures. To address this 357

problem, we preprocessed these joint points by smoothing 358

the hand locations using the median filter to remove the out- 359

liers. For occluded hands or lost joints, Kinect V2 is efficient 360

in joint estimation while providing skeletal tracking that is 361

more robust to occlusions [48]. However, if this estimation 362

is noisy or inaccurate, our median filter will smooth it in 363

the preprocessing stage. Then, we extracted the key frames 364

by connecting the hand locations during signing to form a 365

polygon, as shown in Figure 2. 366

The sharp changes in hand locations represent the ver- 367

tices of the polygon. To keep the most important N vertices, 368
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TABLE 1. Summary of the surveyed papers.

FIGURE 1. Framework of the sign recognition system.

FIGURE 2. An illustration of how hand locations are connected to form a
polygon to compute the importance of the vertices.

we applied a polygon approximation algorithm. This algo-369

rithm measures the importance of each vertex by taking the370

product of its edge’s lengths and the angle between the edges 371

of this vertex. As shown in Figure 2, the importance of the 372

vertex V is computed as follows: 373

Vimportance = LAV × LVB ×2 (1) 374

where LAV and LVB are the lengths from the vertex V to 375

the vertices A and B, respectively, whereas θ is the angle 376

between the vertex V and the two adjacent segments. The 377

process is applied to all polygonal vertices, and the least 378

important vertex is removed. This reduction algorithm is 379

iteratively repeated to recompute the importance of the 380

remaining vertices until N vertices remain, as shown in 381

Figure 3; this figure shows the raw hand trajectory and the 382

trajectory obtained after applying the algorithm. This algo- 383

rithm was applied to all the color videos to extract N key 384

postures. 385
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FIGURE 3. Result of applying the key postures algorithm to the ‘‘First aid’’ sign of ArSL. The X and Y axes represent the coordinates of the
hand joint points projected to the color frames for (a) a raw hand trajectory and (b) a trajectory obtained after smoothing and applying the
algorithm for extracting the key postures.

B. ACCUMULATIVE VIDEO MOTION386

Motion is a primary component of dynamic sign gestures387

that represent a majority of the signs in the sign language388

dictionary. Encoding this motion into one still image helps389

in using spatial features extraction techniques to learn signs.390

Additionally, encoding helps overcome the problem of mis-391

classifying static signs that do not include motion. These392

signs differ based on the shapes and orientations of the hands393

and fingers. These variations cannot be captured easily by394

time-series techniques, such as the LSTM model. To address395

this challenge, we propose the AVM technique that encodes396

the sign with its motion into a single image. This approach397

is inspired by the accumulative temporal difference (ATD)398

technique proposed by Shanableh et al. [49]. ATD represents399

the sign video as a single binary still image using the thresh-400

olded accumulated difference between consecutive frames.401

In contrast, the AVM approach proposed in this work utilizes402

the accumulated summation between the sign’s frames and403

produces an RGB image representing the whole sign. In addi-404

tion, our approach preserves the spatial information between405

frames even if there is no motion in the sign, whereas the406

ATD technique preserves only the motion and removes the407

static features between frames, which makes it inefficient for408

recognizing static gestures.409

This technique creates a bidirectional composite image410

(Bi-AVM) by fusing the key frames in the forward and back-411

ward directions, as follows:412

Bi-AVM =
KP∑
i=1

KeyFramei +
1∑

i=KP

KeyFramei (2)413

where KP is the number of key frames that correspond to414

the number of key postures. The forward AVM (FWD-AVM)415

fusion creates a composite image by fusing the images start-416

ing from the first frame till the last frame. The backwardAVM417

(BWD-AVM) fusion starts the fusion in the reverse order418

from the last key frame. Figure 4 shows a sample of the AVM419

image.420

C. SIGN LEARNING SYSTEM421

The proposed system consists of three networks for sign422

recognition as shown in Figure 1. The first network, DMN,423

learns the spatiotemporal information on the key frames of 424

the sign gesture. The AMN stream accepts the AVM image 425

as an input to learn the spatial information of this image. The 426

outputs of both streams are fused at the features level and fed 427

into the SRN model for learning and classification. 428

1) DYNAMIC MOTION NETWORK 429

Sign language recognition is a time-series problem that 430

depends on two sources of information for each sign gesture: 431

spatial and temporal. The spatial information represents the 432

sign using fingers, hands, and body shapes and rotations. 433

The temporal information represents the motion used by all 434

the dynamic signs. Motion is a primary component in sign 435

language, and it involves changing the position and/or shape 436

of the hands during gesturing. 437

To learn and extract the spatial and temporal information 438

from the key frame of the sign gesture, a combination of 439

CNN and LSTM is applied. Figure 5 shows the architec- 440

ture of the proposed network. CNN has been extensively 441

employed for several pattern recognition problems, and its 442

efficiency in extracting the spatial features is well established. 443

We fine-tuned four pre-trained models (viz., VGG16 [50], 444

Xception [51], ResNet152V2 [52], and MobileNet [53]) for 445

extracting the spatial information from each key frame. These 446

three models have been trained on ImageNet for large-scale 447

image classification with 14,197,122 images and 21,841 sub- 448

categories. Although these models have been trained on the 449

same dataset, the specifications and structure of the models 450

made them fit well for different pattern recognition problems 451

in the literature. 452

As shown in Figure 5, the extracted features using the 453

pre-trained models are fed into a stacked LSTM. The LSTM 454

consists of two LSTM layers with 2048 neurons each. The 455

output of these layers is fed into a fully connected layer with 456

1024 neurons followed by a rectified linear (ReLU) activation 457

function. This function handles the nonlinearity by zeroing 458

the negative values. This function is computationally pow- 459

erful and helps to reduce the possibility of gradient vanish- 460

ing [54]. To reduce the overfitting, a dropout layer of 60% is 461

used after the activation function. For classification, a Soft- 462

max layer is added as the last layer in the DMN stream to 463
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FIGURE 4. An example of accumulative video motion fusion approach (the frame
background has been removed for clarity).

FIGURE 5. Framework of dynamic motion network model.

assign a probability value to each predicted sign. Therefore,464

the number of neurons in this layer matches the number of465

signs in the dataset. We also used the cross-entropy loss func-466

tion during the model training.467

2) ACCUMULATIVE MOTION NETWORK468

Recognizing sign gestures depends on how the spatial and469

temporal information of the sign gestures is recognized.470

As discussed in Section III-B, we represented the motion 471

of the sign in a single image using the AVM approach. 472

This image encodes spatial and temporal information. It also 473

helps to recognize the static sign gestures that do not involve 474

motion. These signs are a challenge for DMN because 475

the variations between some static signs are at the level 476

of finger shapes, which cannot be captured easily by the 477

DMN networks. 478
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AMN learns the signs represented by AVM. AVM fusion479

is performed in three ways: forward, backward, and bidirec-480

tional, as discussed in Section III-B. Each AVM is fed into481

theAMN that uses a CNNnetwork fine-tuned on a pre-trained482

MobileNet network. This network is used to extract 1024 fea-483

tures from each AVM image by applying global average pool-484

ing to the output of the last layer before the classification485

layer of the MobileNet network. These features are fed into486

a dropout layer with 50% probability and the output of this487

layer is fed into the classification layer.488

3) SIGN RECOGNITION NETWORK489

The dynamic and accumulative motion features extracted490

from DMN and AMN, respectively, are fused and fed into491

the SRN stream. These features are concatenated to form one492

vector which is used as an input to the SRN stream as shown493

in Figure 1. SRN is a convolutional network that consists494

of four stacked layers. The first layer is a batch normaliza-495

tion layer that is used to normalize the input features to this496

layer and consequently reduce the model training time [55].497

In addition, it helps in addressing the internal covariate shift498

problem that results from the distribution change of the net-499

work activations during the model training [56].500

The output of the batch normalization layer is fed into a501

convolutional layer. This layer utilizes 256 neurons for learn-502

ingwith a kernel size of seven, selected empirically. To handle503

the nonlinearity of the features extracted using the convolu-504

tional layer, we employed a ReLU activation function. The505

resulting output of this layer is fed into a dropout layer with506

a probability of 60% selected empirically. This layer helps507

in reducing the possibility of overfitting. The last layer is508

the classification layer that uses a Softmax classifier with509

the number of neurons equal to the number of signs. The510

whole recognition model is trained with a cross-entropy loss511

function and an Adam optimizer with a learning rate of 10−4,512

which was selected empirically.513

IV. EXPERIMENTAL WORK514

A. DATASETS515

We evaluated our approach using two datasets, namely,516

KArSL [57] and LSA64 [58], which are the Arabic and517

Argentinian sign language datasets, respectively. KArSL is518

a multimodality ArSL dataset recorded using Kinect V2 at a519

rate of 30 frames per second. The dataset comprises 502 signs520

performed by three signers, and each sign is repeated 50 times521

by each signer; finally, we had 75,300 samples. Each sign was522

available in three modalities: RGB, depth, and skeleton joint523

points. We employed joint points to extract the key postures524

of the sign gestures and used the corresponding frames in the525

video stream as the input to the proposed models. The dataset526

comprised different types of sign gestures, which included527

digits and numbers (30 signs), letters (39 signs), and sign528

words (433 sign words). All of these signs are available in529

RGB video format. For alphabet letters and digits, the KArSL530

dataset contains more signs representing the combination531

between some letters or digits of ArSL, such asAlif letter with532

Hamza, 10, 100, and 200 signs. Figure 6 (a) shows samples 533

from KArSL dataset. 534

We used two sets of the KArSL dataset: KArSL-190 and 535

KArSL-502. KArSL-190 is the pilot version of the KArSL 536

dataset, and it consists of 190 signs that comprise 30 digit 537

signs, 39 letter signs, and 121 word signs. We used this set 538

to evaluate the proposed techniques and compared our work 539

with other studies that used this set. We also evaluated our 540

approach on more signs using KArSL-502, which included 541

all the signs (502 signs) of the KArSL dataset. The results 542

reported for KArSL-502 can also be used to benchmark the 543

KArSL dataset because it is the first study to use the whole 544

KArSL dataset. 545

LSA64 is an Argentinian sign language dataset that con- 546

tains 3200 videos of 64 signs performed by ten signers. Each 547

sign is repeated five times by each signer. The dataset was 548

collected using an RGB color camera. The signers who per- 549

formed the dataset signs wore colored gloves to ease the 550

detection and tracking of their hands. However, we used 551

the signs without performing any segmentation. Figure 6 (b) 552

shows samples from LSA64 dataset. 553

B. RESULTS AND DISCUSSION 554

Several experiments have been conducted with different con- 555

figurations to evaluate the efficiency of the proposed sign lan- 556

guage recognition systems. Experiments were conducted in 557

two modes: signer dependent and signer independent. In the 558

signer-dependent mode, we tested the model on samples of 559

the signers who were involved in the training of the model. 560

By contrast, in the signer-independent mode, we tested the 561

system on the signs performed by the signers who were 562

not present for the model training. For the signer-dependent 563

mode, four sets of experiments were performed on the KArSL 564

dataset—three sets corresponded to each of the three signers 565

in the KArSL dataset, and one set contained the signs of all 566

the signers. The signer-independent experiments were con- 567

ducted using three sets corresponding to each signer tested 568

for the dataset. For example, in the set used for Signer 01 in 569

the signer-independent mode, two signers (Signer 02 and 570

Signer 03) were used for training, and one signer (Signer 01) 571

was used for testing. 572

In these experiments, we started by evaluating each com- 573

ponent of the proposed system independently. We evalu- 574

ated the DMN stream using different pre-trained networks 575

on 18 key postures selected empirically. The CNN compo- 576

nent of this network was fine-tuned using three pre-trained 577

models for sign recognition, namely, VGG16, Xception, 578

ResNet152 and MobileNet. The feature vectors resulting 579

from these networks were fed into the stacked LSTM, as dis- 580

cussed in Section III-C1. Then, we evaluated the AMN 581

stream using three configurations: forward (FWD-AMN), 582

backward (BWD-AMN), and bidirectional (BWD-AMN). 583

This stream accepts theAVM image as an input and employs a 584

pre-trainedMobileNet network for features extraction, as dis- 585

cussed in Section III-C2. Finally, we evaluated the SRN 586

network that accepts the dynamic and accumulative motion 587
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FIGURE 6. Samples from the used datasets: (a) KArSL and (b) LSA64.

features extracted from the DMN and AMN streams, respec-588

tively. All these experiments were performed using Tensor-589

flow 2.5 on a workstation with Nvidia GeForce RTX 2080TI590

graphics processing unit (GPU) with 11 GB GPU memory591

and 64 GB RAM memory.592

The DMN stream consists of stacked LSTM layers593

as discussed in Section III-C1. The LSTM component594

of this stream has been selected empirically as shown595

in Table 2. This table shows the recognition accuracies596

of the DMN stream with LSTM and GRU components597

using different pre-trained models on KArSL-502 dataset.598

Clearly, the DMN stream with LSTM and MobileNet599

model outperformed the other pre-trained models. There-600

fore, we conducted all other experiments in this work using601

the DMN stream with LSTM and MobileNet pre-trained602

model.603

Table 3 shows the obtained results for the proposed mod-604

els in the signer-dependent mode using KArSL-190 and605

KArSL-502 datasets. It is also noticeable that the AMN606

stream with all the fusion configurations outperformed the607

DMN stream. This can be attributed to the ability of AMN608

to capture the static sign gestures with minor differences609

encoded by the AVM technique, which is challenging for610

DMN. The highest accuracies of AMN fusions are obtained611

with bidirectional AMN (Bi-AMN) that considers fusion in612

both directions. We also showed the results of the SRN613

stream. The features extracted using DMN with MobileNet614

were fused with the features extracted using AMN to form the615

input for SRN. DMNwith MobileNet was selected because it616

performed better than other pre-trained models. We evaluated617

this fusion with forward, backward, and bidirectional AMNs, 618

which are shown in Table 2 as FWD-SRN, BWD-SRN, and 619

Bi-SRN, respectively. Table 3 also shows that the obtained 620

accuracies using the SRN network outperformed the DMN 621

stream for the KArSL-190 and KArSL-502 datasets. By con- 622

trast, there was no noticeable improvement over the AMN 623

stream except for Signer 01 of KArSL-502. However, the 624

obtained results with SRN were high in the signer-dependent 625

mode. 626

Although the results obtained for the proposed networks 627

with the signer-dependent mode can be considered satisfac- 628

tory, the more challenging type of sign language recognition 629

is with the signer-independent mode. This type of recognition 630

is related to the real-time systems that are tested on sign- 631

ers who are different from the signers involved in system 632

training. To this end, we used two signers from the KArSL 633

dataset for training and a third signer for testing. We fol- 634

lowed the same experimental settings used for the signer- 635

dependent experiments. Comparing Tables 3 and 4 shows 636

that the signer-independent recognition was more challeng- 637

ing than the signer-dependent recognition. It is clear from 638

Table 4 that the accuracies of all the configurations of the 639

AMN stream on both datasets were significantly higher than 640

the accuracies of the configurations of the DMN stream. The 641

greatest improvement in all the AMN fusions is with the bidi- 642

rectional AMN. Fusing this stream with DMN-MobileNet 643

and feeding them into SRN helped to improve the results on 644

KArSL-190 for all the signers. For KArSL-502, the fusion 645

of DMN and AMN improved the accuracy of all the signers 646

as compared with FWD-AMN and BWD-AMN. However, 647
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TABLE 2. Recognition accuracies of the DMN stream on KArSL-502.

TABLE 3. Signer-dependent recognition results on KArSL-190 and KArSL-502.

TABLE 4. Signer-independent recognition rates.

the accuracy of only Signer 03 improved with Bi-SRN as648

compared with Bi-AMN.649

To evaluate the performance of the proposed networks650

on each sign category, we show in Table 5 the recognition651

accuracies of each stream separately on the three categories652

of KArSL signs (numbers, letters, and sign words) in the653

signer-independent mode. The accuracies shown in Table 5654

are for the bidirectional AMN and DMN with the MobileNet655

pre-trained model because both models outperformed other656

settings. Table 5 also shows that for all the models, the signs657

of type number were the most challenging to recognize, fol-658

lowed by the letters signs. This can be attributed to the lack659

of motion in these signs. In addition, most of these signs660

are static and the differences between some of these static661

signs are marginal. For example, ’Dãt’ and ’Sãd’ ArSL let-662

ters are almost similar and differ only on the position of the663

thumb finger. Additionally, certain number signs have only664

marginal variations, which cannot be captured easily with665

the recognition models. In contrast, the highest recognition666

rates were obtained with sign words that can be attributed 667

to the variation between sign words and the use of motion 668

with these signs. It is also noticeable in the confusion matrix 669

that the AMN stream can recognize the static signs more 670

efficiently than the DMN stream due to its ability in cap- 671

turing the spatial features encoded by the AVM technique. 672

The fusion of the DMN and AMN streams through the SRN 673

stream improved the accuracies of all sign types for all sign- 674

ers except Signer 01 of KArSL-190. Furthermore, the SRN 675

stream outperformedDMNwith all sign types of KArSL-502. 676

To better investigate the misclassifications, we used a pie 677

chart (Figure 7) of the misclassification signs of KArSL-502 678

for each network stream organized by the sign chapter (the 679

KArSL dataset contains signs from 11 chapters of the ArSL 680

dictionary). The signs involved in this analysis are those 681

that could not be recognized by the network streams in the 682

signer-independent mode for the three signers. As shown in 683

the figure, most of the signs that could not be recognized by 684

all the network streams belong to the characteristics chapter. 685
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TABLE 5. Recognition accuracies of the proposed models per sign category in the signer-independent mode.

FIGURE 7. Misclassified signs by each network stream on KArSL-502
organized by the sign chapter.

This chapter contains characteristic signs such as happy, poor,686

and selfish. Most of these signs have identical manual ges-687

tures and differ only in the facial expressions as shown in688

Figure 8. This figure shows how the ‘‘afraid’’ and ‘‘stand’’689

signs of ArSL share the same gesture and motion but are690

accompanied by different facial expressions. Figure 7 also691

shows how the AMN stream could recognize almost all the692

static signs, unlike the DMN stream.693

C. COMPARISON WITH OTHER WORKS694

To evaluate the efficiency of the proposed approach, we com-695

pared the obtained results with the state-of-the-art tech-696

niques in the literature for the two datasets KArSL-190 and697

LSA64. KArSL-502was published in 2021; therefore, no ear-698

lier work was available for comparison. Consequently, the699

reported results of this work could be used as a bench-700

mark for the KArSL dataset. Sidig et al. [57] proposed four701

FIGURE 8. Two signs that share the same manual gestures but have
different facial expressions: (a) afraid and (b) stand.

techniques for ArSL recognition. Three types of features 702

were extracted from the skeleton’s joint points provided 703

by the Kinect sensor and fed into the HMM: (i) the joint 704

points of the signers’ hands, (ii) the hand shape represented 705

using HOG, and (iii) a combination of joint points and the 706

shapes of the signers’ hands. Additionally, they formed a 707

single image from all the frames of the signs and used a 708

CNN model with VGG-19 for classification. Table 6 com- 709

pares the results of these techniques with our results using 710

KArSL-190. As shown in the table, the obtained results of the 711

proposed AMN and SRN streams in the signer-dependent and 712

signer-independent modes outperformed other techniques. 713

In addition, the improvements in accuracy over the Sidig and 714

Mahmoud [57] results with Bi-SRNwere approximately 11% 715

and 15% in the signer-dependent and signer-independent 716

modes, respectively. These results confirm the efficiency of 717

our proposed networks for sign recognition. 718

The LSA64 dataset, which is an Argentinian dataset con- 719

sisting of 64 signs performed by ten signers, was also 720

used to evaluate the generalization of our approach to other 721

sign languages. We evaluated the proposed approach in 722

the signer-dependent and signer-independent modes. For the 723

signer-dependent mode, we split the data randomly into the 724

train (80%) and test (20%) sets; we repeated each experiment 725
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TABLE 6. Comparison with other works using KArSL-190.

TABLE 7. Comparison with other works using ISA64 dataset (∗ evaluated on 46 sign gestures of ISA64).

TABLE 8. Signer-independent recognition accuracies of the bidirectional accumulative motion network on the LSA64 dataset.

five times. For the signer-independent mode, nine signers726

were used for model training, and the 10th signer was used as727

an unseen signer for testing. We compared the results of our728

approach with the results obtained by Ronchetti et al. [59],729

Neto et al. [60], Masood et al. [61], Konstantinidis et al. [62],730

and Imran et al. [63]. Ronchetti et al. [59] proposed a prob-731

abilistic model that combines the outputs of three classi-732

fiers trained on a set of statistical features. Neto et al. [60]733

proposed a 3D CNN architecture for sign recognition.734

Konstantinidis et al. [62] proposed an LSTM model to clas-735

sify the signs based on the hand and body skeletal736

features. Rodriguez et al. [64] used cumulative shape differ-737

ence (CSD) with SVM for sign-independent recognition.738

Masood et al. [61] applied a CNN-LSTM model for sign739

video classification wherein the CNN model was trained740

on a pre-trained Inception model. This approach was eval-741

uated on 46 gestures of the LSA64 dataset. Imran et al. [63]742

proposed three motion templates to encode the hand move-743

ments of the sign gestures. These representations were fed744

into the pre-trained CNN for gestures learning and classi- 745

fication. The comparative results are presented in Table 7. 746

Clearly, our approach outperformed other approaches in 747

the signer-dependent and signer-independent experiments. 748

The highest accuracy in the signer-independent mode was 749

obtained using Bi-AMN. In this experiment, the lowest accu- 750

racies were obtained with Signer 02, Signer 03, and Signer 08 751

(see Table 8). These signers were nonexpert signers, and they 752

introduced certain movements that were not part of the sign 753

language, such as head motions and returning hands to their 754

resting positions before signing. These observations align 755

with the challenges reported for the LSA64 dataset in [64]. 756

V. CONCLUSION AND FUTURE WORK 757

In the last decade, sign language recognition has gained 758

popularity and attracted the interest of researchers world- 759

wide. Several approaches that differ in the sign’s acquisition 760

method, recognition technique, target language, and number 761

of recognized signs have been proposed for isolated sign 762
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language recognition. In this research, three deep learning763

models (namely, DMN, AMN, and SRN) have been pro-764

posed for sign language recognition. The DMN stream learns765

the spatiotemporal information of the sign’s key postures.766

In this research, we propose a technique to extract key pos-767

tures for handling the variations between the sign’s samples.768

This technique uses the dominant postures that represent the769

key motion changes of the sign. We also proposed the AVM770

approach to encode the sign motion into a single image. This771

image was used as the input to the second proposed network,772

namely, AMN. The third proposed network was SRN, which773

fused the features extracted from the DMN andAMN streams774

and used them as the input. These networks were evaluated on775

two datasets, and the obtained results proved that the AMN is776

efficient for sign language recognition compared with other777

streams and it outperformed the state-of-the-art techniques.778

Signer-independent recognition is more challenging than779

signer-dependent, and the number of signers used for model780

training plays a vital role in the model’s accuracy. Models781

trained on a large number of signers are expected to have782

higher signer-independent accuracy compared with models783

trained on a small number of signers. This can be noticed in784

our results when we used the KArSL dataset with 3 signers785

and the ISA64 dataset with 10 signers. This has also been786

noticed in the literature where models trained on a large787

number of signers reported high signer-independent accu-788

racy [34], [65], [66], [67], whereas models trained on a small789

number of signers usually reported lower accuracies [13],790

[43], [68].791

As a future work, other models can be used for sign lan-792

guage recognition, such as attention mechanism and Trans-793

formers. In addition, we will use other modalities for sign794

language recognition.795
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